xref: /dragonfly/sys/platform/pc64/x86_64/trap.c (revision b29f78b5)
1 /*-
2  * Copyright (c) 1990, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * Copyright (C) 1994, David Greenman
5  * Copyright (c) 2008 The DragonFly Project.
6  * Copyright (c) 2008 Jordan Gordeev.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the University of Utah, and William Jolitz.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the University of
22  *	California, Berkeley and its contributors.
23  * 4. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  * from: @(#)trap.c	7.4 (Berkeley) 5/13/91
40  * $FreeBSD: src/sys/i386/i386/trap.c,v 1.147.2.11 2003/02/27 19:09:59 luoqi Exp $
41  */
42 
43 /*
44  * x86_64 Trap and System call handling
45  */
46 
47 #include "use_isa.h"
48 
49 #include "opt_ddb.h"
50 #include "opt_ktrace.h"
51 
52 #include <machine/frame.h>
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/kernel.h>
56 #include <sys/kerneldump.h>
57 #include <sys/proc.h>
58 #include <sys/pioctl.h>
59 #include <sys/types.h>
60 #include <sys/signal2.h>
61 #include <sys/syscall.h>
62 #include <sys/sysctl.h>
63 #include <sys/sysent.h>
64 #ifdef KTRACE
65 #include <sys/ktrace.h>
66 #endif
67 #include <sys/ktr.h>
68 #include <sys/sysmsg.h>
69 #include <sys/sysproto.h>
70 #include <sys/sysunion.h>
71 
72 #include <vm/pmap.h>
73 #include <vm/vm.h>
74 #include <vm/vm_extern.h>
75 #include <vm/vm_kern.h>
76 #include <vm/vm_param.h>
77 #include <machine/cpu.h>
78 #include <machine/pcb.h>
79 #include <machine/smp.h>
80 #include <machine/thread.h>
81 #include <machine/clock.h>
82 #include <machine/vmparam.h>
83 #include <machine/md_var.h>
84 #include <machine_base/isa/isa_intr.h>
85 #include <machine_base/apic/lapic.h>
86 
87 #include <ddb/ddb.h>
88 
89 #include <sys/thread2.h>
90 #include <sys/mplock2.h>
91 #include <sys/spinlock2.h>
92 
93 #define MAKEMPSAFE(have_mplock)			\
94 	if (have_mplock == 0) {			\
95 		get_mplock();			\
96 		have_mplock = 1;		\
97 	}
98 
99 extern void trap(struct trapframe *frame);
100 
101 static int trap_pfault(struct trapframe *, int);
102 static void trap_fatal(struct trapframe *, vm_offset_t);
103 void dblfault_handler(struct trapframe *frame);
104 
105 #define MAX_TRAP_MSG		30
106 static char *trap_msg[] = {
107 	"",					/*  0 unused */
108 	"privileged instruction fault",		/*  1 T_PRIVINFLT */
109 	"",					/*  2 unused */
110 	"breakpoint instruction fault",		/*  3 T_BPTFLT */
111 	"",					/*  4 unused */
112 	"",					/*  5 unused */
113 	"arithmetic trap",			/*  6 T_ARITHTRAP */
114 	"system forced exception",		/*  7 T_ASTFLT */
115 	"",					/*  8 unused */
116 	"general protection fault",		/*  9 T_PROTFLT */
117 	"trace trap",				/* 10 T_TRCTRAP */
118 	"",					/* 11 unused */
119 	"page fault",				/* 12 T_PAGEFLT */
120 	"",					/* 13 unused */
121 	"alignment fault",			/* 14 T_ALIGNFLT */
122 	"",					/* 15 unused */
123 	"",					/* 16 unused */
124 	"",					/* 17 unused */
125 	"integer divide fault",			/* 18 T_DIVIDE */
126 	"non-maskable interrupt trap",		/* 19 T_NMI */
127 	"overflow trap",			/* 20 T_OFLOW */
128 	"FPU bounds check fault",		/* 21 T_BOUND */
129 	"FPU device not available",		/* 22 T_DNA */
130 	"double fault",				/* 23 T_DOUBLEFLT */
131 	"FPU operand fetch fault",		/* 24 T_FPOPFLT */
132 	"invalid TSS fault",			/* 25 T_TSSFLT */
133 	"segment not present fault",		/* 26 T_SEGNPFLT */
134 	"stack fault",				/* 27 T_STKFLT */
135 	"machine check trap",			/* 28 T_MCHK */
136 	"SIMD floating-point exception",	/* 29 T_XMMFLT */
137 	"reserved (unknown) fault",		/* 30 T_RESERVED */
138 };
139 
140 #ifdef DDB
141 static int ddb_on_nmi = 1;
142 SYSCTL_INT(_machdep, OID_AUTO, ddb_on_nmi, CTLFLAG_RW,
143 	&ddb_on_nmi, 0, "Go to DDB on NMI");
144 static int ddb_on_seg_fault = 0;
145 SYSCTL_INT(_machdep, OID_AUTO, ddb_on_seg_fault, CTLFLAG_RW,
146 	&ddb_on_seg_fault, 0, "Go to DDB on user seg-fault");
147 static int freeze_on_seg_fault = 0;
148 SYSCTL_INT(_machdep, OID_AUTO, freeze_on_seg_fault, CTLFLAG_RW,
149 	&freeze_on_seg_fault, 0, "Go to DDB on user seg-fault");
150 #endif
151 static int panic_on_nmi = 1;
152 SYSCTL_INT(_machdep, OID_AUTO, panic_on_nmi, CTLFLAG_RW,
153 	&panic_on_nmi, 0, "Panic on NMI");
154 static int fast_release;
155 SYSCTL_INT(_machdep, OID_AUTO, fast_release, CTLFLAG_RW,
156 	&fast_release, 0, "Passive Release was optimal");
157 static int slow_release;
158 SYSCTL_INT(_machdep, OID_AUTO, slow_release, CTLFLAG_RW,
159 	&slow_release, 0, "Passive Release was nonoptimal");
160 
161 /*
162  * System call debugging records the worst-case system call
163  * overhead (inclusive of blocking), but may be inaccurate.
164  */
165 /*#define SYSCALL_DEBUG*/
166 #ifdef SYSCALL_DEBUG
167 uint64_t SysCallsWorstCase[SYS_MAXSYSCALL];
168 #endif
169 
170 /*
171  * Passively intercepts the thread switch function to increase
172  * the thread priority from a user priority to a kernel priority, reducing
173  * syscall and trap overhead for the case where no switch occurs.
174  *
175  * Synchronizes td_ucred with p_ucred.  This is used by system calls,
176  * signal handling, faults, AST traps, and anything else that enters the
177  * kernel from userland and provides the kernel with a stable read-only
178  * copy of the process ucred.
179  *
180  * To avoid races with another thread updating p_ucred we obtain p_spin.
181  * The other thread doing the update will obtain both p_token and p_spin.
182  * In the case where the cached cred pointer matches, we will already have
183  * the ref and we don't have to do one blessed thing.
