xref: /dragonfly/sys/platform/pc64/x86_64/trap.c (revision c0f2d562)
1 /*-
2  * Copyright (c) 1990, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * Copyright (C) 1994, David Greenman
5  * Copyright (c) 2008 The DragonFly Project.
6  * Copyright (c) 2008 Jordan Gordeev.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the University of Utah, and William Jolitz.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the University of
22  *	California, Berkeley and its contributors.
23  * 4. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  * from: @(#)trap.c	7.4 (Berkeley) 5/13/91
40  * $FreeBSD: src/sys/i386/i386/trap.c,v 1.147.2.11 2003/02/27 19:09:59 luoqi Exp $
41  */
42 
43 /*
44  * x86_64 Trap and System call handling
45  */
46 
47 #include "use_isa.h"
48 
49 #include "opt_ddb.h"
50 #include "opt_ktrace.h"
51 
52 #include <machine/frame.h>
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/kernel.h>
56 #include <sys/kerneldump.h>
57 #include <sys/proc.h>
58 #include <sys/pioctl.h>
59 #include <sys/types.h>
60 #include <sys/signal2.h>
61 #include <sys/syscall.h>
62 #include <sys/sysctl.h>
63 #include <sys/sysent.h>
64 #ifdef KTRACE
65 #include <sys/ktrace.h>
66 #endif
67 #include <sys/ktr.h>
68 #include <sys/sysmsg.h>
69 #include <sys/sysproto.h>
70 #include <sys/sysunion.h>
71 
72 #include <vm/pmap.h>
73 #include <vm/vm.h>
74 #include <vm/vm_extern.h>
75 #include <vm/vm_kern.h>
76 #include <vm/vm_param.h>
77 #include <machine/cpu.h>
78 #include <machine/pcb.h>
79 #include <machine/smp.h>
80 #include <machine/thread.h>
81 #include <machine/clock.h>
82 #include <machine/vmparam.h>
83 #include <machine/md_var.h>
84 #include <machine_base/isa/isa_intr.h>
85 #include <machine_base/apic/lapic.h>
86 
87 #include <ddb/ddb.h>
88 
89 #include <sys/thread2.h>
90 #include <sys/mplock2.h>
91 #include <sys/spinlock2.h>
92 
93 #define MAKEMPSAFE(have_mplock)			\
94 	if (have_mplock == 0) {			\
95 		get_mplock();			\
96 		have_mplock = 1;		\
97 	}
98 
99 extern void trap(struct trapframe *frame);
100 
101 static int trap_pfault(struct trapframe *, int);
102 static void trap_fatal(struct trapframe *, vm_offset_t);
103 void dblfault_handler(struct trapframe *frame);
104 
105 #define MAX_TRAP_MSG		30
106 static char *trap_msg[] = {
107 	"",					/*  0 unused */
108 	"privileged instruction fault",		/*  1 T_PRIVINFLT */
109 	"",					/*  2 unused */
110 	"breakpoint instruction fault",		/*  3 T_BPTFLT */
111 	"",					/*  4 unused */
112 	"",					/*  5 unused */
113 	"arithmetic trap",			/*  6 T_ARITHTRAP */
114 	"system forced exception",		/*  7 T_ASTFLT */
115 	"",					/*  8 unused */
116 	"general protection fault",		/*  9 T_PROTFLT */
117 	"trace trap",				/* 10 T_TRCTRAP */
118 	"",					/* 11 unused */
119 	"page fault",				/* 12 T_PAGEFLT */
120 	"",					/* 13 unused */
121 	"alignment fault",			/* 14 T_ALIGNFLT */
122 	"",					/* 15 unused */
123 	"",					/* 16 unused */
124 	"",					/* 17 unused */
125 	"integer divide fault",			/* 18 T_DIVIDE */
126 	"non-maskable interrupt trap",		/* 19 T_NMI */
127 	"overflow trap",			/* 20 T_OFLOW */
128 	"FPU bounds check fault",		/* 21 T_BOUND */
129 	"FPU device not available",		/* 22 T_DNA */
130 	"double fault",				/* 23 T_DOUBLEFLT */
131 	"FPU operand fetch fault",		/* 24 T_FPOPFLT */
132 	"invalid TSS fault",			/* 25 T_TSSFLT */
133 	"segment not present fault",		/* 26 T_SEGNPFLT */
134 	"stack fault",				/* 27 T_STKFLT */
135 	"machine check trap",			/* 28 T_MCHK */
136 	"SIMD floating-point exception",	/* 29 T_XMMFLT */
137 	"reserved (unknown) fault",		/* 30 T_RESERVED */
138 };
139 
140 #ifdef DDB
141 static int ddb_on_nmi = 1;
142 SYSCTL_INT(_machdep, OID_AUTO, ddb_on_nmi, CTLFLAG_RW,
143 	&ddb_on_nmi, 0, "Go to DDB on NMI");
144 static int ddb_on_seg_fault = 0;
145 SYSCTL_INT(_machdep, OID_AUTO, ddb_on_seg_fault, CTLFLAG_RW,
146 	&ddb_on_seg_fault, 0, "Go to DDB on user seg-fault");
147 static int freeze_on_seg_fault = 0;
148 SYSCTL_INT(_machdep, OID_AUTO, freeze_on_seg_fault, CTLFLAG_RW,
149 	&freeze_on_seg_fault, 0, "Go to DDB on user seg-fault");
150 #endif
151 static int panic_on_nmi = 1;
152 SYSCTL_INT(_machdep, OID_AUTO, panic_on_nmi, CTLFLAG_RW,
153 	&panic_on_nmi, 0, "Panic on NMI");
154 static int fast_release;
155 SYSCTL_INT(_machdep, OID_AUTO, fast_release, CTLFLAG_RW,
156 	&fast_release, 0, "Passive Release was optimal");
157 static int slow_release;
158 SYSCTL_INT(_machdep, OID_AUTO, slow_release, CTLFLAG_RW,
159 	&slow_release, 0, "Passive Release was nonoptimal");
160 
161 /*
162  * System call debugging records the worst-case system call
163  * overhead (inclusive of blocking), but may be inaccurate.
164  */
165 /*#define SYSCALL_DEBUG*/
166 #ifdef SYSCALL_DEBUG
167 uint64_t SysCallsWorstCase[SYS_MAXSYSCALL];
168 #endif
169 
170 /*
171  * Passively intercepts the thread switch function to increase
172  * the thread priority from a user priority to a kernel priority, reducing
173  * syscall and trap overhead for the case where no switch occurs.
174  *
175  * Synchronizes td_ucred with p_ucred.  This is used by system calls,
176  * signal handling, faults, AST traps, and anything else that enters the
177  * kernel from userland and provides the kernel with a stable read-only
178  * copy of the process ucred.
179  *
180  * To avoid races with another thread updating p_ucred we obtain p_spin.
181  * The other thread doing the update will obtain both p_token and p_spin.
182  * In the case where the cached cred pointer matches, we will already have
183  * the ref and we don't have to do one blessed thing.
