xref: /dragonfly/sys/platform/pc64/x86_64/trap.c (revision c6f73aab)
1 /*-
2  * Copyright (c) 1990, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * Copyright (C) 1994, David Greenman
5  * Copyright (c) 2008 The DragonFly Project.
6  * Copyright (c) 2008 Jordan Gordeev.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the University of Utah, and William Jolitz.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the University of
22  *	California, Berkeley and its contributors.
23  * 4. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  * from: @(#)trap.c	7.4 (Berkeley) 5/13/91
40  * $FreeBSD: src/sys/i386/i386/trap.c,v 1.147.2.11 2003/02/27 19:09:59 luoqi Exp $
41  */
42 
43 /*
44  * x86_64 Trap and System call handling
45  */
46 
47 #include "use_isa.h"
48 
49 #include "opt_ddb.h"
50 #include "opt_ktrace.h"
51 
52 #include <machine/frame.h>
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/kernel.h>
56 #include <sys/kerneldump.h>
57 #include <sys/proc.h>
58 #include <sys/pioctl.h>
59 #include <sys/types.h>
60 #include <sys/signal2.h>
61 #include <sys/syscall.h>
62 #include <sys/sysctl.h>
63 #include <sys/sysent.h>
64 #ifdef KTRACE
65 #include <sys/ktrace.h>
66 #endif
67 #include <sys/ktr.h>
68 #include <sys/sysmsg.h>
69 #include <sys/sysproto.h>
70 #include <sys/sysunion.h>
71 
72 #include <vm/pmap.h>
73 #include <vm/vm.h>
74 #include <vm/vm_extern.h>
75 #include <vm/vm_kern.h>
76 #include <vm/vm_param.h>
77 #include <machine/cpu.h>
78 #include <machine/pcb.h>
79 #include <machine/smp.h>
80 #include <machine/thread.h>
81 #include <machine/clock.h>
82 #include <machine/vmparam.h>
83 #include <machine/md_var.h>
84 #include <machine_base/isa/isa_intr.h>
85 #include <machine_base/apic/lapic.h>
86 
87 #include <ddb/ddb.h>
88 
89 #include <sys/thread2.h>
90 #include <sys/mplock2.h>
91 #include <sys/spinlock2.h>
92 
93 #define MAKEMPSAFE(have_mplock)			\
94 	if (have_mplock == 0) {			\
95 		get_mplock();			\
96 		have_mplock = 1;		\
97 	}
98 
99 extern void trap(struct trapframe *frame);
100 
101 static int trap_pfault(struct trapframe *, int);
102 static void trap_fatal(struct trapframe *, vm_offset_t);
103 void dblfault_handler(struct trapframe *frame);
104 
105 #define MAX_TRAP_MSG		30
106 static char *trap_msg[] = {
107 	"",					/*  0 unused */
108 	"privileged instruction fault",		/*  1 T_PRIVINFLT */
109 	"",					/*  2 unused */
110 	"breakpoint instruction fault",		/*  3 T_BPTFLT */
111 	"",					/*  4 unused */
112 	"",					/*  5 unused */
113 	"arithmetic trap",			/*  6 T_ARITHTRAP */
114 	"system forced exception",		/*  7 T_ASTFLT */
115 	"",					/*  8 unused */
116 	"general protection fault",		/*  9 T_PROTFLT */
117 	"trace trap",				/* 10 T_TRCTRAP */
118 	"",					/* 11 unused */
119 	"page fault",				/* 12 T_PAGEFLT */
120 	"",					/* 13 unused */
121 	"alignment fault",			/* 14 T_ALIGNFLT */
122 	"",					/* 15 unused */
123 	"",					/* 16 unused */
124 	"",					/* 17 unused */
125 	"integer divide fault",			/* 18 T_DIVIDE */
126 	"non-maskable interrupt trap",		/* 19 T_NMI */
127 	"overflow trap",			/* 20 T_OFLOW */
128 	"FPU bounds check fault",		/* 21 T_BOUND */
129 	"FPU device not available",		/* 22 T_DNA */
130 	"double fault",				/* 23 T_DOUBLEFLT */
131 	"FPU operand fetch fault",		/* 24 T_FPOPFLT */
132 	"invalid TSS fault",			/* 25 T_TSSFLT */
133 	"segment not present fault",		/* 26 T_SEGNPFLT */
134 	"stack fault",				/* 27 T_STKFLT */
135 	"machine check trap",			/* 28 T_MCHK */
136 	"SIMD floating-point exception",	/* 29 T_XMMFLT */
137 	"reserved (unknown) fault",		/* 30 T_RESERVED */
138 };
139 
140 #ifdef DDB
141 static int ddb_on_nmi = 1;
142 SYSCTL_INT(_machdep, OID_AUTO, ddb_on_nmi, CTLFLAG_RW,
143 	&ddb_on_nmi, 0, "Go to DDB on NMI");
144 static int ddb_on_seg_fault = 0;
145 SYSCTL_INT(_machdep, OID_AUTO, ddb_on_seg_fault, CTLFLAG_RW,
146 	&ddb_on_seg_fault, 0, "Go to DDB on user seg-fault");
147 static int freeze_on_seg_fault = 0;
148 SYSCTL_INT(_machdep, OID_AUTO, freeze_on_seg_fault, CTLFLAG_RW,
149 	&freeze_on_seg_fault, 0, "Go to DDB on user seg-fault");
150 #endif
151 static int panic_on_nmi = 1;
152 SYSCTL_INT(_machdep, OID_AUTO, panic_on_nmi, CTLFLAG_RW,
153 	&panic_on_nmi, 0, "Panic on NMI");
154 static int fast_release;
155 SYSCTL_INT(_machdep, OID_AUTO, fast_release, CTLFLAG_RW,
156 	&fast_release, 0, "Passive Release was optimal");
157 static int slow_release;
158 SYSCTL_INT(_machdep, OID_AUTO, slow_release, CTLFLAG_RW,
159 	&slow_release, 0, "Passive Release was nonoptimal");
160 
161 /*
162  * System call debugging records the worst-case system call
163  * overhead (inclusive of blocking), but may be inaccurate.
164  */
165 /*#define SYSCALL_DEBUG*/
166 #ifdef SYSCALL_DEBUG
167 uint64_t SysCallsWorstCase[SYS_MAXSYSCALL];
168 #endif
169 
170 /*
171  * Passively intercepts the thread switch function to increase
172  * the thread priority from a user priority to a kernel priority, reducing
173  * syscall and trap overhead for the case where no switch occurs.
174  *
175  * Synchronizes td_ucred with p_ucred.  This is used by system calls,
176  * signal handling, faults, AST traps, and anything else that enters the
177  * kernel from userland and provides the kernel with a stable read-only
178  * copy of the process ucred.
179  *
180  * To avoid races with another thread updating p_ucred we obtain p_spin.
181  * The other thread doing the update will obtain both p_token and p_spin.
182  * In the case where the cached cred pointer matches, we will already have
183  * the ref and we don't have to do one blessed thing.