184  */
185 static __inline void
186 userenter(struct thread *curtd, struct proc *curp)
187 {
188 	struct ucred *ocred;
189 	struct ucred *ncred;
190 
191 	curtd->td_release = lwkt_passive_release;
192 
193 	if (curtd->td_ucred != curp->p_ucred) {
194 		spin_lock(&curp->p_spin);
195 		ncred = crhold(curp->p_ucred);
196 		spin_unlock(&curp->p_spin);
197 		ocred = curtd->td_ucred;
198 		curtd->td_ucred = ncred;
199 		if (ocred)
200 			crfree(ocred);
201 	}
202 
203 #ifdef DDB
204 	/*
205 	 * Debugging, remove top two user stack pages to catch kernel faults
206 	 */
207 	if (freeze_on_seg_fault > 1 && curtd->td_lwp) {
208 		pmap_remove(vmspace_pmap(curtd->td_lwp->lwp_vmspace),
209 			    0x00007FFFFFFFD000LU,
210 			    0x0000800000000000LU);
211 	}
212 #endif
213 }
214 
215 /*
216  * Handle signals, upcalls, profiling, and other AST's and/or tasks that
217  * must be completed before we can return to or try to return to userland.
218  *
219  * Note that td_sticks is a 64 bit quantity, but there's no point doing 64
220  * arithmatic on the delta calculation so the absolute tick values are
221  * truncated to an integer.
222  */
223 static void
224 userret(struct lwp *lp, struct trapframe *frame, int sticks)
225 {
226 	struct proc *p = lp->lwp_proc;
227 	int sig;
228 
229 	/*
230 	 * Charge system time if profiling.  Note: times are in microseconds.
231 	 * This may do a copyout and block, so do it first even though it
232 	 * means some system time will be charged as user time.
233 	 */
234 	if (p->p_flags & P_PROFIL) {
235 		addupc_task(p, frame->tf_rip,
236 			(u_int)((int)lp->lwp_thread->td_sticks - sticks));
237 	}
238 
239 recheck:
240 	/*
241 	 * Specific on-return-to-usermode checks (LWP_MP_WEXIT,
242 	 * LWP_MP_VNLRU, etc).
243 	 */
244 	if (lp->lwp_mpflags & LWP_MP_URETMASK)
245 		lwpuserret(lp);
246 
247 	/*
248 	 * Block here if we are in a stopped state.
249 	 */
250 	if (p->p_stat == SSTOP || dump_stop_usertds) {
251 		lwkt_gettoken(&p->p_token);
252 		tstop();
253 		lwkt_reltoken(&p->p_token);
254 		goto recheck;
255 	}
256 
257 	/*
258 	 * Post any pending upcalls.  If running a virtual kernel be sure
259 	 * to restore the virtual kernel's vmspace before posting the upcall.
260 	 */
261 	if (p->p_flags & (P_SIGVTALRM | P_SIGPROF)) {
262 		lwkt_gettoken(&p->p_token);
263 		if (p->p_flags & P_SIGVTALRM) {
264 			p->p_flags &= ~P_SIGVTALRM;
265 			ksignal(p, SIGVTALRM);
266 		}
267 		if (p->p_flags & P_SIGPROF) {
268 			p->p_flags &= ~P_SIGPROF;
269 			ksignal(p, SIGPROF);
270 		}
271 		lwkt_reltoken(&p->p_token);
272 		goto recheck;
273 	}
274 
275 	/*
276 	 * Post any pending signals.  If running a virtual kernel be sure
277 	 * to restore the virtual kernel's vmspace before posting the signal.
278 	 *
279 	 * WARNING!  postsig() can exit and not return.
280 	 */
281 	if ((sig = CURSIG_TRACE(lp)) != 0) {
282 		lwkt_gettoken(&p->p_token);
283 		postsig(sig);
284 		lwkt_reltoken(&p->p_token);
285 		goto recheck;
286 	}
287 
288 	/*
289 	 * block here if we are swapped out, but still process signals
290 	 * (such as SIGKILL).  proc0 (the swapin scheduler) is already
291 	 * aware of our situation, we do not have to wake it up.
292 	 */
293 	if (p->p_flags & P_SWAPPEDOUT) {
294 		lwkt_gettoken(&p->p_token);
295 		get_mplock();
296 		p->p_flags |= P_SWAPWAIT;
297 		swapin_request();
298 		if (p->p_flags & P_SWAPWAIT)
299 			tsleep(p, PCATCH, "SWOUT", 0);
300 		p->p_flags &= ~P_SWAPWAIT;
301 		rel_mplock();
302 		lwkt_reltoken(&p->p_token);
303 		goto recheck;
304 	}
305 
306 	/*
307 	 * In a multi-threaded program it is possible for a thread to change
308 	 * signal state during a system call which temporarily changes the
309 	 * signal mask.  In this case postsig() might not be run and we
310 	 * have to restore the mask ourselves.
311 	 */
312 	if (lp->lwp_flags & LWP_OLDMASK) {
313 		lp->lwp_flags &= ~LWP_OLDMASK;
314 		lp->lwp_sigmask = lp->lwp_oldsigmask;
315 		goto recheck;
316 	}
317 }
318 
319 /*
320  * Cleanup from userenter and any passive release that might have occured.
321  * We must reclaim the current-process designation before we can return
322  * to usermode.  We also handle both LWKT and USER reschedule requests.
323  */
324 static __inline void
325 userexit(struct lwp *lp)
326 {
327 	struct thread *td = lp->lwp_thread;
328 	/* globaldata_t gd = td->td_gd; */
329 
330 	/*
331 	 * Handle stop requests at kernel priority.  Any requests queued
332 	 * after this loop will generate another AST.
333 	 */
334 	while (lp->lwp_proc->p_stat == SSTOP) {
335 		lwkt_gettoken(&lp->lwp_proc->p_token);
336 		tstop();
337 		lwkt_reltoken(&lp->lwp_proc->p_token);
338 	}
339 
340 	/*
341 	 * Reduce our priority in preparation for a return to userland.  If
342 	 * our passive release function was still in place, our priority was
343 	 * never raised and does not need to be reduced.
344 	 */
345 	lwkt_passive_recover(td);
346 
347 	/* WARNING: we may have migrated cpu's */
348 	/* gd = td->td_gd; */
349 
350 	/*
351 	 * Become the current user scheduled process if we aren't already,
352 	 * and deal with reschedule requests and other factors.