184  */
185 static __inline void
186 userenter(struct thread *curtd, struct proc *curp)
187 {
188 	struct ucred *ocred;
189 	struct ucred *ncred;
190 
191 	curtd->td_release = lwkt_passive_release;
192 
193 	if (curtd->td_ucred != curp->p_ucred) {
194 		spin_lock(&curp->p_spin);
195 		ncred = crhold(curp->p_ucred);
196 		spin_unlock(&curp->p_spin);
197 		ocred = curtd->td_ucred;
198 		curtd->td_ucred = ncred;
199 		if (ocred)
200 			crfree(ocred);
201 	}
202 
203 #ifdef DDB
204 	/*
205 	 * Debugging, remove top two user stack pages to catch kernel faults
206 	 */
207 	if (freeze_on_seg_fault > 1 && curtd->td_lwp) {
208 		pmap_remove(vmspace_pmap(curtd->td_lwp->lwp_vmspace),
209 			    0x00007FFFFFFFD000LU,
210 			    0x0000800000000000LU);
211 	}
212 #endif
213 }
214 
215 /*
216  * Handle signals, upcalls, profiling, and other AST's and/or tasks that
217  * must be completed before we can return to or try to return to userland.
218  *
219  * Note that td_sticks is a 64 bit quantity, but there's no point doing 64
220  * arithmatic on the delta calculation so the absolute tick values are
221  * truncated to an integer.
222  */
223 static void
224 userret(struct lwp *lp, struct trapframe *frame, int sticks)
225 {
226 	struct proc *p = lp->lwp_proc;
227 	int sig;
228 
229 	/*
230 	 * Charge system time if profiling.  Note: times are in microseconds.
231 	 * This may do a copyout and block, so do it first even though it
232 	 * means some system time will be charged as user time.
233 	 */
234 	if (p->p_flags & P_PROFIL) {
235 		addupc_task(p, frame->tf_rip,
236 			(u_int)((int)lp->lwp_thread->td_sticks - sticks));
237 	}
238 
239 recheck:
240 	/*
241 	 * Specific on-return-to-usermode checks (LWP_MP_WEXIT,
242 	 * LWP_MP_VNLRU, etc).
243 	 */
244 	if (lp->lwp_mpflags & LWP_MP_URETMASK)
245 		lwpuserret(lp);
246 
247 	/*
248 	 * Block here if we are in a stopped state.
249 	 */
250 	if (STOPLWP(p, lp)) {
251 		lwkt_gettoken(&p->p_token);
252 		tstop();
253 		lwkt_reltoken(&p->p_token);
254 		goto recheck;
255 	}
256 	while (dump_stop_usertds) {
257 		tsleep(&dump_stop_usertds, 0, "dumpstp", 0);
258 	}
259 
260 	/*
261 	 * Post any pending upcalls.  If running a virtual kernel be sure
262 	 * to restore the virtual kernel's vmspace before posting the upcall.
263 	 */
264 	if (p->p_flags & (P_SIGVTALRM | P_SIGPROF)) {
265 		lwkt_gettoken(&p->p_token);
266 		if (p->p_flags & P_SIGVTALRM) {
267 			p->p_flags &= ~P_SIGVTALRM;
268 			ksignal(p, SIGVTALRM);
269 		}
270 		if (p->p_flags & P_SIGPROF) {
271 			p->p_flags &= ~P_SIGPROF;
272 			ksignal(p, SIGPROF);
273 		}
274 		lwkt_reltoken(&p->p_token);
275 		goto recheck;
276 	}
277 
278 	/*
279 	 * Post any pending signals.  If running a virtual kernel be sure
280 	 * to restore the virtual kernel's vmspace before posting the signal.
281 	 *
282 	 * WARNING!  postsig() can exit and not return.
283 	 */
284 	if ((sig = CURSIG_TRACE(lp)) != 0) {
285 		lwkt_gettoken(&p->p_token);
286 		postsig(sig);
287 		lwkt_reltoken(&p->p_token);
288 		goto recheck;
289 	}
290 
291 	/*
292 	 * block here if we are swapped out, but still process signals
293 	 * (such as SIGKILL).  proc0 (the swapin scheduler) is already
294 	 * aware of our situation, we do not have to wake it up.
295 	 */
296 	if (p->p_flags & P_SWAPPEDOUT) {
297 		lwkt_gettoken(&p->p_token);
298 		get_mplock();
299 		p->p_flags |= P_SWAPWAIT;
300 		swapin_request();
301 		if (p->p_flags & P_SWAPWAIT)
302 			tsleep(p, PCATCH, "SWOUT", 0);
303 		p->p_flags &= ~P_SWAPWAIT;
304 		rel_mplock();
305 		lwkt_reltoken(&p->p_token);
306 		goto recheck;
307 	}
308 
309 	/*
310 	 * In a multi-threaded program it is possible for a thread to change
311 	 * signal state during a system call which temporarily changes the
312 	 * signal mask.  In this case postsig() might not be run and we
313 	 * have to restore the mask ourselves.
314 	 */
315 	if (lp->lwp_flags & LWP_OLDMASK) {
316 		lp->lwp_flags &= ~LWP_OLDMASK;
317 		lp->lwp_sigmask = lp->lwp_oldsigmask;
318 		goto recheck;
319 	}
320 }
321 
322 /*
323  * Cleanup from userenter and any passive release that might have occured.
324  * We must reclaim the current-process designation before we can return
325  * to usermode.  We also handle both LWKT and USER reschedule requests.
326  */
327 static __inline void
328 userexit(struct lwp *lp)
329 {
330 	struct thread *td = lp->lwp_thread;
331 	/* globaldata_t gd = td->td_gd; */
332 
333 	/*
334 	 * Handle stop requests at kernel priority.  Any requests queued
335 	 * after this loop will generate another AST.
336 	 */
337 	while (STOPLWP(lp->lwp_proc, lp)) {
338 		lwkt_gettoken(&lp->lwp_proc->p_token);
339 		tstop();
340 		lwkt_reltoken(&lp->lwp_proc->p_token);
341 	}
342 
343 	/*
344 	 * Reduce our priority in preparation for a return to userland.  If
345 	 * our passive release function was still in place, our priority was
346 	 * never raised and does not need to be reduced.
347 	 */
348 	lwkt_passive_recover(td);
349 
350 	/* WARNING: we may have migrated cpu's */
351 	/* gd = td->td_gd; */
352 
353 	/*
354 	 * Become the current user scheduled process if we aren't already,
355 	 * and deal with reschedule requests and other factors.
