xref: /dragonfly/sys/platform/pc64/x86_64/trap.c (revision a1626531)
1 /*-
2  * Copyright (c) 1990, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * Copyright (C) 1994, David Greenman
5  * Copyright (c) 2008-2018 The DragonFly Project.
6  * Copyright (c) 2008 Jordan Gordeev.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the University of Utah, and William Jolitz.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the University of
22  *	California, Berkeley and its contributors.
23  * 4. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  * from: @(#)trap.c	7.4 (Berkeley) 5/13/91
40  * $FreeBSD: src/sys/i386/i386/trap.c,v 1.147.2.11 2003/02/27 19:09:59 luoqi Exp $
41  */
42 
43 /*
44  * x86_64 Trap and System call handling
45  */
46 
47 #include "use_isa.h"
48 
49 #include "opt_ddb.h"
50 #include "opt_ktrace.h"
51 
52 #include <machine/frame.h>
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/kernel.h>
56 #include <sys/kerneldump.h>
57 #include <sys/proc.h>
58 #include <sys/pioctl.h>
59 #include <sys/types.h>
60 #include <sys/signal2.h>
61 #include <sys/syscall.h>
62 #include <sys/sysctl.h>
63 #include <sys/sysent.h>
64 #ifdef KTRACE
65 #include <sys/ktrace.h>
66 #endif
67 #include <sys/ktr.h>
68 #include <sys/sysmsg.h>
69 #include <sys/sysproto.h>
70 #include <sys/sysunion.h>
71 
72 #include <vm/pmap.h>
73 #include <vm/vm.h>
74 #include <vm/vm_extern.h>
75 #include <vm/vm_kern.h>
76 #include <vm/vm_param.h>
77 #include <machine/cpu.h>
78 #include <machine/pcb.h>
79 #include <machine/smp.h>
80 #include <machine/thread.h>
81 #include <machine/clock.h>
82 #include <machine/vmparam.h>
83 #include <machine/md_var.h>
84 #include <machine_base/isa/isa_intr.h>
85 #include <machine_base/apic/lapic.h>
86 
87 #include <ddb/ddb.h>
88 
89 #include <sys/thread2.h>
90 #include <sys/spinlock2.h>
91 
92 /*
93  * These %rip's are used to detect a historical CPU artifact on syscall or
94  * int $3 entry, if not shortcutted in exception.S via
95  * DIRECT_DISALLOW_SS_CPUBUG.
96  */
97 extern void Xbpt(void);
98 extern void Xfast_syscall(void);
99 #define IDTVEC(vec)	X##vec
100 
101 extern void trap(struct trapframe *frame);
102 
103 static int trap_pfault(struct trapframe *, int);
104 static void trap_fatal(struct trapframe *, vm_offset_t);
105 void dblfault_handler(struct trapframe *frame);
106 
107 #define MAX_TRAP_MSG		30
108 static char *trap_msg[] = {
109 	"",					/*  0 unused */
110 	"privileged instruction fault",		/*  1 T_PRIVINFLT */
111 	"",					/*  2 unused */
112 	"breakpoint instruction fault",		/*  3 T_BPTFLT */
113 	"",					/*  4 unused */
114 	"",					/*  5 unused */
115 	"arithmetic trap",			/*  6 T_ARITHTRAP */
116 	"system forced exception",		/*  7 T_ASTFLT */
117 	"",					/*  8 unused */
118 	"general protection fault",		/*  9 T_PROTFLT */
119 	"trace trap",				/* 10 T_TRCTRAP */
120 	"",					/* 11 unused */
121 	"page fault",				/* 12 T_PAGEFLT */
122 	"",					/* 13 unused */
123 	"alignment fault",			/* 14 T_ALIGNFLT */
124 	"",					/* 15 unused */
125 	"",					/* 16 unused */
126 	"",					/* 17 unused */
127 	"integer divide fault",			/* 18 T_DIVIDE */
128 	"non-maskable interrupt trap",		/* 19 T_NMI */
129 	"overflow trap",			/* 20 T_OFLOW */
130 	"FPU bounds check fault",		/* 21 T_BOUND */
131 	"FPU device not available",		/* 22 T_DNA */
132 	"double fault",				/* 23 T_DOUBLEFLT */
133 	"FPU operand fetch fault",		/* 24 T_FPOPFLT */
134 	"invalid TSS fault",			/* 25 T_TSSFLT */
135 	"segment not present fault",		/* 26 T_SEGNPFLT */
136 	"stack fault",				/* 27 T_STKFLT */
137 	"machine check trap",			/* 28 T_MCHK */
138 	"SIMD floating-point exception",	/* 29 T_XMMFLT */
139 	"reserved (unknown) fault",		/* 30 T_RESERVED */
140 };
141 
142 #ifdef DDB
143 static int ddb_on_nmi = 1;
144 SYSCTL_INT(_machdep, OID_AUTO, ddb_on_nmi, CTLFLAG_RW,
145 	&ddb_on_nmi, 0, "Go to DDB on NMI");
146 static int ddb_on_seg_fault = 0;
147 SYSCTL_INT(_machdep, OID_AUTO, ddb_on_seg_fault, CTLFLAG_RW,
148 	&ddb_on_seg_fault, 0, "Go to DDB on user seg-fault");
149 __read_mostly static int freeze_on_seg_fault = 0;
150 SYSCTL_INT(_machdep, OID_AUTO, freeze_on_seg_fault, CTLFLAG_RW,
151 	&freeze_on_seg_fault, 0, "Go to DDB on user seg-fault");
152 #endif
153 static int panic_on_nmi = 1;
154 SYSCTL_INT(_machdep, OID_AUTO, panic_on_nmi, CTLFLAG_RW,
155 	&panic_on_nmi, 0, "Panic on NMI");
156 
157 /*
158  * System call debugging records the worst-case system call
159  * overhead (inclusive of blocking), but may be inaccurate.
160  */
161 /*#define SYSCALL_DEBUG*/
162 #ifdef SYSCALL_DEBUG
163 
164 #define SCWC_MAXT	30
165 
166 struct syscallwc {
167 	uint32_t idx;
168 	uint32_t dummy;
169 	uint64_t tot[SYS_MAXSYSCALL];
170 	uint64_t timings[SYS_MAXSYSCALL][SCWC_MAXT];
171 } __cachealign;
172 
173 struct syscallwc SysCallsWorstCase[MAXCPU];
174 
175 #endif
176 
177 /*
178  * Passively intercepts the thread switch function to increase
179  * the thread priority from a user priority to a kernel priority, reducing
180  * syscall and trap overhead for the case where no switch occurs.
181  *
182  * Synchronizes td_ucred with p_ucred.  This is used by system calls,
183  * signal handling, faults, AST traps, and anything else that enters the
184  * kernel from userland and provides the kernel with a stable read-only
185  * copy of the process ucred.
186  *
187  * To avoid races with another thread updating p_ucred we obtain p_spin.
188  * The other thread doing the update will obtain both p_token and p_spin.
189  * In the case where the cached cred pointer matches, we will already have
190  * the ref and we don't have to do one blessed thing.