353 	 */
354 	lp->lwp_proc->p_usched->acquire_curproc(lp);
355 }
356 
357 #if !defined(KTR_KERNENTRY)
358 #define	KTR_KERNENTRY	KTR_ALL
359 #endif
360 KTR_INFO_MASTER(kernentry);
361 KTR_INFO(KTR_KERNENTRY, kernentry, trap, 0,
362 	 "TRAP(pid %d, tid %d, trapno %ld, eva %lu)",
363 	 pid_t pid, lwpid_t tid,  register_t trapno, vm_offset_t eva);
364 KTR_INFO(KTR_KERNENTRY, kernentry, trap_ret, 0, "TRAP_RET(pid %d, tid %d)",
365 	 pid_t pid, lwpid_t tid);
366 KTR_INFO(KTR_KERNENTRY, kernentry, syscall, 0, "SYSC(pid %d, tid %d, nr %ld)",
367 	 pid_t pid, lwpid_t tid,  register_t trapno);
368 KTR_INFO(KTR_KERNENTRY, kernentry, syscall_ret, 0, "SYSRET(pid %d, tid %d, err %d)",
369 	 pid_t pid, lwpid_t tid,  int err);
370 KTR_INFO(KTR_KERNENTRY, kernentry, fork_ret, 0, "FORKRET(pid %d, tid %d)",
371 	 pid_t pid, lwpid_t tid);
372 
373 /*
374  * Exception, fault, and trap interface to the kernel.
375  * This common code is called from assembly language IDT gate entry
376  * routines that prepare a suitable stack frame, and restore this
377  * frame after the exception has been processed.
378  *
379  * This function is also called from doreti in an interlock to handle ASTs.
380  * For example:  hardwareint->INTROUTINE->(set ast)->doreti->trap
381  *
382  * NOTE!  We have to retrieve the fault address prior to obtaining the
383  * MP lock because get_mplock() may switch out.  YYY cr2 really ought
384  * to be retrieved by the assembly code, not here.
385  *
386  * XXX gd_trap_nesting_level currently prevents lwkt_switch() from panicing
387  * if an attempt is made to switch from a fast interrupt or IPI.  This is
388  * necessary to properly take fatal kernel traps on SMP machines if
389  * get_mplock() has to block.
390  */
391 
392 void
393 trap(struct trapframe *frame)
394 {
395 	struct globaldata *gd = mycpu;
396 	struct thread *td = gd->gd_curthread;
397 	struct lwp *lp = td->td_lwp;
398 	struct proc *p;
399 	int sticks = 0;
400 	int i = 0, ucode = 0, type, code;
401 	int have_mplock = 0;
402 #ifdef INVARIANTS
403 	int crit_count = td->td_critcount;
404 	lwkt_tokref_t curstop = td->td_toks_stop;
405 #endif
406 	vm_offset_t eva;
407 
408 	p = td->td_proc;
409 	clear_quickret();
410 
411 #ifdef DDB
412         /*
413 	 * We need to allow T_DNA faults when the debugger is active since
414 	 * some dumping paths do large bcopy() which use the floating
415 	 * point registers for faster copying.
416 	 */
417 	if (db_active && frame->tf_trapno != T_DNA) {
418 		eva = (frame->tf_trapno == T_PAGEFLT ? frame->tf_addr : 0);
419 		++gd->gd_trap_nesting_level;
420 		MAKEMPSAFE(have_mplock);
421 		trap_fatal(frame, eva);
422 		--gd->gd_trap_nesting_level;
423 		goto out2;
424 	}
425 #endif
426 
427 	eva = 0;
428 
429 	if ((frame->tf_rflags & PSL_I) == 0) {
430 		/*
431 		 * Buggy application or kernel code has disabled interrupts
432 		 * and then trapped.  Enabling interrupts now is wrong, but
433 		 * it is better than running with interrupts disabled until
434 		 * they are accidentally enabled later.
435 		 */
436 		type = frame->tf_trapno;
437 		if (ISPL(frame->tf_cs) == SEL_UPL) {
438 			MAKEMPSAFE(have_mplock);
439 			/* JG curproc can be NULL */
440 			kprintf(
441 			    "pid %ld (%s): trap %d with interrupts disabled\n",
442 			    (long)curproc->p_pid, curproc->p_comm, type);
443 		} else if (type != T_NMI && type != T_BPTFLT &&
444 		    type != T_TRCTRAP) {
445 			/*
446 			 * XXX not quite right, since this may be for a
447 			 * multiple fault in user mode.
448 			 */
449 			MAKEMPSAFE(have_mplock);
450 			kprintf("kernel trap %d with interrupts disabled\n",
451 			    type);
452 		}
453 		cpu_enable_intr();
454 	}
455 
456 	type = frame->tf_trapno;
457 	code = frame->tf_err;
458 
459 	if (ISPL(frame->tf_cs) == SEL_UPL) {
460 		/* user trap */
461 
462 		KTR_LOG(kernentry_trap, p->p_pid, lp->lwp_tid,
463 			frame->tf_trapno, eva);
464 
465 		userenter(td, p);
466 
467 		sticks = (int)td->td_sticks;
468 		KASSERT(lp->lwp_md.md_regs == frame,
469 			("Frame mismatch %p %p", lp->lwp_md.md_regs, frame));
470 
471 		switch (type) {
472 		case T_PRIVINFLT:	/* privileged instruction fault */
473 			i = SIGILL;
474 			ucode = ILL_PRVOPC;
475 			break;
476 
477 		case T_BPTFLT:		/* bpt instruction fault */
478 		case T_TRCTRAP:		/* trace trap */
479 			frame->tf_rflags &= ~PSL_T;
480 			i = SIGTRAP;
481 			ucode = (type == T_TRCTRAP ? TRAP_TRACE : TRAP_BRKPT);
482 			break;
483 
484 		case T_ARITHTRAP:	/* arithmetic trap */
485 			ucode = code;
486 			i = SIGFPE;
487 			break;
488 
489 		case T_ASTFLT:		/* Allow process switch */
490 			mycpu->gd_cnt.v_soft++;
491 			if (mycpu->gd_reqflags & RQF_AST_OWEUPC) {
492 				atomic_clear_int(&mycpu->gd_reqflags,
493 						 RQF_AST_OWEUPC);
494 				addupc_task(p, p->p_prof.pr_addr,
495 					    p->p_prof.pr_ticks);
496 			}
497 			goto out;
498 
499 		case T_PROTFLT:		/* general protection fault */
500 			i = SIGBUS;
501 			ucode = BUS_OBJERR;
502 			break;
503 		case T_STKFLT:		/* stack fault */
504 		case T_SEGNPFLT:	/* segment not present fault */
505 			i = SIGBUS;
506 			ucode = BUS_ADRERR;
507 			break;
508 		case T_TSSFLT:		/* invalid TSS fault */
509 		case T_DOUBLEFLT:	/* double fault */
510 		default:
511 			i = SIGBUS;
512 			ucode = BUS_OBJERR;
513 			break;
514 
515 		case T_PAGEFLT:		/* page fault */
516 			i = trap_pfault(frame, TRUE);
517 			if (frame->tf_rip == 0) {
518 				kprintf("T_PAGEFLT: Warning %%rip == 0!\n");
519 #ifdef DDB
520 				while (freeze_on_seg_fault)
521 					tsleep(p, 0, "freeze", hz * 20);
522 #endif
523 			}
524 			if (i == -1 || i == 0)
525 				goto out;
526 
527 
528 			if (i == SIGSEGV)
529 				ucode = SEGV_MAPERR;
530 			else {
531 				i = SIGSEGV;
532 				ucode = SEGV_ACCERR;
533 			}
534 			break;
535 
536 		case T_DIVIDE:		/* integer divide fault */
537 			ucode = FPE_INTDIV;
538 			i = SIGFPE;
539 			break;
540 
541 #if NISA > 0
542 		case T_NMI:
543 			MAKEMPSAFE(have_mplock);
544 			/* machine/parity/power fail/"kitchen sink" faults */
545 			if (isa_nmi(code) == 0) {
546 #ifdef DDB
547 				/*
548 				 * NMI can be hooked up to a pushbutton
549 				 * for debugging.