356 	 */
357 	lp->lwp_proc->p_usched->acquire_curproc(lp);
358 }
359 
360 #if !defined(KTR_KERNENTRY)
361 #define	KTR_KERNENTRY	KTR_ALL
362 #endif
363 KTR_INFO_MASTER(kernentry);
364 KTR_INFO(KTR_KERNENTRY, kernentry, trap, 0,
365 	 "TRAP(pid %d, tid %d, trapno %ld, eva %lu)",
366 	 pid_t pid, lwpid_t tid,  register_t trapno, vm_offset_t eva);
367 KTR_INFO(KTR_KERNENTRY, kernentry, trap_ret, 0, "TRAP_RET(pid %d, tid %d)",
368 	 pid_t pid, lwpid_t tid);
369 KTR_INFO(KTR_KERNENTRY, kernentry, syscall, 0, "SYSC(pid %d, tid %d, nr %ld)",
370 	 pid_t pid, lwpid_t tid,  register_t trapno);
371 KTR_INFO(KTR_KERNENTRY, kernentry, syscall_ret, 0, "SYSRET(pid %d, tid %d, err %d)",
372 	 pid_t pid, lwpid_t tid,  int err);
373 KTR_INFO(KTR_KERNENTRY, kernentry, fork_ret, 0, "FORKRET(pid %d, tid %d)",
374 	 pid_t pid, lwpid_t tid);
375 
376 /*
377  * Exception, fault, and trap interface to the kernel.
378  * This common code is called from assembly language IDT gate entry
379  * routines that prepare a suitable stack frame, and restore this
380  * frame after the exception has been processed.
381  *
382  * This function is also called from doreti in an interlock to handle ASTs.
383  * For example:  hardwareint->INTROUTINE->(set ast)->doreti->trap
384  *
385  * NOTE!  We have to retrieve the fault address prior to obtaining the
386  * MP lock because get_mplock() may switch out.  YYY cr2 really ought
387  * to be retrieved by the assembly code, not here.
388  *
389  * XXX gd_trap_nesting_level currently prevents lwkt_switch() from panicing
390  * if an attempt is made to switch from a fast interrupt or IPI.  This is
391  * necessary to properly take fatal kernel traps on SMP machines if
392  * get_mplock() has to block.
393  */
394 
395 void
396 trap(struct trapframe *frame)
397 {
398 	struct globaldata *gd = mycpu;
399 	struct thread *td = gd->gd_curthread;
400 	struct lwp *lp = td->td_lwp;
401 	struct proc *p;
402 	int sticks = 0;
403 	int i = 0, ucode = 0, type, code;
404 	int have_mplock = 0;
405 #ifdef INVARIANTS
406 	int crit_count = td->td_critcount;
407 	lwkt_tokref_t curstop = td->td_toks_stop;
408 #endif
409 	vm_offset_t eva;
410 
411 	p = td->td_proc;
412 	clear_quickret();
413 
414 #ifdef DDB
415         /*
416 	 * We need to allow T_DNA faults when the debugger is active since
417 	 * some dumping paths do large bcopy() which use the floating
418 	 * point registers for faster copying.
419 	 */
420 	if (db_active && frame->tf_trapno != T_DNA) {
421 		eva = (frame->tf_trapno == T_PAGEFLT ? frame->tf_addr : 0);
422 		++gd->gd_trap_nesting_level;
423 		MAKEMPSAFE(have_mplock);
424 		trap_fatal(frame, eva);
425 		--gd->gd_trap_nesting_level;
426 		goto out2;
427 	}
428 #endif
429 
430 	eva = 0;
431 
432 	if ((frame->tf_rflags & PSL_I) == 0) {
433 		/*
434 		 * Buggy application or kernel code has disabled interrupts
435 		 * and then trapped.  Enabling interrupts now is wrong, but
436 		 * it is better than running with interrupts disabled until
437 		 * they are accidentally enabled later.
438 		 */
439 		type = frame->tf_trapno;
440 		if (ISPL(frame->tf_cs) == SEL_UPL) {
441 			MAKEMPSAFE(have_mplock);
442 			/* JG curproc can be NULL */
443 			kprintf(
444 			    "pid %ld (%s): trap %d with interrupts disabled\n",
445 			    (long)curproc->p_pid, curproc->p_comm, type);
446 		} else if (type != T_NMI && type != T_BPTFLT &&
447 		    type != T_TRCTRAP) {
448 			/*
449 			 * XXX not quite right, since this may be for a
450 			 * multiple fault in user mode.
451 			 */
452 			MAKEMPSAFE(have_mplock);
453 			kprintf("kernel trap %d (%s @ 0x%016jx) with "
454 				"interrupts disabled\n",
455 				type,
456 				td->td_comm,
457 				frame->tf_rip);
458 		}
459 		cpu_enable_intr();
460 	}
461 
462 	type = frame->tf_trapno;
463 	code = frame->tf_err;
464 
465 	if (ISPL(frame->tf_cs) == SEL_UPL) {
466 		/* user trap */
467 
468 		KTR_LOG(kernentry_trap, p->p_pid, lp->lwp_tid,
469 			frame->tf_trapno, eva);
470 
471 		userenter(td, p);
472 
473 		sticks = (int)td->td_sticks;
474 		KASSERT(lp->lwp_md.md_regs == frame,
475 			("Frame mismatch %p %p", lp->lwp_md.md_regs, frame));
476 
477 		switch (type) {
478 		case T_PRIVINFLT:	/* privileged instruction fault */
479 			i = SIGILL;
480 			ucode = ILL_PRVOPC;
481 			break;
482 
483 		case T_BPTFLT:		/* bpt instruction fault */
484 		case T_TRCTRAP:		/* trace trap */
485 			frame->tf_rflags &= ~PSL_T;
486 			i = SIGTRAP;
487 			ucode = (type == T_TRCTRAP ? TRAP_TRACE : TRAP_BRKPT);
488 			break;
489 
490 		case T_ARITHTRAP:	/* arithmetic trap */
491 			ucode = code;
492 			i = SIGFPE;
493 			break;
494 
495 		case T_ASTFLT:		/* Allow process switch */
496 			mycpu->gd_cnt.v_soft++;
497 			if (mycpu->gd_reqflags & RQF_AST_OWEUPC) {
498 				atomic_clear_int(&mycpu->gd_reqflags,
499 						 RQF_AST_OWEUPC);
500 				addupc_task(p, p->p_prof.pr_addr,
501 					    p->p_prof.pr_ticks);
502 			}
503 			goto out;
504 
505 		case T_PROTFLT:		/* general protection fault */
506 			i = SIGBUS;
507 			ucode = BUS_OBJERR;
508 			break;
509 		case T_STKFLT:		/* stack fault */
510 		case T_SEGNPFLT:	/* segment not present fault */
511 			i = SIGBUS;
512 			ucode = BUS_ADRERR;
513 			break;
514 		case T_TSSFLT:		/* invalid TSS fault */
515 		case T_DOUBLEFLT:	/* double fault */
516 		default:
517 			i = SIGBUS;
518 			ucode = BUS_OBJERR;
519 			break;
520 
521 		case T_PAGEFLT:		/* page fault */
522 			i = trap_pfault(frame, TRUE);
523 			if (frame->tf_rip == 0) {
524 #ifdef DDB
525 				/* used for kernel debugging only */
526 				while (freeze_on_seg_fault)
527 					tsleep(p, 0, "freeze", hz * 20);
528 #endif
529 			}
530 			if (i == -1 || i == 0)
531 				goto out;
532 
533 
534 			if (i == SIGSEGV)
535 				ucode = SEGV_MAPERR;
536 			else {
537 				i = SIGSEGV;
538 				ucode = SEGV_ACCERR;
539 			}
540 			break;
541 
542 		case T_DIVIDE:		/* integer divide fault */
543 			ucode = FPE_INTDIV;
544 			i = SIGFPE;
545 			break;
546 
547 #if NISA > 0
548 		case T_NMI:
549 			MAKEMPSAFE(have_mplock);
550 			/* machine/parity/power fail/"kitchen sink" faults */
551 			if (isa_nmi(code) == 0) {
552 #ifdef DDB
553 				/*
554 				 * NMI can be hooked up to a pushbutton
555 				 * for debugging.
