xref: /dragonfly/sys/platform/pc64/x86_64/trap.c (revision d9d67b59)
1 /*-
2  * Copyright (c) 1990, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * Copyright (C) 1994, David Greenman
5  * Copyright (c) 2008 The DragonFly Project.
6  * Copyright (c) 2008 Jordan Gordeev.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the University of Utah, and William Jolitz.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the University of
22  *	California, Berkeley and its contributors.
23  * 4. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  * from: @(#)trap.c	7.4 (Berkeley) 5/13/91
40  * $FreeBSD: src/sys/i386/i386/trap.c,v 1.147.2.11 2003/02/27 19:09:59 luoqi Exp $
41  */
42 
43 /*
44  * x86_64 Trap and System call handling
45  */
46 
47 #include "use_isa.h"
48 
49 #include "opt_ddb.h"
50 #include "opt_ktrace.h"
51 
52 #include <machine/frame.h>
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/kernel.h>
56 #include <sys/kerneldump.h>
57 #include <sys/proc.h>
58 #include <sys/pioctl.h>
59 #include <sys/types.h>
60 #include <sys/signal2.h>
61 #include <sys/syscall.h>
62 #include <sys/sysctl.h>
63 #include <sys/sysent.h>
64 #ifdef KTRACE
65 #include <sys/ktrace.h>
66 #endif
67 #include <sys/ktr.h>
68 #include <sys/sysmsg.h>
69 #include <sys/sysproto.h>
70 #include <sys/sysunion.h>
71 
72 #include <vm/pmap.h>
73 #include <vm/vm.h>
74 #include <vm/vm_extern.h>
75 #include <vm/vm_kern.h>
76 #include <vm/vm_param.h>
77 #include <machine/cpu.h>
78 #include <machine/pcb.h>
79 #include <machine/smp.h>
80 #include <machine/thread.h>
81 #include <machine/clock.h>
82 #include <machine/vmparam.h>
83 #include <machine/md_var.h>
84 #include <machine_base/isa/isa_intr.h>
85 #include <machine_base/apic/lapic.h>
86 
87 #include <ddb/ddb.h>
88 
89 #include <sys/thread2.h>
90 #include <sys/spinlock2.h>
91 
92 extern void trap(struct trapframe *frame);
93 
94 static int trap_pfault(struct trapframe *, int);
95 static void trap_fatal(struct trapframe *, vm_offset_t);
96 void dblfault_handler(struct trapframe *frame);
97 
98 #define MAX_TRAP_MSG		30
99 static char *trap_msg[] = {
100 	"",					/*  0 unused */
101 	"privileged instruction fault",		/*  1 T_PRIVINFLT */
102 	"",					/*  2 unused */
103 	"breakpoint instruction fault",		/*  3 T_BPTFLT */
104 	"",					/*  4 unused */
105 	"",					/*  5 unused */
106 	"arithmetic trap",			/*  6 T_ARITHTRAP */
107 	"system forced exception",		/*  7 T_ASTFLT */
108 	"",					/*  8 unused */
109 	"general protection fault",		/*  9 T_PROTFLT */
110 	"trace trap",				/* 10 T_TRCTRAP */
111 	"",					/* 11 unused */
112 	"page fault",				/* 12 T_PAGEFLT */
113 	"",					/* 13 unused */
114 	"alignment fault",			/* 14 T_ALIGNFLT */
115 	"",					/* 15 unused */
116 	"",					/* 16 unused */
117 	"",					/* 17 unused */
118 	"integer divide fault",			/* 18 T_DIVIDE */
119 	"non-maskable interrupt trap",		/* 19 T_NMI */
120 	"overflow trap",			/* 20 T_OFLOW */
121 	"FPU bounds check fault",		/* 21 T_BOUND */
122 	"FPU device not available",		/* 22 T_DNA */
123 	"double fault",				/* 23 T_DOUBLEFLT */
124 	"FPU operand fetch fault",		/* 24 T_FPOPFLT */
125 	"invalid TSS fault",			/* 25 T_TSSFLT */
126 	"segment not present fault",		/* 26 T_SEGNPFLT */
127 	"stack fault",				/* 27 T_STKFLT */
128 	"machine check trap",			/* 28 T_MCHK */
129 	"SIMD floating-point exception",	/* 29 T_XMMFLT */
130 	"reserved (unknown) fault",		/* 30 T_RESERVED */
131 };
132 
133 #ifdef DDB
134 static int ddb_on_nmi = 1;
135 SYSCTL_INT(_machdep, OID_AUTO, ddb_on_nmi, CTLFLAG_RW,
136 	&ddb_on_nmi, 0, "Go to DDB on NMI");
137 static int ddb_on_seg_fault = 0;
138 SYSCTL_INT(_machdep, OID_AUTO, ddb_on_seg_fault, CTLFLAG_RW,
139 	&ddb_on_seg_fault, 0, "Go to DDB on user seg-fault");
140 static int freeze_on_seg_fault = 0;
141 SYSCTL_INT(_machdep, OID_AUTO, freeze_on_seg_fault, CTLFLAG_RW,
142 	&freeze_on_seg_fault, 0, "Go to DDB on user seg-fault");
143 #endif
144 static int panic_on_nmi = 1;
145 SYSCTL_INT(_machdep, OID_AUTO, panic_on_nmi, CTLFLAG_RW,
146 	&panic_on_nmi, 0, "Panic on NMI");
147 static int fast_release;
148 SYSCTL_INT(_machdep, OID_AUTO, fast_release, CTLFLAG_RW,
149 	&fast_release, 0, "Passive Release was optimal");
150 static int slow_release;
151 SYSCTL_INT(_machdep, OID_AUTO, slow_release, CTLFLAG_RW,
152 	&slow_release, 0, "Passive Release was nonoptimal");
153 
154 /*
155  * System call debugging records the worst-case system call
156  * overhead (inclusive of blocking), but may be inaccurate.
157  */
158 /*#define SYSCALL_DEBUG*/
159 #ifdef SYSCALL_DEBUG
160 uint64_t SysCallsWorstCase[SYS_MAXSYSCALL];
161 #endif
162 
163 /*
164  * Passively intercepts the thread switch function to increase
165  * the thread priority from a user priority to a kernel priority, reducing
166  * syscall and trap overhead for the case where no switch occurs.
167  *
168  * Synchronizes td_ucred with p_ucred.  This is used by system calls,
169  * signal handling, faults, AST traps, and anything else that enters the
170  * kernel from userland and provides the kernel with a stable read-only
171  * copy of the process ucred.
172  *
173  * To avoid races with another thread updating p_ucred we obtain p_spin.
174  * The other thread doing the update will obtain both p_token and p_spin.
175  * In the case where the cached cred pointer matches, we will already have
176  * the ref and we don't have to do one blessed thing.
