1 /*
2  * Copyright (c) 2006 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 #include <sys/types.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/stat.h>
39 #include <sys/mman.h>
40 #include <sys/cons.h>
41 #include <sys/random.h>
42 #include <sys/vkernel.h>
43 #include <sys/tls.h>
44 #include <sys/reboot.h>
45 #include <sys/proc.h>
46 #include <sys/msgbuf.h>
47 #include <sys/vmspace.h>
48 #include <sys/socket.h>
49 #include <sys/sockio.h>
50 #include <sys/sysctl.h>
51 #include <sys/un.h>
52 #include <vm/vm_page.h>
53 #include <vm/vm_map.h>
54 #include <sys/mplock2.h>
55 #include <sys/wait.h>
56 #include <sys/vmm.h>
57 
58 #include <machine/cpu.h>
59 #include <machine/globaldata.h>
60 #include <machine/tls.h>
61 #include <machine/md_var.h>
62 #include <machine/vmparam.h>
63 #include <cpu/specialreg.h>
64 
65 #include <net/if.h>
66 #include <net/if_arp.h>
67 #include <net/ethernet.h>
68 #include <net/bridge/if_bridgevar.h>
69 #include <netinet/in.h>
70 #include <arpa/inet.h>
71 #include <net/if_var.h>
72 
73 #include <stdio.h>
74 #include <stdlib.h>
75 #include <stdarg.h>
76 #include <stdbool.h>
77 #include <unistd.h>
78 #include <fcntl.h>
79 #include <string.h>
80 #include <err.h>
81 #include <errno.h>
82 #include <assert.h>
83 #include <sysexits.h>
84 
85 #define EX_VKERNEL_REBOOT	32
86 
87 vm_paddr_t phys_avail[16];
88 vm_paddr_t Maxmem;
89 vm_paddr_t Maxmem_bytes;
90 long physmem;
91 int MemImageFd = -1;
92 struct vkdisk_info DiskInfo[VKDISK_MAX];
93 int DiskNum;
94 struct vknetif_info NetifInfo[VKNETIF_MAX];
95 int NetifNum;
96 char *pid_file;
97 vm_offset_t KvaStart;
98 vm_offset_t KvaEnd;
99 vm_offset_t KvaSize;
100 vm_offset_t virtual_start;
101 vm_offset_t virtual_end;
102 vm_offset_t virtual2_start;
103 vm_offset_t virtual2_end;
104 vm_offset_t kernel_vm_end;
105 vm_offset_t crashdumpmap;
106 vm_offset_t clean_sva;
107 vm_offset_t clean_eva;
108 struct msgbuf *msgbufp;
109 caddr_t ptvmmap;
110 vpte_t	*KernelPTD;
111 vpte_t	*KernelPTA;	/* Warning: Offset for direct VA translation */
112 void *dmap_min_address;
113 void *vkernel_stack;
114 u_int cpu_feature;	/* XXX */
115 int tsc_present;
116 int tsc_invariant;
117 int tsc_mpsync;
118 int64_t tsc_frequency;
119 int optcpus;		/* number of cpus - see mp_start() */
120 int lwp_cpu_lock;	/* if/how to lock virtual CPUs to real CPUs */
121 int real_ncpus;		/* number of real CPUs */
122 int next_cpu;		/* next real CPU to lock a virtual CPU to */
123 int vkernel_b_arg;	/* no of logical CPU bits - only SMP */
124 int vkernel_B_arg;	/* no of core bits - only SMP */
125 int vmm_enabled;	/* VMM HW assisted enable */
126 struct privatespace *CPU_prvspace;
127 
128 extern uint64_t KPML4phys;	/* phys addr of kernel level 4 */
129 
130 static struct trapframe proc0_tf;
131 static void *proc0paddr;
132 
133 static void init_sys_memory(char *imageFile);
134 static void init_kern_memory(void);
135 static void init_kern_memory_vmm(void);
136 static void init_globaldata(void);
137 static void init_vkernel(void);
138 static void init_disk(char *diskExp[], int diskFileNum, enum vkdisk_type type);
139 static void init_netif(char *netifExp[], int netifFileNum);
140 static void writepid(void);
141 static void cleanpid(void);
142 static int unix_connect(const char *path);
143 static void usage_err(const char *ctl, ...);
144 static void usage_help(_Bool);
145 static void init_locks(void);
146 static void handle_term(int);
147 
148 pid_t childpid;
149 
150 static int save_ac;
151 static char **save_av;
152 
153 /*
154  * Kernel startup for virtual kernels - standard main()
155  */
156 int main(int ac, char **av) {
157 	char *memImageFile = NULL;
158 	char *netifFile[VKNETIF_MAX];
159 	char *diskFile[VKDISK_MAX];
160 	char *cdFile[VKDISK_MAX];
161 	char *suffix;
162 	char *endp;
163 	char *tmp;
164 	char *tok;
165 	int netifFileNum = 0;
166 	int diskFileNum = 0;
167 	int cdFileNum = 0;
168 	int bootOnDisk = -1;	/* set below to vcd (0) or vkd (1) */
169 	int c;
170 	int i;
171 	int j;
172 	int n;
173 	int isq;
174 	int pos;
175 	int eflag;
176 	int dflag = 0;		/* disable vmm */
177 	int real_vkernel_enable;
178 	int supports_sse;
179 	uint32_t mxcsr_mask;
180 	size_t vsize;
181 	size_t msize;
182 	size_t kenv_size;
183 	size_t kenv_size2;
184 	int status;
185 	struct sigaction sa;
186 
187 	/*
188 	 * Currently a bad hack but rtld-elf needs LD_SHAREDLIB_BASE to
189 	 * be set to force it to mmap() shared libraries into low memory,
190 	 * so our module loader can link against the related symbols.
191 	 */
192 	if (getenv("LD_SHAREDLIB_BASE") == NULL) {
193 		setenv("LD_SHAREDLIB_BASE", "0x10000000", 1);
194 		execv(av[0], av);
195 		fprintf(stderr, "Must run %s with full path\n", av[0]);
196 		exit(1);
197 	}
198 
199 	while ((childpid = fork()) != 0) {
200 		/* Ignore signals */
201 		bzero(&sa, sizeof(sa));
202 		sigemptyset(&sa.sa_mask);
203 		sa.sa_handler = SIG_IGN;
204 		sigaction(SIGINT, &sa, NULL);
205 		sigaction(SIGQUIT, &sa, NULL);
206 		sigaction(SIGHUP, &sa, NULL);
207 
208 		/*
209 		 * Forward SIGTERM to the child so that
210 		 * the shutdown process initiates correctly.
211 		 */
212 		sa.sa_handler = handle_term;
213 		sigaction(SIGTERM, &sa, NULL);
214 
215 		/*
216 		 * Wait for child to terminate, exit if
217 		 * someone stole our child.