556 				 */
557 				if (ddb_on_nmi) {
558 					kprintf ("NMI ... going to debugger\n");
559 					kdb_trap(type, 0, frame);
560 				}
561 #endif /* DDB */
562 				goto out2;
563 			} else if (panic_on_nmi)
564 				panic("NMI indicates hardware failure");
565 			break;
566 #endif /* NISA > 0 */
567 
568 		case T_OFLOW:		/* integer overflow fault */
569 			ucode = FPE_INTOVF;
570 			i = SIGFPE;
571 			break;
572 
573 		case T_BOUND:		/* bounds check fault */
574 			ucode = FPE_FLTSUB;
575 			i = SIGFPE;
576 			break;
577 
578 		case T_DNA:
579 			/*
580 			 * Virtual kernel intercept - pass the DNA exception
581 			 * to the virtual kernel if it asked to handle it.
582 			 * This occurs when the virtual kernel is holding
583 			 * onto the FP context for a different emulated
584 			 * process then the one currently running.
585 			 *
586 			 * We must still call npxdna() since we may have
587 			 * saved FP state that the virtual kernel needs
588 			 * to hand over to a different emulated process.
589 			 */
590 			if (lp->lwp_vkernel && lp->lwp_vkernel->ve &&
591 			    (td->td_pcb->pcb_flags & FP_VIRTFP)
592 			) {
593 				npxdna();
594 				break;
595 			}
596 
597 			/*
598 			 * The kernel may have switched out the FP unit's
599 			 * state, causing the user process to take a fault
600 			 * when it tries to use the FP unit.  Restore the
601 			 * state here
602 			 */
603 			if (npxdna())
604 				goto out;
605 			i = SIGFPE;
606 			ucode = FPE_FPU_NP_TRAP;
607 			break;
608 
609 		case T_FPOPFLT:		/* FPU operand fetch fault */
610 			ucode = ILL_COPROC;
611 			i = SIGILL;
612 			break;
613 
614 		case T_XMMFLT:		/* SIMD floating-point exception */
615 			ucode = 0; /* XXX */
616 			i = SIGFPE;
617 			break;
618 		}
619 	} else {
620 		/* kernel trap */
621 
622 		switch (type) {
623 		case T_PAGEFLT:			/* page fault */
624 			trap_pfault(frame, FALSE);
625 			goto out2;
626 
627 		case T_DNA:
628 			/*
629 			 * The kernel is apparently using fpu for copying.
630 			 * XXX this should be fatal unless the kernel has
631 			 * registered such use.
632 			 */
633 			if (npxdna())
634 				goto out2;
635 			break;
636 
637 		case T_STKFLT:		/* stack fault */
638 		case T_PROTFLT:		/* general protection fault */
639 		case T_SEGNPFLT:	/* segment not present fault */
640 			/*
641 			 * Invalid segment selectors and out of bounds
642 			 * %rip's and %rsp's can be set up in user mode.
643 			 * This causes a fault in kernel mode when the
644 			 * kernel tries to return to user mode.  We want
645 			 * to get this fault so that we can fix the
646 			 * problem here and not have to check all the
647 			 * selectors and pointers when the user changes
648 			 * them.
649 			 */
650 			if (mycpu->gd_intr_nesting_level == 0) {
651 				/*
652 				 * NOTE: in 64-bit mode traps push rsp/ss
653 				 *	 even if no ring change occurs.
654 				 */
655 				if (td->td_pcb->pcb_onfault &&
656 				    td->td_pcb->pcb_onfault_sp ==
657 				    frame->tf_rsp) {
658 					frame->tf_rip = (register_t)
659 						td->td_pcb->pcb_onfault;
660 					goto out2;
661 				}
662 				if (frame->tf_rip == (long)doreti_iret) {
663 					frame->tf_rip = (long)doreti_iret_fault;
664 					goto out2;
665 				}
666 			}
667 			break;
668 
669 		case T_TSSFLT:
670 			/*
671 			 * PSL_NT can be set in user mode and isn't cleared
672 			 * automatically when the kernel is entered.  This
673 			 * causes a TSS fault when the kernel attempts to
674 			 * `iret' because the TSS link is uninitialized.  We
675 			 * want to get this fault so that we can fix the
676 			 * problem here and not every time the kernel is
677 			 * entered.
678 			 */
679 			if (frame->tf_rflags & PSL_NT) {
680 				frame->tf_rflags &= ~PSL_NT;
681 				goto out2;
682 			}
683 			break;
684 
685 		case T_TRCTRAP:	 /* trace trap */
686 #if 0
687 			if (frame->tf_rip == (int)IDTVEC(syscall)) {
688 				/*
689 				 * We've just entered system mode via the
690 				 * syscall lcall.  Continue single stepping
691 				 * silently until the syscall handler has
692 				 * saved the flags.
693 				 */
694 				goto out2;
695 			}
696 			if (frame->tf_rip == (int)IDTVEC(syscall) + 1) {
697 				/*
698 				 * The syscall handler has now saved the
699 				 * flags.  Stop single stepping it.
700 				 */
701 				frame->tf_rflags &= ~PSL_T;
702 				goto out2;
703 			}
704 #endif
705 
706 			/*
707 			 * Ignore debug register trace traps due to
708 			 * accesses in the user's address space, which
709 			 * can happen under several conditions such as
710 			 * if a user sets a watchpoint on a buffer and
711 			 * then passes that buffer to a system call.
712 			 * We still want to get TRCTRAPS for addresses
713 			 * in kernel space because that is useful when
714 			 * debugging the kernel.
715 			 */
716 #if 0 /* JG */
717 			if (user_dbreg_trap()) {
718 				/*
719 				 * Reset breakpoint bits because the
720 				 * processor doesn't
721 				 */
722 				/* XXX check upper bits here */
723 				load_dr6(rdr6() & 0xfffffff0);
724 				goto out2;
725 			}
726 #endif
727 			/*
728 			 * FALLTHROUGH (TRCTRAP kernel mode, kernel address)
729 			 */
730 		case T_BPTFLT:
731 			/*
732 			 * If DDB is enabled, let it handle the debugger trap.
733 			 * Otherwise, debugger traps "can't happen".
