xref: /dragonfly/sys/platform/pc64/x86_64/trap.c (revision e96fb831)
1 /*-
2  * Copyright (c) 1990, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * Copyright (C) 1994, David Greenman
5  * Copyright (c) 2008 The DragonFly Project.
6  * Copyright (c) 2008 Jordan Gordeev.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the University of Utah, and William Jolitz.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the University of
22  *	California, Berkeley and its contributors.
23  * 4. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  * from: @(#)trap.c	7.4 (Berkeley) 5/13/91
40  * $FreeBSD: src/sys/i386/i386/trap.c,v 1.147.2.11 2003/02/27 19:09:59 luoqi Exp $
41  */
42 
43 /*
44  * x86_64 Trap and System call handling
45  */
46 
47 #include "use_isa.h"
48 
49 #include "opt_ddb.h"
50 #include "opt_ktrace.h"
51 
52 #include <machine/frame.h>
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/kernel.h>
56 #include <sys/kerneldump.h>
57 #include <sys/proc.h>
58 #include <sys/pioctl.h>
59 #include <sys/types.h>
60 #include <sys/signal2.h>
61 #include <sys/syscall.h>
62 #include <sys/sysctl.h>
63 #include <sys/sysent.h>
64 #include <sys/systm.h>
65 #ifdef KTRACE
66 #include <sys/ktrace.h>
67 #endif
68 #include <sys/ktr.h>
69 #include <sys/sysmsg.h>
70 #include <sys/sysproto.h>
71 #include <sys/sysunion.h>
72 
73 #include <vm/pmap.h>
74 #include <vm/vm.h>
75 #include <vm/vm_extern.h>
76 #include <vm/vm_kern.h>
77 #include <vm/vm_param.h>
78 #include <machine/cpu.h>
79 #include <machine/pcb.h>
80 #include <machine/smp.h>
81 #include <machine/thread.h>
82 #include <machine/clock.h>
83 #include <machine/vmparam.h>
84 #include <machine/md_var.h>
85 #include <machine_base/isa/isa_intr.h>
86 #include <machine_base/apic/lapic.h>
87 
88 #include <ddb/ddb.h>
89 
90 #include <sys/thread2.h>
91 #include <sys/mplock2.h>
92 
93 #ifdef SMP
94 
95 #define MAKEMPSAFE(have_mplock)			\
96 	if (have_mplock == 0) {			\
97 		get_mplock();			\
98 		have_mplock = 1;		\
99 	}
100 
101 #else
102 
103 #define MAKEMPSAFE(have_mplock)
104 
105 #endif
106 
107 extern void trap(struct trapframe *frame);
108 
109 static int trap_pfault(struct trapframe *, int);
110 static void trap_fatal(struct trapframe *, vm_offset_t);
111 void dblfault_handler(struct trapframe *frame);
112 
113 #define MAX_TRAP_MSG		30
114 static char *trap_msg[] = {
115 	"",					/*  0 unused */
116 	"privileged instruction fault",		/*  1 T_PRIVINFLT */
117 	"",					/*  2 unused */
118 	"breakpoint instruction fault",		/*  3 T_BPTFLT */
119 	"",					/*  4 unused */
120 	"",					/*  5 unused */
121 	"arithmetic trap",			/*  6 T_ARITHTRAP */
122 	"system forced exception",		/*  7 T_ASTFLT */
123 	"",					/*  8 unused */
124 	"general protection fault",		/*  9 T_PROTFLT */
125 	"trace trap",				/* 10 T_TRCTRAP */
126 	"",					/* 11 unused */
127 	"page fault",				/* 12 T_PAGEFLT */
128 	"",					/* 13 unused */
129 	"alignment fault",			/* 14 T_ALIGNFLT */
130 	"",					/* 15 unused */
131 	"",					/* 16 unused */
132 	"",					/* 17 unused */
133 	"integer divide fault",			/* 18 T_DIVIDE */
134 	"non-maskable interrupt trap",		/* 19 T_NMI */
135 	"overflow trap",			/* 20 T_OFLOW */
136 	"FPU bounds check fault",		/* 21 T_BOUND */
137 	"FPU device not available",		/* 22 T_DNA */
138 	"double fault",				/* 23 T_DOUBLEFLT */
139 	"FPU operand fetch fault",		/* 24 T_FPOPFLT */
140 	"invalid TSS fault",			/* 25 T_TSSFLT */
141 	"segment not present fault",		/* 26 T_SEGNPFLT */
142 	"stack fault",				/* 27 T_STKFLT */
143 	"machine check trap",			/* 28 T_MCHK */
144 	"SIMD floating-point exception",	/* 29 T_XMMFLT */
145 	"reserved (unknown) fault",		/* 30 T_RESERVED */
146 };
147 
148 #ifdef DDB
149 static int ddb_on_nmi = 1;
150 SYSCTL_INT(_machdep, OID_AUTO, ddb_on_nmi, CTLFLAG_RW,
151 	&ddb_on_nmi, 0, "Go to DDB on NMI");
152 static int ddb_on_seg_fault = 0;
153 SYSCTL_INT(_machdep, OID_AUTO, ddb_on_seg_fault, CTLFLAG_RW,
154 	&ddb_on_seg_fault, 0, "Go to DDB on user seg-fault");
155 static int freeze_on_seg_fault = 0;
156 SYSCTL_INT(_machdep, OID_AUTO, freeze_on_seg_fault, CTLFLAG_RW,
157 	&freeze_on_seg_fault, 0, "Go to DDB on user seg-fault");
158 #endif
159 static int panic_on_nmi = 1;
160 SYSCTL_INT(_machdep, OID_AUTO, panic_on_nmi, CTLFLAG_RW,
161 	&panic_on_nmi, 0, "Panic on NMI");
162 static int fast_release;
163 SYSCTL_INT(_machdep, OID_AUTO, fast_release, CTLFLAG_RW,
164 	&fast_release, 0, "Passive Release was optimal");
165 static int slow_release;
166 SYSCTL_INT(_machdep, OID_AUTO, slow_release, CTLFLAG_RW,
167 	&slow_release, 0, "Passive Release was nonoptimal");
168 
169 /*
170  * System call debugging records the worst-case system call
171  * overhead (inclusive of blocking), but may be inaccurate.
172  */
173 /*#define SYSCALL_DEBUG*/
174 #ifdef SYSCALL_DEBUG
175 uint64_t SysCallsWorstCase[SYS_MAXSYSCALL];
176 #endif
177 
178 /*
179  * Passively intercepts the thread switch function to increase
180  * the thread priority from a user priority to a kernel priority, reducing
181  * syscall and trap overhead for the case where no switch occurs.
182  *
183  * Synchronizes td_ucred with p_ucred.  This is used by system calls,
184  * signal handling, faults, AST traps, and anything else that enters the
185  * kernel from userland and provides the kernel with a stable read-only
186  * copy of the process ucred.