184  */
185 static __inline void
186 userenter(struct thread *curtd, struct proc *curp)
187 {
188 	struct ucred *ocred;
189 	struct ucred *ncred;
190 
191 	curtd->td_release = lwkt_passive_release;
192 
193 	if (curtd->td_ucred != curp->p_ucred) {
194 		spin_lock(&curp->p_spin);
195 		ncred = crhold(curp->p_ucred);
196 		spin_unlock(&curp->p_spin);
197 		ocred = curtd->td_ucred;
198 		curtd->td_ucred = ncred;
199 		if (ocred)
200 			crfree(ocred);
201 	}
202 
203 #ifdef DDB
204 	/*
205 	 * Debugging, remove top two user stack pages to catch kernel faults
206 	 */
207 	if (freeze_on_seg_fault > 1 && curtd->td_lwp) {
208 		pmap_remove(vmspace_pmap(curtd->td_lwp->lwp_vmspace),
209 			    0x00007FFFFFFFD000LU,
210 			    0x0000800000000000LU);
211 	}
212 #endif
213 }
214 
215 /*
216  * Handle signals, upcalls, profiling, and other AST's and/or tasks that
217  * must be completed before we can return to or try to return to userland.
218  *
219  * Note that td_sticks is a 64 bit quantity, but there's no point doing 64
220  * arithmatic on the delta calculation so the absolute tick values are
221  * truncated to an integer.
222  */
223 static void
224 userret(struct lwp *lp, struct trapframe *frame, int sticks)
225 {
226 	struct proc *p = lp->lwp_proc;
227 	int sig;
228 
229 	/*
230 	 * Charge system time if profiling.  Note: times are in microseconds.
231 	 * This may do a copyout and block, so do it first even though it
232 	 * means some system time will be charged as user time.
233 	 */
234 	if (p->p_flags & P_PROFIL) {
235 		addupc_task(p, frame->tf_rip,
236 			(u_int)((int)lp->lwp_thread->td_sticks - sticks));
237 	}
238 
239 recheck:
240 	/*
241 	 * Specific on-return-to-usermode checks (LWP_MP_WEXIT,
242 	 * LWP_MP_VNLRU, etc).
243 	 */
244 	if (lp->lwp_mpflags & LWP_MP_URETMASK)
245 		lwpuserret(lp);
246 
247 	/*
248 	 * Block here if we are in a stopped state.
249 	 */
250 	if (p->p_stat == SSTOP || p->p_stat == SCORE || dump_stop_usertds) {
251 		lwkt_gettoken(&p->p_token);
252 		tstop();
253 		lwkt_reltoken(&p->p_token);
254 		goto recheck;
255 	}
256 
257 	/*
258 	 * Post any pending upcalls.  If running a virtual kernel be sure
259 	 * to restore the virtual kernel's vmspace before posting the upcall.
260 	 */
261 	if (p->p_flags & (P_SIGVTALRM | P_SIGPROF)) {
262 		lwkt_gettoken(&p->p_token);
263 		if (p->p_flags & P_SIGVTALRM) {
264 			p->p_flags &= ~P_SIGVTALRM;
265 			ksignal(p, SIGVTALRM);
266 		}
267 		if (p->p_flags & P_SIGPROF) {
268 			p->p_flags &= ~P_SIGPROF;
269 			ksignal(p, SIGPROF);
270 		}
271 		lwkt_reltoken(&p->p_token);
272 		goto recheck;
273 	}
274 
275 	/*
276 	 * Post any pending signals.  If running a virtual kernel be sure
277 	 * to restore the virtual kernel's vmspace before posting the signal.
278 	 *
279 	 * WARNING!  postsig() can exit and not return.
280 	 */
281 	if ((sig = CURSIG_TRACE(lp)) != 0) {
282 		lwkt_gettoken(&p->p_token);
283 		postsig(sig);
284 		lwkt_reltoken(&p->p_token);
285 		goto recheck;
286 	}
287 
288 	/*
289 	 * block here if we are swapped out, but still process signals
290 	 * (such as SIGKILL).  proc0 (the swapin scheduler) is already
291 	 * aware of our situation, we do not have to wake it up.
292 	 */
293 	if (p->p_flags & P_SWAPPEDOUT) {
294 		lwkt_gettoken(&p->p_token);
295 		get_mplock();
296 		p->p_flags |= P_SWAPWAIT;
297 		swapin_request();
298 		if (p->p_flags & P_SWAPWAIT)
299 			tsleep(p, PCATCH, "SWOUT", 0);
300 		p->p_flags &= ~P_SWAPWAIT;
301 		rel_mplock();
302 		lwkt_reltoken(&p->p_token);
303 		goto recheck;
304 	}
305 
306 	/*
307 	 * In a multi-threaded program it is possible for a thread to change
308 	 * signal state during a system call which temporarily changes the
309 	 * signal mask.  In this case postsig() might not be run and we
310 	 * have to restore the mask ourselves.
311 	 */
312 	if (lp->lwp_flags & LWP_OLDMASK) {
313 		lp->lwp_flags &= ~LWP_OLDMASK;
314 		lp->lwp_sigmask = lp->lwp_oldsigmask;
315 		goto recheck;
316 	}
317 }
318 
319 /*
320  * Cleanup from userenter and any passive release that might have occured.
321  * We must reclaim the current-process designation before we can return
322  * to usermode.  We also handle both LWKT and USER reschedule requests.
323  */
324 static __inline void
325 userexit(struct lwp *lp)
326 {
327 	struct thread *td = lp->lwp_thread;
328 	/* globaldata_t gd = td->td_gd; */
329 
330 	/*
331 	 * Handle stop requests at kernel priority.  Any requests queued
332 	 * after this loop will generate another AST.
333 	 */
334 	while (lp->lwp_proc->p_stat == SSTOP ||
335 	       lp->lwp_proc->p_stat == SCORE) {
336 		lwkt_gettoken(&lp->lwp_proc->p_token);
337 		tstop();
338 		lwkt_reltoken(&lp->lwp_proc->p_token);
339 	}
340 
341 	/*
342 	 * Reduce our priority in preparation for a return to userland.  If
343 	 * our passive release function was still in place, our priority was
344 	 * never raised and does not need to be reduced.
345 	 */
346 	lwkt_passive_recover(td);
347 
348 	/* WARNING: we may have migrated cpu's */
349 	/* gd = td->td_gd; */
350 
351 	/*
352 	 * Become the current user scheduled process if we aren't already,
353 	 * and deal with reschedule requests and other factors.