177  */
178 static __inline void
179 userenter(struct thread *curtd, struct proc *curp)
180 {
181 	struct ucred *ocred;
182 	struct ucred *ncred;
183 
184 	curtd->td_release = lwkt_passive_release;
185 
186 	if (curtd->td_ucred != curp->p_ucred) {
187 		spin_lock(&curp->p_spin);
188 		ncred = crhold(curp->p_ucred);
189 		spin_unlock(&curp->p_spin);
190 		ocred = curtd->td_ucred;
191 		curtd->td_ucred = ncred;
192 		if (ocred)
193 			crfree(ocred);
194 	}
195 
196 #ifdef DDB
197 	/*
198 	 * Debugging, remove top two user stack pages to catch kernel faults
199 	 */
200 	if (freeze_on_seg_fault > 1 && curtd->td_lwp) {
201 		pmap_remove(vmspace_pmap(curtd->td_lwp->lwp_vmspace),
202 			    0x00007FFFFFFFD000LU,
203 			    0x0000800000000000LU);
204 	}
205 #endif
206 }
207 
208 /*
209  * Handle signals, upcalls, profiling, and other AST's and/or tasks that
210  * must be completed before we can return to or try to return to userland.
211  *
212  * Note that td_sticks is a 64 bit quantity, but there's no point doing 64
213  * arithmatic on the delta calculation so the absolute tick values are
214  * truncated to an integer.
215  */
216 static void
217 userret(struct lwp *lp, struct trapframe *frame, int sticks)
218 {
219 	struct proc *p = lp->lwp_proc;
220 	int sig;
221 	int ptok;
222 
223 	/*
224 	 * Charge system time if profiling.  Note: times are in microseconds.
225 	 * This may do a copyout and block, so do it first even though it
226 	 * means some system time will be charged as user time.
227 	 */
228 	if (p->p_flags & P_PROFIL) {
229 		addupc_task(p, frame->tf_rip,
230 			(u_int)((int)lp->lwp_thread->td_sticks - sticks));
231 	}
232 
233 recheck:
234 	/*
235 	 * Specific on-return-to-usermode checks (LWP_MP_WEXIT,
236 	 * LWP_MP_VNLRU, etc).
237 	 */
238 	if (lp->lwp_mpflags & LWP_MP_URETMASK)
239 		lwpuserret(lp);
240 
241 	/*
242 	 * Block here if we are in a stopped state.
243 	 */
244 	if (STOPLWP(p, lp)) {
245 		lwkt_gettoken(&p->p_token);
246 		tstop();
247 		lwkt_reltoken(&p->p_token);
248 		goto recheck;
249 	}
250 	while (dump_stop_usertds) {
251 		tsleep(&dump_stop_usertds, 0, "dumpstp", 0);
252 	}
253 
254 	/*
255 	 * Post any pending upcalls.  If running a virtual kernel be sure
256 	 * to restore the virtual kernel's vmspace before posting the upcall.
257 	 */
258 	if (p->p_flags & (P_SIGVTALRM | P_SIGPROF)) {
259 		lwkt_gettoken(&p->p_token);
260 		if (p->p_flags & P_SIGVTALRM) {
261 			p->p_flags &= ~P_SIGVTALRM;
262 			ksignal(p, SIGVTALRM);
263 		}
264 		if (p->p_flags & P_SIGPROF) {
265 			p->p_flags &= ~P_SIGPROF;
266 			ksignal(p, SIGPROF);
267 		}
268 		lwkt_reltoken(&p->p_token);
269 		goto recheck;
270 	}
271 
272 	/*
273 	 * Post any pending signals.  If running a virtual kernel be sure
274 	 * to restore the virtual kernel's vmspace before posting the signal.
275 	 *
276 	 * WARNING!  postsig() can exit and not return.
277 	 */
278 	if ((sig = CURSIG_LCK_TRACE(lp, &ptok)) != 0) {
279 		postsig(sig, ptok);
280 		goto recheck;
281 	}
282 
283 	/*
284 	 * block here if we are swapped out, but still process signals
285 	 * (such as SIGKILL).  proc0 (the swapin scheduler) is already
286 	 * aware of our situation, we do not have to wake it up.
287 	 */
288 	if (p->p_flags & P_SWAPPEDOUT) {
289 		lwkt_gettoken(&p->p_token);
290 		p->p_flags |= P_SWAPWAIT;
291 		swapin_request();
292 		if (p->p_flags & P_SWAPWAIT)
293 			tsleep(p, PCATCH, "SWOUT", 0);
294 		p->p_flags &= ~P_SWAPWAIT;
295 		lwkt_reltoken(&p->p_token);
296 		goto recheck;
297 	}
298 
299 	/*
300 	 * In a multi-threaded program it is possible for a thread to change
301 	 * signal state during a system call which temporarily changes the
302 	 * signal mask.  In this case postsig() might not be run and we
303 	 * have to restore the mask ourselves.
304 	 */
305 	if (lp->lwp_flags & LWP_OLDMASK) {
306 		lp->lwp_flags &= ~LWP_OLDMASK;
307 		lp->lwp_sigmask = lp->lwp_oldsigmask;
308 		goto recheck;
309 	}
310 }
311 
312 /*
313  * Cleanup from userenter and any passive release that might have occured.
314  * We must reclaim the current-process designation before we can return
315  * to usermode.  We also handle both LWKT and USER reschedule requests.
316  */
317 static __inline void
318 userexit(struct lwp *lp)
319 {
320 	struct thread *td = lp->lwp_thread;
321 	/* globaldata_t gd = td->td_gd; */
322 
323 	/*
324 	 * Handle stop requests at kernel priority.  Any requests queued
325 	 * after this loop will generate another AST.
326 	 */
327 	while (STOPLWP(lp->lwp_proc, lp)) {
328 		lwkt_gettoken(&lp->lwp_proc->p_token);
329 		tstop();
330 		lwkt_reltoken(&lp->lwp_proc->p_token);
331 	}
332 
333 	/*
334 	 * Reduce our priority in preparation for a return to userland.  If
335 	 * our passive release function was still in place, our priority was
336 	 * never raised and does not need to be reduced.
337 	 */
338 	lwkt_passive_recover(td);
339 
340 	/* WARNING: we may have migrated cpu's */
341 	/* gd = td->td_gd; */
342 
343 	/*
344 	 * Become the current user scheduled process if we aren't already,
345 	 * and deal with reschedule requests and other factors.