191  */
192 static __inline void
193 userenter(struct thread *curtd, struct proc *curp)
194 {
195 	struct ucred *ocred;
196 	struct ucred *ncred;
197 
198 	curtd->td_release = lwkt_passive_release;
199 
200 	if (__predict_false(curtd->td_ucred != curp->p_ucred)) {
201 		spin_lock(&curp->p_spin);
202 		ncred = crhold(curp->p_ucred);
203 		spin_unlock(&curp->p_spin);
204 		ocred = curtd->td_ucred;
205 		curtd->td_ucred = ncred;
206 		if (ocred)
207 			crfree(ocred);
208 	}
209 
210 #ifdef DDB
211 	/*
212 	 * Debugging, remove top two user stack pages to catch kernel faults
213 	 */
214 	if (__predict_false(freeze_on_seg_fault > 1 && curtd->td_lwp)) {
215 		pmap_remove(vmspace_pmap(curtd->td_lwp->lwp_vmspace),
216 			    0x00007FFFFFFFD000LU,
217 			    0x0000800000000000LU);
218 	}
219 #endif
220 }
221 
222 /*
223  * Handle signals, upcalls, profiling, and other AST's and/or tasks that
224  * must be completed before we can return to or try to return to userland.
225  *
226  * Note that td_sticks is a 64 bit quantity, but there's no point doing 64
227  * arithmatic on the delta calculation so the absolute tick values are
228  * truncated to an integer.
229  */
230 static void
231 userret(struct lwp *lp, struct trapframe *frame, int sticks)
232 {
233 	struct proc *p = lp->lwp_proc;
234 	int sig;
235 	int ptok;
236 
237 	/*
238 	 * Charge system time if profiling.  Note: times are in microseconds.
239 	 * This may do a copyout and block, so do it first even though it
240 	 * means some system time will be charged as user time.
241 	 */
242 	if (__predict_false(p->p_flags & P_PROFIL)) {
243 		addupc_task(p, frame->tf_rip,
244 			(u_int)((int)lp->lwp_thread->td_sticks - sticks));
245 	}
246 
247 recheck:
248 	/*
249 	 * Specific on-return-to-usermode checks (LWP_MP_WEXIT,
250 	 * LWP_MP_VNLRU, etc).
251 	 */
252 	if (lp->lwp_mpflags & LWP_MP_URETMASK)
253 		lwpuserret(lp);
254 
255 	/*
256 	 * Block here if we are in a stopped state.
257 	 */
258 	if (__predict_false(STOPLWP(p, lp))) {
259 		lwkt_gettoken(&p->p_token);
260 		tstop();
261 		lwkt_reltoken(&p->p_token);
262 		goto recheck;
263 	}
264 	while (__predict_false(dump_stop_usertds)) {
265 		tsleep(&dump_stop_usertds, 0, "dumpstp", 0);
266 	}
267 
268 	/*
269 	 * Post any pending upcalls.  If running a virtual kernel be sure
270 	 * to restore the virtual kernel's vmspace before posting the upcall.
271 	 */
272 	if (__predict_false(p->p_flags & (P_SIGVTALRM | P_SIGPROF))) {
273 		lwkt_gettoken(&p->p_token);
274 		if (p->p_flags & P_SIGVTALRM) {
275 			p->p_flags &= ~P_SIGVTALRM;
276 			ksignal(p, SIGVTALRM);
277 		}
278 		if (p->p_flags & P_SIGPROF) {
279 			p->p_flags &= ~P_SIGPROF;
280 			ksignal(p, SIGPROF);
281 		}
282 		lwkt_reltoken(&p->p_token);
283 		goto recheck;
284 	}
285 
286 	/*
287 	 * Post any pending signals.  If running a virtual kernel be sure
288 	 * to restore the virtual kernel's vmspace before posting the signal.
289 	 *
290 	 * WARNING!  postsig() can exit and not return.
291 	 */
292 	if (__predict_false((sig = CURSIG_LCK_TRACE(lp, &ptok)) != 0)) {
293 		postsig(sig, ptok);
294 		goto recheck;
295 	}
296 
297 	/*
298 	 * block here if we are swapped out, but still process signals
299 	 * (such as SIGKILL).  proc0 (the swapin scheduler) is already
300 	 * aware of our situation, we do not have to wake it up.
301 	 */
302 	if (__predict_false(p->p_flags & P_SWAPPEDOUT)) {
303 		lwkt_gettoken(&p->p_token);
304 		p->p_flags |= P_SWAPWAIT;
305 		swapin_request();
306 		if (p->p_flags & P_SWAPWAIT)
307 			tsleep(p, PCATCH, "SWOUT", 0);
308 		p->p_flags &= ~P_SWAPWAIT;
309 		lwkt_reltoken(&p->p_token);
310 		goto recheck;
311 	}
312 
313 	/*
314 	 * In a multi-threaded program it is possible for a thread to change
315 	 * signal state during a system call which temporarily changes the
316 	 * signal mask.  In this case postsig() might not be run and we
317 	 * have to restore the mask ourselves.
318 	 */
319 	if (__predict_false(lp->lwp_flags & LWP_OLDMASK)) {
320 		lp->lwp_flags &= ~LWP_OLDMASK;
321 		lp->lwp_sigmask = lp->lwp_oldsigmask;
322 		goto recheck;
323 	}
324 }
325 
326 /*
327  * Cleanup from userenter and any passive release that might have occured.
328  * We must reclaim the current-process designation before we can return
329  * to usermode.  We also handle both LWKT and USER reschedule requests.
330  */
331 static __inline void
332 userexit(struct lwp *lp)
333 {
334 	struct thread *td = lp->lwp_thread;
335 	/* globaldata_t gd = td->td_gd; */
336 
337 	/*
338 	 * Handle stop requests at kernel priority.  Any requests queued
339 	 * after this loop will generate another AST.
340 	 */
341 	while (__predict_false(STOPLWP(lp->lwp_proc, lp))) {
342 		lwkt_gettoken(&lp->lwp_proc->p_token);
343 		tstop();
344 		lwkt_reltoken(&lp->lwp_proc->p_token);
345 	}
346 
347 	/*
348 	 * Reduce our priority in preparation for a return to userland.  If
349 	 * our passive release function was still in place, our priority was
350 	 * never raised and does not need to be reduced.
351 	 */
352 	lwkt_passive_recover(td);
353 
354 	/* WARNING: we may have migrated cpu's */
355 	/* gd = td->td_gd; */
356 
357 	/*
358 	 * Become the current user scheduled process if we aren't already,
359 	 * and deal with reschedule requests and other factors.
360 	 *
361 	 * Do a silly hack to avoid RETPOLINE nonsense.