550 				 */
551 				if (ddb_on_nmi) {
552 					kprintf ("NMI ... going to debugger\n");
553 					kdb_trap(type, 0, frame);
554 				}
555 #endif /* DDB */
556 				goto out2;
557 			} else if (panic_on_nmi)
558 				panic("NMI indicates hardware failure");
559 			break;
560 #endif /* NISA > 0 */
561 
562 		case T_OFLOW:		/* integer overflow fault */
563 			ucode = FPE_INTOVF;
564 			i = SIGFPE;
565 			break;
566 
567 		case T_BOUND:		/* bounds check fault */
568 			ucode = FPE_FLTSUB;
569 			i = SIGFPE;
570 			break;
571 
572 		case T_DNA:
573 			/*
574 			 * Virtual kernel intercept - pass the DNA exception
575 			 * to the virtual kernel if it asked to handle it.
576 			 * This occurs when the virtual kernel is holding
577 			 * onto the FP context for a different emulated
578 			 * process then the one currently running.
579 			 *
580 			 * We must still call npxdna() since we may have
581 			 * saved FP state that the virtual kernel needs
582 			 * to hand over to a different emulated process.
583 			 */
584 			if (lp->lwp_vkernel && lp->lwp_vkernel->ve &&
585 			    (td->td_pcb->pcb_flags & FP_VIRTFP)
586 			) {
587 				npxdna();
588 				break;
589 			}
590 
591 			/*
592 			 * The kernel may have switched out the FP unit's
593 			 * state, causing the user process to take a fault
594 			 * when it tries to use the FP unit.  Restore the
595 			 * state here
596 			 */
597 			if (npxdna())
598 				goto out;
599 			i = SIGFPE;
600 			ucode = FPE_FPU_NP_TRAP;
601 			break;
602 
603 		case T_FPOPFLT:		/* FPU operand fetch fault */
604 			ucode = ILL_COPROC;
605 			i = SIGILL;
606 			break;
607 
608 		case T_XMMFLT:		/* SIMD floating-point exception */
609 			ucode = 0; /* XXX */
610 			i = SIGFPE;
611 			break;
612 		}
613 	} else {
614 		/* kernel trap */
615 
616 		switch (type) {
617 		case T_PAGEFLT:			/* page fault */
618 			trap_pfault(frame, FALSE);
619 			goto out2;
620 
621 		case T_DNA:
622 			/*
623 			 * The kernel is apparently using fpu for copying.
624 			 * XXX this should be fatal unless the kernel has
625 			 * registered such use.
626 			 */
627 			if (npxdna())
628 				goto out2;
629 			break;
630 
631 		case T_STKFLT:		/* stack fault */
632 			break;
633 
634 		case T_PROTFLT:		/* general protection fault */
635 		case T_SEGNPFLT:	/* segment not present fault */
636 			/*
637 			 * Invalid segment selectors and out of bounds
638 			 * %rip's and %rsp's can be set up in user mode.
639 			 * This causes a fault in kernel mode when the
640 			 * kernel tries to return to user mode.  We want
641 			 * to get this fault so that we can fix the
642 			 * problem here and not have to check all the
643 			 * selectors and pointers when the user changes
644 			 * them.
645 			 */
646 			if (mycpu->gd_intr_nesting_level == 0) {
647 				/*
648 				 * NOTE: in 64-bit mode traps push rsp/ss
649 				 *	 even if no ring change occurs.
650 				 */
651 				if (td->td_pcb->pcb_onfault &&
652 				    td->td_pcb->pcb_onfault_sp ==
653 				    frame->tf_rsp) {
654 					frame->tf_rip = (register_t)
655 						td->td_pcb->pcb_onfault;
656 					goto out2;
657 				}
658 				if (frame->tf_rip == (long)doreti_iret) {
659 					frame->tf_rip = (long)doreti_iret_fault;
660 					goto out2;
661 				}
662 			}
663 			break;
664 
665 		case T_TSSFLT:
666 			/*
667 			 * PSL_NT can be set in user mode and isn't cleared
668 			 * automatically when the kernel is entered.  This
669 			 * causes a TSS fault when the kernel attempts to
670 			 * `iret' because the TSS link is uninitialized.  We
671 			 * want to get this fault so that we can fix the
672 			 * problem here and not every time the kernel is
673 			 * entered.
674 			 */
675 			if (frame->tf_rflags & PSL_NT) {
676 				frame->tf_rflags &= ~PSL_NT;
677 				goto out2;
678 			}
679 			break;
680 
681 		case T_TRCTRAP:	 /* trace trap */
682 #if 0
683 			if (frame->tf_rip == (int)IDTVEC(syscall)) {
684 				/*
685 				 * We've just entered system mode via the
686 				 * syscall lcall.  Continue single stepping
687 				 * silently until the syscall handler has
688 				 * saved the flags.
689 				 */
690 				goto out2;
691 			}
692 			if (frame->tf_rip == (int)IDTVEC(syscall) + 1) {
693 				/*
694 				 * The syscall handler has now saved the
695 				 * flags.  Stop single stepping it.
696 				 */
697 				frame->tf_rflags &= ~PSL_T;
698 				goto out2;
699 			}
700 #endif
701 
702 			/*
703 			 * Ignore debug register trace traps due to
704 			 * accesses in the user's address space, which
705 			 * can happen under several conditions such as
706 			 * if a user sets a watchpoint on a buffer and
707 			 * then passes that buffer to a system call.
708 			 * We still want to get TRCTRAPS for addresses
709 			 * in kernel space because that is useful when
710 			 * debugging the kernel.
711 			 */
712 #if 0 /* JG */
713 			if (user_dbreg_trap()) {
714 				/*
715 				 * Reset breakpoint bits because the
716 				 * processor doesn't
717 				 */
718 				/* XXX check upper bits here */
719 				load_dr6(rdr6() & 0xfffffff0);
720 				goto out2;
721 			}
722 #endif
723 			/*
724 			 * FALLTHROUGH (TRCTRAP kernel mode, kernel address)
725 			 */
726 		case T_BPTFLT:
727 			/*
728 			 * If DDB is enabled, let it handle the debugger trap.
729 			 * Otherwise, debugger traps "can't happen".