354 	 */
355 	lp->lwp_proc->p_usched->acquire_curproc(lp);
356 }
357 
358 #if !defined(KTR_KERNENTRY)
359 #define	KTR_KERNENTRY	KTR_ALL
360 #endif
361 KTR_INFO_MASTER(kernentry);
362 KTR_INFO(KTR_KERNENTRY, kernentry, trap, 0,
363 	 "TRAP(pid %d, tid %d, trapno %ld, eva %lu)",
364 	 pid_t pid, lwpid_t tid,  register_t trapno, vm_offset_t eva);
365 KTR_INFO(KTR_KERNENTRY, kernentry, trap_ret, 0, "TRAP_RET(pid %d, tid %d)",
366 	 pid_t pid, lwpid_t tid);
367 KTR_INFO(KTR_KERNENTRY, kernentry, syscall, 0, "SYSC(pid %d, tid %d, nr %ld)",
368 	 pid_t pid, lwpid_t tid,  register_t trapno);
369 KTR_INFO(KTR_KERNENTRY, kernentry, syscall_ret, 0, "SYSRET(pid %d, tid %d, err %d)",
370 	 pid_t pid, lwpid_t tid,  int err);
371 KTR_INFO(KTR_KERNENTRY, kernentry, fork_ret, 0, "FORKRET(pid %d, tid %d)",
372 	 pid_t pid, lwpid_t tid);
373 
374 /*
375  * Exception, fault, and trap interface to the kernel.
376  * This common code is called from assembly language IDT gate entry
377  * routines that prepare a suitable stack frame, and restore this
378  * frame after the exception has been processed.
379  *
380  * This function is also called from doreti in an interlock to handle ASTs.
381  * For example:  hardwareint->INTROUTINE->(set ast)->doreti->trap
382  *
383  * NOTE!  We have to retrieve the fault address prior to obtaining the
384  * MP lock because get_mplock() may switch out.  YYY cr2 really ought
385  * to be retrieved by the assembly code, not here.
386  *
387  * XXX gd_trap_nesting_level currently prevents lwkt_switch() from panicing
388  * if an attempt is made to switch from a fast interrupt or IPI.  This is
389  * necessary to properly take fatal kernel traps on SMP machines if
390  * get_mplock() has to block.
391  */
392 
393 void
394 trap(struct trapframe *frame)
395 {
396 	struct globaldata *gd = mycpu;
397 	struct thread *td = gd->gd_curthread;
398 	struct lwp *lp = td->td_lwp;
399 	struct proc *p;
400 	int sticks = 0;
401 	int i = 0, ucode = 0, type, code;
402 	int have_mplock = 0;
403 #ifdef INVARIANTS
404 	int crit_count = td->td_critcount;
405 	lwkt_tokref_t curstop = td->td_toks_stop;
406 #endif
407 	vm_offset_t eva;
408 
409 	p = td->td_proc;
410 	clear_quickret();
411 
412 #ifdef DDB
413         /*
414 	 * We need to allow T_DNA faults when the debugger is active since
415 	 * some dumping paths do large bcopy() which use the floating
416 	 * point registers for faster copying.
417 	 */
418 	if (db_active && frame->tf_trapno != T_DNA) {
419 		eva = (frame->tf_trapno == T_PAGEFLT ? frame->tf_addr : 0);
420 		++gd->gd_trap_nesting_level;
421 		MAKEMPSAFE(have_mplock);
422 		trap_fatal(frame, eva);
423 		--gd->gd_trap_nesting_level;
424 		goto out2;
425 	}
426 #endif
427 
428 	eva = 0;
429 
430 	if ((frame->tf_rflags & PSL_I) == 0) {
431 		/*
432 		 * Buggy application or kernel code has disabled interrupts
433 		 * and then trapped.  Enabling interrupts now is wrong, but
434 		 * it is better than running with interrupts disabled until
435 		 * they are accidentally enabled later.
436 		 */
437 		type = frame->tf_trapno;
438 		if (ISPL(frame->tf_cs) == SEL_UPL) {
439 			MAKEMPSAFE(have_mplock);
440 			/* JG curproc can be NULL */
441 			kprintf(
442 			    "pid %ld (%s): trap %d with interrupts disabled\n",
443 			    (long)curproc->p_pid, curproc->p_comm, type);
444 		} else if (type != T_NMI && type != T_BPTFLT &&
445 		    type != T_TRCTRAP) {
446 			/*
447 			 * XXX not quite right, since this may be for a
448 			 * multiple fault in user mode.
449 			 */
450 			MAKEMPSAFE(have_mplock);
451 			kprintf("kernel trap %d with interrupts disabled\n",
452 			    type);
453 		}
454 		cpu_enable_intr();
455 	}
456 
457 	type = frame->tf_trapno;
458 	code = frame->tf_err;
459 
460 	if (ISPL(frame->tf_cs) == SEL_UPL) {
461 		/* user trap */
462 
463 		KTR_LOG(kernentry_trap, p->p_pid, lp->lwp_tid,
464 			frame->tf_trapno, eva);
465 
466 		userenter(td, p);
467 
468 		sticks = (int)td->td_sticks;
469 		KASSERT(lp->lwp_md.md_regs == frame,
470 			("Frame mismatch %p %p", lp->lwp_md.md_regs, frame));
471 
472 		switch (type) {
473 		case T_PRIVINFLT:	/* privileged instruction fault */
474 			i = SIGILL;
475 			ucode = ILL_PRVOPC;
476 			break;
477 
478 		case T_BPTFLT:		/* bpt instruction fault */
479 		case T_TRCTRAP:		/* trace trap */
480 			frame->tf_rflags &= ~PSL_T;
481 			i = SIGTRAP;
482 			ucode = (type == T_TRCTRAP ? TRAP_TRACE : TRAP_BRKPT);
483 			break;
484 
485 		case T_ARITHTRAP:	/* arithmetic trap */
486 			ucode = code;
487 			i = SIGFPE;
488 			break;
489 
490 		case T_ASTFLT:		/* Allow process switch */
491 			mycpu->gd_cnt.v_soft++;
492 			if (mycpu->gd_reqflags & RQF_AST_OWEUPC) {
493 				atomic_clear_int(&mycpu->gd_reqflags,
494 						 RQF_AST_OWEUPC);
495 				addupc_task(p, p->p_prof.pr_addr,
496 					    p->p_prof.pr_ticks);
497 			}
498 			goto out;
499 
500 		case T_PROTFLT:		/* general protection fault */
501 			i = SIGBUS;
502 			ucode = BUS_OBJERR;
503 			break;
504 		case T_STKFLT:		/* stack fault */
505 		case T_SEGNPFLT:	/* segment not present fault */
506 			i = SIGBUS;
507 			ucode = BUS_ADRERR;
508 			break;
509 		case T_TSSFLT:		/* invalid TSS fault */
510 		case T_DOUBLEFLT:	/* double fault */
511 		default:
512 			i = SIGBUS;
513 			ucode = BUS_OBJERR;
514 			break;
515 
516 		case T_PAGEFLT:		/* page fault */
517 			i = trap_pfault(frame, TRUE);
518 			if (frame->tf_rip == 0) {
519 				kprintf("T_PAGEFLT: Warning %%rip == 0!\n");
520 #ifdef DDB
521 				while (freeze_on_seg_fault)
522 					tsleep(p, 0, "freeze", hz * 20);
523 #endif
524 			}
525 			if (i == -1 || i == 0)
526 				goto out;
527 
528 
529 			if (i == SIGSEGV)
530 				ucode = SEGV_MAPERR;
531 			else {
532 				i = SIGSEGV;
533 				ucode = SEGV_ACCERR;
534 			}
535 			break;
536 
537 		case T_DIVIDE:		/* integer divide fault */
538 			ucode = FPE_INTDIV;
539 			i = SIGFPE;
540 			break;
541 
542 #if NISA > 0
543 		case T_NMI:
544 			MAKEMPSAFE(have_mplock);
545 			/* machine/parity/power fail/"kitchen sink" faults */
546 			if (isa_nmi(code) == 0) {
547 #ifdef DDB
548 				/*
549 				 * NMI can be hooked up to a pushbutton
550 				 * for debugging.