187  */
188 static __inline void
189 userenter(struct thread *curtd, struct proc *curp)
190 {
191 	struct ucred *ocred;
192 	struct ucred *ncred;
193 
194 	curtd->td_release = lwkt_passive_release;
195 
196 	if (curtd->td_ucred != curp->p_ucred) {
197 		ncred = crhold(curp->p_ucred);
198 		ocred = curtd->td_ucred;
199 		curtd->td_ucred = ncred;
200 		if (ocred)
201 			crfree(ocred);
202 	}
203 
204 	/*
205 	 * Debugging, remove top two user stack pages to catch kernel faults
206 	 */
207 	if (freeze_on_seg_fault > 1 && curtd->td_lwp) {
208 		pmap_remove(vmspace_pmap(curtd->td_lwp->lwp_vmspace),
209 			    0x00007FFFFFFFD000LU,
210 			    0x0000800000000000LU);
211 	}
212 }
213 
214 /*
215  * Handle signals, upcalls, profiling, and other AST's and/or tasks that
216  * must be completed before we can return to or try to return to userland.
217  *
218  * Note that td_sticks is a 64 bit quantity, but there's no point doing 64
219  * arithmatic on the delta calculation so the absolute tick values are
220  * truncated to an integer.
221  */
222 static void
223 userret(struct lwp *lp, struct trapframe *frame, int sticks)
224 {
225 	struct proc *p = lp->lwp_proc;
226 	int sig;
227 
228 	/*
229 	 * Charge system time if profiling.  Note: times are in microseconds.
230 	 * This may do a copyout and block, so do it first even though it
231 	 * means some system time will be charged as user time.
232 	 */
233 	if (p->p_flags & P_PROFIL) {
234 		addupc_task(p, frame->tf_rip,
235 			(u_int)((int)lp->lwp_thread->td_sticks - sticks));
236 	}
237 
238 recheck:
239 	/*
240 	 * If the jungle wants us dead, so be it.
241 	 */
242 	if (lp->lwp_mpflags & LWP_MP_WEXIT) {
243 		lwkt_gettoken(&p->p_token);
244 		lwp_exit(0);
245 		lwkt_reltoken(&p->p_token);	/* NOT REACHED */
246 	}
247 
248 	/*
249 	 * Block here if we are in a stopped state.
250 	 */
251 	if (p->p_stat == SSTOP || dump_stop_usertds) {
252 		lwkt_gettoken(&p->p_token);
253 		tstop();
254 		lwkt_reltoken(&p->p_token);
255 		goto recheck;
256 	}
257 
258 	/*
259 	 * Post any pending upcalls.  If running a virtual kernel be sure
260 	 * to restore the virtual kernel's vmspace before posting the upcall.
261 	 */
262 	if (p->p_flags & (P_SIGVTALRM | P_SIGPROF | P_UPCALLPEND)) {
263 		lwkt_gettoken(&p->p_token);
264 		if (p->p_flags & P_SIGVTALRM) {
265 			p->p_flags &= ~P_SIGVTALRM;
266 			ksignal(p, SIGVTALRM);
267 		}
268 		if (p->p_flags & P_SIGPROF) {
269 			p->p_flags &= ~P_SIGPROF;
270 			ksignal(p, SIGPROF);
271 		}
272 		if (p->p_flags & P_UPCALLPEND) {
273 			p->p_flags &= ~P_UPCALLPEND;
274 			postupcall(lp);
275 		}
276 		lwkt_reltoken(&p->p_token);
277 		goto recheck;
278 	}
279 
280 	/*
281 	 * Post any pending signals.  If running a virtual kernel be sure
282 	 * to restore the virtual kernel's vmspace before posting the signal.
283 	 *
284 	 * WARNING!  postsig() can exit and not return.
285 	 */
286 	if ((sig = CURSIG_TRACE(lp)) != 0) {
287 		lwkt_gettoken(&p->p_token);
288 		postsig(sig);
289 		lwkt_reltoken(&p->p_token);
290 		goto recheck;
291 	}
292 
293 	/*
294 	 * block here if we are swapped out, but still process signals
295 	 * (such as SIGKILL).  proc0 (the swapin scheduler) is already
296 	 * aware of our situation, we do not have to wake it up.
297 	 */
298 	if (p->p_flags & P_SWAPPEDOUT) {
299 		lwkt_gettoken(&p->p_token);
300 		get_mplock();
301 		p->p_flags |= P_SWAPWAIT;
302 		swapin_request();
303 		if (p->p_flags & P_SWAPWAIT)
304 			tsleep(p, PCATCH, "SWOUT", 0);
305 		p->p_flags &= ~P_SWAPWAIT;
306 		rel_mplock();
307 		lwkt_reltoken(&p->p_token);
308 		goto recheck;
309 	}
310 
311 	/*
312 	 * Make sure postsig() handled request to restore old signal mask after
313 	 * running signal handler.
314 	 */
315 	KKASSERT((lp->lwp_flags & LWP_OLDMASK) == 0);
316 }
317 
318 /*
319  * Cleanup from userenter and any passive release that might have occured.
320  * We must reclaim the current-process designation before we can return
321  * to usermode.  We also handle both LWKT and USER reschedule requests.
322  */
323 static __inline void
324 userexit(struct lwp *lp)
325 {
326 	struct thread *td = lp->lwp_thread;
327 /*	globaldata_t gd = td->td_gd;*/
328 
329 	/*
330 	 * Handle stop requests at kernel priority.  Any requests queued
331 	 * after this loop will generate another AST.
332 	 */
333 	while (lp->lwp_proc->p_stat == SSTOP) {
334 		lwkt_gettoken(&lp->lwp_proc->p_token);
335 		tstop();
336 		lwkt_reltoken(&lp->lwp_proc->p_token);
337 	}
338 
339 	/*
340 	 * Reduce our priority in preparation for a return to userland.  If
341 	 * our passive release function was still in place, our priority was
342 	 * never raised and does not need to be reduced.
343 	 */
344 	lwkt_passive_recover(td);
345 
346 	/*
347 	 * Become the current user scheduled process if we aren't already,
348 	 * and deal with reschedule requests and other factors.
349 	 */
350 	lp->lwp_proc->p_usched->acquire_curproc(lp);
351 	/* WARNING: we may have migrated cpu's */
352 	/* gd = td->td_gd; */
353 }
354 
355 #if !defined(KTR_KERNENTRY)
356 #define	KTR_KERNENTRY	KTR_ALL
357 #endif
358 KTR_INFO_MASTER(kernentry);
359 KTR_INFO(KTR_KERNENTRY, kernentry, trap, 0,
360 	 "TRAP(pid %hd, tid %hd, trapno %ld, eva %lu)",
361 	 pid_t pid, lwpid_t tid,  register_t trapno, vm_offset_t eva);
362 KTR_INFO(KTR_KERNENTRY, kernentry, trap_ret, 0, "TRAP_RET(pid %hd, tid %hd)",
363 	 pid_t pid, lwpid_t tid);
364 KTR_INFO(KTR_KERNENTRY, kernentry, syscall, 0, "SYSC(pid %hd, tid %hd, nr %ld)",
365 	 pid_t pid, lwpid_t tid,  register_t trapno);
366 KTR_INFO(KTR_KERNENTRY, kernentry, syscall_ret, 0, "SYSRET(pid %hd, tid %hd, err %d)",
367 	 pid_t pid, lwpid_t tid,  int err);
368 KTR_INFO(KTR_KERNENTRY, kernentry, fork_ret, 0, "FORKRET(pid %hd, tid %hd)",
369 	 pid_t pid, lwpid_t tid);
370 
371 /*
372  * Exception, fault, and trap interface to the kernel.