734 			 */
735 			ucode = TRAP_BRKPT;
736 #ifdef DDB
737 			MAKEMPSAFE(have_mplock);
738 			if (kdb_trap(type, 0, frame))
739 				goto out2;
740 #endif
741 			break;
742 
743 #if NISA > 0
744 		case T_NMI:
745 			MAKEMPSAFE(have_mplock);
746 			/* machine/parity/power fail/"kitchen sink" faults */
747 			if (isa_nmi(code) == 0) {
748 #ifdef DDB
749 				/*
750 				 * NMI can be hooked up to a pushbutton
751 				 * for debugging.
752 				 */
753 				if (ddb_on_nmi) {
754 					kprintf ("NMI ... going to debugger\n");
755 					kdb_trap(type, 0, frame);
756 				}
757 #endif /* DDB */
758 				goto out2;
759 			} else if (panic_on_nmi == 0)
760 				goto out2;
761 			/* FALL THROUGH */
762 #endif /* NISA > 0 */
763 		}
764 		MAKEMPSAFE(have_mplock);
765 		trap_fatal(frame, 0);
766 		goto out2;
767 	}
768 
769 	/*
770 	 * Virtual kernel intercept - if the fault is directly related to a
771 	 * VM context managed by a virtual kernel then let the virtual kernel
772 	 * handle it.
773 	 */
774 	if (lp->lwp_vkernel && lp->lwp_vkernel->ve) {
775 		vkernel_trap(lp, frame);
776 		goto out;
777 	}
778 
779 	/* Translate fault for emulators (e.g. Linux) */
780 	if (*p->p_sysent->sv_transtrap)
781 		i = (*p->p_sysent->sv_transtrap)(i, type);
782 
783 	MAKEMPSAFE(have_mplock);
784 	trapsignal(lp, i, ucode);
785 
786 #ifdef DEBUG
787 	if (type <= MAX_TRAP_MSG) {
788 		uprintf("fatal process exception: %s",
789 			trap_msg[type]);
790 		if ((type == T_PAGEFLT) || (type == T_PROTFLT))
791 			uprintf(", fault VA = 0x%lx", frame->tf_addr);
792 		uprintf("\n");
793 	}
794 #endif
795 
796 out:
797 	userret(lp, frame, sticks);
798 	userexit(lp);
799 out2:	;
800 	if (have_mplock)
801 		rel_mplock();
802 	if (p != NULL && lp != NULL)
803 		KTR_LOG(kernentry_trap_ret, p->p_pid, lp->lwp_tid);
804 #ifdef INVARIANTS
805 	KASSERT(crit_count == td->td_critcount,
806 		("trap: critical section count mismatch! %d/%d",
807 		crit_count, td->td_pri));
808 	KASSERT(curstop == td->td_toks_stop,
809 		("trap: extra tokens held after trap! %ld/%ld",
810 		curstop - &td->td_toks_base,
811 		td->td_toks_stop - &td->td_toks_base));
812 #endif
813 }
814 
815 void
816 trap_handle_userenter(struct thread *td)
817 {
818 	userenter(td, td->td_proc);
819 }
820 
821 void
822 trap_handle_userexit(struct trapframe *frame, int sticks)
823 {
824 	struct lwp *lp = curthread->td_lwp;
825 
826 	if (lp) {
827 		userret(lp, frame, sticks);
828 		userexit(lp);
829 	}
830 }
831 
832 static int
833 trap_pfault(struct trapframe *frame, int usermode)
834 {
835 	vm_offset_t va;
836 	struct vmspace *vm = NULL;
837 	vm_map_t map;
838 	int rv = 0;
839 	int fault_flags;
840 	vm_prot_t ftype;
841 	thread_t td = curthread;
842 	struct lwp *lp = td->td_lwp;
843 	struct proc *p;
844 
845 	va = trunc_page(frame->tf_addr);
846 	if (va >= VM_MIN_KERNEL_ADDRESS) {
847 		/*
848 		 * Don't allow user-mode faults in kernel address space.
849 		 */
850 		if (usermode) {
851 			fault_flags = -1;
852 			ftype = -1;
853 			goto nogo;
854 		}
855 
856 		map = &kernel_map;
857 	} else {
858 		/*
859 		 * This is a fault on non-kernel virtual memory.
860 		 * vm is initialized above to NULL. If curproc is NULL
861 		 * or curproc->p_vmspace is NULL the fault is fatal.
862 		 */
863 		if (lp != NULL)
864 			vm = lp->lwp_vmspace;
865 
866 		if (vm == NULL) {
867 			fault_flags = -1;
868 			ftype = -1;
869 			goto nogo;
870 		}
871 
872 		/*
873 		 * Debugging, try to catch kernel faults on the user address
874 		 * space when not inside on onfault (e.g. copyin/copyout)
875 		 * routine.
876 		 */
877 		if (usermode == 0 && (td->td_pcb == NULL ||
878 		    td->td_pcb->pcb_onfault == NULL)) {
879 #ifdef DDB
880 			if (freeze_on_seg_fault) {
881 				kprintf("trap_pfault: user address fault from kernel mode "
882 					"%016lx\n", (long)frame->tf_addr);
883 				while (freeze_on_seg_fault)
884 					    tsleep(&freeze_on_seg_fault, 0, "frzseg", hz * 20);
885 			}
886 #endif
887 		}
888 		map = &vm->vm_map;
889 	}
890 
891 	/*
892 	 * PGEX_I is defined only if the execute disable bit capability is
893 	 * supported and enabled.
894 	 */
895 	if (frame->tf_err & PGEX_W)
896 		ftype = VM_PROT_WRITE;
897 #if 0 /* JG */
898 	else if ((frame->tf_err & PGEX_I) && pg_nx != 0)
899 		ftype = VM_PROT_EXECUTE;
900 #endif
901 	else
902 		ftype = VM_PROT_READ;
903 
904 	if (map != &kernel_map) {
905 		/*
906 		 * Keep swapout from messing with us during this
907 		 *	critical time.
908 		 */
909 		PHOLD(lp->lwp_proc);
910 
911 		/*
912 		 * Issue fault
913 		 */
914 		fault_flags = 0;
915 		if (usermode)
916 			fault_flags |= VM_FAULT_BURST | VM_FAULT_USERMODE;
917 		if (ftype & VM_PROT_WRITE)
918 			fault_flags |= VM_FAULT_DIRTY;
919 		else
920 			fault_flags |= VM_FAULT_NORMAL;
921 		rv = vm_fault(map, va, ftype, fault_flags);
922 
923 		PRELE(lp->lwp_proc);
924 	} else {
925 		/*
926 		 * Don't have to worry about process locking or stacks in the
927 		 * kernel.
928 		 */
929 		fault_flags = VM_FAULT_NORMAL;
930 		rv = vm_fault(map, va, ftype, VM_FAULT_NORMAL);
931 	}
932 	if (rv == KERN_SUCCESS)
933 		return (0);
934 nogo:
935 	if (!usermode) {
936 		/*
937 		 * NOTE: in 64-bit mode traps push rsp/ss
938 		 *	 even if no ring change occurs.