362 	 */
363 	if (lp->lwp_proc->p_usched == &usched_dfly)
364 		dfly_acquire_curproc(lp);
365 	else
366 		lp->lwp_proc->p_usched->acquire_curproc(lp);
367 }
368 
369 /*
370  * A page fault on a userspace address is classified as SMAP-induced
371  * if:
372  *	- SMAP is supported
373  *	- kernel mode accessed present data page
374  *	- rflags.AC was cleared
375  */
376 static int
377 trap_is_smap(struct trapframe *frame)
378 {
379         if ((cpu_stdext_feature & CPUID_STDEXT_SMAP) != 0 &&
380             (frame->tf_err & (PGEX_P | PGEX_U | PGEX_I | PGEX_RSV)) == PGEX_P &&
381 	    (frame->tf_rflags & PSL_AC) == 0) {
382 		return 1;
383 	} else {
384 		return 0;
385 	}
386 }
387 
388 #if !defined(KTR_KERNENTRY)
389 #define	KTR_KERNENTRY	KTR_ALL
390 #endif
391 KTR_INFO_MASTER(kernentry);
392 KTR_INFO(KTR_KERNENTRY, kernentry, trap, 0,
393 	 "TRAP(pid %d, tid %d, trapno %ld, eva %lu)",
394 	 pid_t pid, lwpid_t tid,  register_t trapno, vm_offset_t eva);
395 KTR_INFO(KTR_KERNENTRY, kernentry, trap_ret, 0, "TRAP_RET(pid %d, tid %d)",
396 	 pid_t pid, lwpid_t tid);
397 KTR_INFO(KTR_KERNENTRY, kernentry, syscall, 0, "SYSC(pid %d, tid %d, nr %ld)",
398 	 pid_t pid, lwpid_t tid,  register_t trapno);
399 KTR_INFO(KTR_KERNENTRY, kernentry, syscall_ret, 0, "SYSRET(pid %d, tid %d, err %d)",
400 	 pid_t pid, lwpid_t tid,  int err);
401 KTR_INFO(KTR_KERNENTRY, kernentry, fork_ret, 0, "FORKRET(pid %d, tid %d)",
402 	 pid_t pid, lwpid_t tid);
403 
404 /*
405  * Exception, fault, and trap interface to the kernel.
406  * This common code is called from assembly language IDT gate entry
407  * routines that prepare a suitable stack frame, and restore this
408  * frame after the exception has been processed.
409  *
410  * This function is also called from doreti in an interlock to handle ASTs.
411  * For example:  hardwareint->INTROUTINE->(set ast)->doreti->trap
412  *
413  * NOTE!  We have to retrieve the fault address prior to potentially
414  *	  blocking, including blocking on any token.
415  *
416  * NOTE!  NMI and kernel DBG traps remain on their respective pcpu IST
417  *	  stacks if taken from a kernel RPL. trap() cannot block in this
418  *	  situation.  DDB entry or a direct report-and-return is ok.
419  *
420  * XXX gd_trap_nesting_level currently prevents lwkt_switch() from panicing
421  * if an attempt is made to switch from a fast interrupt or IPI.
422  */
423 void
424 trap(struct trapframe *frame)
425 {
426 	static struct krate sscpubugrate = { 1 };
427 	struct globaldata *gd = mycpu;
428 	struct thread *td = gd->gd_curthread;
429 	struct lwp *lp = td->td_lwp;
430 	struct proc *p;
431 	int sticks = 0;
432 	int i = 0, ucode = 0, type, code;
433 #ifdef INVARIANTS
434 	int crit_count = td->td_critcount;
435 	lwkt_tokref_t curstop = td->td_toks_stop;
436 #endif
437 	vm_offset_t eva;
438 
439 	p = td->td_proc;
440 	clear_quickret();
441 
442 #ifdef DDB
443         /*
444 	 * We need to allow T_DNA faults when the debugger is active since
445 	 * some dumping paths do large bcopy() which use the floating
446 	 * point registers for faster copying.
447 	 */
448 	if (db_active && frame->tf_trapno != T_DNA) {
449 		eva = (frame->tf_trapno == T_PAGEFLT ? frame->tf_addr : 0);
450 		++gd->gd_trap_nesting_level;
451 		trap_fatal(frame, eva);
452 		--gd->gd_trap_nesting_level;
453 		goto out2;
454 	}
455 #endif
456 
457 	eva = 0;
458 
459 	if ((frame->tf_rflags & PSL_I) == 0) {
460 		/*
461 		 * Buggy application or kernel code has disabled interrupts
462 		 * and then trapped.  Enabling interrupts now is wrong, but
463 		 * it is better than running with interrupts disabled until
464 		 * they are accidentally enabled later.
465 		 */
466 
467 		type = frame->tf_trapno;
468 		if (ISPL(frame->tf_cs) == SEL_UPL) {
469 			/* JG curproc can be NULL */
470 			kprintf(
471 			    "pid %ld (%s): trap %d with interrupts disabled\n",
472 			    (long)curproc->p_pid, curproc->p_comm, type);
473 		} else if ((type == T_STKFLT || type == T_PROTFLT ||
474 			    type == T_SEGNPFLT) &&
475 			   frame->tf_rip == (long)doreti_iret) {
476 			/*
477 			 * iretq fault from kernel mode during return to
478 			 * userland.
479 			 *
480 			 * This situation is expected, don't complain.
481 			 */
482 		} else if (type != T_NMI && type != T_BPTFLT &&
483 			   type != T_TRCTRAP) {
484 			/*
485 			 * XXX not quite right, since this may be for a
486 			 * multiple fault in user mode.
487 			 */
488 			kprintf("kernel trap %d (%s @ 0x%016jx) with "
489 				"interrupts disabled\n",
490 				type,
491 				td->td_comm,
492 				frame->tf_rip);
493 		}
494 		cpu_enable_intr();
495 	}
496 
497 	type = frame->tf_trapno;
498 	code = frame->tf_err;
499 
500 	if (ISPL(frame->tf_cs) == SEL_UPL) {
501 		/* user trap */
502 
503 		KTR_LOG(kernentry_trap, p->p_pid, lp->lwp_tid,
504 			frame->tf_trapno, eva);
505 
506 		userenter(td, p);
507 
508 		sticks = (int)td->td_sticks;
509 		KASSERT(lp->lwp_md.md_regs == frame,
510 			("Frame mismatch %p %p", lp->lwp_md.md_regs, frame));
511 
512 		switch (type) {
513 		case T_PRIVINFLT:	/* privileged instruction fault */
514 			i = SIGILL;
515 			ucode = ILL_PRVOPC;
516 			break;
517 
518 		case T_BPTFLT:		/* bpt instruction fault */
519 		case T_TRCTRAP:		/* trace trap */
520 			frame->tf_rflags &= ~PSL_T;
521 			i = SIGTRAP;
522 			ucode = (type == T_TRCTRAP ? TRAP_TRACE : TRAP_BRKPT);
523 			break;
524 
525 		case T_ARITHTRAP:	/* arithmetic trap */
526 			ucode = code;
527 			i = SIGFPE;
528 			break;
529 
530 		case T_ASTFLT:		/* Allow process switch */
531 			mycpu->gd_cnt.v_soft++;
532 			if (mycpu->gd_reqflags & RQF_AST_OWEUPC) {
533 				atomic_clear_int(&mycpu->gd_reqflags,
534 						 RQF_AST_OWEUPC);
535 				addupc_task(p, p->p_prof.pr_addr,
536 					    p->p_prof.pr_ticks);
537 			}
538 			goto out;
539 
540 		case T_PROTFLT:		/* general protection fault */
541 			i = SIGBUS;
542 			ucode = BUS_OBJERR;
543 			break;
544 		case T_STKFLT:		/* stack fault */
545 		case T_SEGNPFLT:	/* segment not present fault */
546 			i = SIGBUS;
547 			ucode = BUS_ADRERR;
548 			break;
549 		case T_TSSFLT:		/* invalid TSS fault */
550 		case T_DOUBLEFLT:	/* double fault */
551 		default:
552 			i = SIGBUS;
553 			ucode = BUS_OBJERR;
554 			break;
555 
556 		case T_PAGEFLT:		/* page fault */
557 			i = trap_pfault(frame, TRUE);
558 #ifdef DDB
559 			if (frame->tf_rip == 0) {
560 				/* used for kernel debugging only */
561 				while (freeze_on_seg_fault)
562 					tsleep(p, 0, "freeze", hz * 20);
563 			}
564 #endif
565 			if (i == -1 || i == 0)
566 				goto out;
567 			if (i == SIGSEGV) {
568 				ucode = SEGV_MAPERR;
569 			} else {
570 				i = SIGSEGV;
571 				ucode = SEGV_ACCERR;
572 			}
573 			break;
574 
575 		case T_DIVIDE:		/* integer divide fault */
576 			ucode = FPE_INTDIV;
577 			i = SIGFPE;
578 			break;
579 
580 #if NISA > 0
581 		case T_NMI:
582 			/* machine/parity/power fail/"kitchen sink" faults */
583 			if (isa_nmi(code) == 0) {
584 #ifdef DDB
585 				/*
586 				 * NMI can be hooked up to a pushbutton
587 				 * for debugging.