551 				 */
552 				if (ddb_on_nmi) {
553 					kprintf ("NMI ... going to debugger\n");
554 					kdb_trap(type, 0, frame);
555 				}
556 #endif /* DDB */
557 				goto out2;
558 			} else if (panic_on_nmi)
559 				panic("NMI indicates hardware failure");
560 			break;
561 #endif /* NISA > 0 */
562 
563 		case T_OFLOW:		/* integer overflow fault */
564 			ucode = FPE_INTOVF;
565 			i = SIGFPE;
566 			break;
567 
568 		case T_BOUND:		/* bounds check fault */
569 			ucode = FPE_FLTSUB;
570 			i = SIGFPE;
571 			break;
572 
573 		case T_DNA:
574 			/*
575 			 * Virtual kernel intercept - pass the DNA exception
576 			 * to the virtual kernel if it asked to handle it.
577 			 * This occurs when the virtual kernel is holding
578 			 * onto the FP context for a different emulated
579 			 * process then the one currently running.
580 			 *
581 			 * We must still call npxdna() since we may have
582 			 * saved FP state that the virtual kernel needs
583 			 * to hand over to a different emulated process.
584 			 */
585 			if (lp->lwp_vkernel && lp->lwp_vkernel->ve &&
586 			    (td->td_pcb->pcb_flags & FP_VIRTFP)
587 			) {
588 				npxdna();
589 				break;
590 			}
591 
592 			/*
593 			 * The kernel may have switched out the FP unit's
594 			 * state, causing the user process to take a fault
595 			 * when it tries to use the FP unit.  Restore the
596 			 * state here
597 			 */
598 			if (npxdna())
599 				goto out;
600 			i = SIGFPE;
601 			ucode = FPE_FPU_NP_TRAP;
602 			break;
603 
604 		case T_FPOPFLT:		/* FPU operand fetch fault */
605 			ucode = ILL_COPROC;
606 			i = SIGILL;
607 			break;
608 
609 		case T_XMMFLT:		/* SIMD floating-point exception */
610 			ucode = 0; /* XXX */
611 			i = SIGFPE;
612 			break;
613 		}
614 	} else {
615 		/* kernel trap */
616 
617 		switch (type) {
618 		case T_PAGEFLT:			/* page fault */
619 			trap_pfault(frame, FALSE);
620 			goto out2;
621 
622 		case T_DNA:
623 			/*
624 			 * The kernel is apparently using fpu for copying.
625 			 * XXX this should be fatal unless the kernel has
626 			 * registered such use.
627 			 */
628 			if (npxdna())
629 				goto out2;
630 			break;
631 
632 		case T_STKFLT:		/* stack fault */
633 		case T_PROTFLT:		/* general protection fault */
634 		case T_SEGNPFLT:	/* segment not present fault */
635 			/*
636 			 * Invalid segment selectors and out of bounds
637 			 * %rip's and %rsp's can be set up in user mode.
638 			 * This causes a fault in kernel mode when the
639 			 * kernel tries to return to user mode.  We want
640 			 * to get this fault so that we can fix the
641 			 * problem here and not have to check all the
642 			 * selectors and pointers when the user changes
643 			 * them.
644 			 */
645 			if (mycpu->gd_intr_nesting_level == 0) {
646 				/*
647 				 * NOTE: in 64-bit mode traps push rsp/ss
648 				 *	 even if no ring change occurs.
649 				 */
650 				if (td->td_pcb->pcb_onfault &&
651 				    td->td_pcb->pcb_onfault_sp ==
652 				    frame->tf_rsp) {
653 					frame->tf_rip = (register_t)
654 						td->td_pcb->pcb_onfault;
655 					goto out2;
656 				}
657 				if (frame->tf_rip == (long)doreti_iret) {
658 					frame->tf_rip = (long)doreti_iret_fault;
659 					goto out2;
660 				}
661 			}
662 			break;
663 
664 		case T_TSSFLT:
665 			/*
666 			 * PSL_NT can be set in user mode and isn't cleared
667 			 * automatically when the kernel is entered.  This
668 			 * causes a TSS fault when the kernel attempts to
669 			 * `iret' because the TSS link is uninitialized.  We
670 			 * want to get this fault so that we can fix the
671 			 * problem here and not every time the kernel is
672 			 * entered.
673 			 */
674 			if (frame->tf_rflags & PSL_NT) {
675 				frame->tf_rflags &= ~PSL_NT;
676 				goto out2;
677 			}
678 			break;
679 
680 		case T_TRCTRAP:	 /* trace trap */
681 #if 0
682 			if (frame->tf_rip == (int)IDTVEC(syscall)) {
683 				/*
684 				 * We've just entered system mode via the
685 				 * syscall lcall.  Continue single stepping
686 				 * silently until the syscall handler has
687 				 * saved the flags.
688 				 */
689 				goto out2;
690 			}
691 			if (frame->tf_rip == (int)IDTVEC(syscall) + 1) {
692 				/*
693 				 * The syscall handler has now saved the
694 				 * flags.  Stop single stepping it.
695 				 */
696 				frame->tf_rflags &= ~PSL_T;
697 				goto out2;
698 			}
699 #endif
700 
701 			/*
702 			 * Ignore debug register trace traps due to
703 			 * accesses in the user's address space, which
704 			 * can happen under several conditions such as
705 			 * if a user sets a watchpoint on a buffer and
706 			 * then passes that buffer to a system call.
707 			 * We still want to get TRCTRAPS for addresses
708 			 * in kernel space because that is useful when
709 			 * debugging the kernel.
710 			 */
711 #if 0 /* JG */
712 			if (user_dbreg_trap()) {
713 				/*
714 				 * Reset breakpoint bits because the
715 				 * processor doesn't
716 				 */
717 				/* XXX check upper bits here */
718 				load_dr6(rdr6() & 0xfffffff0);
719 				goto out2;
720 			}
721 #endif
722 			/*
723 			 * FALLTHROUGH (TRCTRAP kernel mode, kernel address)
724 			 */
725 		case T_BPTFLT:
726 			/*
727 			 * If DDB is enabled, let it handle the debugger trap.
728 			 * Otherwise, debugger traps "can't happen".