218 		 */
219 		while (waitpid(childpid, &status, 0) != childpid) {
220 			if (errno == ECHILD)
221 				exit(1);
222 		}
223 		if (WEXITSTATUS(status) != EX_VKERNEL_REBOOT)
224 			return 0;
225 	}
226 
227 	/*
228 	 * Starting for real
229 	 */
230 	save_ac = ac;
231 	save_av = av;
232 	eflag = 0;
233 	pos = 0;
234 	kenv_size = 0;
235 	/*
236 	 * Process options
237 	 */
238 	kernel_mem_readonly = 1;
239 	optcpus = 2;
240 	vkernel_b_arg = 0;
241 	vkernel_B_arg = 0;
242 	lwp_cpu_lock = LCL_NONE;
243 
244 	real_vkernel_enable = 0;
245 	vsize = sizeof(real_vkernel_enable);
246 	sysctlbyname("vm.vkernel_enable", &real_vkernel_enable, &vsize, NULL,0);
247 
248 	if (real_vkernel_enable == 0) {
249 		errx(1, "vm.vkernel_enable is 0, must be set "
250 			"to 1 to execute a vkernel!");
251 	}
252 
253 	real_ncpus = 1;
254 	vsize = sizeof(real_ncpus);
255 	sysctlbyname("hw.ncpu", &real_ncpus, &vsize, NULL, 0);
256 
257 	if (ac < 2)
258 		usage_help(false);
259 
260 	while ((c = getopt(ac, av, "c:hsvl:m:n:r:e:i:p:I:Ud")) != -1) {
261 		switch(c) {
262 		case 'd':
263 			dflag = 1;
264 			break;
265 		case 'e':
266 			/*
267 			 * name=value:name=value:name=value...
268 			 * name="value"...
269 			 *
270 			 * Allow values to be quoted but note that shells
271 			 * may remove the quotes, so using this feature
272 			 * to embed colons may require a backslash.
273 			 */
274 			n = strlen(optarg);
275 			isq = 0;
276 
277 			if (eflag == 0) {
278 				kenv_size = n + 2;
279 				kern_envp = malloc(kenv_size);
280 				if (kern_envp == NULL)
281 					errx(1, "Couldn't allocate %zd bytes for kern_envp", kenv_size);
282 			} else {
283 				kenv_size2 = kenv_size + n + 1;
284 				pos = kenv_size - 1;
285 				if ((tmp = realloc(kern_envp, kenv_size2)) == NULL)
286 					errx(1, "Couldn't reallocate %zd bytes for kern_envp", kenv_size2);
287 				kern_envp = tmp;
288 				kenv_size = kenv_size2;
289 			}
290 
291 			for (i = 0, j = pos; i < n; ++i) {
292 				if (optarg[i] == '"')
293 					isq ^= 1;
294 				else if (optarg[i] == '\'')
295 					isq ^= 2;
296 				else if (isq == 0 && optarg[i] == ':')
297 					kern_envp[j++] = 0;
298 				else
299 					kern_envp[j++] = optarg[i];
300 			}
301 			kern_envp[j++] = 0;
302 			kern_envp[j++] = 0;
303 			eflag++;
304 			break;
305 		case 's':
306 			boothowto |= RB_SINGLE;
307 			break;
308 		case 'v':
309 			bootverbose = 1;
310 			break;
311 		case 'i':
312 			memImageFile = optarg;
313 			break;
314 		case 'I':
315 			if (netifFileNum < VKNETIF_MAX)
316 				netifFile[netifFileNum++] = strdup(optarg);
317 			break;
318 		case 'r':
319 			if (bootOnDisk < 0)
320 				bootOnDisk = 1;
321 			if (diskFileNum + cdFileNum < VKDISK_MAX)
322 				diskFile[diskFileNum++] = strdup(optarg);
323 			break;
324 		case 'c':
325 			if (bootOnDisk < 0)
326 				bootOnDisk = 0;
327 			if (diskFileNum + cdFileNum < VKDISK_MAX)
328 				cdFile[cdFileNum++] = strdup(optarg);
329 			break;
330 		case 'm':
331 			Maxmem_bytes = strtoull(optarg, &suffix, 0);
332 			if (suffix) {
333 				switch(*suffix) {
334 				case 'g':
335 				case 'G':
336 					Maxmem_bytes <<= 30;
337 					break;
338 				case 'm':
339 				case 'M':
340 					Maxmem_bytes <<= 20;
341 					break;
342 				case 'k':
343 				case 'K':
344 					Maxmem_bytes <<= 10;
345 					break;
346 				default:
347 					Maxmem_bytes = 0;
348 					usage_err("Bad maxmem option");
349 					/* NOT REACHED */
350 					break;
351 				}
352 			}
353 			break;
354 		case 'l':
355 			next_cpu = -1;
356 			if (strncmp("map", optarg, 3) == 0) {
357 				lwp_cpu_lock = LCL_PER_CPU;
358 				if (optarg[3] == ',') {
359 					next_cpu = strtol(optarg+4, &endp, 0);
360 					if (*endp != '\0')
361 						usage_err("Bad target CPU number at '%s'", endp);
362 				} else {
363 					next_cpu = 0;
364 				}
365 				if (next_cpu < 0 || next_cpu > real_ncpus - 1)
366 					usage_err("Bad target CPU, valid range is 0-%d", real_ncpus - 1);
367 			} else if (strncmp("any", optarg, 3) == 0) {
368 				lwp_cpu_lock = LCL_NONE;
369 			} else {
370 				lwp_cpu_lock = LCL_SINGLE_CPU;
371 				next_cpu = strtol(optarg, &endp, 0);
372 				if (*endp != '\0')
373 					usage_err("Bad target CPU number at '%s'", endp);
374 				if (next_cpu < 0 || next_cpu > real_ncpus - 1)
375 					usage_err("Bad target CPU, valid range is 0-%d", real_ncpus - 1);
376 			}
377 			break;
378 		case 'n':
379 			/*
380 			 * This value is set up by mp_start(), don't just
381 			 * set ncpus here.