588 				 */
589 				if (ddb_on_nmi) {
590 					kprintf ("NMI ... going to debugger\n");
591 					kdb_trap(type, 0, frame);
592 				}
593 #endif /* DDB */
594 				goto out2;
595 			} else if (panic_on_nmi)
596 				panic("NMI indicates hardware failure");
597 			break;
598 #endif /* NISA > 0 */
599 
600 		case T_OFLOW:		/* integer overflow fault */
601 			ucode = FPE_INTOVF;
602 			i = SIGFPE;
603 			break;
604 
605 		case T_BOUND:		/* bounds check fault */
606 			ucode = FPE_FLTSUB;
607 			i = SIGFPE;
608 			break;
609 
610 		case T_DNA:
611 			/*
612 			 * Virtual kernel intercept - pass the DNA exception
613 			 * to the virtual kernel if it asked to handle it.
614 			 * This occurs when the virtual kernel is holding
615 			 * onto the FP context for a different emulated
616 			 * process then the one currently running.
617 			 *
618 			 * We must still call npxdna() since we may have
619 			 * saved FP state that the virtual kernel needs
620 			 * to hand over to a different emulated process.
621 			 */
622 			if (lp->lwp_vkernel && lp->lwp_vkernel->ve &&
623 			    (td->td_pcb->pcb_flags & FP_VIRTFP)
624 			) {
625 				npxdna();
626 				break;
627 			}
628 
629 			/*
630 			 * The kernel may have switched out the FP unit's
631 			 * state, causing the user process to take a fault
632 			 * when it tries to use the FP unit.  Restore the
633 			 * state here
634 			 */
635 			if (npxdna()) {
636 				gd->gd_cnt.v_trap++;
637 				goto out;
638 			}
639 			i = SIGFPE;
640 			ucode = FPE_FPU_NP_TRAP;
641 			break;
642 
643 		case T_FPOPFLT:		/* FPU operand fetch fault */
644 			ucode = ILL_COPROC;
645 			i = SIGILL;
646 			break;
647 
648 		case T_XMMFLT:		/* SIMD floating-point exception */
649 			ucode = 0; /* XXX */
650 			i = SIGFPE;
651 			break;
652 		}
653 	} else {
654 		/* kernel trap */
655 
656 		switch (type) {
657 		case T_PAGEFLT:			/* page fault */
658 			trap_pfault(frame, FALSE);
659 			goto out2;
660 
661 		case T_DNA:
662 			/*
663 			 * The kernel is apparently using fpu for copying.
664 			 * XXX this should be fatal unless the kernel has
665 			 * registered such use.
666 			 */
667 			if (npxdna()) {
668 				gd->gd_cnt.v_trap++;
669 				goto out2;
670 			}
671 			break;
672 
673 		case T_STKFLT:		/* stack fault */
674 		case T_PROTFLT:		/* general protection fault */
675 		case T_SEGNPFLT:	/* segment not present fault */
676 			/*
677 			 * Invalid segment selectors and out of bounds
678 			 * %rip's and %rsp's can be set up in user mode.
679 			 * This causes a fault in kernel mode when the
680 			 * kernel tries to return to user mode.  We want
681 			 * to get this fault so that we can fix the
682 			 * problem here and not have to check all the
683 			 * selectors and pointers when the user changes
684 			 * them.
685 			 */
686 			if (mycpu->gd_intr_nesting_level == 0) {
687 				/*
688 				 * NOTE: in 64-bit mode traps push rsp/ss
689 				 *	 even if no ring change occurs.
690 				 */
691 				if (td->td_pcb->pcb_onfault &&
692 				    td->td_pcb->pcb_onfault_sp ==
693 				    frame->tf_rsp) {
694 					frame->tf_rip = (register_t)
695 						td->td_pcb->pcb_onfault;
696 					goto out2;
697 				}
698 
699 				/*
700 				 * If the iretq in doreti faults during
701 				 * return to user, it will be special-cased
702 				 * in IDTVEC(prot) to get here.  We want
703 				 * to 'return' to doreti_iret_fault in
704 				 * ipl.s in approximately the same state we
705 				 * were in at the iretq.
706 				 */
707 				if (frame->tf_rip == (long)doreti_iret) {
708 					frame->tf_rip = (long)doreti_iret_fault;
709 					goto out2;
710 				}
711 			}
712 			break;
713 
714 		case T_TSSFLT:
715 			/*
716 			 * PSL_NT can be set in user mode and isn't cleared
717 			 * automatically when the kernel is entered.  This
718 			 * causes a TSS fault when the kernel attempts to
719 			 * `iret' because the TSS link is uninitialized.  We
720 			 * want to get this fault so that we can fix the
721 			 * problem here and not every time the kernel is
722 			 * entered.
723 			 */
724 			if (frame->tf_rflags & PSL_NT) {
725 				frame->tf_rflags &= ~PSL_NT;
726 #if 0
727 				/* do we need this? */
728 				if (frame->tf_rip == (long)doreti_iret)
729 					frame->tf_rip = (long)doreti_iret_fault;
730 #endif
731 				goto out2;
732 			}
733 			break;
734 
735 		case T_TRCTRAP:	 /* trace trap */
736 			/*
737 			 * Detect historical CPU artifact on syscall or int $3
738 			 * entry (if not shortcutted in exception.s via
739 			 * DIRECT_DISALLOW_SS_CPUBUG).
740 			 */
741 			gd->gd_cnt.v_trap++;
742 			if (frame->tf_rip == (register_t)IDTVEC(fast_syscall)) {
743 				krateprintf(&sscpubugrate,
744 					"Caught #DB at syscall cpu artifact\n");
745 				goto out2;
746 			}
747 			if (frame->tf_rip == (register_t)IDTVEC(bpt)) {
748 				krateprintf(&sscpubugrate,
749 					"Caught #DB at int $N cpu artifact\n");
750 				goto out2;
751 			}
752 
753 			/*
754 			 * Ignore debug register trace traps due to
755 			 * accesses in the user's address space, which
756 			 * can happen under several conditions such as
757 			 * if a user sets a watchpoint on a buffer and
758 			 * then passes that buffer to a system call.
759 			 * We still want to get TRCTRAPS for addresses
760 			 * in kernel space because that is useful when
761 			 * debugging the kernel.
762 			 */
763 			if (user_dbreg_trap()) {
764 				/*
765 				 * Reset breakpoint bits because the
766 				 * processor doesn't
767 				 */
768 				load_dr6(rdr6() & ~0xf);
769 				goto out2;
770 			}
771 			/*
772 			 * FALLTHROUGH (TRCTRAP kernel mode, kernel address)
773 			 */
774 		case T_BPTFLT:
775 			/*
776 			 * If DDB is enabled, let it handle the debugger trap.