939 		 */
940 		if (td->td_pcb->pcb_onfault &&
941 		    td->td_pcb->pcb_onfault_sp == frame->tf_rsp &&
942 		    td->td_gd->gd_intr_nesting_level == 0) {
943 			frame->tf_rip = (register_t)td->td_pcb->pcb_onfault;
944 			return (0);
945 		}
946 		trap_fatal(frame, frame->tf_addr);
947 		return (-1);
948 	}
949 
950 	/*
951 	 * NOTE: on x86_64 we have a tf_addr field in the trapframe, no
952 	 * kludge is needed to pass the fault address to signal handlers.
953 	 */
954 	p = td->td_proc;
955 #ifdef DDB
956 	if (td->td_lwp->lwp_vkernel == NULL) {
957 		while (freeze_on_seg_fault) {
958 			tsleep(p, 0, "freeze", hz * 20);
959 		}
960 		if (ddb_on_seg_fault)
961 			Debugger("ddb_on_seg_fault");
962 	}
963 #endif
964 
965 	return((rv == KERN_PROTECTION_FAILURE) ? SIGBUS : SIGSEGV);
966 }
967 
968 static void
969 trap_fatal(struct trapframe *frame, vm_offset_t eva)
970 {
971 	int code, ss;
972 	u_int type;
973 	long rsp;
974 	struct soft_segment_descriptor softseg;
975 	char *msg;
976 
977 	code = frame->tf_err;
978 	type = frame->tf_trapno;
979 	sdtossd(&gdt[IDXSEL(frame->tf_cs & 0xffff)], &softseg);
980 
981 	if (type <= MAX_TRAP_MSG)
982 		msg = trap_msg[type];
983 	else
984 		msg = "UNKNOWN";
985 	kprintf("\n\nFatal trap %d: %s while in %s mode\n", type, msg,
986 	    ISPL(frame->tf_cs) == SEL_UPL ? "user" : "kernel");
987 	/* three separate prints in case of a trap on an unmapped page */
988 	kprintf("cpuid = %d; ", mycpu->gd_cpuid);
989 	kprintf("lapic->id = %08x\n", lapic->id);
990 	if (type == T_PAGEFLT) {
991 		kprintf("fault virtual address	= 0x%lx\n", eva);
992 		kprintf("fault code		= %s %s %s, %s\n",
993 			code & PGEX_U ? "user" : "supervisor",
994 			code & PGEX_W ? "write" : "read",
995 			code & PGEX_I ? "instruction" : "data",
996 			code & PGEX_P ? "protection violation" : "page not present");
997 	}
998 	kprintf("instruction pointer	= 0x%lx:0x%lx\n",
999 	       frame->tf_cs & 0xffff, frame->tf_rip);
1000         if (ISPL(frame->tf_cs) == SEL_UPL) {
1001 		ss = frame->tf_ss & 0xffff;
1002 		rsp = frame->tf_rsp;
1003 	} else {
1004 		/*
1005 		 * NOTE: in 64-bit mode traps push rsp/ss even if no ring
1006 		 *	 change occurs.
1007 		 */
1008 		ss = GSEL(GDATA_SEL, SEL_KPL);
1009 		rsp = frame->tf_rsp;
1010 	}
1011 	kprintf("stack pointer	        = 0x%x:0x%lx\n", ss, rsp);
1012 	kprintf("frame pointer	        = 0x%x:0x%lx\n", ss, frame->tf_rbp);
1013 	kprintf("code segment		= base 0x%lx, limit 0x%lx, type 0x%x\n",
1014 	       softseg.ssd_base, softseg.ssd_limit, softseg.ssd_type);
1015 	kprintf("			= DPL %d, pres %d, long %d, def32 %d, gran %d\n",
1016 	       softseg.ssd_dpl, softseg.ssd_p, softseg.ssd_long, softseg.ssd_def32,
1017 	       softseg.ssd_gran);
1018 	kprintf("processor eflags	= ");
1019 	if (frame->tf_rflags & PSL_T)
1020 		kprintf("trace trap, ");
1021 	if (frame->tf_rflags & PSL_I)
1022 		kprintf("interrupt enabled, ");
1023 	if (frame->tf_rflags & PSL_NT)
1024 		kprintf("nested task, ");
1025 	if (frame->tf_rflags & PSL_RF)
1026 		kprintf("resume, ");
1027 	kprintf("IOPL = %ld\n", (frame->tf_rflags & PSL_IOPL) >> 12);
1028 	kprintf("current process		= ");
1029 	if (curproc) {
1030 		kprintf("%lu\n",
1031 		    (u_long)curproc->p_pid);
1032 	} else {
1033 		kprintf("Idle\n");
1034 	}
1035 	kprintf("current thread          = pri %d ", curthread->td_pri);
1036 	if (curthread->td_critcount)
1037 		kprintf("(CRIT)");
1038 	kprintf("\n");
1039 
1040 #ifdef DDB
1041 	if ((debugger_on_panic || db_active) && kdb_trap(type, code, frame))
1042 		return;
1043 #endif
1044 	kprintf("trap number		= %d\n", type);
1045 	if (type <= MAX_TRAP_MSG)
1046 		panic("%s", trap_msg[type]);
1047 	else
1048 		panic("unknown/reserved trap");
1049 }
1050 
1051 /*
1052  * Double fault handler. Called when a fault occurs while writing
1053  * a frame for a trap/exception onto the stack. This usually occurs
1054  * when the stack overflows (such is the case with infinite recursion,
1055  * for example).
1056  */
1057 static __inline
1058 int
1059 in_kstack_guard(register_t rptr)
1060 {
1061 	thread_t td = curthread;
1062 
1063 	if ((char *)rptr >= td->td_kstack &&
1064 	    (char *)rptr < td->td_kstack + PAGE_SIZE) {
1065 		return 1;
1066 	}
1067 	return 0;
1068 }
1069 
1070 void
1071 dblfault_handler(struct trapframe *frame)
1072 {
1073 	thread_t td = curthread;
1074 
1075 	if (in_kstack_guard(frame->tf_rsp) || in_kstack_guard(frame->tf_rbp)) {
1076 		kprintf("DOUBLE FAULT - KERNEL STACK GUARD HIT!\n");
1077 		if (in_kstack_guard(frame->tf_rsp))
1078 			frame->tf_rsp = (register_t)(td->td_kstack + PAGE_SIZE);
1079 		if (in_kstack_guard(frame->tf_rbp))
1080 			frame->tf_rbp = (register_t)(td->td_kstack + PAGE_SIZE);
1081 	} else {
1082 		kprintf("DOUBLE FAULT\n");
1083 	}
1084 	kprintf("\nFatal double fault\n");
1085 	kprintf("rip = 0x%lx\n", frame->tf_rip);
1086 	kprintf("rsp = 0x%lx\n", frame->tf_rsp);
1087 	kprintf("rbp = 0x%lx\n", frame->tf_rbp);
1088 	/* three separate prints in case of a trap on an unmapped page */
1089 	kprintf("cpuid = %d; ", mycpu->gd_cpuid);
1090 	kprintf("lapic->id = %08x\n", lapic->id);
1091 	panic("double fault");
1092 }
1093 
1094 /*
1095  * syscall2 -	MP aware system call request C handler
1096  *
1097  * A system call is essentially treated as a trap except that the
1098  * MP lock is not held on entry or return.  We are responsible for
1099  * obtaining the MP lock if necessary and for handling ASTs
1100  * (e.g. a task switch) prior to return.