382 			 */
383 			tok = strtok(optarg, ":");
384 			optcpus = strtol(tok, NULL, 0);
385 			if (optcpus < 1 || optcpus > MAXCPU)
386 				usage_err("Bad ncpus, valid range is 1-%d", MAXCPU);
387 
388 			/* :lbits argument */
389 			tok = strtok(NULL, ":");
390 			if (tok != NULL) {
391 				vkernel_b_arg = strtol(tok, NULL, 0);
392 
393 				/* :cbits argument */
394 				tok = strtok(NULL, ":");
395 				if (tok != NULL) {
396 					vkernel_B_arg = strtol(tok, NULL, 0);
397 				}
398 
399 			}
400 			break;
401 		case 'p':
402 			pid_file = optarg;
403 			break;
404 		case 'U':
405 			kernel_mem_readonly = 0;
406 			break;
407 		case 'h':
408 			usage_help(true);
409 			break;
410 		default:
411 			usage_help(false);
412 		}
413 	}
414 
415 	/*
416 	 * Check VMM presence
417 	 */
418 	vsize = sizeof(vmm_enabled);
419 	sysctlbyname("hw.vmm.enable", &vmm_enabled, &vsize, NULL, 0);
420 	vmm_enabled = (vmm_enabled && !dflag);
421 
422 	writepid();
423 	cpu_disable_intr();
424 	if (vmm_enabled) {
425 		/* use a MAP_ANON directly */
426 		init_kern_memory_vmm();
427 	} else {
428 		init_sys_memory(memImageFile);
429 		init_kern_memory();
430 	}
431 	init_globaldata();
432 	init_vkernel();
433 	setrealcpu();
434 	init_kqueue();
435 
436 	vmm_guest = VMM_GUEST_VKERNEL;
437 
438 	/*
439 	 * Check TSC
440 	 */
441 	vsize = sizeof(tsc_present);
442 	sysctlbyname("hw.tsc_present", &tsc_present, &vsize, NULL, 0);
443 	vsize = sizeof(tsc_invariant);
444 	sysctlbyname("hw.tsc_invariant", &tsc_invariant, &vsize, NULL, 0);
445 	vsize = sizeof(tsc_mpsync);
446 	sysctlbyname("hw.tsc_mpsync", &tsc_mpsync, &vsize, NULL, 0);
447 	vsize = sizeof(tsc_frequency);
448 	sysctlbyname("hw.tsc_frequency", &tsc_frequency, &vsize, NULL, 0);
449 	if (tsc_present)
450 		cpu_feature |= CPUID_TSC;
451 
452 	/*
453 	 * Check SSE
454 	 */
455 	vsize = sizeof(supports_sse);
456 	supports_sse = 0;
457 	sysctlbyname("hw.instruction_sse", &supports_sse, &vsize, NULL, 0);
458 	sysctlbyname("hw.mxcsr_mask", &mxcsr_mask, &msize, NULL, 0);
459 	init_fpu(supports_sse);
460 	if (supports_sse)
461 		cpu_feature |= CPUID_SSE | CPUID_FXSR;
462 
463 	/*
464 	 * We boot from the first installed disk.
465 	 */
466 	if (bootOnDisk == 1) {
467 		init_disk(diskFile, diskFileNum, VKD_DISK);
468 		init_disk(cdFile, cdFileNum, VKD_CD);
469 	} else {
470 		init_disk(cdFile, cdFileNum, VKD_CD);
471 		init_disk(diskFile, diskFileNum, VKD_DISK);
472 	}
473 
474 	init_netif(netifFile, netifFileNum);
475 	init_exceptions();
476 	mi_startup();
477 	/* NOT REACHED */
478 	exit(EX_SOFTWARE);
479 }
480 
481 /* SIGTERM handler */
482 static
483 void
484 handle_term(int sig)
485 {
486 	kill(childpid, sig);
487 }
488 
489 /*
490  * Initialize system memory.  This is the virtual kernel's 'RAM'.
491  */
492 static
493 void
494 init_sys_memory(char *imageFile)
495 {
496 	struct stat st;
497 	int i;
498 	int fd;
499 
500 	/*
501 	 * Figure out the system memory image size.  If an image file was
502 	 * specified and -m was not specified, use the image file's size.
503 	 */
504 	if (imageFile && stat(imageFile, &st) == 0 && Maxmem_bytes == 0)
505 		Maxmem_bytes = (vm_paddr_t)st.st_size;
506 	if ((imageFile == NULL || stat(imageFile, &st) < 0) &&
507 	    Maxmem_bytes == 0) {
508 		errx(1, "Cannot create new memory file %s unless "
509 		       "system memory size is specified with -m",
510 		       imageFile);
511 		/* NOT REACHED */
512 	}
513 
514 	/*
515 	 * Maxmem must be known at this time
516 	 */
517 	if (Maxmem_bytes < 64 * 1024 * 1024 || (Maxmem_bytes & SEG_MASK)) {
518 		errx(1, "Bad maxmem specification: 64MB minimum, "
519 		       "multiples of %dMB only",
520 		       SEG_SIZE / 1024 / 1024);
521 		/* NOT REACHED */
522 	}
523 
524 	/*
525 	 * Generate an image file name if necessary, then open/create the
526 	 * file exclusively locked.  Do not allow multiple virtual kernels
527 	 * to use the same image file.
528 	 *
529 	 * Don't iterate through a million files if we do not have write
530 	 * access to the directory, stop if our open() failed on a
531 	 * non-existant file.  Otherwise opens can fail for any number
532 	 */
533 	if (imageFile == NULL) {
534 		for (i = 0; i < 1000000; ++i) {
535 			asprintf(&imageFile, "/var/vkernel/memimg.%06d", i);
536 			fd = open(imageFile,
537 				  O_RDWR|O_CREAT|O_EXLOCK|O_NONBLOCK, 0644);
538 			if (fd < 0 && stat(imageFile, &st) == 0) {
539 				free(imageFile);
540 				continue;
541 			}
542 			break;
543 		}
544 	} else {
545 		fd = open(imageFile, O_RDWR|O_CREAT|O_EXLOCK|O_NONBLOCK, 0644);
546 	}
547 	fprintf(stderr, "Using memory file: %s\n", imageFile);
548 	if (fd < 0 || fstat(fd, &st) < 0) {
549 		err(1, "Unable to open/create %s", imageFile);
550 		/* NOT REACHED */
551 	}
552 
553 	/*
554 	 * Truncate or extend the file as necessary.  Clean out the contents
555 	 * of the file, we want it to be full of holes so we don't waste
556 	 * time reading in data from an old file that we no longer care
557 	 * about.
558 	 */
559 	ftruncate(fd, 0);
560 	ftruncate(fd, Maxmem_bytes);
561 
562 	MemImageFd = fd;
563 	Maxmem = Maxmem_bytes >> PAGE_SHIFT;
564 	physmem = Maxmem;
565 }
566 
567 /*
568  * Initialize kernel memory.  This reserves kernel virtual memory by using
569  * MAP_VPAGETABLE
570  */
571 
572 static
573 void
574 init_kern_memory(void)
575 {
576 	void *base;
577 	int i;
578 	void *firstfree;
579 
580 	/*
581 	 * Memory map our kernel virtual memory space.  Note that the
582 	 * kernel image itself is not made part of this memory for the
583 	 * moment.
584 	 *
585 	 * The memory map must be segment-aligned so we can properly
586 	 * offset KernelPTD.
587 	 *
588 	 * If the system kernel has a different MAXDSIZ, it might not
589 	 * be possible to map kernel memory in its prefered location.
590 	 * Try a number of different locations.