373  * This common code is called from assembly language IDT gate entry
374  * routines that prepare a suitable stack frame, and restore this
375  * frame after the exception has been processed.
376  *
377  * This function is also called from doreti in an interlock to handle ASTs.
378  * For example:  hardwareint->INTROUTINE->(set ast)->doreti->trap
379  *
380  * NOTE!  We have to retrieve the fault address prior to obtaining the
381  * MP lock because get_mplock() may switch out.  YYY cr2 really ought
382  * to be retrieved by the assembly code, not here.
383  *
384  * XXX gd_trap_nesting_level currently prevents lwkt_switch() from panicing
385  * if an attempt is made to switch from a fast interrupt or IPI.  This is
386  * necessary to properly take fatal kernel traps on SMP machines if
387  * get_mplock() has to block.
388  */
389 
390 void
391 trap(struct trapframe *frame)
392 {
393 	struct globaldata *gd = mycpu;
394 	struct thread *td = gd->gd_curthread;
395 	struct lwp *lp = td->td_lwp;
396 	struct proc *p;
397 	int sticks = 0;
398 	int i = 0, ucode = 0, type, code;
399 #ifdef SMP
400 	int have_mplock = 0;
401 #endif
402 #ifdef INVARIANTS
403 	int crit_count = td->td_critcount;
404 	lwkt_tokref_t curstop = td->td_toks_stop;
405 #endif
406 	vm_offset_t eva;
407 
408 	p = td->td_proc;
409 	clear_quickret();
410 
411 #ifdef DDB
412         /*
413 	 * We need to allow T_DNA faults when the debugger is active since
414 	 * some dumping paths do large bcopy() which use the floating
415 	 * point registers for faster copying.
416 	 */
417 	if (db_active && frame->tf_trapno != T_DNA) {
418 		eva = (frame->tf_trapno == T_PAGEFLT ? frame->tf_addr : 0);
419 		++gd->gd_trap_nesting_level;
420 		MAKEMPSAFE(have_mplock);
421 		trap_fatal(frame, eva);
422 		--gd->gd_trap_nesting_level;
423 		goto out2;
424 	}
425 #endif
426 
427 	eva = 0;
428 
429 	if ((frame->tf_rflags & PSL_I) == 0) {
430 		/*
431 		 * Buggy application or kernel code has disabled interrupts
432 		 * and then trapped.  Enabling interrupts now is wrong, but
433 		 * it is better than running with interrupts disabled until
434 		 * they are accidentally enabled later.
435 		 */
436 		type = frame->tf_trapno;
437 		if (ISPL(frame->tf_cs) == SEL_UPL) {
438 			MAKEMPSAFE(have_mplock);
439 			/* JG curproc can be NULL */
440 			kprintf(
441 			    "pid %ld (%s): trap %d with interrupts disabled\n",
442 			    (long)curproc->p_pid, curproc->p_comm, type);
443 		} else if (type != T_NMI && type != T_BPTFLT &&
444 		    type != T_TRCTRAP) {
445 			/*
446 			 * XXX not quite right, since this may be for a
447 			 * multiple fault in user mode.
448 			 */
449 			MAKEMPSAFE(have_mplock);
450 			kprintf("kernel trap %d with interrupts disabled\n",
451 			    type);
452 		}
453 		cpu_enable_intr();
454 	}
455 
456 	type = frame->tf_trapno;
457 	code = frame->tf_err;
458 
459 	if (ISPL(frame->tf_cs) == SEL_UPL) {
460 		/* user trap */
461 
462 		KTR_LOG(kernentry_trap, p->p_pid, lp->lwp_tid,
463 			frame->tf_trapno, eva);
464 
465 		userenter(td, p);
466 
467 		sticks = (int)td->td_sticks;
468 		KASSERT(lp->lwp_md.md_regs == frame,
469 			("Frame mismatch %p %p", lp->lwp_md.md_regs, frame));
470 
471 		switch (type) {
472 		case T_PRIVINFLT:	/* privileged instruction fault */
473 			ucode = ILL_PRVOPC;
474 			i = SIGILL;
475 			break;
476 
477 		case T_BPTFLT:		/* bpt instruction fault */
478 		case T_TRCTRAP:		/* trace trap */
479 			frame->tf_rflags &= ~PSL_T;
480 			ucode = TRAP_TRACE;
481 			i = SIGTRAP;
482 			break;
483 
484 		case T_ARITHTRAP:	/* arithmetic trap */
485 			ucode = code;
486 			i = SIGFPE;
487 #if 0
488 #if JG
489 			ucode = fputrap();
490 #else
491 			ucode = code;
492 #endif
493 			i = SIGFPE;
494 #endif
495 			break;
496 
497 		case T_ASTFLT:		/* Allow process switch */
498 			mycpu->gd_cnt.v_soft++;
499 			if (mycpu->gd_reqflags & RQF_AST_OWEUPC) {
500 				atomic_clear_int(&mycpu->gd_reqflags,
501 						 RQF_AST_OWEUPC);
502 				addupc_task(p, p->p_prof.pr_addr,
503 					    p->p_prof.pr_ticks);
504 			}
505 			goto out;
506 
507 		case T_PROTFLT:		/* general protection fault */
508 			i = SIGBUS;
509 			ucode = BUS_OBJERR;
510 			break;
511 		case T_SEGNPFLT:	/* segment not present fault */
512 			i = SIGBUS;
513 			ucode = BUS_ADRERR;
514 			break;
515 		case T_TSSFLT:		/* invalid TSS fault */
516 		case T_DOUBLEFLT:	/* double fault */
517 			i = SIGBUS;
518 			ucode = BUS_OBJERR;
519 		default:
520 #if 0
521 			ucode = code + BUS_SEGM_FAULT ; /* XXX: ???*/
522 #endif
523 			ucode = BUS_OBJERR;
524 			i = SIGBUS;
525 			break;
526 
527 		case T_PAGEFLT:		/* page fault */
528 			i = trap_pfault(frame, TRUE);
529 			if (frame->tf_rip == 0) {
530 				kprintf("T_PAGEFLT: Warning %%rip == 0!\n");
531 				while (freeze_on_seg_fault) {
532 					tsleep(p, 0, "freeze", hz * 20);
533 				}
534 			}
535 			if (i == -1)
536 				goto out;
537 			if (i == 0)
538 				goto out;
539 
540 #if 0
541 			ucode = T_PAGEFLT;
542 #endif
543 			if (i == SIGSEGV)
544 				ucode = SEGV_MAPERR;
545 			else
546 				ucode = BUS_ADRERR;
547 			break;
548 
549 		case T_DIVIDE:		/* integer divide fault */
550 			ucode = FPE_INTDIV;
551 			i = SIGFPE;
552 			break;
553 
554 #if NISA > 0
555 		case T_NMI:
556 			MAKEMPSAFE(have_mplock);
557 			/* machine/parity/power fail/"kitchen sink" faults */
558 			if (isa_nmi(code) == 0) {
559 #ifdef DDB
560 				/*
561 				 * NMI can be hooked up to a pushbutton
562 				 * for debugging.