1101  *
1102  * MPSAFE
1103  */
1104 void
1105 syscall2(struct trapframe *frame)
1106 {
1107 	struct thread *td = curthread;
1108 	struct proc *p = td->td_proc;
1109 	struct lwp *lp = td->td_lwp;
1110 	caddr_t params;
1111 	struct sysent *callp;
1112 	register_t orig_tf_rflags;
1113 	int sticks;
1114 	int error;
1115 	int narg;
1116 #ifdef INVARIANTS
1117 	int crit_count = td->td_critcount;
1118 #endif
1119 	int have_mplock = 0;
1120 	register_t *argp;
1121 	u_int code;
1122 	int reg, regcnt;
1123 	union sysunion args;
1124 	register_t *argsdst;
1125 
1126 	mycpu->gd_cnt.v_syscall++;
1127 
1128 #ifdef DIAGNOSTIC
1129 	if (ISPL(frame->tf_cs) != SEL_UPL) {
1130 		get_mplock();
1131 		panic("syscall");
1132 		/* NOT REACHED */
1133 	}
1134 #endif
1135 
1136 	KTR_LOG(kernentry_syscall, p->p_pid, lp->lwp_tid,
1137 		frame->tf_rax);
1138 
1139 	userenter(td, p);	/* lazy raise our priority */
1140 
1141 	reg = 0;
1142 	regcnt = 6;
1143 	/*
1144 	 * Misc
1145 	 */
1146 	sticks = (int)td->td_sticks;
1147 	orig_tf_rflags = frame->tf_rflags;
1148 
1149 	/*
1150 	 * Virtual kernel intercept - if a VM context managed by a virtual
1151 	 * kernel issues a system call the virtual kernel handles it, not us.
1152 	 * Restore the virtual kernel context and return from its system
1153 	 * call.  The current frame is copied out to the virtual kernel.
1154 	 */
1155 	if (lp->lwp_vkernel && lp->lwp_vkernel->ve) {
1156 		vkernel_trap(lp, frame);
1157 		error = EJUSTRETURN;
1158 		callp = NULL;
1159 		goto out;
1160 	}
1161 
1162 	/*
1163 	 * Get the system call parameters and account for time
1164 	 */
1165 	KASSERT(lp->lwp_md.md_regs == frame,
1166 		("Frame mismatch %p %p", lp->lwp_md.md_regs, frame));
1167 	params = (caddr_t)frame->tf_rsp + sizeof(register_t);
1168 	code = frame->tf_rax;
1169 
1170 	if (p->p_sysent->sv_prepsyscall) {
1171 		(*p->p_sysent->sv_prepsyscall)(
1172 			frame, (int *)(&args.nosys.sysmsg + 1),
1173 			&code, &params);
1174 	} else {
1175 		if (code == SYS_syscall || code == SYS___syscall) {
1176 			code = frame->tf_rdi;
1177 			reg++;
1178 			regcnt--;
1179 		}
1180 	}
1181 
1182 	if (p->p_sysent->sv_mask)
1183 		code &= p->p_sysent->sv_mask;
1184 
1185 	if (code >= p->p_sysent->sv_size)
1186 		callp = &p->p_sysent->sv_table[0];
1187 	else
1188 		callp = &p->p_sysent->sv_table[code];
1189 
1190 	narg = callp->sy_narg & SYF_ARGMASK;
1191 
1192 	/*
1193 	 * On x86_64 we get up to six arguments in registers. The rest are
1194 	 * on the stack. The first six members of 'struct trapframe' happen
1195 	 * to be the registers used to pass arguments, in exactly the right
1196 	 * order.
1197 	 */
1198 	argp = &frame->tf_rdi;
1199 	argp += reg;
1200 	argsdst = (register_t *)(&args.nosys.sysmsg + 1);
1201 	/*
1202 	 * JG can we overflow the space pointed to by 'argsdst'
1203 	 * either with 'bcopy' or with 'copyin'?
1204 	 */
1205 	bcopy(argp, argsdst, sizeof(register_t) * regcnt);
1206 	/*
1207 	 * copyin is MP aware, but the tracing code is not
1208 	 */
1209 	if (narg > regcnt) {
1210 		KASSERT(params != NULL, ("copyin args with no params!"));
1211 		error = copyin(params, &argsdst[regcnt],
1212 			(narg - regcnt) * sizeof(register_t));
1213 		if (error) {
1214 #ifdef KTRACE
1215 			if (KTRPOINT(td, KTR_SYSCALL)) {
1216 				ktrsyscall(lp, code, narg,
1217 					(void *)(&args.nosys.sysmsg + 1));
1218 			}
1219 #endif
1220 			goto bad;
1221 		}
1222 	}
1223 
1224 #ifdef KTRACE
1225 	if (KTRPOINT(td, KTR_SYSCALL)) {
1226 		ktrsyscall(lp, code, narg, (void *)(&args.nosys.sysmsg + 1));
1227 	}
1228 #endif
1229 
1230 	/*
1231 	 * Default return value is 0 (will be copied to %rax).  Double-value
1232 	 * returns use %rax and %rdx.  %rdx is left unchanged for system
1233 	 * calls which return only one result.
1234 	 */
1235 	args.sysmsg_fds[0] = 0;
1236 	args.sysmsg_fds[1] = frame->tf_rdx;
1237 
1238 	/*
1239 	 * The syscall might manipulate the trap frame. If it does it
1240 	 * will probably return EJUSTRETURN.
1241 	 */
1242 	args.sysmsg_frame = frame;
1243 
1244 	STOPEVENT(p, S_SCE, narg);	/* MP aware */
1245 
1246 	/*
1247 	 * NOTE: All system calls run MPSAFE now.  The system call itself
1248 	 *	 is responsible for getting the MP lock.
1249 	 */
1250 #ifdef SYSCALL_DEBUG
1251 	uint64_t tscval = rdtsc();
1252 #endif
1253 	error = (*callp->sy_call)(&args);
1254 #ifdef SYSCALL_DEBUG
1255 	tscval = rdtsc() - tscval;
1256 	tscval = tscval * 1000000 / tsc_frequency;
1257 	if (SysCallsWorstCase[code] < tscval)
1258 		SysCallsWorstCase[code] = tscval;
1259 #endif
1260 
1261 out:
1262 	/*
1263 	 * MP SAFE (we may or may not have the MP lock at this point)
1264 	 */
1265 	//kprintf("SYSMSG %d ", error);
1266 	switch (error) {
1267 	case 0:
1268 		/*
1269 		 * Reinitialize proc pointer `p' as it may be different
1270 		 * if this is a child returning from fork syscall.