591 	 */
592 
593 	base = mmap((void*)KERNEL_KVA_START, KERNEL_KVA_SIZE, PROT_READ|PROT_WRITE,
594 		    MAP_FILE|MAP_SHARED|MAP_VPAGETABLE|MAP_FIXED|MAP_TRYFIXED,
595 		    MemImageFd, (off_t)KERNEL_KVA_START);
596 
597 	if (base == MAP_FAILED) {
598 		err(1, "Unable to mmap() kernel virtual memory!");
599 		/* NOT REACHED */
600 	}
601 	madvise(base, KERNEL_KVA_SIZE, MADV_NOSYNC);
602 	KvaStart = (vm_offset_t)base;
603 	KvaSize = KERNEL_KVA_SIZE;
604 	KvaEnd = KvaStart + KvaSize;
605 
606 	/* cannot use kprintf yet */
607 	printf("KVM mapped at %p-%p\n", (void *)KvaStart, (void *)KvaEnd);
608 
609 	/* MAP_FILE? */
610 	dmap_min_address = mmap(0, DMAP_SIZE, PROT_READ|PROT_WRITE,
611 				MAP_NOCORE|MAP_NOSYNC|MAP_SHARED,
612 				MemImageFd, 0);
613 	if (dmap_min_address == MAP_FAILED) {
614 		err(1, "Unable to mmap() kernel DMAP region!");
615 		/* NOT REACHED */
616 	}
617 
618 	/*
619 	 * Bootstrap the kernel_pmap
620 	 */
621 	firstfree = NULL;
622 	pmap_bootstrap((vm_paddr_t *)&firstfree, (int64_t)base);
623 
624 	mcontrol(base, KERNEL_KVA_SIZE, MADV_SETMAP,
625 		 0 | VPTE_RW | VPTE_V);
626 
627 	/*
628 	 * phys_avail[] represents unallocated physical memory.  MI code
629 	 * will use phys_avail[] to create the vm_page array.
630 	 */
631 	phys_avail[0] = (vm_paddr_t)firstfree;
632 	phys_avail[0] = (phys_avail[0] + PAGE_MASK) & ~(vm_paddr_t)PAGE_MASK;
633 	phys_avail[1] = Maxmem_bytes;
634 
635 #if JGV
636 	/*
637 	 * (virtual_start, virtual_end) represent unallocated kernel virtual
638 	 * memory.  MI code will create kernel_map using these parameters.
639 	 */
640 	virtual_start = KvaStart + (long)firstfree;
641 	virtual_start = (virtual_start + PAGE_MASK) & ~(vm_offset_t)PAGE_MASK;
642 	virtual_end = KvaStart + KERNEL_KVA_SIZE;
643 #endif
644 
645 	/*
646 	 * pmap_growkernel() will set the correct value.
647 	 */
648 	kernel_vm_end = 0;
649 
650 	/*
651 	 * Allocate space for process 0's UAREA.
652 	 */
653 	proc0paddr = (void *)virtual_start;
654 	for (i = 0; i < UPAGES; ++i) {
655 		pmap_kenter_quick(virtual_start, phys_avail[0]);
656 		virtual_start += PAGE_SIZE;
657 		phys_avail[0] += PAGE_SIZE;
658 	}
659 
660 	/*
661 	 * crashdumpmap
662 	 */
663 	crashdumpmap = virtual_start;
664 	virtual_start += MAXDUMPPGS * PAGE_SIZE;
665 
666 	/*
667 	 * msgbufp maps the system message buffer
668 	 */
669 	assert((MSGBUF_SIZE & PAGE_MASK) == 0);
670 	msgbufp = (void *)virtual_start;
671 	for (i = 0; i < (MSGBUF_SIZE >> PAGE_SHIFT); ++i) {
672 		pmap_kenter_quick(virtual_start, phys_avail[0]);
673 		virtual_start += PAGE_SIZE;
674 		phys_avail[0] += PAGE_SIZE;
675 	}
676 	msgbufinit(msgbufp, MSGBUF_SIZE);
677 
678 	/*
679 	 * used by kern_memio for /dev/mem access
680 	 */
681 	ptvmmap = (caddr_t)virtual_start;
682 	virtual_start += PAGE_SIZE;
683 }
684 
685 static
686 void
687 init_kern_memory_vmm(void)
688 {
689 	int i;
690 	void *firstfree;
691 	struct vmm_guest_options options;
692 	void *dmap_address;
693 
694 	KvaStart = (vm_offset_t)KERNEL_KVA_START;
695 	KvaSize = KERNEL_KVA_SIZE;
696 	KvaEnd = KvaStart + KvaSize;
697 
698 	Maxmem = Maxmem_bytes >> PAGE_SHIFT;
699 	physmem = Maxmem;
700 
701 	if (Maxmem_bytes < 64 * 1024 * 1024 || (Maxmem_bytes & SEG_MASK)) {
702 		errx(1, "Bad maxmem specification: 64MB minimum, "
703 		       "multiples of %dMB only",
704 		       SEG_SIZE / 1024 / 1024);
705 		/* NOT REACHED */
706 	}
707 
708 	/* Call the vmspace_create to allocate the internal
709 	 * vkernel structures. Won't do anything else (no new
710 	 * vmspace)
711 	 */
712 	if (vmspace_create(NULL, 0, NULL) < 0)
713 		panic("vmspace_create() failed");
714 
715 
716 	/*
717 	 * MAP_ANON the region of the VKERNEL phyisical memory
718 	 * (known as GPA - Guest Physical Address
719 	 */
720 	dmap_address = mmap(NULL, Maxmem_bytes, PROT_READ|PROT_WRITE|PROT_EXEC,
721 	    MAP_ANON|MAP_SHARED, -1, 0);
722 	if (dmap_address == MAP_FAILED) {
723 		err(1, "Unable to mmap() RAM region!");
724 		/* NOT REACHED */
725 	}
726 
727 	/* Alloc a new stack in the lowmem */
728 	vkernel_stack = mmap(NULL, KERNEL_STACK_SIZE,
729 	    PROT_READ|PROT_WRITE|PROT_EXEC,
730 	    MAP_ANON, -1, 0);
731 	if (vkernel_stack == MAP_FAILED) {
732 		err(1, "Unable to allocate stack\n");
733 	}
734 
735 	/*
736 	 * Bootstrap the kernel_pmap
737 	 */
738 	firstfree = dmap_address;
739 	dmap_min_address = NULL; /* VIRT == PHYS in the first 512G */
740 	pmap_bootstrap((vm_paddr_t *)&firstfree, (uint64_t)KvaStart);
741 
742 	/*
743 	 * Enter VMM mode
744 	 */
745 	options.guest_cr3 = (register_t) KPML4phys;
746 	options.new_stack = (uint64_t) vkernel_stack + KERNEL_STACK_SIZE;
747 	options.master = 1;
748 	if (vmm_guest_ctl(VMM_GUEST_RUN, &options)) {
749 		err(1, "Unable to enter VMM mode.");
750 	}
751 
752 	/*
753 	 * phys_avail[] represents unallocated physical memory.  MI code
754 	 * will use phys_avail[] to create the vm_page array.