563 				 */
564 				if (ddb_on_nmi) {
565 					kprintf ("NMI ... going to debugger\n");
566 					kdb_trap(type, 0, frame);
567 				}
568 #endif /* DDB */
569 				goto out2;
570 			} else if (panic_on_nmi)
571 				panic("NMI indicates hardware failure");
572 			break;
573 #endif /* NISA > 0 */
574 
575 		case T_OFLOW:		/* integer overflow fault */
576 			ucode = FPE_INTOVF;
577 			i = SIGFPE;
578 			break;
579 
580 		case T_BOUND:		/* bounds check fault */
581 			ucode = FPE_FLTSUB;
582 			i = SIGFPE;
583 			break;
584 
585 		case T_DNA:
586 			/*
587 			 * Virtual kernel intercept - pass the DNA exception
588 			 * to the virtual kernel if it asked to handle it.
589 			 * This occurs when the virtual kernel is holding
590 			 * onto the FP context for a different emulated
591 			 * process then the one currently running.
592 			 *
593 			 * We must still call npxdna() since we may have
594 			 * saved FP state that the virtual kernel needs
595 			 * to hand over to a different emulated process.
596 			 */
597 			if (lp->lwp_vkernel && lp->lwp_vkernel->ve &&
598 			    (td->td_pcb->pcb_flags & FP_VIRTFP)
599 			) {
600 				npxdna();
601 				break;
602 			}
603 
604 			/*
605 			 * The kernel may have switched out the FP unit's
606 			 * state, causing the user process to take a fault
607 			 * when it tries to use the FP unit.  Restore the
608 			 * state here
609 			 */
610 			if (npxdna())
611 				goto out;
612 			i = SIGFPE;
613 			ucode = FPE_FPU_NP_TRAP;
614 			break;
615 
616 		case T_FPOPFLT:		/* FPU operand fetch fault */
617 			ucode = ILL_COPROC;
618 			i = SIGILL;
619 			break;
620 
621 		case T_XMMFLT:		/* SIMD floating-point exception */
622 			ucode = 0; /* XXX */
623 			i = SIGFPE;
624 			break;
625 		}
626 	} else {
627 		/* kernel trap */
628 
629 		switch (type) {
630 		case T_PAGEFLT:			/* page fault */
631 			trap_pfault(frame, FALSE);
632 			goto out2;
633 
634 		case T_DNA:
635 			/*
636 			 * The kernel is apparently using fpu for copying.
637 			 * XXX this should be fatal unless the kernel has
638 			 * registered such use.
639 			 */
640 			if (npxdna())
641 				goto out2;
642 			break;
643 
644 		case T_STKFLT:		/* stack fault */
645 			break;
646 
647 		case T_PROTFLT:		/* general protection fault */
648 		case T_SEGNPFLT:	/* segment not present fault */
649 			/*
650 			 * Invalid segment selectors and out of bounds
651 			 * %rip's and %rsp's can be set up in user mode.
652 			 * This causes a fault in kernel mode when the
653 			 * kernel tries to return to user mode.  We want
654 			 * to get this fault so that we can fix the
655 			 * problem here and not have to check all the
656 			 * selectors and pointers when the user changes
657 			 * them.
658 			 */
659 			if (mycpu->gd_intr_nesting_level == 0) {
660 				if (td->td_pcb->pcb_onfault) {
661 					frame->tf_rip = (register_t)
662 						td->td_pcb->pcb_onfault;
663 					goto out2;
664 				}
665 				if (frame->tf_rip == (long)doreti_iret) {
666 					frame->tf_rip = (long)doreti_iret_fault;
667 					goto out2;
668 				}
669 			}
670 			break;
671 
672 		case T_TSSFLT:
673 			/*
674 			 * PSL_NT can be set in user mode and isn't cleared
675 			 * automatically when the kernel is entered.  This
676 			 * causes a TSS fault when the kernel attempts to
677 			 * `iret' because the TSS link is uninitialized.  We
678 			 * want to get this fault so that we can fix the
679 			 * problem here and not every time the kernel is
680 			 * entered.
681 			 */
682 			if (frame->tf_rflags & PSL_NT) {
683 				frame->tf_rflags &= ~PSL_NT;
684 				goto out2;
685 			}
686 			break;
687 
688 		case T_TRCTRAP:	 /* trace trap */
689 #if 0
690 			if (frame->tf_rip == (int)IDTVEC(syscall)) {
691 				/*
692 				 * We've just entered system mode via the
693 				 * syscall lcall.  Continue single stepping
694 				 * silently until the syscall handler has
695 				 * saved the flags.
696 				 */
697 				goto out2;
698 			}
699 			if (frame->tf_rip == (int)IDTVEC(syscall) + 1) {
700 				/*
701 				 * The syscall handler has now saved the
702 				 * flags.  Stop single stepping it.
703 				 */
704 				frame->tf_rflags &= ~PSL_T;
705 				goto out2;
706 			}
707 #endif
708 
709 			/*
710 			 * Ignore debug register trace traps due to
711 			 * accesses in the user's address space, which
712 			 * can happen under several conditions such as
713 			 * if a user sets a watchpoint on a buffer and
714 			 * then passes that buffer to a system call.
715 			 * We still want to get TRCTRAPS for addresses
716 			 * in kernel space because that is useful when
717 			 * debugging the kernel.
718 			 */
719 #if JG
720 			if (user_dbreg_trap()) {
721 				/*
722 				 * Reset breakpoint bits because the
723 				 * processor doesn't
724 				 */
725 				/* XXX check upper bits here */
726 				load_dr6(rdr6() & 0xfffffff0);
727 				goto out2;
728 			}
729 #endif
730 			/*
731 			 * FALLTHROUGH (TRCTRAP kernel mode, kernel address)
732 			 */
733 		case T_BPTFLT:
734 			/*
735 			 * If DDB is enabled, let it handle the debugger trap.
736 			 * Otherwise, debugger traps "can't happen".