730 			 */
731 			ucode = TRAP_BRKPT;
732 #ifdef DDB
733 			MAKEMPSAFE(have_mplock);
734 			if (kdb_trap(type, 0, frame))
735 				goto out2;
736 #endif
737 			break;
738 
739 #if NISA > 0
740 		case T_NMI:
741 			MAKEMPSAFE(have_mplock);
742 			/* machine/parity/power fail/"kitchen sink" faults */
743 			if (isa_nmi(code) == 0) {
744 #ifdef DDB
745 				/*
746 				 * NMI can be hooked up to a pushbutton
747 				 * for debugging.
748 				 */
749 				if (ddb_on_nmi) {
750 					kprintf ("NMI ... going to debugger\n");
751 					kdb_trap(type, 0, frame);
752 				}
753 #endif /* DDB */
754 				goto out2;
755 			} else if (panic_on_nmi == 0)
756 				goto out2;
757 			/* FALL THROUGH */
758 #endif /* NISA > 0 */
759 		}
760 		MAKEMPSAFE(have_mplock);
761 		trap_fatal(frame, 0);
762 		goto out2;
763 	}
764 
765 	/*
766 	 * Virtual kernel intercept - if the fault is directly related to a
767 	 * VM context managed by a virtual kernel then let the virtual kernel
768 	 * handle it.
769 	 */
770 	if (lp->lwp_vkernel && lp->lwp_vkernel->ve) {
771 		vkernel_trap(lp, frame);
772 		goto out;
773 	}
774 
775 	/* Translate fault for emulators (e.g. Linux) */
776 	if (*p->p_sysent->sv_transtrap)
777 		i = (*p->p_sysent->sv_transtrap)(i, type);
778 
779 	MAKEMPSAFE(have_mplock);
780 	trapsignal(lp, i, ucode);
781 
782 #ifdef DEBUG
783 	if (type <= MAX_TRAP_MSG) {
784 		uprintf("fatal process exception: %s",
785 			trap_msg[type]);
786 		if ((type == T_PAGEFLT) || (type == T_PROTFLT))
787 			uprintf(", fault VA = 0x%lx", frame->tf_addr);
788 		uprintf("\n");
789 	}
790 #endif
791 
792 out:
793 	userret(lp, frame, sticks);
794 	userexit(lp);
795 out2:	;
796 	if (have_mplock)
797 		rel_mplock();
798 	if (p != NULL && lp != NULL)
799 		KTR_LOG(kernentry_trap_ret, p->p_pid, lp->lwp_tid);
800 #ifdef INVARIANTS
801 	KASSERT(crit_count == td->td_critcount,
802 		("trap: critical section count mismatch! %d/%d",
803 		crit_count, td->td_pri));
804 	KASSERT(curstop == td->td_toks_stop,
805 		("trap: extra tokens held after trap! %ld/%ld",
806 		curstop - &td->td_toks_base,
807 		td->td_toks_stop - &td->td_toks_base));
808 #endif
809 }
810 
811 void
812 trap_handle_userenter(struct thread *td)
813 {
814 	userenter(td, td->td_proc);
815 }
816 
817 void
818 trap_handle_userexit(struct trapframe *frame, int sticks)
819 {
820 	struct lwp *lp = curthread->td_lwp;
821 
822 	if (lp) {
823 		userret(lp, frame, sticks);
824 		userexit(lp);
825 	}
826 }
827 
828 static int
829 trap_pfault(struct trapframe *frame, int usermode)
830 {
831 	vm_offset_t va;
832 	struct vmspace *vm = NULL;
833 	vm_map_t map;
834 	int rv = 0;
835 	int fault_flags;
836 	vm_prot_t ftype;
837 	thread_t td = curthread;
838 	struct lwp *lp = td->td_lwp;
839 	struct proc *p;
840 
841 	va = trunc_page(frame->tf_addr);
842 	if (va >= VM_MIN_KERNEL_ADDRESS) {
843 		/*
844 		 * Don't allow user-mode faults in kernel address space.
845 		 */
846 		if (usermode) {
847 			fault_flags = -1;
848 			ftype = -1;
849 			goto nogo;
850 		}
851 
852 		map = &kernel_map;
853 	} else {
854 		/*
855 		 * This is a fault on non-kernel virtual memory.
856 		 * vm is initialized above to NULL. If curproc is NULL
857 		 * or curproc->p_vmspace is NULL the fault is fatal.
858 		 */
859 		if (lp != NULL)
860 			vm = lp->lwp_vmspace;
861 
862 		if (vm == NULL) {
863 			fault_flags = -1;
864 			ftype = -1;
865 			goto nogo;
866 		}
867 
868 		/*
869 		 * Debugging, try to catch kernel faults on the user address
870 		 * space when not inside on onfault (e.g. copyin/copyout)
871 		 * routine.
872 		 */
873 		if (usermode == 0 && (td->td_pcb == NULL ||
874 		    td->td_pcb->pcb_onfault == NULL)) {
875 #ifdef DDB
876 			if (freeze_on_seg_fault) {
877 				kprintf("trap_pfault: user address fault from kernel mode "
878 					"%016lx\n", (long)frame->tf_addr);
879 				while (freeze_on_seg_fault)
880 					    tsleep(&freeze_on_seg_fault, 0, "frzseg", hz * 20);
881 			}
882 #endif
883 		}
884 		map = &vm->vm_map;
885 	}
886 
887 	/*
888 	 * PGEX_I is defined only if the execute disable bit capability is
889 	 * supported and enabled.
890 	 */
891 	if (frame->tf_err & PGEX_W)
892 		ftype = VM_PROT_WRITE;
893 #if 0 /* JG */
894 	else if ((frame->tf_err & PGEX_I) && pg_nx != 0)
895 		ftype = VM_PROT_EXECUTE;
896 #endif
897 	else
898 		ftype = VM_PROT_READ;
899 
900 	if (map != &kernel_map) {
901 		/*
902 		 * Keep swapout from messing with us during this
903 		 *	critical time.
904 		 */
905 		PHOLD(lp->lwp_proc);
906 
907 		/*
908 		 * Issue fault
909 		 */
910 		fault_flags = 0;
911 		if (usermode)
912 			fault_flags |= VM_FAULT_BURST;
913 		if (ftype & VM_PROT_WRITE)
914 			fault_flags |= VM_FAULT_DIRTY;
915 		else
916 			fault_flags |= VM_FAULT_NORMAL;
917 		rv = vm_fault(map, va, ftype, fault_flags);
918 
919 		PRELE(lp->lwp_proc);
920 	} else {
921 		/*
922 		 * Don't have to worry about process locking or stacks in the
923 		 * kernel.
924 		 */
925 		fault_flags = VM_FAULT_NORMAL;
926 		rv = vm_fault(map, va, ftype, VM_FAULT_NORMAL);
927 	}
928 	if (rv == KERN_SUCCESS)
929 		return (0);
930 nogo:
931 	if (!usermode) {
932 		/*
933 		 * NOTE: in 64-bit mode traps push rsp/ss
934 		 *	 even if no ring change occurs.