755 	 */
756 	phys_avail[0] = (vm_paddr_t)firstfree;
757 	phys_avail[0] = (phys_avail[0] + PAGE_MASK) & ~(vm_paddr_t)PAGE_MASK;
758 	phys_avail[1] = (vm_paddr_t)dmap_address + Maxmem_bytes;
759 
760 	/*
761 	 * pmap_growkernel() will set the correct value.
762 	 */
763 	kernel_vm_end = 0;
764 
765 	/*
766 	 * Allocate space for process 0's UAREA.
767 	 */
768 	proc0paddr = (void *)virtual_start;
769 	for (i = 0; i < UPAGES; ++i) {
770 		pmap_kenter_quick(virtual_start, phys_avail[0]);
771 		virtual_start += PAGE_SIZE;
772 		phys_avail[0] += PAGE_SIZE;
773 	}
774 
775 	/*
776 	 * crashdumpmap
777 	 */
778 	crashdumpmap = virtual_start;
779 	virtual_start += MAXDUMPPGS * PAGE_SIZE;
780 
781 	/*
782 	 * msgbufp maps the system message buffer
783 	 */
784 	assert((MSGBUF_SIZE & PAGE_MASK) == 0);
785 	msgbufp = (void *)virtual_start;
786 	for (i = 0; i < (MSGBUF_SIZE >> PAGE_SHIFT); ++i) {
787 
788 		pmap_kenter_quick(virtual_start, phys_avail[0]);
789 		virtual_start += PAGE_SIZE;
790 		phys_avail[0] += PAGE_SIZE;
791 	}
792 
793 	msgbufinit(msgbufp, MSGBUF_SIZE);
794 
795 	/*
796 	 * used by kern_memio for /dev/mem access
797 	 */
798 	ptvmmap = (caddr_t)virtual_start;
799 	virtual_start += PAGE_SIZE;
800 
801 	printf("vmm: Hardware pagetable enabled for guest\n");
802 }
803 
804 
805 /*
806  * Map the per-cpu globaldata for cpu #0.  Allocate the space using
807  * virtual_start and phys_avail[0]
808  */
809 static
810 void
811 init_globaldata(void)
812 {
813 	int i;
814 	vm_paddr_t pa;
815 	vm_offset_t va;
816 
817 	/*
818 	 * Reserve enough KVA to cover possible cpus.  This is a considerable
819 	 * amount of KVA since the privatespace structure includes two
820 	 * whole page table mappings.
821 	 */
822 	virtual_start = (virtual_start + SEG_MASK) & ~(vm_offset_t)SEG_MASK;
823 	CPU_prvspace = (void *)virtual_start;
824 	virtual_start += sizeof(struct privatespace) * SMP_MAXCPU;
825 
826 	/*
827 	 * Allocate enough physical memory to cover the mdglobaldata
828 	 * portion of the space and the idle stack and map the pages
829 	 * into KVA.  For cpu #0 only.
830 	 */
831 	for (i = 0; i < sizeof(struct mdglobaldata); i += PAGE_SIZE) {
832 		pa = phys_avail[0];
833 		va = (vm_offset_t)&CPU_prvspace[0].mdglobaldata + i;
834 		pmap_kenter_quick(va, pa);
835 		phys_avail[0] += PAGE_SIZE;
836 	}
837 	for (i = 0; i < sizeof(CPU_prvspace[0].idlestack); i += PAGE_SIZE) {
838 		pa = phys_avail[0];
839 		va = (vm_offset_t)&CPU_prvspace[0].idlestack + i;
840 		pmap_kenter_quick(va, pa);
841 		phys_avail[0] += PAGE_SIZE;
842 	}
843 
844 	/*
845 	 * Setup the %gs for cpu #0.  The mycpu macro works after this
846 	 * point.  Note that %fs is used by pthreads.
847 	 */
848 	tls_set_gs(&CPU_prvspace[0], sizeof(struct privatespace));
849 }
850 
851 
852 /*
853  * Initialize pool tokens and other necessary locks
854  */
855 static void
856 init_locks(void)
857 {
858 
859         /*
860          * Get the initial mplock with a count of 1 for the BSP.
861          * This uses a LOGICAL cpu ID, ie BSP == 0.
862          */
863         cpu_get_initial_mplock();
864 
865         /* our token pool needs to work early */
866         lwkt_token_pool_init();
867 
868 }
869 
870 
871 /*
872  * Initialize very low level systems including thread0, proc0, etc.
873  */
874 static
875 void
876 init_vkernel(void)
877 {
878 	struct mdglobaldata *gd;
879 
880 	gd = &CPU_prvspace[0].mdglobaldata;
881 	bzero(gd, sizeof(*gd));
882 
883 	gd->mi.gd_curthread = &thread0;
884 	thread0.td_gd = &gd->mi;
885 	ncpus = 1;
886 	ncpus2 = 1;	/* rounded down power of 2 */
887 	ncpus_fit = 1;	/* rounded up power of 2 */
888 	/* ncpus2_mask and ncpus_fit_mask are 0 */
889 	init_param1();
890 	gd->mi.gd_prvspace = &CPU_prvspace[0];
891 	mi_gdinit(&gd->mi, 0);
892 	cpu_gdinit(gd, 0);
893 	mi_proc0init(&gd->mi, proc0paddr);
894 	lwp0.lwp_md.md_regs = &proc0_tf;
895 
896 	init_locks();
897 	cninit();
898 	rand_initialize();
899 #if 0	/* #ifdef DDB */
900 	kdb_init();
901 	if (boothowto & RB_KDB)
902 		Debugger("Boot flags requested debugger");
903 #endif
904 	identcpu();
905 #if 0
906 	initializecpu();	/* Initialize CPU registers */
907 #endif
908 	init_param2((phys_avail[1] - phys_avail[0]) / PAGE_SIZE);
909 
910 #if 0
911 	/*
912 	 * Map the message buffer
913 	 */
914 	for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
915 		pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
916 	msgbufinit(msgbufp, MSGBUF_SIZE);
917 #endif
918 #if 0
919 	thread0.td_pcb_cr3 ... MMU
920 	lwp0.lwp_md.md_regs = &proc0_tf;
921 #endif
922 }
923 
924 /*
925  * Filesystem image paths for the virtual kernel are optional.
926  * If specified they each should point to a disk image,
927  * the first of which will become the root disk.
928  *
929  * The virtual kernel caches data from our 'disk' just like a normal kernel,
930  * so we do not really want the real kernel to cache the data too.  Use
931  * O_DIRECT to remove the duplication.
932  */
933 static
934 void
935 init_disk(char *diskExp[], int diskFileNum, enum vkdisk_type type)
936 {
937 	char *serno;
938 	int i;
939 
940         if (diskFileNum == 0)
941                 return;
942 
943 	for(i=0; i < diskFileNum; i++){
944 		char *fname;
945 		fname = diskExp[i];
946 
947 		if (fname == NULL) {
948                         warnx("Invalid argument to '-r'");
949                         continue;
950                 }
951 		/*
952 		 * Check for a serial number for the virtual disk
953 		 * passed from the command line.