346 	 */
347 	lp->lwp_proc->p_usched->acquire_curproc(lp);
348 }
349 
350 #if !defined(KTR_KERNENTRY)
351 #define	KTR_KERNENTRY	KTR_ALL
352 #endif
353 KTR_INFO_MASTER(kernentry);
354 KTR_INFO(KTR_KERNENTRY, kernentry, trap, 0,
355 	 "TRAP(pid %d, tid %d, trapno %ld, eva %lu)",
356 	 pid_t pid, lwpid_t tid,  register_t trapno, vm_offset_t eva);
357 KTR_INFO(KTR_KERNENTRY, kernentry, trap_ret, 0, "TRAP_RET(pid %d, tid %d)",
358 	 pid_t pid, lwpid_t tid);
359 KTR_INFO(KTR_KERNENTRY, kernentry, syscall, 0, "SYSC(pid %d, tid %d, nr %ld)",
360 	 pid_t pid, lwpid_t tid,  register_t trapno);
361 KTR_INFO(KTR_KERNENTRY, kernentry, syscall_ret, 0, "SYSRET(pid %d, tid %d, err %d)",
362 	 pid_t pid, lwpid_t tid,  int err);
363 KTR_INFO(KTR_KERNENTRY, kernentry, fork_ret, 0, "FORKRET(pid %d, tid %d)",
364 	 pid_t pid, lwpid_t tid);
365 
366 /*
367  * Exception, fault, and trap interface to the kernel.
368  * This common code is called from assembly language IDT gate entry
369  * routines that prepare a suitable stack frame, and restore this
370  * frame after the exception has been processed.
371  *
372  * This function is also called from doreti in an interlock to handle ASTs.
373  * For example:  hardwareint->INTROUTINE->(set ast)->doreti->trap
374  *
375  * NOTE!  We have to retrieve the fault address prior to potentially
376  *	  blocking, including blocking on any token.
377  *
378  * XXX gd_trap_nesting_level currently prevents lwkt_switch() from panicing
379  * if an attempt is made to switch from a fast interrupt or IPI.
380  */
381 void
382 trap(struct trapframe *frame)
383 {
384 	struct globaldata *gd = mycpu;
385 	struct thread *td = gd->gd_curthread;
386 	struct lwp *lp = td->td_lwp;
387 	struct proc *p;
388 	int sticks = 0;
389 	int i = 0, ucode = 0, type, code;
390 #ifdef INVARIANTS
391 	int crit_count = td->td_critcount;
392 	lwkt_tokref_t curstop = td->td_toks_stop;
393 #endif
394 	vm_offset_t eva;
395 
396 	p = td->td_proc;
397 	clear_quickret();
398 
399 #ifdef DDB
400         /*
401 	 * We need to allow T_DNA faults when the debugger is active since
402 	 * some dumping paths do large bcopy() which use the floating
403 	 * point registers for faster copying.
404 	 */
405 	if (db_active && frame->tf_trapno != T_DNA) {
406 		eva = (frame->tf_trapno == T_PAGEFLT ? frame->tf_addr : 0);
407 		++gd->gd_trap_nesting_level;
408 		trap_fatal(frame, eva);
409 		--gd->gd_trap_nesting_level;
410 		goto out2;
411 	}
412 #endif
413 
414 	eva = 0;
415 
416 	if ((frame->tf_rflags & PSL_I) == 0) {
417 		/*
418 		 * Buggy application or kernel code has disabled interrupts
419 		 * and then trapped.  Enabling interrupts now is wrong, but
420 		 * it is better than running with interrupts disabled until
421 		 * they are accidentally enabled later.
422 		 */
423 		type = frame->tf_trapno;
424 		if (ISPL(frame->tf_cs) == SEL_UPL) {
425 			/* JG curproc can be NULL */
426 			kprintf(
427 			    "pid %ld (%s): trap %d with interrupts disabled\n",
428 			    (long)curproc->p_pid, curproc->p_comm, type);
429 		} else if (type != T_NMI && type != T_BPTFLT &&
430 			   type != T_TRCTRAP) {
431 			/*
432 			 * XXX not quite right, since this may be for a
433 			 * multiple fault in user mode.
434 			 */
435 			kprintf("kernel trap %d (%s @ 0x%016jx) with "
436 				"interrupts disabled\n",
437 				type,
438 				td->td_comm,
439 				frame->tf_rip);
440 		}
441 		cpu_enable_intr();
442 	}
443 
444 	type = frame->tf_trapno;
445 	code = frame->tf_err;
446 
447 	if (ISPL(frame->tf_cs) == SEL_UPL) {
448 		/* user trap */
449 
450 		KTR_LOG(kernentry_trap, p->p_pid, lp->lwp_tid,
451 			frame->tf_trapno, eva);
452 
453 		userenter(td, p);
454 
455 		sticks = (int)td->td_sticks;
456 		KASSERT(lp->lwp_md.md_regs == frame,
457 			("Frame mismatch %p %p", lp->lwp_md.md_regs, frame));
458 
459 		switch (type) {
460 		case T_PRIVINFLT:	/* privileged instruction fault */
461 			i = SIGILL;
462 			ucode = ILL_PRVOPC;
463 			break;
464 
465 		case T_BPTFLT:		/* bpt instruction fault */
466 		case T_TRCTRAP:		/* trace trap */
467 			frame->tf_rflags &= ~PSL_T;
468 			i = SIGTRAP;
469 			ucode = (type == T_TRCTRAP ? TRAP_TRACE : TRAP_BRKPT);
470 			break;
471 
472 		case T_ARITHTRAP:	/* arithmetic trap */
473 			ucode = code;
474 			i = SIGFPE;
475 			break;
476 
477 		case T_ASTFLT:		/* Allow process switch */
478 			mycpu->gd_cnt.v_soft++;
479 			if (mycpu->gd_reqflags & RQF_AST_OWEUPC) {
480 				atomic_clear_int(&mycpu->gd_reqflags,
481 						 RQF_AST_OWEUPC);
482 				addupc_task(p, p->p_prof.pr_addr,
483 					    p->p_prof.pr_ticks);
484 			}
485 			goto out;
486 
487 		case T_PROTFLT:		/* general protection fault */
488 			i = SIGBUS;
489 			ucode = BUS_OBJERR;
490 			break;
491 		case T_STKFLT:		/* stack fault */
492 		case T_SEGNPFLT:	/* segment not present fault */
493 			i = SIGBUS;
494 			ucode = BUS_ADRERR;
495 			break;
496 		case T_TSSFLT:		/* invalid TSS fault */
497 		case T_DOUBLEFLT:	/* double fault */
498 		default:
499 			i = SIGBUS;
500 			ucode = BUS_OBJERR;
501 			break;
502 
503 		case T_PAGEFLT:		/* page fault */
504 			i = trap_pfault(frame, TRUE);
505 #ifdef DDB
506 			if (frame->tf_rip == 0) {
507 				/* used for kernel debugging only */
508 				while (freeze_on_seg_fault)
509 					tsleep(p, 0, "freeze", hz * 20);
510 			}
511 #endif
512 			if (i == -1 || i == 0)
513 				goto out;
514 			if (i == SIGSEGV) {
515 				ucode = SEGV_MAPERR;
516 			} else {
517 				i = SIGSEGV;
518 				ucode = SEGV_ACCERR;
519 			}
520 			break;
521 
522 		case T_DIVIDE:		/* integer divide fault */
523 			ucode = FPE_INTDIV;
524 			i = SIGFPE;
525 			break;
526 
527 #if NISA > 0
528 		case T_NMI:
529 			/* machine/parity/power fail/"kitchen sink" faults */
530 			if (isa_nmi(code) == 0) {
531 #ifdef DDB
532 				/*
533 				 * NMI can be hooked up to a pushbutton
534 				 * for debugging.