729 			 */
730 			ucode = TRAP_BRKPT;
731 #ifdef DDB
732 			MAKEMPSAFE(have_mplock);
733 			if (kdb_trap(type, 0, frame))
734 				goto out2;
735 #endif
736 			break;
737 
738 #if NISA > 0
739 		case T_NMI:
740 			MAKEMPSAFE(have_mplock);
741 			/* machine/parity/power fail/"kitchen sink" faults */
742 			if (isa_nmi(code) == 0) {
743 #ifdef DDB
744 				/*
745 				 * NMI can be hooked up to a pushbutton
746 				 * for debugging.
747 				 */
748 				if (ddb_on_nmi) {
749 					kprintf ("NMI ... going to debugger\n");
750 					kdb_trap(type, 0, frame);
751 				}
752 #endif /* DDB */
753 				goto out2;
754 			} else if (panic_on_nmi == 0)
755 				goto out2;
756 			/* FALL THROUGH */
757 #endif /* NISA > 0 */
758 		}
759 		MAKEMPSAFE(have_mplock);
760 		trap_fatal(frame, 0);
761 		goto out2;
762 	}
763 
764 	/*
765 	 * Virtual kernel intercept - if the fault is directly related to a
766 	 * VM context managed by a virtual kernel then let the virtual kernel
767 	 * handle it.
768 	 */
769 	if (lp->lwp_vkernel && lp->lwp_vkernel->ve) {
770 		vkernel_trap(lp, frame);
771 		goto out;
772 	}
773 
774 	/* Translate fault for emulators (e.g. Linux) */
775 	if (*p->p_sysent->sv_transtrap)
776 		i = (*p->p_sysent->sv_transtrap)(i, type);
777 
778 	MAKEMPSAFE(have_mplock);
779 	trapsignal(lp, i, ucode);
780 
781 #ifdef DEBUG
782 	if (type <= MAX_TRAP_MSG) {
783 		uprintf("fatal process exception: %s",
784 			trap_msg[type]);
785 		if ((type == T_PAGEFLT) || (type == T_PROTFLT))
786 			uprintf(", fault VA = 0x%lx", frame->tf_addr);
787 		uprintf("\n");
788 	}
789 #endif
790 
791 out:
792 	userret(lp, frame, sticks);
793 	userexit(lp);
794 out2:	;
795 	if (have_mplock)
796 		rel_mplock();
797 	if (p != NULL && lp != NULL)
798 		KTR_LOG(kernentry_trap_ret, p->p_pid, lp->lwp_tid);
799 #ifdef INVARIANTS
800 	KASSERT(crit_count == td->td_critcount,
801 		("trap: critical section count mismatch! %d/%d",
802 		crit_count, td->td_pri));
803 	KASSERT(curstop == td->td_toks_stop,
804 		("trap: extra tokens held after trap! %ld/%ld",
805 		curstop - &td->td_toks_base,
806 		td->td_toks_stop - &td->td_toks_base));
807 #endif
808 }
809 
810 void
811 trap_handle_userenter(struct thread *td)
812 {
813 	userenter(td, td->td_proc);
814 }
815 
816 void
817 trap_handle_userexit(struct trapframe *frame, int sticks)
818 {
819 	struct lwp *lp = curthread->td_lwp;
820 
821 	if (lp) {
822 		userret(lp, frame, sticks);
823 		userexit(lp);
824 	}
825 }
826 
827 static int
828 trap_pfault(struct trapframe *frame, int usermode)
829 {
830 	vm_offset_t va;
831 	struct vmspace *vm = NULL;
832 	vm_map_t map;
833 	int rv = 0;
834 	int fault_flags;
835 	vm_prot_t ftype;
836 	thread_t td = curthread;
837 	struct lwp *lp = td->td_lwp;
838 	struct proc *p;
839 
840 	va = trunc_page(frame->tf_addr);
841 	if (va >= VM_MIN_KERNEL_ADDRESS) {
842 		/*
843 		 * Don't allow user-mode faults in kernel address space.
844 		 */
845 		if (usermode) {
846 			fault_flags = -1;
847 			ftype = -1;
848 			goto nogo;
849 		}
850 
851 		map = &kernel_map;
852 	} else {
853 		/*
854 		 * This is a fault on non-kernel virtual memory.
855 		 * vm is initialized above to NULL. If curproc is NULL
856 		 * or curproc->p_vmspace is NULL the fault is fatal.
857 		 */
858 		if (lp != NULL)
859 			vm = lp->lwp_vmspace;
860 
861 		if (vm == NULL) {
862 			fault_flags = -1;
863 			ftype = -1;
864 			goto nogo;
865 		}
866 
867 		/*
868 		 * Debugging, try to catch kernel faults on the user address
869 		 * space when not inside on onfault (e.g. copyin/copyout)
870 		 * routine.
871 		 */
872 		if (usermode == 0 && (td->td_pcb == NULL ||
873 		    td->td_pcb->pcb_onfault == NULL)) {
874 #ifdef DDB
875 			if (freeze_on_seg_fault) {
876 				kprintf("trap_pfault: user address fault from kernel mode "
877 					"%016lx\n", (long)frame->tf_addr);
878 				while (freeze_on_seg_fault)
879 					    tsleep(&freeze_on_seg_fault, 0, "frzseg", hz * 20);
880 			}
881 #endif
882 		}
883 		map = &vm->vm_map;
884 	}
885 
886 	/*
887 	 * PGEX_I is defined only if the execute disable bit capability is
888 	 * supported and enabled.
889 	 */
890 	if (frame->tf_err & PGEX_W)
891 		ftype = VM_PROT_WRITE;
892 #if 0 /* JG */
893 	else if ((frame->tf_err & PGEX_I) && pg_nx != 0)
894 		ftype = VM_PROT_EXECUTE;
895 #endif
896 	else
897 		ftype = VM_PROT_READ;
898 
899 	if (map != &kernel_map) {
900 		/*
901 		 * Keep swapout from messing with us during this
902 		 *	critical time.
903 		 */
904 		PHOLD(lp->lwp_proc);
905 
906 		/*
907 		 * Issue fault
908 		 */
909 		fault_flags = 0;
910 		if (usermode)
911 			fault_flags |= VM_FAULT_BURST;
912 		if (ftype & VM_PROT_WRITE)
913 			fault_flags |= VM_FAULT_DIRTY;
914 		else
915 			fault_flags |= VM_FAULT_NORMAL;
916 		rv = vm_fault(map, va, ftype, fault_flags);
917 
918 		PRELE(lp->lwp_proc);
919 	} else {
920 		/*
921 		 * Don't have to worry about process locking or stacks in the
922 		 * kernel.
923 		 */
924 		fault_flags = VM_FAULT_NORMAL;
925 		rv = vm_fault(map, va, ftype, VM_FAULT_NORMAL);
926 	}
927 	if (rv == KERN_SUCCESS)
928 		return (0);
929 nogo:
930 	if (!usermode) {
931 		/*
932 		 * NOTE: in 64-bit mode traps push rsp/ss
933 		 *	 even if no ring change occurs.