954 		 */
955 		serno = fname;
956 		strsep(&serno, ":");
957 
958 		if (DiskNum < VKDISK_MAX) {
959 			struct stat st;
960 			struct vkdisk_info* info = NULL;
961 			int fd;
962 			size_t l = 0;
963 
964 			if (type == VKD_DISK)
965 			    fd = open(fname, O_RDWR|O_DIRECT, 0644);
966 			else
967 			    fd = open(fname, O_RDONLY|O_DIRECT, 0644);
968 			if (fd < 0 || fstat(fd, &st) < 0) {
969 				err(1, "Unable to open/create %s", fname);
970 				/* NOT REACHED */
971 			}
972 			if (S_ISREG(st.st_mode)) {
973 				if (flock(fd, LOCK_EX|LOCK_NB) < 0) {
974 					errx(1, "Disk image %s is already "
975 						"in use\n", fname);
976 					/* NOT REACHED */
977 				}
978 			}
979 
980 			info = &DiskInfo[DiskNum];
981 			l = strlen(fname);
982 
983 			info->unit = i;
984 			info->fd = fd;
985 			info->type = type;
986 			memcpy(info->fname, fname, l);
987 			info->serno = NULL;
988 			if (serno) {
989 				if ((info->serno = malloc(SERNOLEN)) != NULL)
990 					strlcpy(info->serno, serno, SERNOLEN);
991 				else
992 					warnx("Couldn't allocate memory for the operation");
993 			}
994 
995 			if (DiskNum == 0) {
996 				if (type == VKD_CD) {
997 				    rootdevnames[0] = "cd9660:vcd0";
998 				} else if (type == VKD_DISK) {
999 				    rootdevnames[0] = "ufs:vkd0s0a";
1000 				    rootdevnames[1] = "ufs:vkd0s1a";
1001 				}
1002 			}
1003 
1004 			DiskNum++;
1005 		} else {
1006                         warnx("vkd%d (%s) > VKDISK_MAX", DiskNum, fname);
1007                         continue;
1008 		}
1009 	}
1010 }
1011 
1012 static
1013 int
1014 netif_set_tapflags(int tap_unit, int f, int s)
1015 {
1016 	struct ifreq ifr;
1017 	int flags;
1018 
1019 	bzero(&ifr, sizeof(ifr));
1020 
1021 	snprintf(ifr.ifr_name, sizeof(ifr.ifr_name), "tap%d", tap_unit);
1022 	if (ioctl(s, SIOCGIFFLAGS, &ifr) < 0) {
1023 		warn("tap%d: ioctl(SIOCGIFFLAGS) failed", tap_unit);
1024 		return -1;
1025 	}
1026 
1027 	/*
1028 	 * Adjust if_flags
1029 	 *
1030 	 * If the flags are already set/cleared, then we return
1031 	 * immediately to avoid extra syscalls
1032 	 */
1033 	flags = (ifr.ifr_flags & 0xffff) | (ifr.ifr_flagshigh << 16);
1034 	if (f < 0) {
1035 		/* Turn off flags */
1036 		f = -f;
1037 		if ((flags & f) == 0)
1038 			return 0;
1039 		flags &= ~f;
1040 	} else {
1041 		/* Turn on flags */
1042 		if (flags & f)
1043 			return 0;
1044 		flags |= f;
1045 	}
1046 
1047 	/*
1048 	 * Fix up ifreq.ifr_name, since it may be trashed
1049 	 * in previous ioctl(SIOCGIFFLAGS)
1050 	 */
1051 	snprintf(ifr.ifr_name, sizeof(ifr.ifr_name), "tap%d", tap_unit);
1052 
1053 	ifr.ifr_flags = flags & 0xffff;
1054 	ifr.ifr_flagshigh = flags >> 16;
1055 	if (ioctl(s, SIOCSIFFLAGS, &ifr) < 0) {
1056 		warn("tap%d: ioctl(SIOCSIFFLAGS) failed", tap_unit);
1057 		return -1;
1058 	}
1059 	return 0;
1060 }
1061 
1062 static
1063 int
1064 netif_set_tapaddr(int tap_unit, in_addr_t addr, in_addr_t mask, int s)
1065 {
1066 	struct ifaliasreq ifra;
1067 	struct sockaddr_in *in;
1068 
1069 	bzero(&ifra, sizeof(ifra));
1070 	snprintf(ifra.ifra_name, sizeof(ifra.ifra_name), "tap%d", tap_unit);
1071 
1072 	/* Setup address */
1073 	in = (struct sockaddr_in *)&ifra.ifra_addr;
1074 	in->sin_family = AF_INET;
1075 	in->sin_len = sizeof(*in);
1076 	in->sin_addr.s_addr = addr;
1077 
1078 	if (mask != 0) {
1079 		/* Setup netmask */
1080 		in = (struct sockaddr_in *)&ifra.ifra_mask;
1081 		in->sin_len = sizeof(*in);
1082 		in->sin_addr.s_addr = mask;
1083 	}
1084 
1085 	if (ioctl(s, SIOCAIFADDR, &ifra) < 0) {
1086 		warn("tap%d: ioctl(SIOCAIFADDR) failed", tap_unit);
1087 		return -1;
1088 	}
1089 	return 0;
1090 }
1091 
1092 static
1093 int
1094 netif_add_tap2brg(int tap_unit, const char *ifbridge, int s)
1095 {
1096 	struct ifbreq ifbr;
1097 	struct ifdrv ifd;
1098 
1099 	bzero(&ifbr, sizeof(ifbr));
1100 	snprintf(ifbr.ifbr_ifsname, sizeof(ifbr.ifbr_ifsname),
1101 		 "tap%d", tap_unit);
1102 
1103 	bzero(&ifd, sizeof(ifd));
1104 	strlcpy(ifd.ifd_name, ifbridge, sizeof(ifd.ifd_name));
1105 	ifd.ifd_cmd = BRDGADD;
1106 	ifd.ifd_len = sizeof(ifbr);
1107 	ifd.ifd_data = &ifbr;
1108 
1109 	if (ioctl(s, SIOCSDRVSPEC, &ifd) < 0) {
1110 		/*
1111 		 * 'errno == EEXIST' means that the tap(4) is already
1112 		 * a member of the bridge(4)
1113 		 */
1114 		if (errno != EEXIST) {
1115 			warn("ioctl(%s, SIOCSDRVSPEC) failed", ifbridge);
1116 			return -1;
1117 		}
1118 	}
1119 	return 0;
1120 }
1121 
1122 #define TAPDEV_OFLAGS	(O_RDWR | O_NONBLOCK)
1123 
1124 /*
1125  * Locate the first unused tap(4) device file if auto mode is requested,
1126  * or open the user supplied device file, and bring up the corresponding
1127  * tap(4) interface.