737 			 */
738 			ucode = TRAP_BRKPT;
739 #ifdef DDB
740 			MAKEMPSAFE(have_mplock);
741 			if (kdb_trap(type, 0, frame))
742 				goto out2;
743 #endif
744 			break;
745 
746 #if NISA > 0
747 		case T_NMI:
748 			MAKEMPSAFE(have_mplock);
749 			/* machine/parity/power fail/"kitchen sink" faults */
750 			if (isa_nmi(code) == 0) {
751 #ifdef DDB
752 				/*
753 				 * NMI can be hooked up to a pushbutton
754 				 * for debugging.
755 				 */
756 				if (ddb_on_nmi) {
757 					kprintf ("NMI ... going to debugger\n");
758 					kdb_trap(type, 0, frame);
759 				}
760 #endif /* DDB */
761 				goto out2;
762 			} else if (panic_on_nmi == 0)
763 				goto out2;
764 			/* FALL THROUGH */
765 #endif /* NISA > 0 */
766 		}
767 		MAKEMPSAFE(have_mplock);
768 		trap_fatal(frame, 0);
769 		goto out2;
770 	}
771 
772 	/*
773 	 * Virtual kernel intercept - if the fault is directly related to a
774 	 * VM context managed by a virtual kernel then let the virtual kernel
775 	 * handle it.
776 	 */
777 	if (lp->lwp_vkernel && lp->lwp_vkernel->ve) {
778 		vkernel_trap(lp, frame);
779 		goto out;
780 	}
781 
782 	/*
783 	 * Translate fault for emulators (e.g. Linux)
784 	 */
785 	if (*p->p_sysent->sv_transtrap)
786 		i = (*p->p_sysent->sv_transtrap)(i, type);
787 
788 	MAKEMPSAFE(have_mplock);
789 	trapsignal(lp, i, ucode);
790 
791 #ifdef DEBUG
792 	if (type <= MAX_TRAP_MSG) {
793 		uprintf("fatal process exception: %s",
794 			trap_msg[type]);
795 		if ((type == T_PAGEFLT) || (type == T_PROTFLT))
796 			uprintf(", fault VA = 0x%lx", frame->tf_addr);
797 		uprintf("\n");
798 	}
799 #endif
800 
801 out:
802 	userret(lp, frame, sticks);
803 	userexit(lp);
804 out2:	;
805 #ifdef SMP
806 	if (have_mplock)
807 		rel_mplock();
808 #endif
809 	if (p != NULL && lp != NULL)
810 		KTR_LOG(kernentry_trap_ret, p->p_pid, lp->lwp_tid);
811 #ifdef INVARIANTS
812 	KASSERT(crit_count == td->td_critcount,
813 		("trap: critical section count mismatch! %d/%d",
814 		crit_count, td->td_pri));
815 	KASSERT(curstop == td->td_toks_stop,
816 		("trap: extra tokens held after trap! %ld/%ld",
817 		curstop - &td->td_toks_base,
818 		td->td_toks_stop - &td->td_toks_base));
819 #endif
820 }
821 
822 static int
823 trap_pfault(struct trapframe *frame, int usermode)
824 {
825 	vm_offset_t va;
826 	struct vmspace *vm = NULL;
827 	vm_map_t map;
828 	int rv = 0;
829 	int fault_flags;
830 	vm_prot_t ftype;
831 	thread_t td = curthread;
832 	struct lwp *lp = td->td_lwp;
833 	struct proc *p;
834 
835 	va = trunc_page(frame->tf_addr);
836 	if (va >= VM_MIN_KERNEL_ADDRESS) {
837 		/*
838 		 * Don't allow user-mode faults in kernel address space.
839 		 */
840 		if (usermode) {
841 			fault_flags = -1;
842 			ftype = -1;
843 			goto nogo;
844 		}
845 
846 		map = &kernel_map;
847 	} else {
848 		/*
849 		 * This is a fault on non-kernel virtual memory.
850 		 * vm is initialized above to NULL. If curproc is NULL
851 		 * or curproc->p_vmspace is NULL the fault is fatal.
852 		 */
853 		if (lp != NULL)
854 			vm = lp->lwp_vmspace;
855 
856 		if (vm == NULL) {
857 			fault_flags = -1;
858 			ftype = -1;
859 			goto nogo;
860 		}
861 
862 		/*
863 		 * Debugging, try to catch kernel faults on the user address space when not inside
864 		 * on onfault (e.g. copyin/copyout) routine.
865 		 */
866 		if (usermode == 0 && (td->td_pcb == NULL || td->td_pcb->pcb_onfault == NULL)) {
867 			if (freeze_on_seg_fault) {
868 				kprintf("trap_pfault: user address fault from kernel mode "
869 					"%016lx\n", (long)frame->tf_addr);
870 				while (freeze_on_seg_fault) {
871 					    tsleep(&freeze_on_seg_fault, 0, "frzseg", hz * 20);
872 				}
873 			}
874 		}
875 		map = &vm->vm_map;
876 	}
877 
878 	/*
879 	 * PGEX_I is defined only if the execute disable bit capability is
880 	 * supported and enabled.
881 	 */
882 	if (frame->tf_err & PGEX_W)
883 		ftype = VM_PROT_WRITE;
884 #if JG
885 	else if ((frame->tf_err & PGEX_I) && pg_nx != 0)
886 		ftype = VM_PROT_EXECUTE;
887 #endif
888 	else
889 		ftype = VM_PROT_READ;
890 
891 	if (map != &kernel_map) {
892 		/*
893 		 * Keep swapout from messing with us during this
894 		 *	critical time.
895 		 */
896 		PHOLD(lp->lwp_proc);
897 
898 		/*
899 		 * Issue fault
900 		 */
901 		fault_flags = 0;
902 		if (usermode)
903 			fault_flags |= VM_FAULT_BURST;
904 		if (ftype & VM_PROT_WRITE)
905 			fault_flags |= VM_FAULT_DIRTY;
906 		else
907 			fault_flags |= VM_FAULT_NORMAL;
908 		rv = vm_fault(map, va, ftype, fault_flags);
909 
910 		PRELE(lp->lwp_proc);
911 	} else {
912 		/*
913 		 * Don't have to worry about process locking or stacks
914 		 * in the kernel.
915 		 */
916 		fault_flags = VM_FAULT_NORMAL;
917 		rv = vm_fault(map, va, ftype, VM_FAULT_NORMAL);
918 	}
919 
920 	if (rv == KERN_SUCCESS)
921 		return (0);
922 nogo:
923 	if (!usermode) {
924 		if (td->td_gd->gd_intr_nesting_level == 0 &&
925 		    td->td_pcb->pcb_onfault) {
926 			frame->tf_rip = (register_t)td->td_pcb->pcb_onfault;
927 			return (0);
928 		}
929 		trap_fatal(frame, frame->tf_addr);
930 		return (-1);
931 	}
932 
933 	/*
934 	 * NOTE: on x86_64 we have a tf_addr field in the trapframe, no
935 	 * kludge is needed to pass the fault address to signal handlers.