935 		 */
936 		if (td->td_pcb->pcb_onfault &&
937 		    td->td_pcb->pcb_onfault_sp == frame->tf_rsp &&
938 		    td->td_gd->gd_intr_nesting_level == 0) {
939 			frame->tf_rip = (register_t)td->td_pcb->pcb_onfault;
940 			return (0);
941 		}
942 		trap_fatal(frame, frame->tf_addr);
943 		return (-1);
944 	}
945 
946 	/*
947 	 * NOTE: on x86_64 we have a tf_addr field in the trapframe, no
948 	 * kludge is needed to pass the fault address to signal handlers.
949 	 */
950 	p = td->td_proc;
951 #ifdef DDB
952 	if (td->td_lwp->lwp_vkernel == NULL) {
953 		while (freeze_on_seg_fault) {
954 			tsleep(p, 0, "freeze", hz * 20);
955 		}
956 		if (ddb_on_seg_fault)
957 			Debugger("ddb_on_seg_fault");
958 	}
959 #endif
960 
961 	return((rv == KERN_PROTECTION_FAILURE) ? SIGBUS : SIGSEGV);
962 }
963 
964 static void
965 trap_fatal(struct trapframe *frame, vm_offset_t eva)
966 {
967 	int code, ss;
968 	u_int type;
969 	long rsp;
970 	struct soft_segment_descriptor softseg;
971 	char *msg;
972 
973 	code = frame->tf_err;
974 	type = frame->tf_trapno;
975 	sdtossd(&gdt[IDXSEL(frame->tf_cs & 0xffff)], &softseg);
976 
977 	if (type <= MAX_TRAP_MSG)
978 		msg = trap_msg[type];
979 	else
980 		msg = "UNKNOWN";
981 	kprintf("\n\nFatal trap %d: %s while in %s mode\n", type, msg,
982 	    ISPL(frame->tf_cs) == SEL_UPL ? "user" : "kernel");
983 	/* three separate prints in case of a trap on an unmapped page */
984 	kprintf("cpuid = %d; ", mycpu->gd_cpuid);
985 	kprintf("lapic->id = %08x\n", lapic->id);
986 	if (type == T_PAGEFLT) {
987 		kprintf("fault virtual address	= 0x%lx\n", eva);
988 		kprintf("fault code		= %s %s %s, %s\n",
989 			code & PGEX_U ? "user" : "supervisor",
990 			code & PGEX_W ? "write" : "read",
991 			code & PGEX_I ? "instruction" : "data",
992 			code & PGEX_P ? "protection violation" : "page not present");
993 	}
994 	kprintf("instruction pointer	= 0x%lx:0x%lx\n",
995 	       frame->tf_cs & 0xffff, frame->tf_rip);
996         if (ISPL(frame->tf_cs) == SEL_UPL) {
997 		ss = frame->tf_ss & 0xffff;
998 		rsp = frame->tf_rsp;
999 	} else {
1000 		/*
1001 		 * NOTE: in 64-bit mode traps push rsp/ss even if no ring
1002 		 *	 change occurs.
1003 		 */
1004 		ss = GSEL(GDATA_SEL, SEL_KPL);
1005 		rsp = frame->tf_rsp;
1006 	}
1007 	kprintf("stack pointer	        = 0x%x:0x%lx\n", ss, rsp);
1008 	kprintf("frame pointer	        = 0x%x:0x%lx\n", ss, frame->tf_rbp);
1009 	kprintf("code segment		= base 0x%lx, limit 0x%lx, type 0x%x\n",
1010 	       softseg.ssd_base, softseg.ssd_limit, softseg.ssd_type);
1011 	kprintf("			= DPL %d, pres %d, long %d, def32 %d, gran %d\n",
1012 	       softseg.ssd_dpl, softseg.ssd_p, softseg.ssd_long, softseg.ssd_def32,
1013 	       softseg.ssd_gran);
1014 	kprintf("processor eflags	= ");
1015 	if (frame->tf_rflags & PSL_T)
1016 		kprintf("trace trap, ");
1017 	if (frame->tf_rflags & PSL_I)
1018 		kprintf("interrupt enabled, ");
1019 	if (frame->tf_rflags & PSL_NT)
1020 		kprintf("nested task, ");
1021 	if (frame->tf_rflags & PSL_RF)
1022 		kprintf("resume, ");
1023 	kprintf("IOPL = %ld\n", (frame->tf_rflags & PSL_IOPL) >> 12);
1024 	kprintf("current process		= ");
1025 	if (curproc) {
1026 		kprintf("%lu\n",
1027 		    (u_long)curproc->p_pid);
1028 	} else {
1029 		kprintf("Idle\n");
1030 	}
1031 	kprintf("current thread          = pri %d ", curthread->td_pri);
1032 	if (curthread->td_critcount)
1033 		kprintf("(CRIT)");
1034 	kprintf("\n");
1035 
1036 #ifdef DDB
1037 	if ((debugger_on_panic || db_active) && kdb_trap(type, code, frame))
1038 		return;
1039 #endif
1040 	kprintf("trap number		= %d\n", type);
1041 	if (type <= MAX_TRAP_MSG)
1042 		panic("%s", trap_msg[type]);
1043 	else
1044 		panic("unknown/reserved trap");
1045 }
1046 
1047 /*
1048  * Double fault handler. Called when a fault occurs while writing
1049  * a frame for a trap/exception onto the stack. This usually occurs
1050  * when the stack overflows (such is the case with infinite recursion,
1051  * for example).
1052  */
1053 static __inline
1054 int
1055 in_kstack_guard(register_t rptr)
1056 {
1057 	thread_t td = curthread;
1058 
1059 	if ((char *)rptr >= td->td_kstack &&
1060 	    (char *)rptr < td->td_kstack + PAGE_SIZE) {
1061 		return 1;
1062 	}
1063 	return 0;
1064 }
1065 
1066 void
1067 dblfault_handler(struct trapframe *frame)
1068 {
1069 	thread_t td = curthread;
1070 
1071 	if (in_kstack_guard(frame->tf_rsp) || in_kstack_guard(frame->tf_rbp)) {
1072 		kprintf("DOUBLE FAULT - KERNEL STACK GUARD HIT!\n");
1073 		if (in_kstack_guard(frame->tf_rsp))
1074 			frame->tf_rsp = (register_t)(td->td_kstack + PAGE_SIZE);
1075 		if (in_kstack_guard(frame->tf_rbp))
1076 			frame->tf_rbp = (register_t)(td->td_kstack + PAGE_SIZE);
1077 	} else {
1078 		kprintf("DOUBLE FAULT\n");
1079 	}
1080 	kprintf("\nFatal double fault\n");
1081 	kprintf("rip = 0x%lx\n", frame->tf_rip);
1082 	kprintf("rsp = 0x%lx\n", frame->tf_rsp);
1083 	kprintf("rbp = 0x%lx\n", frame->tf_rbp);
1084 	/* three separate prints in case of a trap on an unmapped page */
1085 	kprintf("cpuid = %d; ", mycpu->gd_cpuid);
1086 	kprintf("lapic->id = %08x\n", lapic->id);
1087 	panic("double fault");
1088 }
1089 
1090 /*
1091  * syscall2 -	MP aware system call request C handler
1092  *
1093  * A system call is essentially treated as a trap except that the
1094  * MP lock is not held on entry or return.  We are responsible for
1095  * obtaining the MP lock if necessary and for handling ASTs
1096  * (e.g. a task switch) prior to return.