1128  *
1129  * NOTE: Only tap(4) device file is supported currently
1130  */
1131 static
1132 int
1133 netif_open_tap(const char *netif, int *tap_unit, int s)
1134 {
1135 	char tap_dev[MAXPATHLEN];
1136 	int tap_fd, failed;
1137 	struct stat st;
1138 	char *dname;
1139 
1140 	*tap_unit = -1;
1141 
1142 	if (strcmp(netif, "auto") == 0) {
1143 		/*
1144 		 * Find first unused tap(4) device file
1145 		 */
1146 		tap_fd = open("/dev/tap", TAPDEV_OFLAGS);
1147 		if (tap_fd < 0) {
1148 			warnc(errno, "Unable to find a free tap(4)");
1149 			return -1;
1150 		}
1151 	} else {
1152 		/*
1153 		 * User supplied tap(4) device file or unix socket.
1154 		 */
1155 		if (netif[0] == '/')	/* Absolute path */
1156 			strlcpy(tap_dev, netif, sizeof(tap_dev));
1157 		else
1158 			snprintf(tap_dev, sizeof(tap_dev), "/dev/%s", netif);
1159 
1160 		tap_fd = open(tap_dev, TAPDEV_OFLAGS);
1161 
1162 		/*
1163 		 * If we cannot open normally try to connect to it.
1164 		 */
1165 		if (tap_fd < 0)
1166 			tap_fd = unix_connect(tap_dev);
1167 
1168 		if (tap_fd < 0) {
1169 			warn("Unable to open %s", tap_dev);
1170 			return -1;
1171 		}
1172 	}
1173 
1174 	/*
1175 	 * Check whether the device file is a tap(4)
1176 	 */
1177 	if (fstat(tap_fd, &st) < 0) {
1178 		failed = 1;
1179 	} else if (S_ISCHR(st.st_mode)) {
1180 		dname = fdevname(tap_fd);
1181 		if (dname)
1182 			dname = strstr(dname, "tap");
1183 		if (dname) {
1184 			/*
1185 			 * Bring up the corresponding tap(4) interface
1186 			 */
1187 			*tap_unit = strtol(dname + 3, NULL, 10);
1188 			printf("TAP UNIT %d\n", *tap_unit);
1189 			if (netif_set_tapflags(*tap_unit, IFF_UP, s) == 0)
1190 				failed = 0;
1191 			else
1192 				failed = 1;
1193 		} else {
1194 			failed = 1;
1195 		}
1196 	} else if (S_ISSOCK(st.st_mode)) {
1197 		/*
1198 		 * Special socket connection (typically to vknet).  We
1199 		 * do not have to do anything.
1200 		 */
1201 		failed = 0;
1202 	} else {
1203 		failed = 1;
1204 	}
1205 
1206 	if (failed) {
1207 		warnx("%s is not a tap(4) device or socket", tap_dev);
1208 		close(tap_fd);
1209 		tap_fd = -1;
1210 		*tap_unit = -1;
1211 	}
1212 	return tap_fd;
1213 }
1214 
1215 static int
1216 unix_connect(const char *path)
1217 {
1218 	struct sockaddr_un sunx;
1219 	int len;
1220 	int net_fd;
1221 	int sndbuf = 262144;
1222 	struct stat st;
1223 
1224 	snprintf(sunx.sun_path, sizeof(sunx.sun_path), "%s", path);
1225 	len = offsetof(struct sockaddr_un, sun_path[strlen(sunx.sun_path)]);
1226 	++len;	/* include nul */
1227 	sunx.sun_family = AF_UNIX;
1228 	sunx.sun_len = len;
1229 
1230 	net_fd = socket(AF_UNIX, SOCK_SEQPACKET, 0);
1231 	if (net_fd < 0)
1232 		return(-1);
1233 	if (connect(net_fd, (void *)&sunx, len) < 0) {
1234 		close(net_fd);
1235 		return(-1);
1236 	}
1237 	setsockopt(net_fd, SOL_SOCKET, SO_SNDBUF, &sndbuf, sizeof(sndbuf));
1238 	if (fstat(net_fd, &st) == 0)
1239 		printf("Network socket buffer: %d bytes\n", st.st_blksize);
1240 	fcntl(net_fd, F_SETFL, O_NONBLOCK);
1241 	return(net_fd);
1242 }
1243 
1244 #undef TAPDEV_MAJOR
1245 #undef TAPDEV_MINOR
1246 #undef TAPDEV_OFLAGS
1247 
1248 /*
1249  * Following syntax is supported,
1250  * 1) x.x.x.x             tap(4)'s address is x.x.x.x
1251  *
1252  * 2) x.x.x.x/z           tap(4)'s address is x.x.x.x
1253  *                        tap(4)'s netmask len is z
1254  *
1255  * 3) x.x.x.x:y.y.y.y     tap(4)'s address is x.x.x.x
1256  *                        pseudo netif's address is y.y.y.y
1257  *
1258  * 4) x.x.x.x:y.y.y.y/z   tap(4)'s address is x.x.x.x
1259  *                        pseudo netif's address is y.y.y.y
1260  *                        tap(4) and pseudo netif's netmask len are z
1261  *
1262  * 5) bridgeX             tap(4) will be added to bridgeX
1263  *
1264  * 6) bridgeX:y.y.y.y     tap(4) will be added to bridgeX
1265  *                        pseudo netif's address is y.y.y.y
1266  *
1267  * 7) bridgeX:y.y.y.y/z   tap(4) will be added to bridgeX
1268  *                        pseudo netif's address is y.y.y.y
1269  *                        pseudo netif's netmask len is z
1270  */
1271 static
1272 int
1273 netif_init_tap(int tap_unit, in_addr_t *addr, in_addr_t *mask, int s)
1274 {
1275 	in_addr_t tap_addr, netmask, netif_addr;
1276 	int next_netif_addr;
1277 	char *tok, *masklen_str, *ifbridge;
1278 
1279 	*addr = 0;
1280 	*mask = 0;
1281 
1282 	tok = strtok(NULL, ":/");
1283 	if (tok == NULL) {
1284 		/*
1285 		 * Nothing special, simply use tap(4) as backend
1286 		 */
1287 		return 0;
1288 	}
1289 
1290 	if (inet_pton(AF_INET, tok, &tap_addr) > 0) {
1291 		/*
1292 		 * tap(4)'s address is supplied
1293 		 */
1294 		ifbridge = NULL;
1295 
1296 		/*
1297 		 * If there is next token, then it may be pseudo
1298 		 * netif's address or netmask len for tap(4)
1299 		 */
1300 		next_netif_addr = 0;
1301 	} else {
1302 		/*
1303 		 * Not tap(4)'s address, assume it as a bridge(4)
1304 		 * iface name
1305 		 */
1306 		tap_addr = 0;
1307 		ifbridge = tok;
1308 
1309 		/*
1310 		 * If there is next token, then it must be pseudo
1311 		 * netif's address
1312 		 */
1313 		next_netif_addr = 1;
1314 	}
1315 
1316 	netmask = netif_addr = 0;
1317 
1318 	tok = strtok(NULL, ":/");