1271 		 */
1272 		p = curproc;
1273 		lp = curthread->td_lwp;
1274 		frame->tf_rax = args.sysmsg_fds[0];
1275 		frame->tf_rdx = args.sysmsg_fds[1];
1276 		frame->tf_rflags &= ~PSL_C;
1277 		break;
1278 	case ERESTART:
1279 		/*
1280 		 * Reconstruct pc, we know that 'syscall' is 2 bytes.
1281 		 * We have to do a full context restore so that %r10
1282 		 * (which was holding the value of %rcx) is restored for
1283 		 * the next iteration.
1284 		 */
1285 		if (frame->tf_err != 0 && frame->tf_err != 2)
1286 			kprintf("lp %s:%d frame->tf_err is weird %ld\n",
1287 				td->td_comm, lp->lwp_proc->p_pid, frame->tf_err);
1288 		frame->tf_rip -= frame->tf_err;
1289 		frame->tf_r10 = frame->tf_rcx;
1290 		break;
1291 	case EJUSTRETURN:
1292 		break;
1293 	case EASYNC:
1294 		panic("Unexpected EASYNC return value (for now)");
1295 	default:
1296 bad:
1297 		if (p->p_sysent->sv_errsize) {
1298 			if (error >= p->p_sysent->sv_errsize)
1299 				error = -1;	/* XXX */
1300 			else
1301 				error = p->p_sysent->sv_errtbl[error];
1302 		}
1303 		frame->tf_rax = error;
1304 		frame->tf_rflags |= PSL_C;
1305 		break;
1306 	}
1307 
1308 	/*
1309 	 * Traced syscall.  trapsignal() should now be MP aware
1310 	 */
1311 	if (orig_tf_rflags & PSL_T) {
1312 		frame->tf_rflags &= ~PSL_T;
1313 		trapsignal(lp, SIGTRAP, TRAP_TRACE);
1314 	}
1315 
1316 	/*
1317 	 * Handle reschedule and other end-of-syscall issues
1318 	 */
1319 	userret(lp, frame, sticks);
1320 
1321 #ifdef KTRACE
1322 	if (KTRPOINT(td, KTR_SYSRET)) {
1323 		ktrsysret(lp, code, error, args.sysmsg_result);
1324 	}
1325 #endif
1326 
1327 	/*
1328 	 * This works because errno is findable through the
1329 	 * register set.  If we ever support an emulation where this
1330 	 * is not the case, this code will need to be revisited.
1331 	 */
1332 	STOPEVENT(p, S_SCX, code);
1333 
1334 	userexit(lp);
1335 	/*
1336 	 * Release the MP lock if we had to get it
1337 	 */
1338 	if (have_mplock)
1339 		rel_mplock();
1340 	KTR_LOG(kernentry_syscall_ret, p->p_pid, lp->lwp_tid, error);
1341 #ifdef INVARIANTS
1342 	KASSERT(crit_count == td->td_critcount,
1343 		("syscall: critical section count mismatch! %d/%d",
1344 		crit_count, td->td_pri));
1345 	KASSERT(&td->td_toks_base == td->td_toks_stop,
1346 		("syscall: %ld extra tokens held after trap! syscall %p",
1347 		td->td_toks_stop - &td->td_toks_base,
1348 		callp->sy_call));
1349 #endif
1350 }
1351 
1352 /*
1353  * NOTE: mplock not held at any point
1354  */
1355 void
1356 fork_return(struct lwp *lp, struct trapframe *frame)
1357 {
1358 	frame->tf_rax = 0;		/* Child returns zero */
1359 	frame->tf_rflags &= ~PSL_C;	/* success */
1360 	frame->tf_rdx = 1;
1361 
1362 	generic_lwp_return(lp, frame);
1363 	KTR_LOG(kernentry_fork_ret, lp->lwp_proc->p_pid, lp->lwp_tid);
1364 }
1365 
1366 /*
1367  * Simplified back end of syscall(), used when returning from fork()
1368  * directly into user mode.
1369  *
1370  * This code will return back into the fork trampoline code which then
1371  * runs doreti.
1372  *
1373  * NOTE: The mplock is not held at any point.
1374  */
1375 void
1376 generic_lwp_return(struct lwp *lp, struct trapframe *frame)
1377 {
1378 	struct proc *p = lp->lwp_proc;
1379 
1380 	/*
1381 	 * Check for exit-race.  If one lwp exits the process concurrent with
1382 	 * another lwp creating a new thread, the two operations may cross
1383 	 * each other resulting in the newly-created lwp not receiving a
1384 	 * KILL signal.
1385 	 */
1386 	if (p->p_flags & P_WEXIT) {
1387 		lwpsignal(p, lp, SIGKILL);
1388 	}
1389 
1390 	/*
1391 	 * Newly forked processes are given a kernel priority.  We have to
1392 	 * adjust the priority to a normal user priority and fake entry
1393 	 * into the kernel (call userenter()) to install a passive release
1394 	 * function just in case userret() decides to stop the process.  This
1395 	 * can occur when ^Z races a fork.  If we do not install the passive
1396 	 * release function the current process designation will not be
1397 	 * released when the thread goes to sleep.
1398 	 */
1399 	lwkt_setpri_self(TDPRI_USER_NORM);
1400 	userenter(lp->lwp_thread, p);
1401 	userret(lp, frame, 0);
1402 #ifdef KTRACE
1403 	if (KTRPOINT(lp->lwp_thread, KTR_SYSRET))
1404 		ktrsysret(lp, SYS_fork, 0, 0);
1405 #endif
1406 	lp->lwp_flags |= LWP_PASSIVE_ACQ;
1407 	userexit(lp);
1408 	lp->lwp_flags &= ~LWP_PASSIVE_ACQ;
1409 }
1410 
1411 /*
1412  * If PGEX_FPFAULT is set then set FP_VIRTFP in the PCB to force a T_DNA
1413  * fault (which is then passed back to the virtual kernel) if an attempt is
1414  * made to use the FP unit.
1415  *
1416  * XXX this is a fairly big hack.
1417  */
1418 void
1419 set_vkernel_fp(struct trapframe *frame)
1420 {
1421 	struct thread *td = curthread;
1422 
1423 	if (frame->tf_xflags & PGEX_FPFAULT) {
1424 		td->td_pcb->pcb_flags |= FP_VIRTFP;
1425 		if (mdcpu->gd_npxthread == td)
1426 			npxexit();
1427 	} else {
1428 		td->td_pcb->pcb_flags &= ~FP_VIRTFP;
1429 	}
1430 }
1431 
1432 /*
1433  * Called from vkernel_trap() to fixup the vkernel's syscall
1434  * frame for vmspace_ctl() return.
1435  */
1436 void
1437 cpu_vkernel_trap(struct trapframe *frame, int error)
1438 {
1439 	frame->tf_rax = error;
1440 	if (error)
1441 		frame->tf_rflags |= PSL_C;
1442 	else
1443 		frame->tf_rflags &= ~PSL_C;
1444 }
1445