936 	 */
937 	p = td->td_proc;
938 	if (td->td_lwp->lwp_vkernel == NULL) {
939 		if (bootverbose || freeze_on_seg_fault || ddb_on_seg_fault) {
940 			kprintf("seg-fault ft=%04x ff=%04x addr=%p rip=%p "
941 			    "pid=%d cpu=%d p_comm=%s\n",
942 			    ftype, fault_flags,
943 			    (void *)frame->tf_addr,
944 			    (void *)frame->tf_rip,
945 			    p->p_pid, mycpu->gd_cpuid, p->p_comm);
946 		}
947 #ifdef DDB
948 		while (freeze_on_seg_fault) {
949 			tsleep(p, 0, "freeze", hz * 20);
950 		}
951 		if (ddb_on_seg_fault)
952 			Debugger("ddb_on_seg_fault");
953 #endif
954 	}
955 
956 	return((rv == KERN_PROTECTION_FAILURE) ? SIGBUS : SIGSEGV);
957 }
958 
959 static void
960 trap_fatal(struct trapframe *frame, vm_offset_t eva)
961 {
962 	int code, ss;
963 	u_int type;
964 	long rsp;
965 	struct soft_segment_descriptor softseg;
966 	char *msg;
967 
968 	code = frame->tf_err;
969 	type = frame->tf_trapno;
970 	sdtossd(&gdt[IDXSEL(frame->tf_cs & 0xffff)], &softseg);
971 
972 	if (type <= MAX_TRAP_MSG)
973 		msg = trap_msg[type];
974 	else
975 		msg = "UNKNOWN";
976 	kprintf("\n\nFatal trap %d: %s while in %s mode\n", type, msg,
977 	    ISPL(frame->tf_cs) == SEL_UPL ? "user" : "kernel");
978 #ifdef SMP
979 	/* three separate prints in case of a trap on an unmapped page */
980 	kprintf("cpuid = %d; ", mycpu->gd_cpuid);
981 	kprintf("lapic->id = %08x\n", lapic->id);
982 #endif
983 	if (type == T_PAGEFLT) {
984 		kprintf("fault virtual address	= 0x%lx\n", eva);
985 		kprintf("fault code		= %s %s %s, %s\n",
986 			code & PGEX_U ? "user" : "supervisor",
987 			code & PGEX_W ? "write" : "read",
988 			code & PGEX_I ? "instruction" : "data",
989 			code & PGEX_P ? "protection violation" : "page not present");
990 	}
991 	kprintf("instruction pointer	= 0x%lx:0x%lx\n",
992 	       frame->tf_cs & 0xffff, frame->tf_rip);
993         if (ISPL(frame->tf_cs) == SEL_UPL) {
994 		ss = frame->tf_ss & 0xffff;
995 		rsp = frame->tf_rsp;
996 	} else {
997 		ss = GSEL(GDATA_SEL, SEL_KPL);
998 		rsp = (long)&frame->tf_rsp;
999 	}
1000 	kprintf("stack pointer	        = 0x%x:0x%lx\n", ss, rsp);
1001 	kprintf("frame pointer	        = 0x%x:0x%lx\n", ss, frame->tf_rbp);
1002 	kprintf("code segment		= base 0x%lx, limit 0x%lx, type 0x%x\n",
1003 	       softseg.ssd_base, softseg.ssd_limit, softseg.ssd_type);
1004 	kprintf("			= DPL %d, pres %d, long %d, def32 %d, gran %d\n",
1005 	       softseg.ssd_dpl, softseg.ssd_p, softseg.ssd_long, softseg.ssd_def32,
1006 	       softseg.ssd_gran);
1007 	kprintf("processor eflags	= ");
1008 	if (frame->tf_rflags & PSL_T)
1009 		kprintf("trace trap, ");
1010 	if (frame->tf_rflags & PSL_I)
1011 		kprintf("interrupt enabled, ");
1012 	if (frame->tf_rflags & PSL_NT)
1013 		kprintf("nested task, ");
1014 	if (frame->tf_rflags & PSL_RF)
1015 		kprintf("resume, ");
1016 	kprintf("IOPL = %ld\n", (frame->tf_rflags & PSL_IOPL) >> 12);
1017 	kprintf("current process		= ");
1018 	if (curproc) {
1019 		kprintf("%lu\n",
1020 		    (u_long)curproc->p_pid);
1021 	} else {
1022 		kprintf("Idle\n");
1023 	}
1024 	kprintf("current thread          = pri %d ", curthread->td_pri);
1025 	if (curthread->td_critcount)
1026 		kprintf("(CRIT)");
1027 	kprintf("\n");
1028 
1029 #ifdef DDB
1030 	if ((debugger_on_panic || db_active) && kdb_trap(type, code, frame))
1031 		return;
1032 #endif
1033 	kprintf("trap number		= %d\n", type);
1034 	if (type <= MAX_TRAP_MSG)
1035 		panic("%s", trap_msg[type]);
1036 	else
1037 		panic("unknown/reserved trap");
1038 }
1039 
1040 /*
1041  * Double fault handler. Called when a fault occurs while writing
1042  * a frame for a trap/exception onto the stack. This usually occurs
1043  * when the stack overflows (such is the case with infinite recursion,
1044  * for example).
1045  */
1046 static __inline
1047 int
1048 in_kstack_guard(register_t rptr)
1049 {
1050 	thread_t td = curthread;
1051 
1052 	if ((char *)rptr >= td->td_kstack &&
1053 	    (char *)rptr < td->td_kstack + PAGE_SIZE) {
1054 		return 1;
1055 	}
1056 	return 0;
1057 }
1058 
1059 void
1060 dblfault_handler(struct trapframe *frame)
1061 {
1062 	thread_t td = curthread;
1063 
1064 	if (in_kstack_guard(frame->tf_rsp) || in_kstack_guard(frame->tf_rbp)) {
1065 		kprintf("DOUBLE FAULT - KERNEL STACK GUARD HIT!\n");
1066 		if (in_kstack_guard(frame->tf_rsp))
1067 			frame->tf_rsp = (register_t)(td->td_kstack + PAGE_SIZE);
1068 		if (in_kstack_guard(frame->tf_rbp))
1069 			frame->tf_rbp = (register_t)(td->td_kstack + PAGE_SIZE);
1070 	} else {
1071 		kprintf("DOUBLE FAULT\n");
1072 	}
1073 	kprintf("\nFatal double fault\n");
1074 	kprintf("rip = 0x%lx\n", frame->tf_rip);
1075 	kprintf("rsp = 0x%lx\n", frame->tf_rsp);
1076 	kprintf("rbp = 0x%lx\n", frame->tf_rbp);
1077 #ifdef SMP
1078 	/* three separate prints in case of a trap on an unmapped page */
1079 	kprintf("cpuid = %d; ", mycpu->gd_cpuid);
1080 	kprintf("lapic->id = %08x\n", lapic->id);
1081 #endif
1082 	panic("double fault");
1083 }
1084 
1085 /*
1086  * syscall2 -	MP aware system call request C handler
1087  *
1088  * A system call is essentially treated as a trap except that the
1089  * MP lock is not held on entry or return.  We are responsible for
1090  * obtaining the MP lock if necessary and for handling ASTs
1091  * (e.g. a task switch) prior to return.