777 			 * Otherwise, debugger traps "can't happen".
778 			 */
779 			ucode = TRAP_BRKPT;
780 #ifdef DDB
781 			if (kdb_trap(type, 0, frame))
782 				goto out2;
783 #endif
784 			break;
785 
786 #if NISA > 0
787 		case T_NMI:
788 			/* machine/parity/power fail/"kitchen sink" faults */
789 			if (isa_nmi(code) == 0) {
790 #ifdef DDB
791 				/*
792 				 * NMI can be hooked up to a pushbutton
793 				 * for debugging.
794 				 */
795 				if (ddb_on_nmi) {
796 					kprintf ("NMI ... going to debugger\n");
797 					kdb_trap(type, 0, frame);
798 				}
799 #endif /* DDB */
800 				goto out2;
801 			} else if (panic_on_nmi == 0)
802 				goto out2;
803 			/* FALL THROUGH */
804 #endif /* NISA > 0 */
805 		}
806 		trap_fatal(frame, 0);
807 		goto out2;
808 	}
809 
810 	/*
811 	 * Fault from user mode, virtual kernel interecept.
812 	 *
813 	 * If the fault is directly related to a VM context managed by a
814 	 * virtual kernel then let the virtual kernel handle it.
815 	 */
816 	if (lp->lwp_vkernel && lp->lwp_vkernel->ve) {
817 		vkernel_trap(lp, frame);
818 		goto out;
819 	}
820 
821 	/* Translate fault for emulators (e.g. Linux) */
822 	if (*p->p_sysent->sv_transtrap)
823 		i = (*p->p_sysent->sv_transtrap)(i, type);
824 
825 	gd->gd_cnt.v_trap++;
826 	trapsignal(lp, i, ucode);
827 
828 #ifdef DEBUG
829 	if (type <= MAX_TRAP_MSG) {
830 		uprintf("fatal process exception: %s",
831 			trap_msg[type]);
832 		if ((type == T_PAGEFLT) || (type == T_PROTFLT))
833 			uprintf(", fault VA = 0x%lx", frame->tf_addr);
834 		uprintf("\n");
835 	}
836 #endif
837 
838 out:
839 	userret(lp, frame, sticks);
840 	userexit(lp);
841 out2:	;
842 	if (p != NULL && lp != NULL)
843 		KTR_LOG(kernentry_trap_ret, p->p_pid, lp->lwp_tid);
844 #ifdef INVARIANTS
845 	KASSERT(crit_count == td->td_critcount,
846 		("trap: critical section count mismatch! %d/%d",
847 		crit_count, td->td_pri));
848 	KASSERT(curstop == td->td_toks_stop,
849 		("trap: extra tokens held after trap! %ld/%ld (%s)",
850 		curstop - &td->td_toks_base,
851 		td->td_toks_stop - &td->td_toks_base,
852 		td->td_toks_stop[-1].tr_tok->t_desc));
853 #endif
854 }
855 
856 void
857 trap_handle_userenter(struct thread *td)
858 {
859 	userenter(td, td->td_proc);
860 }
861 
862 void
863 trap_handle_userexit(struct trapframe *frame, int sticks)
864 {
865 	struct lwp *lp = curthread->td_lwp;
866 
867 	if (lp) {
868 		userret(lp, frame, sticks);
869 		userexit(lp);
870 	}
871 }
872 
873 static int
874 trap_pfault(struct trapframe *frame, int usermode)
875 {
876 	vm_offset_t va;
877 	struct vmspace *vm = NULL;
878 	vm_map_t map;
879 	int rv = 0;
880 	int fault_flags;
881 	vm_prot_t ftype;
882 	thread_t td = curthread;
883 	struct lwp *lp = td->td_lwp;
884 	struct proc *p;
885 
886 	va = trunc_page(frame->tf_addr);
887 	if (va >= VM_MIN_KERNEL_ADDRESS) {
888 		/*
889 		 * Don't allow user-mode faults in kernel address space.
890 		 */
891 		if (usermode) {
892 			fault_flags = -1;
893 			ftype = -1;
894 			goto nogo;
895 		}
896 
897 		map = &kernel_map;
898 	} else {
899 		/*
900 		 * This is a fault on non-kernel virtual memory.
901 		 * vm is initialized above to NULL. If curproc is NULL
902 		 * or curproc->p_vmspace is NULL the fault is fatal.
903 		 */
904 		if (lp != NULL)
905 			vm = lp->lwp_vmspace;
906 
907 		if (vm == NULL) {
908 			fault_flags = -1;
909 			ftype = -1;
910 			goto nogo;
911 		}
912 
913 		if (usermode == 0) {
914 #ifdef DDB
915 			/*
916 			 * Debugging, catch kernel faults on the user address
917 			 * space when not inside on onfault (e.g. copyin/
918 			 * copyout) routine.
919 			 */
920 			if (td->td_pcb == NULL ||
921 			    td->td_pcb->pcb_onfault == NULL) {
922 				if (freeze_on_seg_fault) {
923 					kprintf("trap_pfault: user address "
924 						"fault from kernel mode "
925 						"%016lx\n",
926 						(long)frame->tf_addr);
927 					while (freeze_on_seg_fault) {
928 						    tsleep(&freeze_on_seg_fault,
929 							   0,
930 							   "frzseg",
931 							   hz * 20);
932 					}
933 				}
934 			}
935 #endif
936 			if (td->td_gd->gd_intr_nesting_level ||
937 			    trap_is_smap(frame) ||
938 			    td->td_pcb == NULL ||
939 			    td->td_pcb->pcb_onfault == NULL) {
940 				kprintf("Fatal user address access "
941 					"from kernel mode from %s at %016jx\n",
942 					td->td_comm, frame->tf_rip);
943 				trap_fatal(frame, frame->tf_addr);
944 				return (-1);
945 			}
946 		}
947 		map = &vm->vm_map;
948 	}
949 
950 	/*
951 	 * PGEX_I is defined only if the execute disable bit capability is
952 	 * supported and enabled.
953 	 */
954 	if (frame->tf_err & PGEX_W)
955 		ftype = VM_PROT_WRITE;
956 	else if (frame->tf_err & PGEX_I)
957 		ftype = VM_PROT_EXECUTE;
958 	else
959 		ftype = VM_PROT_READ;
960 
961 	lwkt_tokref_t stop = td->td_toks_stop;
962 
963 	if (map != &kernel_map) {
964 		/*
965 		 * Keep swapout from messing with us during this
966 		 *	critical time.
967 		 */
968 		PHOLD(lp->lwp_proc);
969 
970 		/*
971 		 * Issue fault
972 		 */
973 		fault_flags = 0;
974 		if (usermode)
975 			fault_flags |= VM_FAULT_BURST | VM_FAULT_USERMODE;
976 		if (ftype & VM_PROT_WRITE)
977 			fault_flags |= VM_FAULT_DIRTY;
978 		else
979 			fault_flags |= VM_FAULT_NORMAL;
980 		rv = vm_fault(map, va, ftype, fault_flags);
981 		if (td->td_toks_stop != stop) {
982 			stop = td->td_toks_stop - 1;
983 			kprintf("A-HELD TOKENS DURING PFAULT td=%p(%s) map=%p va=%p ftype=%d fault_flags=%d\n", td, td->td_comm, map, (void *)va, ftype, fault_flags);
984 			panic("held tokens");
985 		}
986 
987 		PRELE(lp->lwp_proc);
988 	} else {
989 		/*
990 		 * Don't have to worry about process locking or stacks in the
991 		 * kernel.