934 		 */
935 		if (td->td_pcb->pcb_onfault &&
936 		    td->td_pcb->pcb_onfault_sp == frame->tf_rsp &&
937 		    td->td_gd->gd_intr_nesting_level == 0) {
938 			frame->tf_rip = (register_t)td->td_pcb->pcb_onfault;
939 			return (0);
940 		}
941 		trap_fatal(frame, frame->tf_addr);
942 		return (-1);
943 	}
944 
945 	/*
946 	 * NOTE: on x86_64 we have a tf_addr field in the trapframe, no
947 	 * kludge is needed to pass the fault address to signal handlers.
948 	 */
949 	p = td->td_proc;
950 #ifdef DDB
951 	if (td->td_lwp->lwp_vkernel == NULL) {
952 		while (freeze_on_seg_fault) {
953 			tsleep(p, 0, "freeze", hz * 20);
954 		}
955 		if (ddb_on_seg_fault)
956 			Debugger("ddb_on_seg_fault");
957 	}
958 #endif
959 
960 	return((rv == KERN_PROTECTION_FAILURE) ? SIGBUS : SIGSEGV);
961 }
962 
963 static void
964 trap_fatal(struct trapframe *frame, vm_offset_t eva)
965 {
966 	int code, ss;
967 	u_int type;
968 	long rsp;
969 	struct soft_segment_descriptor softseg;
970 	char *msg;
971 
972 	code = frame->tf_err;
973 	type = frame->tf_trapno;
974 	sdtossd(&gdt[IDXSEL(frame->tf_cs & 0xffff)], &softseg);
975 
976 	if (type <= MAX_TRAP_MSG)
977 		msg = trap_msg[type];
978 	else
979 		msg = "UNKNOWN";
980 	kprintf("\n\nFatal trap %d: %s while in %s mode\n", type, msg,
981 	    ISPL(frame->tf_cs) == SEL_UPL ? "user" : "kernel");
982 	/* three separate prints in case of a trap on an unmapped page */
983 	kprintf("cpuid = %d; ", mycpu->gd_cpuid);
984 	kprintf("lapic->id = %08x\n", lapic->id);
985 	if (type == T_PAGEFLT) {
986 		kprintf("fault virtual address	= 0x%lx\n", eva);
987 		kprintf("fault code		= %s %s %s, %s\n",
988 			code & PGEX_U ? "user" : "supervisor",
989 			code & PGEX_W ? "write" : "read",
990 			code & PGEX_I ? "instruction" : "data",
991 			code & PGEX_P ? "protection violation" : "page not present");
992 	}
993 	kprintf("instruction pointer	= 0x%lx:0x%lx\n",
994 	       frame->tf_cs & 0xffff, frame->tf_rip);
995         if (ISPL(frame->tf_cs) == SEL_UPL) {
996 		ss = frame->tf_ss & 0xffff;
997 		rsp = frame->tf_rsp;
998 	} else {
999 		/*
1000 		 * NOTE: in 64-bit mode traps push rsp/ss even if no ring
1001 		 *	 change occurs.
1002 		 */
1003 		ss = GSEL(GDATA_SEL, SEL_KPL);
1004 		rsp = frame->tf_rsp;
1005 	}
1006 	kprintf("stack pointer	        = 0x%x:0x%lx\n", ss, rsp);
1007 	kprintf("frame pointer	        = 0x%x:0x%lx\n", ss, frame->tf_rbp);
1008 	kprintf("code segment		= base 0x%lx, limit 0x%lx, type 0x%x\n",
1009 	       softseg.ssd_base, softseg.ssd_limit, softseg.ssd_type);
1010 	kprintf("			= DPL %d, pres %d, long %d, def32 %d, gran %d\n",
1011 	       softseg.ssd_dpl, softseg.ssd_p, softseg.ssd_long, softseg.ssd_def32,
1012 	       softseg.ssd_gran);
1013 	kprintf("processor eflags	= ");
1014 	if (frame->tf_rflags & PSL_T)
1015 		kprintf("trace trap, ");
1016 	if (frame->tf_rflags & PSL_I)
1017 		kprintf("interrupt enabled, ");
1018 	if (frame->tf_rflags & PSL_NT)
1019 		kprintf("nested task, ");
1020 	if (frame->tf_rflags & PSL_RF)
1021 		kprintf("resume, ");
1022 	kprintf("IOPL = %ld\n", (frame->tf_rflags & PSL_IOPL) >> 12);
1023 	kprintf("current process		= ");
1024 	if (curproc) {
1025 		kprintf("%lu\n",
1026 		    (u_long)curproc->p_pid);
1027 	} else {
1028 		kprintf("Idle\n");
1029 	}
1030 	kprintf("current thread          = pri %d ", curthread->td_pri);
1031 	if (curthread->td_critcount)
1032 		kprintf("(CRIT)");
1033 	kprintf("\n");
1034 
1035 #ifdef DDB
1036 	if ((debugger_on_panic || db_active) && kdb_trap(type, code, frame))
1037 		return;
1038 #endif
1039 	kprintf("trap number		= %d\n", type);
1040 	if (type <= MAX_TRAP_MSG)
1041 		panic("%s", trap_msg[type]);
1042 	else
1043 		panic("unknown/reserved trap");
1044 }
1045 
1046 /*
1047  * Double fault handler. Called when a fault occurs while writing
1048  * a frame for a trap/exception onto the stack. This usually occurs
1049  * when the stack overflows (such is the case with infinite recursion,
1050  * for example).
1051  */
1052 static __inline
1053 int
1054 in_kstack_guard(register_t rptr)
1055 {
1056 	thread_t td = curthread;
1057 
1058 	if ((char *)rptr >= td->td_kstack &&
1059 	    (char *)rptr < td->td_kstack + PAGE_SIZE) {
1060 		return 1;
1061 	}
1062 	return 0;
1063 }
1064 
1065 void
1066 dblfault_handler(struct trapframe *frame)
1067 {
1068 	thread_t td = curthread;
1069 
1070 	if (in_kstack_guard(frame->tf_rsp) || in_kstack_guard(frame->tf_rbp)) {
1071 		kprintf("DOUBLE FAULT - KERNEL STACK GUARD HIT!\n");
1072 		if (in_kstack_guard(frame->tf_rsp))
1073 			frame->tf_rsp = (register_t)(td->td_kstack + PAGE_SIZE);
1074 		if (in_kstack_guard(frame->tf_rbp))
1075 			frame->tf_rbp = (register_t)(td->td_kstack + PAGE_SIZE);
1076 	} else {
1077 		kprintf("DOUBLE FAULT\n");
1078 	}
1079 	kprintf("\nFatal double fault\n");
1080 	kprintf("rip = 0x%lx\n", frame->tf_rip);
1081 	kprintf("rsp = 0x%lx\n", frame->tf_rsp);
1082 	kprintf("rbp = 0x%lx\n", frame->tf_rbp);
1083 	/* three separate prints in case of a trap on an unmapped page */
1084 	kprintf("cpuid = %d; ", mycpu->gd_cpuid);
1085 	kprintf("lapic->id = %08x\n", lapic->id);
1086 	panic("double fault");
1087 }
1088 
1089 /*
1090  * syscall2 -	MP aware system call request C handler
1091  *
1092  * A system call is essentially treated as a trap except that the
1093  * MP lock is not held on entry or return.  We are responsible for
1094  * obtaining the MP lock if necessary and for handling ASTs
1095  * (e.g. a task switch) prior to return.