535 				 */
536 				if (ddb_on_nmi) {
537 					kprintf ("NMI ... going to debugger\n");
538 					kdb_trap(type, 0, frame);
539 				}
540 #endif /* DDB */
541 				goto out2;
542 			} else if (panic_on_nmi)
543 				panic("NMI indicates hardware failure");
544 			break;
545 #endif /* NISA > 0 */
546 
547 		case T_OFLOW:		/* integer overflow fault */
548 			ucode = FPE_INTOVF;
549 			i = SIGFPE;
550 			break;
551 
552 		case T_BOUND:		/* bounds check fault */
553 			ucode = FPE_FLTSUB;
554 			i = SIGFPE;
555 			break;
556 
557 		case T_DNA:
558 			/*
559 			 * Virtual kernel intercept - pass the DNA exception
560 			 * to the virtual kernel if it asked to handle it.
561 			 * This occurs when the virtual kernel is holding
562 			 * onto the FP context for a different emulated
563 			 * process then the one currently running.
564 			 *
565 			 * We must still call npxdna() since we may have
566 			 * saved FP state that the virtual kernel needs
567 			 * to hand over to a different emulated process.
568 			 */
569 			if (lp->lwp_vkernel && lp->lwp_vkernel->ve &&
570 			    (td->td_pcb->pcb_flags & FP_VIRTFP)
571 			) {
572 				npxdna();
573 				break;
574 			}
575 
576 			/*
577 			 * The kernel may have switched out the FP unit's
578 			 * state, causing the user process to take a fault
579 			 * when it tries to use the FP unit.  Restore the
580 			 * state here
581 			 */
582 			if (npxdna())
583 				goto out;
584 			i = SIGFPE;
585 			ucode = FPE_FPU_NP_TRAP;
586 			break;
587 
588 		case T_FPOPFLT:		/* FPU operand fetch fault */
589 			ucode = ILL_COPROC;
590 			i = SIGILL;
591 			break;
592 
593 		case T_XMMFLT:		/* SIMD floating-point exception */
594 			ucode = 0; /* XXX */
595 			i = SIGFPE;
596 			break;
597 		}
598 	} else {
599 		/* kernel trap */
600 
601 		switch (type) {
602 		case T_PAGEFLT:			/* page fault */
603 			trap_pfault(frame, FALSE);
604 			goto out2;
605 
606 		case T_DNA:
607 			/*
608 			 * The kernel is apparently using fpu for copying.
609 			 * XXX this should be fatal unless the kernel has
610 			 * registered such use.
611 			 */
612 			if (npxdna())
613 				goto out2;
614 			break;
615 
616 		case T_STKFLT:		/* stack fault */
617 		case T_PROTFLT:		/* general protection fault */
618 		case T_SEGNPFLT:	/* segment not present fault */
619 			/*
620 			 * Invalid segment selectors and out of bounds
621 			 * %rip's and %rsp's can be set up in user mode.
622 			 * This causes a fault in kernel mode when the
623 			 * kernel tries to return to user mode.  We want
624 			 * to get this fault so that we can fix the
625 			 * problem here and not have to check all the
626 			 * selectors and pointers when the user changes
627 			 * them.
628 			 */
629 			if (mycpu->gd_intr_nesting_level == 0) {
630 				/*
631 				 * NOTE: in 64-bit mode traps push rsp/ss
632 				 *	 even if no ring change occurs.
633 				 */
634 				if (td->td_pcb->pcb_onfault &&
635 				    td->td_pcb->pcb_onfault_sp ==
636 				    frame->tf_rsp) {
637 					frame->tf_rip = (register_t)
638 						td->td_pcb->pcb_onfault;
639 					goto out2;
640 				}
641 				if (frame->tf_rip == (long)doreti_iret) {
642 					frame->tf_rip = (long)doreti_iret_fault;
643 					goto out2;
644 				}
645 			}
646 			break;
647 
648 		case T_TSSFLT:
649 			/*
650 			 * PSL_NT can be set in user mode and isn't cleared
651 			 * automatically when the kernel is entered.  This
652 			 * causes a TSS fault when the kernel attempts to
653 			 * `iret' because the TSS link is uninitialized.  We
654 			 * want to get this fault so that we can fix the
655 			 * problem here and not every time the kernel is
656 			 * entered.
657 			 */
658 			if (frame->tf_rflags & PSL_NT) {
659 				frame->tf_rflags &= ~PSL_NT;
660 #if 0
661 				/* do we need this? */
662 				if (frame->tf_rip == (long)doreti_iret)
663 					frame->tf_rip = (long)doreti_iret_fault;
664 #endif
665 				goto out2;
666 			}
667 			break;
668 
669 		case T_TRCTRAP:	 /* trace trap */
670 #if 0
671 			if (frame->tf_rip == (int)IDTVEC(syscall)) {
672 				/*
673 				 * We've just entered system mode via the
674 				 * syscall lcall.  Continue single stepping
675 				 * silently until the syscall handler has
676 				 * saved the flags.
677 				 */
678 				goto out2;
679 			}
680 			if (frame->tf_rip == (int)IDTVEC(syscall) + 1) {
681 				/*
682 				 * The syscall handler has now saved the
683 				 * flags.  Stop single stepping it.
684 				 */
685 				frame->tf_rflags &= ~PSL_T;
686 				goto out2;
687 			}
688 #endif
689 
690 			/*
691 			 * Ignore debug register trace traps due to
692 			 * accesses in the user's address space, which
693 			 * can happen under several conditions such as
694 			 * if a user sets a watchpoint on a buffer and
695 			 * then passes that buffer to a system call.
696 			 * We still want to get TRCTRAPS for addresses
697 			 * in kernel space because that is useful when
698 			 * debugging the kernel.
699 			 */
700 #if 0 /* JG */
701 			if (user_dbreg_trap()) {
702 				/*
703 				 * Reset breakpoint bits because the
704 				 * processor doesn't
705 				 */
706 				/* XXX check upper bits here */
707 				load_dr6(rdr6() & 0xfffffff0);
708 				goto out2;
709 			}
710 #endif
711 			/*
712 			 * FALLTHROUGH (TRCTRAP kernel mode, kernel address)
713 			 */
714 		case T_BPTFLT:
715 			/*
716 			 * If DDB is enabled, let it handle the debugger trap.
717 			 * Otherwise, debugger traps "can't happen".