1092  *
1093  * MPSAFE
1094  */
1095 void
1096 syscall2(struct trapframe *frame)
1097 {
1098 	struct thread *td = curthread;
1099 	struct proc *p = td->td_proc;
1100 	struct lwp *lp = td->td_lwp;
1101 	caddr_t params;
1102 	struct sysent *callp;
1103 	register_t orig_tf_rflags;
1104 	int sticks;
1105 	int error;
1106 	int narg;
1107 #ifdef INVARIANTS
1108 	int crit_count = td->td_critcount;
1109 #endif
1110 #ifdef SMP
1111 	int have_mplock = 0;
1112 #endif
1113 	register_t *argp;
1114 	u_int code;
1115 	int reg, regcnt;
1116 	union sysunion args;
1117 	register_t *argsdst;
1118 
1119 	mycpu->gd_cnt.v_syscall++;
1120 
1121 #ifdef DIAGNOSTIC
1122 	if (ISPL(frame->tf_cs) != SEL_UPL) {
1123 		get_mplock();
1124 		panic("syscall");
1125 		/* NOT REACHED */
1126 	}
1127 #endif
1128 
1129 	KTR_LOG(kernentry_syscall, p->p_pid, lp->lwp_tid,
1130 		frame->tf_rax);
1131 
1132 	userenter(td, p);	/* lazy raise our priority */
1133 
1134 	reg = 0;
1135 	regcnt = 6;
1136 	/*
1137 	 * Misc
1138 	 */
1139 	sticks = (int)td->td_sticks;
1140 	orig_tf_rflags = frame->tf_rflags;
1141 
1142 	/*
1143 	 * Virtual kernel intercept - if a VM context managed by a virtual
1144 	 * kernel issues a system call the virtual kernel handles it, not us.
1145 	 * Restore the virtual kernel context and return from its system
1146 	 * call.  The current frame is copied out to the virtual kernel.
1147 	 */
1148 	if (lp->lwp_vkernel && lp->lwp_vkernel->ve) {
1149 		vkernel_trap(lp, frame);
1150 		error = EJUSTRETURN;
1151 		goto out;
1152 	}
1153 
1154 	/*
1155 	 * Get the system call parameters and account for time
1156 	 */
1157 	KASSERT(lp->lwp_md.md_regs == frame,
1158 		("Frame mismatch %p %p", lp->lwp_md.md_regs, frame));
1159 	params = (caddr_t)frame->tf_rsp + sizeof(register_t);
1160 	code = frame->tf_rax;
1161 
1162 	if (p->p_sysent->sv_prepsyscall) {
1163 		(*p->p_sysent->sv_prepsyscall)(
1164 			frame, (int *)(&args.nosys.sysmsg + 1),
1165 			&code, &params);
1166 	} else {
1167 		if (code == SYS_syscall || code == SYS___syscall) {
1168 			code = frame->tf_rdi;
1169 			reg++;
1170 			regcnt--;
1171 		}
1172 	}
1173 
1174  	if (p->p_sysent->sv_mask)
1175  		code &= p->p_sysent->sv_mask;
1176 
1177 	if (code >= p->p_sysent->sv_size)
1178 		callp = &p->p_sysent->sv_table[0];
1179 	else
1180 		callp = &p->p_sysent->sv_table[code];
1181 
1182 	narg = callp->sy_narg & SYF_ARGMASK;
1183 
1184 	/*
1185 	 * On x86_64 we get up to six arguments in registers. The rest are
1186 	 * on the stack. The first six members of 'struct trapframe' happen
1187 	 * to be the registers used to pass arguments, in exactly the right
1188 	 * order.
1189 	 */
1190 	argp = &frame->tf_rdi;
1191 	argp += reg;
1192 	argsdst = (register_t *)(&args.nosys.sysmsg + 1);
1193 	/*
1194 	 * JG can we overflow the space pointed to by 'argsdst'
1195 	 * either with 'bcopy' or with 'copyin'?
1196 	 */
1197 	bcopy(argp, argsdst, sizeof(register_t) * regcnt);
1198 	/*
1199 	 * copyin is MP aware, but the tracing code is not
1200 	 */
1201 	if (narg > regcnt) {
1202 		KASSERT(params != NULL, ("copyin args with no params!"));
1203 		error = copyin(params, &argsdst[regcnt],
1204 	    		(narg - regcnt) * sizeof(register_t));
1205 		if (error) {
1206 #ifdef KTRACE
1207 			if (KTRPOINT(td, KTR_SYSCALL)) {
1208 				MAKEMPSAFE(have_mplock);
1209 
1210 				ktrsyscall(lp, code, narg,
1211 					(void *)(&args.nosys.sysmsg + 1));
1212 			}
1213 #endif
1214 			goto bad;
1215 		}
1216 	}
1217 
1218 #ifdef KTRACE
1219 	if (KTRPOINT(td, KTR_SYSCALL)) {
1220 		MAKEMPSAFE(have_mplock);
1221 		ktrsyscall(lp, code, narg, (void *)(&args.nosys.sysmsg + 1));
1222 	}
1223 #endif
1224 
1225 	/*
1226 	 * Default return value is 0 (will be copied to %rax).  Double-value
1227 	 * returns use %rax and %rdx.  %rdx is left unchanged for system
1228 	 * calls which return only one result.
1229 	 */
1230 	args.sysmsg_fds[0] = 0;
1231 	args.sysmsg_fds[1] = frame->tf_rdx;
1232 
1233 	/*
1234 	 * The syscall might manipulate the trap frame. If it does it
1235 	 * will probably return EJUSTRETURN.
1236 	 */
1237 	args.sysmsg_frame = frame;
1238 
1239 	STOPEVENT(p, S_SCE, narg);	/* MP aware */
1240 
1241 	/*
1242 	 * NOTE: All system calls run MPSAFE now.  The system call itself
1243 	 *	 is responsible for getting the MP lock.
1244 	 */
1245 #ifdef SYSCALL_DEBUG
1246 	uint64_t tscval = rdtsc();
1247 #endif
1248 	error = (*callp->sy_call)(&args);
1249 #ifdef SYSCALL_DEBUG
1250 	tscval = rdtsc() - tscval;
1251 	tscval = tscval * 1000000 / tsc_frequency;
1252 	if (SysCallsWorstCase[code] < tscval)
1253 		SysCallsWorstCase[code] = tscval;
1254 #endif
1255 
1256 out:
1257 	/*
1258 	 * MP SAFE (we may or may not have the MP lock at this point)
1259 	 */
1260 	//kprintf("SYSMSG %d ", error);
1261 	switch (error) {
1262 	case 0:
1263 		/*
1264 		 * Reinitialize proc pointer `p' as it may be different
1265 		 * if this is a child returning from fork syscall.