992 		 */
993 		fault_flags = VM_FAULT_NORMAL;
994 		rv = vm_fault(map, va, ftype, VM_FAULT_NORMAL);
995 		if (td->td_toks_stop != stop) {
996 			stop = td->td_toks_stop - 1;
997 			kprintf("B-HELD TOKENS DURING PFAULT td=%p(%s) map=%p va=%p ftype=%d fault_flags=%d\n", td, td->td_comm, map, (void *)va, ftype, VM_FAULT_NORMAL);
998 			panic("held tokens");
999 		}
1000 	}
1001 	if (rv == KERN_SUCCESS)
1002 		return (0);
1003 nogo:
1004 	if (!usermode) {
1005 		/*
1006 		 * NOTE: in 64-bit mode traps push rsp/ss
1007 		 *	 even if no ring change occurs.
1008 		 */
1009 		if (td->td_pcb->pcb_onfault &&
1010 		    td->td_pcb->pcb_onfault_sp == frame->tf_rsp &&
1011 		    td->td_gd->gd_intr_nesting_level == 0) {
1012 			frame->tf_rip = (register_t)td->td_pcb->pcb_onfault;
1013 			return (0);
1014 		}
1015 		trap_fatal(frame, frame->tf_addr);
1016 		return (-1);
1017 	}
1018 
1019 	/*
1020 	 * NOTE: on x86_64 we have a tf_addr field in the trapframe, no
1021 	 * kludge is needed to pass the fault address to signal handlers.
1022 	 */
1023 	p = td->td_proc;
1024 #ifdef DDB
1025 	if (td->td_lwp->lwp_vkernel == NULL) {
1026 		while (freeze_on_seg_fault) {
1027 			tsleep(p, 0, "freeze", hz * 20);
1028 		}
1029 		if (ddb_on_seg_fault)
1030 			Debugger("ddb_on_seg_fault");
1031 	}
1032 #endif
1033 
1034 	return((rv == KERN_PROTECTION_FAILURE) ? SIGBUS : SIGSEGV);
1035 }
1036 
1037 static void
1038 trap_fatal(struct trapframe *frame, vm_offset_t eva)
1039 {
1040 	int code, ss;
1041 	u_int type;
1042 	long rsp;
1043 	struct soft_segment_descriptor softseg;
1044 	char *msg;
1045 
1046 	code = frame->tf_err;
1047 	type = frame->tf_trapno;
1048 	sdtossd(&gdt[IDXSEL(frame->tf_cs & 0xffff)], &softseg);
1049 
1050 	if (type <= MAX_TRAP_MSG)
1051 		msg = trap_msg[type];
1052 	else
1053 		msg = "UNKNOWN";
1054 	kprintf("\n\nFatal trap %d: %s while in %s mode\n", type, msg,
1055 	    ISPL(frame->tf_cs) == SEL_UPL ? "user" : "kernel");
1056 	/* three separate prints in case of a trap on an unmapped page */
1057 	kprintf("cpuid = %d; ", mycpu->gd_cpuid);
1058 	if (lapic_usable)
1059 		kprintf("lapic id = %u\n", LAPIC_READID);
1060 	if (type == T_PAGEFLT) {
1061 		kprintf("fault virtual address	= 0x%lx\n", eva);
1062 		kprintf("fault code		= %s %s %s, %s\n",
1063 			code & PGEX_U ? "user" : "supervisor",
1064 			code & PGEX_W ? "write" : "read",
1065 			code & PGEX_I ? "instruction" : "data",
1066 			code & PGEX_P ? "protection violation" : "page not present");
1067 	}
1068 	kprintf("instruction pointer	= 0x%lx:0x%lx\n",
1069 	       frame->tf_cs & 0xffff, frame->tf_rip);
1070         if (ISPL(frame->tf_cs) == SEL_UPL) {
1071 		ss = frame->tf_ss & 0xffff;
1072 		rsp = frame->tf_rsp;
1073 	} else {
1074 		/*
1075 		 * NOTE: in 64-bit mode traps push rsp/ss even if no ring
1076 		 *	 change occurs.
1077 		 */
1078 		ss = GSEL(GDATA_SEL, SEL_KPL);
1079 		rsp = frame->tf_rsp;
1080 	}
1081 	kprintf("stack pointer	        = 0x%x:0x%lx\n", ss, rsp);
1082 	kprintf("frame pointer	        = 0x%x:0x%lx\n", ss, frame->tf_rbp);
1083 	kprintf("code segment		= base 0x%lx, limit 0x%lx, type 0x%x\n",
1084 	       softseg.ssd_base, softseg.ssd_limit, softseg.ssd_type);
1085 	kprintf("			= DPL %d, pres %d, long %d, def32 %d, gran %d\n",
1086 	       softseg.ssd_dpl, softseg.ssd_p, softseg.ssd_long, softseg.ssd_def32,
1087 	       softseg.ssd_gran);
1088 	kprintf("processor eflags	= ");
1089 	if (frame->tf_rflags & PSL_T)
1090 		kprintf("trace trap, ");
1091 	if (frame->tf_rflags & PSL_I)
1092 		kprintf("interrupt enabled, ");
1093 	if (frame->tf_rflags & PSL_NT)
1094 		kprintf("nested task, ");
1095 	if (frame->tf_rflags & PSL_RF)
1096 		kprintf("resume, ");
1097 	if (frame->tf_rflags & PSL_AC)
1098 		kprintf("smap_open, ");
1099 	kprintf("IOPL = %ld\n", (frame->tf_rflags & PSL_IOPL) >> 12);
1100 	kprintf("current process		= ");
1101 	if (curproc) {
1102 		kprintf("%lu\n",
1103 		    (u_long)curproc->p_pid);
1104 	} else {
1105 		kprintf("Idle\n");
1106 	}
1107 	kprintf("current thread          = pri %d ", curthread->td_pri);
1108 	if (curthread->td_critcount)
1109 		kprintf("(CRIT)");
1110 	kprintf("\n");
1111 
1112 #ifdef DDB
1113 	if ((debugger_on_panic || db_active) && kdb_trap(type, code, frame))
1114 		return;
1115 #endif
1116 	kprintf("trap number		= %d\n", type);
1117 	if (type <= MAX_TRAP_MSG)
1118 		panic("%s", trap_msg[type]);
1119 	else
1120 		panic("unknown/reserved trap");
1121 }
1122 
1123 /*
1124  * Double fault handler. Called when a fault occurs while writing
1125  * a frame for a trap/exception onto the stack. This usually occurs
1126  * when the stack overflows (such is the case with infinite recursion,
1127  * for example).