718 			 */
719 			ucode = TRAP_BRKPT;
720 #ifdef DDB
721 			if (kdb_trap(type, 0, frame))
722 				goto out2;
723 #endif
724 			break;
725 
726 #if NISA > 0
727 		case T_NMI:
728 			/* machine/parity/power fail/"kitchen sink" faults */
729 			if (isa_nmi(code) == 0) {
730 #ifdef DDB
731 				/*
732 				 * NMI can be hooked up to a pushbutton
733 				 * for debugging.
734 				 */
735 				if (ddb_on_nmi) {
736 					kprintf ("NMI ... going to debugger\n");
737 					kdb_trap(type, 0, frame);
738 				}
739 #endif /* DDB */
740 				goto out2;
741 			} else if (panic_on_nmi == 0)
742 				goto out2;
743 			/* FALL THROUGH */
744 #endif /* NISA > 0 */
745 		}
746 		trap_fatal(frame, 0);
747 		goto out2;
748 	}
749 
750 	/*
751 	 * Fault from user mode, virtual kernel interecept.
752 	 *
753 	 * If the fault is directly related to a VM context managed by a
754 	 * virtual kernel then let the virtual kernel handle it.
755 	 */
756 	if (lp->lwp_vkernel && lp->lwp_vkernel->ve) {
757 		vkernel_trap(lp, frame);
758 		goto out;
759 	}
760 
761 	/* Translate fault for emulators (e.g. Linux) */
762 	if (*p->p_sysent->sv_transtrap)
763 		i = (*p->p_sysent->sv_transtrap)(i, type);
764 
765 	trapsignal(lp, i, ucode);
766 
767 #ifdef DEBUG
768 	if (type <= MAX_TRAP_MSG) {
769 		uprintf("fatal process exception: %s",
770 			trap_msg[type]);
771 		if ((type == T_PAGEFLT) || (type == T_PROTFLT))
772 			uprintf(", fault VA = 0x%lx", frame->tf_addr);
773 		uprintf("\n");
774 	}
775 #endif
776 
777 out:
778 	userret(lp, frame, sticks);
779 	userexit(lp);
780 out2:	;
781 	if (p != NULL && lp != NULL)
782 		KTR_LOG(kernentry_trap_ret, p->p_pid, lp->lwp_tid);
783 #ifdef INVARIANTS
784 	KASSERT(crit_count == td->td_critcount,
785 		("trap: critical section count mismatch! %d/%d",
786 		crit_count, td->td_pri));
787 	KASSERT(curstop == td->td_toks_stop,
788 		("trap: extra tokens held after trap! %ld/%ld",
789 		curstop - &td->td_toks_base,
790 		td->td_toks_stop - &td->td_toks_base));
791 #endif
792 }
793 
794 void
795 trap_handle_userenter(struct thread *td)
796 {
797 	userenter(td, td->td_proc);
798 }
799 
800 void
801 trap_handle_userexit(struct trapframe *frame, int sticks)
802 {
803 	struct lwp *lp = curthread->td_lwp;
804 
805 	if (lp) {
806 		userret(lp, frame, sticks);
807 		userexit(lp);
808 	}
809 }
810 
811 static int
812 trap_pfault(struct trapframe *frame, int usermode)
813 {
814 	vm_offset_t va;
815 	struct vmspace *vm = NULL;
816 	vm_map_t map;
817 	int rv = 0;
818 	int fault_flags;
819 	vm_prot_t ftype;
820 	thread_t td = curthread;
821 	struct lwp *lp = td->td_lwp;
822 	struct proc *p;
823 
824 	va = trunc_page(frame->tf_addr);
825 	if (va >= VM_MIN_KERNEL_ADDRESS) {
826 		/*
827 		 * Don't allow user-mode faults in kernel address space.
828 		 */
829 		if (usermode) {
830 			fault_flags = -1;
831 			ftype = -1;
832 			goto nogo;
833 		}
834 
835 		map = &kernel_map;
836 	} else {
837 		/*
838 		 * This is a fault on non-kernel virtual memory.
839 		 * vm is initialized above to NULL. If curproc is NULL
840 		 * or curproc->p_vmspace is NULL the fault is fatal.
841 		 */
842 		if (lp != NULL)
843 			vm = lp->lwp_vmspace;
844 
845 		if (vm == NULL) {
846 			fault_flags = -1;
847 			ftype = -1;
848 			goto nogo;
849 		}
850 
851 		/*
852 		 * Debugging, try to catch kernel faults on the user address
853 		 * space when not inside on onfault (e.g. copyin/copyout)
854 		 * routine.
855 		 */
856 		if (usermode == 0 && (td->td_pcb == NULL ||
857 		    td->td_pcb->pcb_onfault == NULL)) {
858 #ifdef DDB
859 			if (freeze_on_seg_fault) {
860 				kprintf("trap_pfault: user address fault from kernel mode "
861 					"%016lx\n", (long)frame->tf_addr);
862 				while (freeze_on_seg_fault)
863 					    tsleep(&freeze_on_seg_fault, 0, "frzseg", hz * 20);
864 			}
865 #endif
866 		}
867 		map = &vm->vm_map;
868 	}
869 
870 	/*
871 	 * PGEX_I is defined only if the execute disable bit capability is
872 	 * supported and enabled.
873 	 */
874 	if (frame->tf_err & PGEX_W)
875 		ftype = VM_PROT_WRITE;
876 	else if (frame->tf_err & PGEX_I)
877 		ftype = VM_PROT_EXECUTE;
878 	else
879 		ftype = VM_PROT_READ;
880 
881 	if (map != &kernel_map) {
882 		/*
883 		 * Keep swapout from messing with us during this
884 		 *	critical time.
885 		 */
886 		PHOLD(lp->lwp_proc);
887 
888 		/*
889 		 * Issue fault
890 		 */
891 		fault_flags = 0;
892 		if (usermode)
893 			fault_flags |= VM_FAULT_BURST | VM_FAULT_USERMODE;
894 		if (ftype & VM_PROT_WRITE)
895 			fault_flags |= VM_FAULT_DIRTY;
896 		else
897 			fault_flags |= VM_FAULT_NORMAL;
898 		rv = vm_fault(map, va, ftype, fault_flags);
899 
900 		PRELE(lp->lwp_proc);
901 	} else {
902 		/*
903 		 * Don't have to worry about process locking or stacks in the
904 		 * kernel.
905 		 */
906 		fault_flags = VM_FAULT_NORMAL;
907 		rv = vm_fault(map, va, ftype, VM_FAULT_NORMAL);
908 	}
909 	if (rv == KERN_SUCCESS)
910 		return (0);
911 nogo:
912 	if (!usermode) {
913 		/*
914 		 * NOTE: in 64-bit mode traps push rsp/ss
915 		 *	 even if no ring change occurs.