1096  *
1097  * MPSAFE
1098  */
1099 void
1100 syscall2(struct trapframe *frame)
1101 {
1102 	struct thread *td = curthread;
1103 	struct proc *p = td->td_proc;
1104 	struct lwp *lp = td->td_lwp;
1105 	caddr_t params;
1106 	struct sysent *callp;
1107 	register_t orig_tf_rflags;
1108 	int sticks;
1109 	int error;
1110 	int narg;
1111 #ifdef INVARIANTS
1112 	int crit_count = td->td_critcount;
1113 #endif
1114 	int have_mplock = 0;
1115 	register_t *argp;
1116 	u_int code;
1117 	int reg, regcnt;
1118 	union sysunion args;
1119 	register_t *argsdst;
1120 
1121 	mycpu->gd_cnt.v_syscall++;
1122 
1123 #ifdef DIAGNOSTIC
1124 	if (ISPL(frame->tf_cs) != SEL_UPL) {
1125 		get_mplock();
1126 		panic("syscall");
1127 		/* NOT REACHED */
1128 	}
1129 #endif
1130 
1131 	KTR_LOG(kernentry_syscall, p->p_pid, lp->lwp_tid,
1132 		frame->tf_rax);
1133 
1134 	userenter(td, p);	/* lazy raise our priority */
1135 
1136 	reg = 0;
1137 	regcnt = 6;
1138 	/*
1139 	 * Misc
1140 	 */
1141 	sticks = (int)td->td_sticks;
1142 	orig_tf_rflags = frame->tf_rflags;
1143 
1144 	/*
1145 	 * Virtual kernel intercept - if a VM context managed by a virtual
1146 	 * kernel issues a system call the virtual kernel handles it, not us.
1147 	 * Restore the virtual kernel context and return from its system
1148 	 * call.  The current frame is copied out to the virtual kernel.
1149 	 */
1150 	if (lp->lwp_vkernel && lp->lwp_vkernel->ve) {
1151 		vkernel_trap(lp, frame);
1152 		error = EJUSTRETURN;
1153 		goto out;
1154 	}
1155 
1156 	/*
1157 	 * Get the system call parameters and account for time
1158 	 */
1159 	KASSERT(lp->lwp_md.md_regs == frame,
1160 		("Frame mismatch %p %p", lp->lwp_md.md_regs, frame));
1161 	params = (caddr_t)frame->tf_rsp + sizeof(register_t);
1162 	code = frame->tf_rax;
1163 
1164 	if (p->p_sysent->sv_prepsyscall) {
1165 		(*p->p_sysent->sv_prepsyscall)(
1166 			frame, (int *)(&args.nosys.sysmsg + 1),
1167 			&code, &params);
1168 	} else {
1169 		if (code == SYS_syscall || code == SYS___syscall) {
1170 			code = frame->tf_rdi;
1171 			reg++;
1172 			regcnt--;
1173 		}
1174 	}
1175 
1176 	if (p->p_sysent->sv_mask)
1177 		code &= p->p_sysent->sv_mask;
1178 
1179 	if (code >= p->p_sysent->sv_size)
1180 		callp = &p->p_sysent->sv_table[0];
1181 	else
1182 		callp = &p->p_sysent->sv_table[code];
1183 
1184 	narg = callp->sy_narg & SYF_ARGMASK;
1185 
1186 	/*
1187 	 * On x86_64 we get up to six arguments in registers. The rest are
1188 	 * on the stack. The first six members of 'struct trapframe' happen
1189 	 * to be the registers used to pass arguments, in exactly the right
1190 	 * order.
1191 	 */
1192 	argp = &frame->tf_rdi;
1193 	argp += reg;
1194 	argsdst = (register_t *)(&args.nosys.sysmsg + 1);
1195 	/*
1196 	 * JG can we overflow the space pointed to by 'argsdst'
1197 	 * either with 'bcopy' or with 'copyin'?
1198 	 */
1199 	bcopy(argp, argsdst, sizeof(register_t) * regcnt);
1200 	/*
1201 	 * copyin is MP aware, but the tracing code is not
1202 	 */
1203 	if (narg > regcnt) {
1204 		KASSERT(params != NULL, ("copyin args with no params!"));
1205 		error = copyin(params, &argsdst[regcnt],
1206 			(narg - regcnt) * sizeof(register_t));
1207 		if (error) {
1208 #ifdef KTRACE
1209 			if (KTRPOINT(td, KTR_SYSCALL)) {
1210 				MAKEMPSAFE(have_mplock);
1211 
1212 				ktrsyscall(lp, code, narg,
1213 					(void *)(&args.nosys.sysmsg + 1));
1214 			}
1215 #endif
1216 			goto bad;
1217 		}
1218 	}
1219 
1220 #ifdef KTRACE
1221 	if (KTRPOINT(td, KTR_SYSCALL)) {
1222 		MAKEMPSAFE(have_mplock);
1223 		ktrsyscall(lp, code, narg, (void *)(&args.nosys.sysmsg + 1));
1224 	}
1225 #endif
1226 
1227 	/*
1228 	 * Default return value is 0 (will be copied to %rax).  Double-value
1229 	 * returns use %rax and %rdx.  %rdx is left unchanged for system
1230 	 * calls which return only one result.
1231 	 */
1232 	args.sysmsg_fds[0] = 0;
1233 	args.sysmsg_fds[1] = frame->tf_rdx;
1234 
1235 	/*
1236 	 * The syscall might manipulate the trap frame. If it does it
1237 	 * will probably return EJUSTRETURN.
1238 	 */
1239 	args.sysmsg_frame = frame;
1240 
1241 	STOPEVENT(p, S_SCE, narg);	/* MP aware */
1242 
1243 	/*
1244 	 * NOTE: All system calls run MPSAFE now.  The system call itself
1245 	 *	 is responsible for getting the MP lock.
1246 	 */
1247 #ifdef SYSCALL_DEBUG
1248 	uint64_t tscval = rdtsc();
1249 #endif
1250 	error = (*callp->sy_call)(&args);
1251 #ifdef SYSCALL_DEBUG
1252 	tscval = rdtsc() - tscval;
1253 	tscval = tscval * 1000000 / tsc_frequency;
1254 	if (SysCallsWorstCase[code] < tscval)
1255 		SysCallsWorstCase[code] = tscval;
1256 #endif
1257 
1258 out:
1259 	/*
1260 	 * MP SAFE (we may or may not have the MP lock at this point)
1261 	 */
1262 	//kprintf("SYSMSG %d ", error);
1263 	switch (error) {
1264 	case 0:
1265 		/*
1266 		 * Reinitialize proc pointer `p' as it may be different
1267 		 * if this is a child returning from fork syscall.