1128  */
1129 static __inline
1130 int
1131 in_kstack_guard(register_t rptr)
1132 {
1133 	thread_t td = curthread;
1134 
1135 	if ((char *)rptr >= td->td_kstack &&
1136 	    (char *)rptr < td->td_kstack + PAGE_SIZE) {
1137 		return 1;
1138 	}
1139 	return 0;
1140 }
1141 
1142 void
1143 dblfault_handler(struct trapframe *frame)
1144 {
1145 	thread_t td = curthread;
1146 
1147 	if (in_kstack_guard(frame->tf_rsp) || in_kstack_guard(frame->tf_rbp)) {
1148 		kprintf("DOUBLE FAULT - KERNEL STACK GUARD HIT!\n");
1149 		if (in_kstack_guard(frame->tf_rsp))
1150 			frame->tf_rsp = (register_t)(td->td_kstack + PAGE_SIZE);
1151 		if (in_kstack_guard(frame->tf_rbp))
1152 			frame->tf_rbp = (register_t)(td->td_kstack + PAGE_SIZE);
1153 	} else {
1154 		kprintf("DOUBLE FAULT\n");
1155 	}
1156 	kprintf("\nFatal double fault\n");
1157 	kprintf("rip = 0x%lx\n", frame->tf_rip);
1158 	kprintf("rsp = 0x%lx\n", frame->tf_rsp);
1159 	kprintf("rbp = 0x%lx\n", frame->tf_rbp);
1160 	/* three separate prints in case of a trap on an unmapped page */
1161 	kprintf("cpuid = %d; ", mycpu->gd_cpuid);
1162 	if (lapic_usable)
1163 		kprintf("lapic id = %u\n", LAPIC_READID);
1164 	panic("double fault");
1165 }
1166 
1167 /*
1168  * syscall2 -	MP aware system call request C handler
1169  *
1170  * A system call is essentially treated as a trap except that the
1171  * MP lock is not held on entry or return.  We are responsible for
1172  * obtaining the MP lock if necessary and for handling ASTs
1173  * (e.g. a task switch) prior to return.
1174  *
1175  * MPSAFE
1176  */
1177 void
1178 syscall2(struct trapframe *frame)
1179 {
1180 	struct thread *td = curthread;
1181 	struct proc *p = td->td_proc;
1182 	struct lwp *lp = td->td_lwp;
1183 	struct sysent *callp;
1184 	register_t orig_tf_rflags;
1185 	int sticks;
1186 	int error;
1187 	int narg;
1188 #ifdef INVARIANTS
1189 	int crit_count = td->td_critcount;
1190 #endif
1191 	register_t *argp;
1192 	u_int code;
1193 	int regcnt, optimized_regcnt;
1194 	union sysunion args;
1195 	register_t *argsdst;
1196 
1197 	mycpu->gd_cnt.v_syscall++;
1198 
1199 #ifdef DIAGNOSTIC
1200 	if (__predict_false(ISPL(frame->tf_cs) != SEL_UPL)) {
1201 		panic("syscall");
1202 		/* NOT REACHED */
1203 	}
1204 #endif
1205 
1206 	KTR_LOG(kernentry_syscall, p->p_pid, lp->lwp_tid,
1207 		frame->tf_rax);
1208 
1209 	userenter(td, p);	/* lazy raise our priority */
1210 
1211 	regcnt = 6;
1212 	optimized_regcnt = 6;
1213 
1214 	/*
1215 	 * Misc
1216 	 */
1217 	sticks = (int)td->td_sticks;
1218 	orig_tf_rflags = frame->tf_rflags;
1219 
1220 	/*
1221 	 * Virtual kernel intercept - if a VM context managed by a virtual
1222 	 * kernel issues a system call the virtual kernel handles it, not us.
1223 	 * Restore the virtual kernel context and return from its system
1224 	 * call.  The current frame is copied out to the virtual kernel.
1225 	 */
1226 	if (__predict_false(lp->lwp_vkernel && lp->lwp_vkernel->ve)) {
1227 		vkernel_trap(lp, frame);
1228 		error = EJUSTRETURN;
1229 		callp = NULL;
1230 		code = 0;
1231 		goto out;
1232 	}
1233 
1234 	/*
1235 	 * Get the system call parameters and account for time
1236 	 */
1237 	KASSERT(lp->lwp_md.md_regs == frame,
1238 		("Frame mismatch %p %p", lp->lwp_md.md_regs, frame));
1239 	code = (u_int)frame->tf_rax;
1240 
1241 	if (__predict_false(code == SYS_syscall || code == SYS___syscall)) {
1242 		code = frame->tf_rdi;
1243 		regcnt--;
1244 		argp = &frame->tf_rdi + 1;
1245 	} else {
1246 		argp = &frame->tf_rdi;
1247 	}
1248 
1249 	if (code >= p->p_sysent->sv_size)
1250 		callp = &p->p_sysent->sv_table[0];
1251 	else
1252 		callp = &p->p_sysent->sv_table[code];
1253 
1254 	/*
1255 	 * On x86_64 we get up to six arguments in registers. The rest are
1256 	 * on the stack. The first six members of 'struct trapframe' happen
1257 	 * to be the registers used to pass arguments, in exactly the right
1258 	 * order.
1259 	 */
1260 	argsdst = (register_t *)(&args.nosys.sysmsg + 1);
1261 
1262 	/*
1263 	 * Its easier to copy up to the highest number of syscall arguments
1264 	 * passed in registers, which is 6, than to conditionalize it.
1265 	 */
1266 	bcopy(argp, argsdst, sizeof(register_t) * optimized_regcnt);
1267 
1268 	/*
1269 	 * Any arguments beyond available argument-passing registers must
1270 	 * be copyin()'d from the user stack.
1271 	 */
1272 	narg = callp->sy_narg;
1273 	if (__predict_false(narg > regcnt)) {
1274 		caddr_t params;
1275 
1276 		params = (caddr_t)frame->tf_rsp + sizeof(register_t);
1277 		error = copyin(params, &argsdst[regcnt],
1278 			       (narg - regcnt) * sizeof(register_t));
1279 		if (error) {
1280 #ifdef KTRACE
1281 			if (KTRPOINTP(p, td, KTR_SYSCALL)) {
1282 				ktrsyscall(lp, code, narg,
1283 					(void *)(&args.nosys.sysmsg + 1));
1284 			}
1285 #endif
1286 			goto bad;
1287 		}
1288 	}
1289 
1290 #ifdef KTRACE
1291 	if (KTRPOINTP(p, td, KTR_SYSCALL)) {
1292 		ktrsyscall(lp, code, narg, (void *)(&args.nosys.sysmsg + 1));
1293 	}
1294 #endif
1295 
1296 	/*
1297 	 * Default return value is 0 (will be copied to %rax).  Double-value
1298 	 * returns use %rax and %rdx.  %rdx is left unchanged for system
1299 	 * calls which return only one result.
1300 	 */
1301 	args.sysmsg_fds[0] = 0;
1302 	args.sysmsg_fds[1] = frame->tf_rdx;
1303 
1304 	/*
1305 	 * The syscall might manipulate the trap frame. If it does it
1306 	 * will probably return EJUSTRETURN.
1307 	 */
1308 	args.sysmsg_frame = frame;
1309 
1310 	STOPEVENT(p, S_SCE, narg);	/* MP aware */
1311 
1312 	/*
1313 	 * NOTE: All system calls run MPSAFE now.  The system call itself
1314 	 *	 is responsible for getting the MP lock.