1097  *
1098  * MPSAFE
1099  */
1100 void
1101 syscall2(struct trapframe *frame)
1102 {
1103 	struct thread *td = curthread;
1104 	struct proc *p = td->td_proc;
1105 	struct lwp *lp = td->td_lwp;
1106 	caddr_t params;
1107 	struct sysent *callp;
1108 	register_t orig_tf_rflags;
1109 	int sticks;
1110 	int error;
1111 	int narg;
1112 #ifdef INVARIANTS
1113 	int crit_count = td->td_critcount;
1114 #endif
1115 	int have_mplock = 0;
1116 	register_t *argp;
1117 	u_int code;
1118 	int reg, regcnt;
1119 	union sysunion args;
1120 	register_t *argsdst;
1121 
1122 	mycpu->gd_cnt.v_syscall++;
1123 
1124 #ifdef DIAGNOSTIC
1125 	if (ISPL(frame->tf_cs) != SEL_UPL) {
1126 		get_mplock();
1127 		panic("syscall");
1128 		/* NOT REACHED */
1129 	}
1130 #endif
1131 
1132 	KTR_LOG(kernentry_syscall, p->p_pid, lp->lwp_tid,
1133 		frame->tf_rax);
1134 
1135 	userenter(td, p);	/* lazy raise our priority */
1136 
1137 	reg = 0;
1138 	regcnt = 6;
1139 	/*
1140 	 * Misc
1141 	 */
1142 	sticks = (int)td->td_sticks;
1143 	orig_tf_rflags = frame->tf_rflags;
1144 
1145 	/*
1146 	 * Virtual kernel intercept - if a VM context managed by a virtual
1147 	 * kernel issues a system call the virtual kernel handles it, not us.
1148 	 * Restore the virtual kernel context and return from its system
1149 	 * call.  The current frame is copied out to the virtual kernel.
1150 	 */
1151 	if (lp->lwp_vkernel && lp->lwp_vkernel->ve) {
1152 		vkernel_trap(lp, frame);
1153 		error = EJUSTRETURN;
1154 		goto out;
1155 	}
1156 
1157 	/*
1158 	 * Get the system call parameters and account for time
1159 	 */
1160 	KASSERT(lp->lwp_md.md_regs == frame,
1161 		("Frame mismatch %p %p", lp->lwp_md.md_regs, frame));
1162 	params = (caddr_t)frame->tf_rsp + sizeof(register_t);
1163 	code = frame->tf_rax;
1164 
1165 	if (p->p_sysent->sv_prepsyscall) {
1166 		(*p->p_sysent->sv_prepsyscall)(
1167 			frame, (int *)(&args.nosys.sysmsg + 1),
1168 			&code, &params);
1169 	} else {
1170 		if (code == SYS_syscall || code == SYS___syscall) {
1171 			code = frame->tf_rdi;
1172 			reg++;
1173 			regcnt--;
1174 		}
1175 	}
1176 
1177 	if (p->p_sysent->sv_mask)
1178 		code &= p->p_sysent->sv_mask;
1179 
1180 	if (code >= p->p_sysent->sv_size)
1181 		callp = &p->p_sysent->sv_table[0];
1182 	else
1183 		callp = &p->p_sysent->sv_table[code];
1184 
1185 	narg = callp->sy_narg & SYF_ARGMASK;
1186 
1187 	/*
1188 	 * On x86_64 we get up to six arguments in registers. The rest are
1189 	 * on the stack. The first six members of 'struct trapframe' happen
1190 	 * to be the registers used to pass arguments, in exactly the right
1191 	 * order.
1192 	 */
1193 	argp = &frame->tf_rdi;
1194 	argp += reg;
1195 	argsdst = (register_t *)(&args.nosys.sysmsg + 1);
1196 	/*
1197 	 * JG can we overflow the space pointed to by 'argsdst'
1198 	 * either with 'bcopy' or with 'copyin'?
1199 	 */
1200 	bcopy(argp, argsdst, sizeof(register_t) * regcnt);
1201 	/*
1202 	 * copyin is MP aware, but the tracing code is not
1203 	 */
1204 	if (narg > regcnt) {
1205 		KASSERT(params != NULL, ("copyin args with no params!"));
1206 		error = copyin(params, &argsdst[regcnt],
1207 			(narg - regcnt) * sizeof(register_t));
1208 		if (error) {
1209 #ifdef KTRACE
1210 			if (KTRPOINT(td, KTR_SYSCALL)) {
1211 				MAKEMPSAFE(have_mplock);
1212 
1213 				ktrsyscall(lp, code, narg,
1214 					(void *)(&args.nosys.sysmsg + 1));
1215 			}
1216 #endif
1217 			goto bad;
1218 		}
1219 	}
1220 
1221 #ifdef KTRACE
1222 	if (KTRPOINT(td, KTR_SYSCALL)) {
1223 		MAKEMPSAFE(have_mplock);
1224 		ktrsyscall(lp, code, narg, (void *)(&args.nosys.sysmsg + 1));
1225 	}
1226 #endif
1227 
1228 	/*
1229 	 * Default return value is 0 (will be copied to %rax).  Double-value
1230 	 * returns use %rax and %rdx.  %rdx is left unchanged for system
1231 	 * calls which return only one result.
1232 	 */
1233 	args.sysmsg_fds[0] = 0;
1234 	args.sysmsg_fds[1] = frame->tf_rdx;
1235 
1236 	/*
1237 	 * The syscall might manipulate the trap frame. If it does it
1238 	 * will probably return EJUSTRETURN.
1239 	 */
1240 	args.sysmsg_frame = frame;
1241 
1242 	STOPEVENT(p, S_SCE, narg);	/* MP aware */
1243 
1244 	/*
1245 	 * NOTE: All system calls run MPSAFE now.  The system call itself
1246 	 *	 is responsible for getting the MP lock.
1247 	 */
1248 #ifdef SYSCALL_DEBUG
1249 	uint64_t tscval = rdtsc();
1250 #endif
1251 	error = (*callp->sy_call)(&args);
1252 #ifdef SYSCALL_DEBUG
1253 	tscval = rdtsc() - tscval;
1254 	tscval = tscval * 1000000 / tsc_frequency;
1255 	if (SysCallsWorstCase[code] < tscval)
1256 		SysCallsWorstCase[code] = tscval;
1257 #endif
1258 
1259 out:
1260 	/*
1261 	 * MP SAFE (we may or may not have the MP lock at this point)
1262 	 */
1263 	//kprintf("SYSMSG %d ", error);
1264 	switch (error) {
1265 	case 0:
1266 		/*
1267 		 * Reinitialize proc pointer `p' as it may be different
1268 		 * if this is a child returning from fork syscall.