916 		 */
917 		if (td->td_pcb->pcb_onfault &&
918 		    td->td_pcb->pcb_onfault_sp == frame->tf_rsp &&
919 		    td->td_gd->gd_intr_nesting_level == 0) {
920 			frame->tf_rip = (register_t)td->td_pcb->pcb_onfault;
921 			return (0);
922 		}
923 		trap_fatal(frame, frame->tf_addr);
924 		return (-1);
925 	}
926 
927 	/*
928 	 * NOTE: on x86_64 we have a tf_addr field in the trapframe, no
929 	 * kludge is needed to pass the fault address to signal handlers.
930 	 */
931 	p = td->td_proc;
932 #ifdef DDB
933 	if (td->td_lwp->lwp_vkernel == NULL) {
934 		while (freeze_on_seg_fault) {
935 			tsleep(p, 0, "freeze", hz * 20);
936 		}
937 		if (ddb_on_seg_fault)
938 			Debugger("ddb_on_seg_fault");
939 	}
940 #endif
941 
942 	return((rv == KERN_PROTECTION_FAILURE) ? SIGBUS : SIGSEGV);
943 }
944 
945 static void
946 trap_fatal(struct trapframe *frame, vm_offset_t eva)
947 {
948 	int code, ss;
949 	u_int type;
950 	long rsp;
951 	struct soft_segment_descriptor softseg;
952 	char *msg;
953 
954 	code = frame->tf_err;
955 	type = frame->tf_trapno;
956 	sdtossd(&gdt[IDXSEL(frame->tf_cs & 0xffff)], &softseg);
957 
958 	if (type <= MAX_TRAP_MSG)
959 		msg = trap_msg[type];
960 	else
961 		msg = "UNKNOWN";
962 	kprintf("\n\nFatal trap %d: %s while in %s mode\n", type, msg,
963 	    ISPL(frame->tf_cs) == SEL_UPL ? "user" : "kernel");
964 	/* three separate prints in case of a trap on an unmapped page */
965 	kprintf("cpuid = %d; ", mycpu->gd_cpuid);
966 	kprintf("lapic->id = %08x\n", lapic->id);
967 	if (type == T_PAGEFLT) {
968 		kprintf("fault virtual address	= 0x%lx\n", eva);
969 		kprintf("fault code		= %s %s %s, %s\n",
970 			code & PGEX_U ? "user" : "supervisor",
971 			code & PGEX_W ? "write" : "read",
972 			code & PGEX_I ? "instruction" : "data",
973 			code & PGEX_P ? "protection violation" : "page not present");
974 	}
975 	kprintf("instruction pointer	= 0x%lx:0x%lx\n",
976 	       frame->tf_cs & 0xffff, frame->tf_rip);
977         if (ISPL(frame->tf_cs) == SEL_UPL) {
978 		ss = frame->tf_ss & 0xffff;
979 		rsp = frame->tf_rsp;
980 	} else {
981 		/*
982 		 * NOTE: in 64-bit mode traps push rsp/ss even if no ring
983 		 *	 change occurs.
984 		 */
985 		ss = GSEL(GDATA_SEL, SEL_KPL);
986 		rsp = frame->tf_rsp;
987 	}
988 	kprintf("stack pointer	        = 0x%x:0x%lx\n", ss, rsp);
989 	kprintf("frame pointer	        = 0x%x:0x%lx\n", ss, frame->tf_rbp);
990 	kprintf("code segment		= base 0x%lx, limit 0x%lx, type 0x%x\n",
991 	       softseg.ssd_base, softseg.ssd_limit, softseg.ssd_type);
992 	kprintf("			= DPL %d, pres %d, long %d, def32 %d, gran %d\n",
993 	       softseg.ssd_dpl, softseg.ssd_p, softseg.ssd_long, softseg.ssd_def32,
994 	       softseg.ssd_gran);
995 	kprintf("processor eflags	= ");
996 	if (frame->tf_rflags & PSL_T)
997 		kprintf("trace trap, ");
998 	if (frame->tf_rflags & PSL_I)
999 		kprintf("interrupt enabled, ");
1000 	if (frame->tf_rflags & PSL_NT)
1001 		kprintf("nested task, ");
1002 	if (frame->tf_rflags & PSL_RF)
1003 		kprintf("resume, ");
1004 	kprintf("IOPL = %ld\n", (frame->tf_rflags & PSL_IOPL) >> 12);
1005 	kprintf("current process		= ");
1006 	if (curproc) {
1007 		kprintf("%lu\n",
1008 		    (u_long)curproc->p_pid);
1009 	} else {
1010 		kprintf("Idle\n");
1011 	}
1012 	kprintf("current thread          = pri %d ", curthread->td_pri);
1013 	if (curthread->td_critcount)
1014 		kprintf("(CRIT)");
1015 	kprintf("\n");
1016 
1017 #ifdef DDB
1018 	if ((debugger_on_panic || db_active) && kdb_trap(type, code, frame))
1019 		return;
1020 #endif
1021 	kprintf("trap number		= %d\n", type);
1022 	if (type <= MAX_TRAP_MSG)
1023 		panic("%s", trap_msg[type]);
1024 	else
1025 		panic("unknown/reserved trap");
1026 }
1027 
1028 /*
1029  * Double fault handler. Called when a fault occurs while writing
1030  * a frame for a trap/exception onto the stack. This usually occurs
1031  * when the stack overflows (such is the case with infinite recursion,
1032  * for example).
1033  */
1034 static __inline
1035 int
1036 in_kstack_guard(register_t rptr)
1037 {
1038 	thread_t td = curthread;
1039 
1040 	if ((char *)rptr >= td->td_kstack &&
1041 	    (char *)rptr < td->td_kstack + PAGE_SIZE) {
1042 		return 1;
1043 	}
1044 	return 0;
1045 }
1046 
1047 void
1048 dblfault_handler(struct trapframe *frame)
1049 {
1050 	thread_t td = curthread;
1051 
1052 	if (in_kstack_guard(frame->tf_rsp) || in_kstack_guard(frame->tf_rbp)) {
1053 		kprintf("DOUBLE FAULT - KERNEL STACK GUARD HIT!\n");
1054 		if (in_kstack_guard(frame->tf_rsp))
1055 			frame->tf_rsp = (register_t)(td->td_kstack + PAGE_SIZE);
1056 		if (in_kstack_guard(frame->tf_rbp))
1057 			frame->tf_rbp = (register_t)(td->td_kstack + PAGE_SIZE);
1058 	} else {
1059 		kprintf("DOUBLE FAULT\n");
1060 	}
1061 	kprintf("\nFatal double fault\n");
1062 	kprintf("rip = 0x%lx\n", frame->tf_rip);
1063 	kprintf("rsp = 0x%lx\n", frame->tf_rsp);
1064 	kprintf("rbp = 0x%lx\n", frame->tf_rbp);
1065 	/* three separate prints in case of a trap on an unmapped page */
1066 	kprintf("cpuid = %d; ", mycpu->gd_cpuid);
1067 	kprintf("lapic->id = %08x\n", lapic->id);
1068 	panic("double fault");
1069 }
1070 
1071 /*
1072  * syscall2 -	MP aware system call request C handler
1073  *
1074  * A system call is essentially treated as a trap except that the
1075  * MP lock is not held on entry or return.  We are responsible for
1076  * obtaining the MP lock if necessary and for handling ASTs
1077  * (e.g. a task switch) prior to return.