1268 		 */
1269 		p = curproc;
1270 		lp = curthread->td_lwp;
1271 		frame->tf_rax = args.sysmsg_fds[0];
1272 		frame->tf_rdx = args.sysmsg_fds[1];
1273 		frame->tf_rflags &= ~PSL_C;
1274 		break;
1275 	case ERESTART:
1276 		/*
1277 		 * Reconstruct pc, we know that 'syscall' is 2 bytes.
1278 		 * We have to do a full context restore so that %r10
1279 		 * (which was holding the value of %rcx) is restored for
1280 		 * the next iteration.
1281 		 */
1282 		if (frame->tf_err != 0 && frame->tf_err != 2)
1283 			kprintf("lp %s:%d frame->tf_err is weird %ld\n",
1284 				td->td_comm, lp->lwp_proc->p_pid, frame->tf_err);
1285 		frame->tf_rip -= frame->tf_err;
1286 		frame->tf_r10 = frame->tf_rcx;
1287 		break;
1288 	case EJUSTRETURN:
1289 		break;
1290 	case EASYNC:
1291 		panic("Unexpected EASYNC return value (for now)");
1292 	default:
1293 bad:
1294 		if (p->p_sysent->sv_errsize) {
1295 			if (error >= p->p_sysent->sv_errsize)
1296 				error = -1;	/* XXX */
1297 			else
1298 				error = p->p_sysent->sv_errtbl[error];
1299 		}
1300 		frame->tf_rax = error;
1301 		frame->tf_rflags |= PSL_C;
1302 		break;
1303 	}
1304 
1305 	/*
1306 	 * Traced syscall.  trapsignal() is not MP aware.
1307 	 */
1308 	if (orig_tf_rflags & PSL_T) {
1309 		MAKEMPSAFE(have_mplock);
1310 		frame->tf_rflags &= ~PSL_T;
1311 		trapsignal(lp, SIGTRAP, TRAP_TRACE);
1312 	}
1313 
1314 	/*
1315 	 * Handle reschedule and other end-of-syscall issues
1316 	 */
1317 	userret(lp, frame, sticks);
1318 
1319 #ifdef KTRACE
1320 	if (KTRPOINT(td, KTR_SYSRET)) {
1321 		MAKEMPSAFE(have_mplock);
1322 		ktrsysret(lp, code, error, args.sysmsg_result);
1323 	}
1324 #endif
1325 
1326 	/*
1327 	 * This works because errno is findable through the
1328 	 * register set.  If we ever support an emulation where this
1329 	 * is not the case, this code will need to be revisited.
1330 	 */
1331 	STOPEVENT(p, S_SCX, code);
1332 
1333 	userexit(lp);
1334 	/*
1335 	 * Release the MP lock if we had to get it
1336 	 */
1337 	if (have_mplock)
1338 		rel_mplock();
1339 	KTR_LOG(kernentry_syscall_ret, p->p_pid, lp->lwp_tid, error);
1340 #ifdef INVARIANTS
1341 	KASSERT(crit_count == td->td_critcount,
1342 		("syscall: critical section count mismatch! %d/%d",
1343 		crit_count, td->td_pri));
1344 	KASSERT(&td->td_toks_base == td->td_toks_stop,
1345 		("syscall: extra tokens held after trap! %ld",
1346 		td->td_toks_stop - &td->td_toks_base));
1347 #endif
1348 }
1349 
1350 /*
1351  * NOTE: mplock not held at any point
1352  */
1353 void
1354 fork_return(struct lwp *lp, struct trapframe *frame)
1355 {
1356 	frame->tf_rax = 0;		/* Child returns zero */
1357 	frame->tf_rflags &= ~PSL_C;	/* success */
1358 	frame->tf_rdx = 1;
1359 
1360 	generic_lwp_return(lp, frame);
1361 	KTR_LOG(kernentry_fork_ret, lp->lwp_proc->p_pid, lp->lwp_tid);
1362 }
1363 
1364 /*
1365  * Simplified back end of syscall(), used when returning from fork()
1366  * directly into user mode.
1367  *
1368  * This code will return back into the fork trampoline code which then
1369  * runs doreti.
1370  *
1371  * NOTE: The mplock is not held at any point.
1372  */
1373 void
1374 generic_lwp_return(struct lwp *lp, struct trapframe *frame)
1375 {
1376 	struct proc *p = lp->lwp_proc;
1377 
1378 	/*
1379 	 * Newly forked processes are given a kernel priority.  We have to
1380 	 * adjust the priority to a normal user priority and fake entry
1381 	 * into the kernel (call userenter()) to install a passive release
1382 	 * function just in case userret() decides to stop the process.  This
1383 	 * can occur when ^Z races a fork.  If we do not install the passive
1384 	 * release function the current process designation will not be
1385 	 * released when the thread goes to sleep.
1386 	 */
1387 	lwkt_setpri_self(TDPRI_USER_NORM);
1388 	userenter(lp->lwp_thread, p);
1389 	userret(lp, frame, 0);
1390 #ifdef KTRACE
1391 	if (KTRPOINT(lp->lwp_thread, KTR_SYSRET))
1392 		ktrsysret(lp, SYS_fork, 0, 0);
1393 #endif
1394 	lp->lwp_flags |= LWP_PASSIVE_ACQ;
1395 	userexit(lp);
1396 	lp->lwp_flags &= ~LWP_PASSIVE_ACQ;
1397 }
1398 
1399 /*
1400  * If PGEX_FPFAULT is set then set FP_VIRTFP in the PCB to force a T_DNA
1401  * fault (which is then passed back to the virtual kernel) if an attempt is
1402  * made to use the FP unit.
1403  *
1404  * XXX this is a fairly big hack.
1405  */
1406 void
1407 set_vkernel_fp(struct trapframe *frame)
1408 {
1409 	struct thread *td = curthread;
1410 
1411 	if (frame->tf_xflags & PGEX_FPFAULT) {
1412 		td->td_pcb->pcb_flags |= FP_VIRTFP;
1413 		if (mdcpu->gd_npxthread == td)
1414 			npxexit();
1415 	} else {
1416 		td->td_pcb->pcb_flags &= ~FP_VIRTFP;
1417 	}
1418 }
1419 
1420 /*
1421  * Called from vkernel_trap() to fixup the vkernel's syscall
1422  * frame for vmspace_ctl() return.
1423  */
1424 void
1425 cpu_vkernel_trap(struct trapframe *frame, int error)
1426 {
1427 	frame->tf_rax = error;
1428 	if (error)
1429 		frame->tf_rflags |= PSL_C;
1430 	else
1431 		frame->tf_rflags &= ~PSL_C;
1432 }
1433