1315 	 */
1316 #ifdef SYSCALL_DEBUG
1317 	tsc_uclock_t tscval = rdtsc();
1318 #endif
1319 	error = (*callp->sy_call)(&args);
1320 #ifdef SYSCALL_DEBUG
1321 	tscval = rdtsc() - tscval;
1322 	tscval = tscval * 1000000 / (tsc_frequency / 1000);	/* ns */
1323 	{
1324 		struct syscallwc *scwc = &SysCallsWorstCase[mycpu->gd_cpuid];
1325 		int idx = scwc->idx++ % SCWC_MAXT;
1326 
1327 		scwc->tot[code] += tscval - scwc->timings[code][idx];
1328 		scwc->timings[code][idx] = tscval;
1329 	}
1330 #endif
1331 
1332 out:
1333 	/*
1334 	 * MP SAFE (we may or may not have the MP lock at this point)
1335 	 */
1336 	//kprintf("SYSMSG %d ", error);
1337 	if (__predict_true(error == 0)) {
1338 		/*
1339 		 * Reinitialize proc pointer `p' as it may be different
1340 		 * if this is a child returning from fork syscall.
1341 		 */
1342 		p = curproc;
1343 		lp = curthread->td_lwp;
1344 		frame->tf_rax = args.sysmsg_fds[0];
1345 		frame->tf_rdx = args.sysmsg_fds[1];
1346 		frame->tf_rflags &= ~PSL_C;
1347 	} else if (error == ERESTART) {
1348 		/*
1349 		 * Reconstruct pc, we know that 'syscall' is 2 bytes.
1350 		 * We have to do a full context restore so that %r10
1351 		 * (which was holding the value of %rcx) is restored for
1352 		 * the next iteration.
1353 		 */
1354 		if (frame->tf_err != 0 && frame->tf_err != 2)
1355 			kprintf("lp %s:%d frame->tf_err is weird %ld\n",
1356 				td->td_comm, lp->lwp_proc->p_pid, frame->tf_err);
1357 		frame->tf_rip -= frame->tf_err;
1358 		frame->tf_r10 = frame->tf_rcx;
1359 	} else if (error == EJUSTRETURN) {
1360 		/* do nothing */
1361 	} else if (error == EASYNC) {
1362 		panic("Unexpected EASYNC return value (for now)");
1363 	} else {
1364 bad:
1365 		if (p->p_sysent->sv_errsize) {
1366 			if (error >= p->p_sysent->sv_errsize)
1367 				error = -1;	/* XXX */
1368 			else
1369 				error = p->p_sysent->sv_errtbl[error];
1370 		}
1371 		frame->tf_rax = error;
1372 		frame->tf_rflags |= PSL_C;
1373 	}
1374 
1375 	/*
1376 	 * Traced syscall.  trapsignal() should now be MP aware
1377 	 */
1378 	if (__predict_false(orig_tf_rflags & PSL_T)) {
1379 		frame->tf_rflags &= ~PSL_T;
1380 		trapsignal(lp, SIGTRAP, TRAP_TRACE);
1381 	}
1382 
1383 	/*
1384 	 * Handle reschedule and other end-of-syscall issues
1385 	 */
1386 	userret(lp, frame, sticks);
1387 
1388 #ifdef KTRACE
1389 	if (KTRPOINTP(p, td, KTR_SYSRET)) {
1390 		ktrsysret(lp, code, error, args.sysmsg_result);
1391 	}
1392 #endif
1393 
1394 	/*
1395 	 * This works because errno is findable through the
1396 	 * register set.  If we ever support an emulation where this
1397 	 * is not the case, this code will need to be revisited.
1398 	 */
1399 	STOPEVENT(p, S_SCX, code);
1400 
1401 	userexit(lp);
1402 	KTR_LOG(kernentry_syscall_ret, p->p_pid, lp->lwp_tid, error);
1403 #ifdef INVARIANTS
1404 	KASSERT(crit_count == td->td_critcount,
1405 		("syscall: critical section count mismatch! %d/%d",
1406 		crit_count, td->td_pri));
1407 	KASSERT(&td->td_toks_base == td->td_toks_stop,
1408 		("syscall: %ld extra tokens held after trap! syscall %p",
1409 		td->td_toks_stop - &td->td_toks_base,
1410 		callp->sy_call));
1411 #endif
1412 }
1413 
1414 void
1415 fork_return(struct lwp *lp, struct trapframe *frame)
1416 {
1417 	frame->tf_rax = 0;		/* Child returns zero */
1418 	frame->tf_rflags &= ~PSL_C;	/* success */
1419 	frame->tf_rdx = 1;
1420 
1421 	generic_lwp_return(lp, frame);
1422 	KTR_LOG(kernentry_fork_ret, lp->lwp_proc->p_pid, lp->lwp_tid);
1423 }
1424 
1425 /*
1426  * Simplified back end of syscall(), used when returning from fork()
1427  * directly into user mode.
1428  *
1429  * This code will return back into the fork trampoline code which then
1430  * runs doreti.
1431  */
1432 void
1433 generic_lwp_return(struct lwp *lp, struct trapframe *frame)
1434 {
1435 	struct proc *p = lp->lwp_proc;
1436 
1437 	/*
1438 	 * Check for exit-race.  If one lwp exits the process concurrent with
1439 	 * another lwp creating a new thread, the two operations may cross
1440 	 * each other resulting in the newly-created lwp not receiving a
1441 	 * KILL signal.
1442 	 */
1443 	if (p->p_flags & P_WEXIT) {
1444 		lwpsignal(p, lp, SIGKILL);
1445 	}
1446 
1447 	/*
1448 	 * Newly forked processes are given a kernel priority.  We have to
1449 	 * adjust the priority to a normal user priority and fake entry
1450 	 * into the kernel (call userenter()) to install a passive release
1451 	 * function just in case userret() decides to stop the process.  This
1452 	 * can occur when ^Z races a fork.  If we do not install the passive
1453 	 * release function the current process designation will not be
1454 	 * released when the thread goes to sleep.
1455 	 */
1456 	lwkt_setpri_self(TDPRI_USER_NORM);
1457 	userenter(lp->lwp_thread, p);
1458 	userret(lp, frame, 0);
1459 #ifdef KTRACE
1460 	if (KTRPOINTP(p, lp->lwp_thread, KTR_SYSRET))
1461 		ktrsysret(lp, SYS_fork, 0, 0);
1462 #endif
1463 	lp->lwp_flags |= LWP_PASSIVE_ACQ;
1464 	userexit(lp);
1465 	lp->lwp_flags &= ~LWP_PASSIVE_ACQ;
1466 }
1467 
1468 /*
1469  * If PGEX_FPFAULT is set then set FP_VIRTFP in the PCB to force a T_DNA
1470  * fault (which is then passed back to the virtual kernel) if an attempt is
1471  * made to use the FP unit.
1472  *
1473  * XXX this is a fairly big hack.
1474  */
1475 void
1476 set_vkernel_fp(struct trapframe *frame)
1477 {
1478 	struct thread *td = curthread;
1479 
1480 	if (frame->tf_xflags & PGEX_FPFAULT) {
1481 		td->td_pcb->pcb_flags |= FP_VIRTFP;
1482 		if (mdcpu->gd_npxthread == td)
1483 			npxexit();
1484 	} else {
1485 		td->td_pcb->pcb_flags &= ~FP_VIRTFP;
1486 	}
1487 }
1488 
1489 /*
1490  * Called from vkernel_trap() to fixup the vkernel's syscall
1491  * frame for vmspace_ctl() return.
1492  */
1493 void
1494 cpu_vkernel_trap(struct trapframe *frame, int error)
1495 {
1496 	frame->tf_rax = error;
1497 	if (error)
1498 		frame->tf_rflags |= PSL_C;
1499 	else
1500 		frame->tf_rflags &= ~PSL_C;
1501 }
1502