1078  *
1079  * MPSAFE
1080  */
1081 void
1082 syscall2(struct trapframe *frame)
1083 {
1084 	struct thread *td = curthread;
1085 	struct proc *p = td->td_proc;
1086 	struct lwp *lp = td->td_lwp;
1087 	caddr_t params;
1088 	struct sysent *callp;
1089 	register_t orig_tf_rflags;
1090 	int sticks;
1091 	int error;
1092 	int narg;
1093 #ifdef INVARIANTS
1094 	int crit_count = td->td_critcount;
1095 #endif
1096 	register_t *argp;
1097 	u_int code;
1098 	int reg, regcnt;
1099 	union sysunion args;
1100 	register_t *argsdst;
1101 
1102 	mycpu->gd_cnt.v_syscall++;
1103 
1104 #ifdef DIAGNOSTIC
1105 	if (ISPL(frame->tf_cs) != SEL_UPL) {
1106 		panic("syscall");
1107 		/* NOT REACHED */
1108 	}
1109 #endif
1110 
1111 	KTR_LOG(kernentry_syscall, p->p_pid, lp->lwp_tid,
1112 		frame->tf_rax);
1113 
1114 	userenter(td, p);	/* lazy raise our priority */
1115 
1116 	reg = 0;
1117 	regcnt = 6;
1118 	/*
1119 	 * Misc
1120 	 */
1121 	sticks = (int)td->td_sticks;
1122 	orig_tf_rflags = frame->tf_rflags;
1123 
1124 	/*
1125 	 * Virtual kernel intercept - if a VM context managed by a virtual
1126 	 * kernel issues a system call the virtual kernel handles it, not us.
1127 	 * Restore the virtual kernel context and return from its system
1128 	 * call.  The current frame is copied out to the virtual kernel.
1129 	 */
1130 	if (lp->lwp_vkernel && lp->lwp_vkernel->ve) {
1131 		vkernel_trap(lp, frame);
1132 		error = EJUSTRETURN;
1133 		callp = NULL;
1134 		goto out;
1135 	}
1136 
1137 	/*
1138 	 * Get the system call parameters and account for time
1139 	 */
1140 	KASSERT(lp->lwp_md.md_regs == frame,
1141 		("Frame mismatch %p %p", lp->lwp_md.md_regs, frame));
1142 	params = (caddr_t)frame->tf_rsp + sizeof(register_t);
1143 	code = frame->tf_rax;
1144 
1145 	if (p->p_sysent->sv_prepsyscall) {
1146 		(*p->p_sysent->sv_prepsyscall)(
1147 			frame, (int *)(&args.nosys.sysmsg + 1),
1148 			&code, &params);
1149 	} else {
1150 		if (code == SYS_syscall || code == SYS___syscall) {
1151 			code = frame->tf_rdi;
1152 			reg++;
1153 			regcnt--;
1154 		}
1155 	}
1156 
1157 	if (p->p_sysent->sv_mask)
1158 		code &= p->p_sysent->sv_mask;
1159 
1160 	if (code >= p->p_sysent->sv_size)
1161 		callp = &p->p_sysent->sv_table[0];
1162 	else
1163 		callp = &p->p_sysent->sv_table[code];
1164 
1165 	narg = callp->sy_narg & SYF_ARGMASK;
1166 
1167 	/*
1168 	 * On x86_64 we get up to six arguments in registers. The rest are
1169 	 * on the stack. The first six members of 'struct trapframe' happen
1170 	 * to be the registers used to pass arguments, in exactly the right
1171 	 * order.
1172 	 */
1173 	argp = &frame->tf_rdi;
1174 	argp += reg;
1175 	argsdst = (register_t *)(&args.nosys.sysmsg + 1);
1176 	/*
1177 	 * JG can we overflow the space pointed to by 'argsdst'
1178 	 * either with 'bcopy' or with 'copyin'?
1179 	 */
1180 	bcopy(argp, argsdst, sizeof(register_t) * regcnt);
1181 	/*
1182 	 * copyin is MP aware, but the tracing code is not
1183 	 */
1184 	if (narg > regcnt) {
1185 		KASSERT(params != NULL, ("copyin args with no params!"));
1186 		error = copyin(params, &argsdst[regcnt],
1187 			(narg - regcnt) * sizeof(register_t));
1188 		if (error) {
1189 #ifdef KTRACE
1190 			if (KTRPOINT(td, KTR_SYSCALL)) {
1191 				ktrsyscall(lp, code, narg,
1192 					(void *)(&args.nosys.sysmsg + 1));
1193 			}
1194 #endif
1195 			goto bad;
1196 		}
1197 	}
1198 
1199 #ifdef KTRACE
1200 	if (KTRPOINT(td, KTR_SYSCALL)) {
1201 		ktrsyscall(lp, code, narg, (void *)(&args.nosys.sysmsg + 1));
1202 	}
1203 #endif
1204 
1205 	/*
1206 	 * Default return value is 0 (will be copied to %rax).  Double-value
1207 	 * returns use %rax and %rdx.  %rdx is left unchanged for system
1208 	 * calls which return only one result.
1209 	 */
1210 	args.sysmsg_fds[0] = 0;
1211 	args.sysmsg_fds[1] = frame->tf_rdx;
1212 
1213 	/*
1214 	 * The syscall might manipulate the trap frame. If it does it
1215 	 * will probably return EJUSTRETURN.
1216 	 */
1217 	args.sysmsg_frame = frame;
1218 
1219 	STOPEVENT(p, S_SCE, narg);	/* MP aware */
1220 
1221 	/*
1222 	 * NOTE: All system calls run MPSAFE now.  The system call itself
1223 	 *	 is responsible for getting the MP lock.
1224 	 */
1225 #ifdef SYSCALL_DEBUG
1226 	tsc_uclock_t tscval = rdtsc();
1227 #endif
1228 	error = (*callp->sy_call)(&args);
1229 #ifdef SYSCALL_DEBUG
1230 	tscval = rdtsc() - tscval;
1231 	tscval = tscval * 1000000 / tsc_frequency;
1232 	if (SysCallsWorstCase[code] < tscval)
1233 		SysCallsWorstCase[code] = tscval;
1234 #endif
1235 
1236 out:
1237 	/*
1238 	 * MP SAFE (we may or may not have the MP lock at this point)
1239 	 */
1240 	//kprintf("SYSMSG %d ", error);
1241 	switch (error) {
1242 	case 0:
1243 		/*
1244 		 * Reinitialize proc pointer `p' as it may be different
1245 		 * if this is a child returning from fork syscall.