1269 		 */
1270 		p = curproc;
1271 		lp = curthread->td_lwp;
1272 		frame->tf_rax = args.sysmsg_fds[0];
1273 		frame->tf_rdx = args.sysmsg_fds[1];
1274 		frame->tf_rflags &= ~PSL_C;
1275 		break;
1276 	case ERESTART:
1277 		/*
1278 		 * Reconstruct pc, we know that 'syscall' is 2 bytes.
1279 		 * We have to do a full context restore so that %r10
1280 		 * (which was holding the value of %rcx) is restored for
1281 		 * the next iteration.
1282 		 */
1283 		if (frame->tf_err != 0 && frame->tf_err != 2)
1284 			kprintf("lp %s:%d frame->tf_err is weird %ld\n",
1285 				td->td_comm, lp->lwp_proc->p_pid, frame->tf_err);
1286 		frame->tf_rip -= frame->tf_err;
1287 		frame->tf_r10 = frame->tf_rcx;
1288 		break;
1289 	case EJUSTRETURN:
1290 		break;
1291 	case EASYNC:
1292 		panic("Unexpected EASYNC return value (for now)");
1293 	default:
1294 bad:
1295 		if (p->p_sysent->sv_errsize) {
1296 			if (error >= p->p_sysent->sv_errsize)
1297 				error = -1;	/* XXX */
1298 			else
1299 				error = p->p_sysent->sv_errtbl[error];
1300 		}
1301 		frame->tf_rax = error;
1302 		frame->tf_rflags |= PSL_C;
1303 		break;
1304 	}
1305 
1306 	/*
1307 	 * Traced syscall.  trapsignal() is not MP aware.
1308 	 */
1309 	if (orig_tf_rflags & PSL_T) {
1310 		MAKEMPSAFE(have_mplock);
1311 		frame->tf_rflags &= ~PSL_T;
1312 		trapsignal(lp, SIGTRAP, TRAP_TRACE);
1313 	}
1314 
1315 	/*
1316 	 * Handle reschedule and other end-of-syscall issues
1317 	 */
1318 	userret(lp, frame, sticks);
1319 
1320 #ifdef KTRACE
1321 	if (KTRPOINT(td, KTR_SYSRET)) {
1322 		MAKEMPSAFE(have_mplock);
1323 		ktrsysret(lp, code, error, args.sysmsg_result);
1324 	}
1325 #endif
1326 
1327 	/*
1328 	 * This works because errno is findable through the
1329 	 * register set.  If we ever support an emulation where this
1330 	 * is not the case, this code will need to be revisited.
1331 	 */
1332 	STOPEVENT(p, S_SCX, code);
1333 
1334 	userexit(lp);
1335 	/*
1336 	 * Release the MP lock if we had to get it
1337 	 */
1338 	if (have_mplock)
1339 		rel_mplock();
1340 	KTR_LOG(kernentry_syscall_ret, p->p_pid, lp->lwp_tid, error);
1341 #ifdef INVARIANTS
1342 	KASSERT(crit_count == td->td_critcount,
1343 		("syscall: critical section count mismatch! %d/%d",
1344 		crit_count, td->td_pri));
1345 	KASSERT(&td->td_toks_base == td->td_toks_stop,
1346 		("syscall: extra tokens held after trap! %ld",
1347 		td->td_toks_stop - &td->td_toks_base));
1348 #endif
1349 }
1350 
1351 /*
1352  * NOTE: mplock not held at any point
1353  */
1354 void
1355 fork_return(struct lwp *lp, struct trapframe *frame)
1356 {
1357 	frame->tf_rax = 0;		/* Child returns zero */
1358 	frame->tf_rflags &= ~PSL_C;	/* success */
1359 	frame->tf_rdx = 1;
1360 
1361 	generic_lwp_return(lp, frame);
1362 	KTR_LOG(kernentry_fork_ret, lp->lwp_proc->p_pid, lp->lwp_tid);
1363 }
1364 
1365 /*
1366  * Simplified back end of syscall(), used when returning from fork()
1367  * directly into user mode.
1368  *
1369  * This code will return back into the fork trampoline code which then
1370  * runs doreti.
1371  *
1372  * NOTE: The mplock is not held at any point.
1373  */
1374 void
1375 generic_lwp_return(struct lwp *lp, struct trapframe *frame)
1376 {
1377 	struct proc *p = lp->lwp_proc;
1378 
1379 	/*
1380 	 * Newly forked processes are given a kernel priority.  We have to
1381 	 * adjust the priority to a normal user priority and fake entry
1382 	 * into the kernel (call userenter()) to install a passive release
1383 	 * function just in case userret() decides to stop the process.  This
1384 	 * can occur when ^Z races a fork.  If we do not install the passive
1385 	 * release function the current process designation will not be
1386 	 * released when the thread goes to sleep.
1387 	 */
1388 	lwkt_setpri_self(TDPRI_USER_NORM);
1389 	userenter(lp->lwp_thread, p);
1390 	userret(lp, frame, 0);
1391 #ifdef KTRACE
1392 	if (KTRPOINT(lp->lwp_thread, KTR_SYSRET))
1393 		ktrsysret(lp, SYS_fork, 0, 0);
1394 #endif
1395 	lp->lwp_flags |= LWP_PASSIVE_ACQ;
1396 	userexit(lp);
1397 	lp->lwp_flags &= ~LWP_PASSIVE_ACQ;
1398 }
1399 
1400 /*
1401  * If PGEX_FPFAULT is set then set FP_VIRTFP in the PCB to force a T_DNA
1402  * fault (which is then passed back to the virtual kernel) if an attempt is
1403  * made to use the FP unit.
1404  *
1405  * XXX this is a fairly big hack.
1406  */
1407 void
1408 set_vkernel_fp(struct trapframe *frame)
1409 {
1410 	struct thread *td = curthread;
1411 
1412 	if (frame->tf_xflags & PGEX_FPFAULT) {
1413 		td->td_pcb->pcb_flags |= FP_VIRTFP;
1414 		if (mdcpu->gd_npxthread == td)
1415 			npxexit();
1416 	} else {
1417 		td->td_pcb->pcb_flags &= ~FP_VIRTFP;
1418 	}
1419 }
1420 
1421 /*
1422  * Called from vkernel_trap() to fixup the vkernel's syscall
1423  * frame for vmspace_ctl() return.
1424  */
1425 void
1426 cpu_vkernel_trap(struct trapframe *frame, int error)
1427 {
1428 	frame->tf_rax = error;
1429 	if (error)
1430 		frame->tf_rflags |= PSL_C;
1431 	else
1432 		frame->tf_rflags &= ~PSL_C;
1433 }
1434