1266 		 */
1267 		p = curproc;
1268 		lp = curthread->td_lwp;
1269 		frame->tf_rax = args.sysmsg_fds[0];
1270 		frame->tf_rdx = args.sysmsg_fds[1];
1271 		frame->tf_rflags &= ~PSL_C;
1272 		break;
1273 	case ERESTART:
1274 		/*
1275 		 * Reconstruct pc, we know that 'syscall' is 2 bytes.
1276 		 * We have to do a full context restore so that %r10
1277 		 * (which was holding the value of %rcx) is restored for
1278 		 * the next iteration.
1279 		 */
1280 		if (frame->tf_err != 0 && frame->tf_err != 2)
1281 			kprintf("lp %s:%d frame->tf_err is weird %ld\n",
1282 				td->td_comm, lp->lwp_proc->p_pid, frame->tf_err);
1283 		frame->tf_rip -= frame->tf_err;
1284 		frame->tf_r10 = frame->tf_rcx;
1285 		break;
1286 	case EJUSTRETURN:
1287 		break;
1288 	case EASYNC:
1289 		panic("Unexpected EASYNC return value (for now)");
1290 	default:
1291 bad:
1292 		if (p->p_sysent->sv_errsize) {
1293 			if (error >= p->p_sysent->sv_errsize)
1294 				error = -1;	/* XXX */
1295 			else
1296 				error = p->p_sysent->sv_errtbl[error];
1297 		}
1298 		frame->tf_rax = error;
1299 		frame->tf_rflags |= PSL_C;
1300 		break;
1301 	}
1302 
1303 	/*
1304 	 * Traced syscall.  trapsignal() is not MP aware.
1305 	 */
1306 	if (orig_tf_rflags & PSL_T) {
1307 		MAKEMPSAFE(have_mplock);
1308 		frame->tf_rflags &= ~PSL_T;
1309 		trapsignal(lp, SIGTRAP, TRAP_TRACE);
1310 	}
1311 
1312 	/*
1313 	 * Handle reschedule and other end-of-syscall issues
1314 	 */
1315 	userret(lp, frame, sticks);
1316 
1317 #ifdef KTRACE
1318 	if (KTRPOINT(td, KTR_SYSRET)) {
1319 		MAKEMPSAFE(have_mplock);
1320 		ktrsysret(lp, code, error, args.sysmsg_result);
1321 	}
1322 #endif
1323 
1324 	/*
1325 	 * This works because errno is findable through the
1326 	 * register set.  If we ever support an emulation where this
1327 	 * is not the case, this code will need to be revisited.
1328 	 */
1329 	STOPEVENT(p, S_SCX, code);
1330 
1331 	userexit(lp);
1332 #ifdef SMP
1333 	/*
1334 	 * Release the MP lock if we had to get it
1335 	 */
1336 	if (have_mplock)
1337 		rel_mplock();
1338 #endif
1339 	KTR_LOG(kernentry_syscall_ret, p->p_pid, lp->lwp_tid, error);
1340 #ifdef INVARIANTS
1341 	KASSERT(crit_count == td->td_critcount,
1342 		("syscall: critical section count mismatch! %d/%d",
1343 		crit_count, td->td_pri));
1344 	KASSERT(&td->td_toks_base == td->td_toks_stop,
1345 		("syscall: extra tokens held after trap! %ld",
1346 		td->td_toks_stop - &td->td_toks_base));
1347 #endif
1348 }
1349 
1350 /*
1351  * NOTE: mplock not held at any point
1352  */
1353 void
1354 fork_return(struct lwp *lp, struct trapframe *frame)
1355 {
1356 	frame->tf_rax = 0;		/* Child returns zero */
1357 	frame->tf_rflags &= ~PSL_C;	/* success */
1358 	frame->tf_rdx = 1;
1359 
1360 	generic_lwp_return(lp, frame);
1361 	KTR_LOG(kernentry_fork_ret, lp->lwp_proc->p_pid, lp->lwp_tid);
1362 }
1363 
1364 /*
1365  * Simplified back end of syscall(), used when returning from fork()
1366  * directly into user mode.
1367  *
1368  * This code will return back into the fork trampoline code which then
1369  * runs doreti.
1370  *
1371  * NOTE: The mplock is not held at any point.
1372  */
1373 void
1374 generic_lwp_return(struct lwp *lp, struct trapframe *frame)
1375 {
1376 	struct proc *p = lp->lwp_proc;
1377 
1378 	/*
1379 	 * Newly forked processes are given a kernel priority.  We have to
1380 	 * adjust the priority to a normal user priority and fake entry
1381 	 * into the kernel (call userenter()) to install a passive release
1382 	 * function just in case userret() decides to stop the process.  This
1383 	 * can occur when ^Z races a fork.  If we do not install the passive
1384 	 * release function the current process designation will not be
1385 	 * released when the thread goes to sleep.
1386 	 */
1387 	lwkt_setpri_self(TDPRI_USER_NORM);
1388 	userenter(lp->lwp_thread, p);
1389 	userret(lp, frame, 0);
1390 #ifdef KTRACE
1391 	if (KTRPOINT(lp->lwp_thread, KTR_SYSRET))
1392 		ktrsysret(lp, SYS_fork, 0, 0);
1393 #endif
1394 	lp->lwp_flags |= LWP_PASSIVE_ACQ;
1395 	userexit(lp);
1396 	lp->lwp_flags &= ~LWP_PASSIVE_ACQ;
1397 }
1398 
1399 /*
1400  * If PGEX_FPFAULT is set then set FP_VIRTFP in the PCB to force a T_DNA
1401  * fault (which is then passed back to the virtual kernel) if an attempt is
1402  * made to use the FP unit.
1403  *
1404  * XXX this is a fairly big hack.
1405  */
1406 void
1407 set_vkernel_fp(struct trapframe *frame)
1408 {
1409 	struct thread *td = curthread;
1410 
1411 	if (frame->tf_xflags & PGEX_FPFAULT) {
1412 		td->td_pcb->pcb_flags |= FP_VIRTFP;
1413 		if (mdcpu->gd_npxthread == td)
1414 			npxexit();
1415 	} else {
1416 		td->td_pcb->pcb_flags &= ~FP_VIRTFP;
1417 	}
1418 }
1419 
1420 /*
1421  * Called from vkernel_trap() to fixup the vkernel's syscall
1422  * frame for vmspace_ctl() return.
1423  */
1424 void
1425 cpu_vkernel_trap(struct trapframe *frame, int error)
1426 {
1427 	frame->tf_rax = error;
1428 	if (error)
1429 		frame->tf_rflags |= PSL_C;
1430 	else
1431 		frame->tf_rflags &= ~PSL_C;
1432 }
1433