1246 		 */
1247 		p = curproc;
1248 		lp = curthread->td_lwp;
1249 		frame->tf_rax = args.sysmsg_fds[0];
1250 		frame->tf_rdx = args.sysmsg_fds[1];
1251 		frame->tf_rflags &= ~PSL_C;
1252 		break;
1253 	case ERESTART:
1254 		/*
1255 		 * Reconstruct pc, we know that 'syscall' is 2 bytes.
1256 		 * We have to do a full context restore so that %r10
1257 		 * (which was holding the value of %rcx) is restored for
1258 		 * the next iteration.
1259 		 */
1260 		if (frame->tf_err != 0 && frame->tf_err != 2)
1261 			kprintf("lp %s:%d frame->tf_err is weird %ld\n",
1262 				td->td_comm, lp->lwp_proc->p_pid, frame->tf_err);
1263 		frame->tf_rip -= frame->tf_err;
1264 		frame->tf_r10 = frame->tf_rcx;
1265 		break;
1266 	case EJUSTRETURN:
1267 		break;
1268 	case EASYNC:
1269 		panic("Unexpected EASYNC return value (for now)");
1270 	default:
1271 bad:
1272 		if (p->p_sysent->sv_errsize) {
1273 			if (error >= p->p_sysent->sv_errsize)
1274 				error = -1;	/* XXX */
1275 			else
1276 				error = p->p_sysent->sv_errtbl[error];
1277 		}
1278 		frame->tf_rax = error;
1279 		frame->tf_rflags |= PSL_C;
1280 		break;
1281 	}
1282 
1283 	/*
1284 	 * Traced syscall.  trapsignal() should now be MP aware
1285 	 */
1286 	if (orig_tf_rflags & PSL_T) {
1287 		frame->tf_rflags &= ~PSL_T;
1288 		trapsignal(lp, SIGTRAP, TRAP_TRACE);
1289 	}
1290 
1291 	/*
1292 	 * Handle reschedule and other end-of-syscall issues
1293 	 */
1294 	userret(lp, frame, sticks);
1295 
1296 #ifdef KTRACE
1297 	if (KTRPOINT(td, KTR_SYSRET)) {
1298 		ktrsysret(lp, code, error, args.sysmsg_result);
1299 	}
1300 #endif
1301 
1302 	/*
1303 	 * This works because errno is findable through the
1304 	 * register set.  If we ever support an emulation where this
1305 	 * is not the case, this code will need to be revisited.
1306 	 */
1307 	STOPEVENT(p, S_SCX, code);
1308 
1309 	userexit(lp);
1310 	KTR_LOG(kernentry_syscall_ret, p->p_pid, lp->lwp_tid, error);
1311 #ifdef INVARIANTS
1312 	KASSERT(crit_count == td->td_critcount,
1313 		("syscall: critical section count mismatch! %d/%d",
1314 		crit_count, td->td_pri));
1315 	KASSERT(&td->td_toks_base == td->td_toks_stop,
1316 		("syscall: %ld extra tokens held after trap! syscall %p",
1317 		td->td_toks_stop - &td->td_toks_base,
1318 		callp->sy_call));
1319 #endif
1320 }
1321 
1322 void
1323 fork_return(struct lwp *lp, struct trapframe *frame)
1324 {
1325 	frame->tf_rax = 0;		/* Child returns zero */
1326 	frame->tf_rflags &= ~PSL_C;	/* success */
1327 	frame->tf_rdx = 1;
1328 
1329 	generic_lwp_return(lp, frame);
1330 	KTR_LOG(kernentry_fork_ret, lp->lwp_proc->p_pid, lp->lwp_tid);
1331 }
1332 
1333 /*
1334  * Simplified back end of syscall(), used when returning from fork()
1335  * directly into user mode.
1336  *
1337  * This code will return back into the fork trampoline code which then
1338  * runs doreti.
1339  */
1340 void
1341 generic_lwp_return(struct lwp *lp, struct trapframe *frame)
1342 {
1343 	struct proc *p = lp->lwp_proc;
1344 
1345 	/*
1346 	 * Check for exit-race.  If one lwp exits the process concurrent with
1347 	 * another lwp creating a new thread, the two operations may cross
1348 	 * each other resulting in the newly-created lwp not receiving a
1349 	 * KILL signal.
1350 	 */
1351 	if (p->p_flags & P_WEXIT) {
1352 		lwpsignal(p, lp, SIGKILL);
1353 	}
1354 
1355 	/*
1356 	 * Newly forked processes are given a kernel priority.  We have to
1357 	 * adjust the priority to a normal user priority and fake entry
1358 	 * into the kernel (call userenter()) to install a passive release
1359 	 * function just in case userret() decides to stop the process.  This
1360 	 * can occur when ^Z races a fork.  If we do not install the passive
1361 	 * release function the current process designation will not be
1362 	 * released when the thread goes to sleep.
1363 	 */
1364 	lwkt_setpri_self(TDPRI_USER_NORM);
1365 	userenter(lp->lwp_thread, p);
1366 	userret(lp, frame, 0);
1367 #ifdef KTRACE
1368 	if (KTRPOINT(lp->lwp_thread, KTR_SYSRET))
1369 		ktrsysret(lp, SYS_fork, 0, 0);
1370 #endif
1371 	lp->lwp_flags |= LWP_PASSIVE_ACQ;
1372 	userexit(lp);
1373 	lp->lwp_flags &= ~LWP_PASSIVE_ACQ;
1374 }
1375 
1376 /*
1377  * If PGEX_FPFAULT is set then set FP_VIRTFP in the PCB to force a T_DNA
1378  * fault (which is then passed back to the virtual kernel) if an attempt is
1379  * made to use the FP unit.
1380  *
1381  * XXX this is a fairly big hack.
1382  */
1383 void
1384 set_vkernel_fp(struct trapframe *frame)
1385 {
1386 	struct thread *td = curthread;
1387 
1388 	if (frame->tf_xflags & PGEX_FPFAULT) {
1389 		td->td_pcb->pcb_flags |= FP_VIRTFP;
1390 		if (mdcpu->gd_npxthread == td)
1391 			npxexit();
1392 	} else {
1393 		td->td_pcb->pcb_flags &= ~FP_VIRTFP;
1394 	}
1395 }
1396 
1397 /*
1398  * Called from vkernel_trap() to fixup the vkernel's syscall
1399  * frame for vmspace_ctl() return.
1400  */
1401 void
1402 cpu_vkernel_trap(struct trapframe *frame, int error)
1403 {
1404 	frame->tf_rax = error;
1405 	if (error)
1406 		frame->tf_rflags |= PSL_C;
1407 	else
1408 		frame->tf_rflags &= ~PSL_C;
1409 }
1410