1319 	if (tok == NULL)
1320 		goto back;
1321 
1322 	if (inet_pton(AF_INET, tok, &netif_addr) <= 0) {
1323 		if (next_netif_addr) {
1324 			warnx("Invalid pseudo netif address: %s", tok);
1325 			return -1;
1326 		}
1327 		netif_addr = 0;
1328 
1329 		/*
1330 		 * Current token is not address, then it must be netmask len
1331 		 */
1332 		masklen_str = tok;
1333 	} else {
1334 		/*
1335 		 * Current token is pseudo netif address, if there is next token
1336 		 * it must be netmask len
1337 		 */
1338 		masklen_str = strtok(NULL, "/");
1339 	}
1340 
1341 	/* Calculate netmask */
1342 	if (masklen_str != NULL) {
1343 		u_long masklen;
1344 
1345 		masklen = strtoul(masklen_str, NULL, 10);
1346 		if (masklen < 32 && masklen > 0) {
1347 			netmask = htonl(~((1LL << (32 - masklen)) - 1)
1348 					& 0xffffffff);
1349 		} else {
1350 			warnx("Invalid netmask len: %lu", masklen);
1351 			return -1;
1352 		}
1353 	}
1354 
1355 	/* Make sure there is no more token left */
1356 	if (strtok(NULL, ":/") != NULL) {
1357 		warnx("Invalid argument to '-I'");
1358 		return -1;
1359 	}
1360 
1361 back:
1362 	if (tap_unit < 0) {
1363 		/* Do nothing */
1364 	} else if (ifbridge == NULL) {
1365 		/* Set tap(4) address/netmask */
1366 		if (netif_set_tapaddr(tap_unit, tap_addr, netmask, s) < 0)
1367 			return -1;
1368 	} else {
1369 		/* Tie tap(4) to bridge(4) */
1370 		if (netif_add_tap2brg(tap_unit, ifbridge, s) < 0)
1371 			return -1;
1372 	}
1373 
1374 	*addr = netif_addr;
1375 	*mask = netmask;
1376 	return 0;
1377 }
1378 
1379 /*
1380  * NetifInfo[] will be filled for pseudo netif initialization.
1381  * NetifNum will be bumped to reflect the number of valid entries
1382  * in NetifInfo[].
1383  */
1384 static
1385 void
1386 init_netif(char *netifExp[], int netifExpNum)
1387 {
1388 	int i, s;
1389 	char *tmp;
1390 
1391 	if (netifExpNum == 0)
1392 		return;
1393 
1394 	s = socket(AF_INET, SOCK_DGRAM, 0);	/* for ioctl(SIOC) */
1395 	if (s < 0)
1396 		return;
1397 
1398 	for (i = 0; i < netifExpNum; ++i) {
1399 		struct vknetif_info *info;
1400 		in_addr_t netif_addr, netif_mask;
1401 		int tap_fd, tap_unit;
1402 		char *netif;
1403 
1404 		/* Extract MAC address if there is one */
1405 		tmp = netifExp[i];
1406 		strsep(&tmp, "=");
1407 
1408 		netif = strtok(netifExp[i], ":");
1409 		if (netif == NULL) {
1410 			warnx("Invalid argument to '-I'");
1411 			continue;
1412 		}
1413 
1414 		/*
1415 		 * Open tap(4) device file and bring up the
1416 		 * corresponding interface
1417 		 */
1418 		tap_fd = netif_open_tap(netif, &tap_unit, s);
1419 		if (tap_fd < 0)
1420 			continue;
1421 
1422 		/*
1423 		 * Initialize tap(4) and get address/netmask
1424 		 * for pseudo netif
1425 		 *
1426 		 * NB: Rest part of netifExp[i] is passed
1427 		 *     to netif_init_tap() implicitly.
1428 		 */
1429 		if (netif_init_tap(tap_unit, &netif_addr, &netif_mask, s) < 0) {
1430 			/*
1431 			 * NB: Closing tap(4) device file will bring
1432 			 *     down the corresponding interface
1433 			 */
1434 			close(tap_fd);
1435 			continue;
1436 		}
1437 
1438 		info = &NetifInfo[NetifNum];
1439 		bzero(info, sizeof(*info));
1440 		info->tap_fd = tap_fd;
1441 		info->tap_unit = tap_unit;
1442 		info->netif_addr = netif_addr;
1443 		info->netif_mask = netif_mask;
1444 		/*
1445 		 * If tmp isn't NULL it means a MAC could have been
1446 		 * specified so attempt to convert it.
1447 		 * Setting enaddr to NULL will tell vke_attach() we
1448 		 * need a pseudo-random MAC address.
1449 		 */
1450 		if (tmp != NULL) {
1451 			if ((info->enaddr = malloc(ETHER_ADDR_LEN)) == NULL)
1452 				warnx("Couldn't allocate memory for the operation");
1453 			else {
1454 				if ((kether_aton(tmp, info->enaddr)) == NULL) {
1455 					free(info->enaddr);
1456 					info->enaddr = NULL;
1457 				}
1458 			}
1459 		}
1460 
1461 		NetifNum++;
1462 		if (NetifNum >= VKNETIF_MAX)	/* XXX will this happen? */
1463 			break;
1464 	}
1465 	close(s);
1466 }
1467 
1468 /*
1469  * Create the pid file and leave it open and locked while the vkernel is
1470  * running.  This allows a script to use /usr/bin/lockf to probe whether
1471  * a vkernel is still running (so as not to accidently kill an unrelated
1472  * process from a stale pid file).
1473  */
1474 static
1475 void
1476 writepid(void)
1477 {
1478 	char buf[32];
1479 	int fd;
1480 
1481 	if (pid_file != NULL) {
1482 		snprintf(buf, sizeof(buf), "%ld\n", (long)getpid());
1483 		fd = open(pid_file, O_RDWR|O_CREAT|O_EXLOCK|O_NONBLOCK, 0666);
1484 		if (fd < 0) {
1485 			if (errno == EWOULDBLOCK) {
1486 				perror("Failed to lock pidfile, "
1487 				       "vkernel already running");
1488 			} else {
1489 				perror("Failed to create pidfile");
1490 			}
1491 			exit(EX_SOFTWARE);
1492 		}
1493 		ftruncate(fd, 0);
1494 		write(fd, buf, strlen(buf));
1495 		/* leave the file open to maintain the lock */
1496 	}
1497 }
1498 
1499 static
1500 void
1501 cleanpid( void )
1502 {
1503 	if (pid_file != NULL) {
1504 		if (unlink(pid_file) < 0)
1505 			perror("Warning: couldn't remove pidfile");
1506 	}
1507 }
1508 
1509 static
1510 void
1511 usage_err(const char *ctl, ...)
1512 {
1513 	va_list va;
1514 
1515 	va_start(va, ctl);
1516 	vfprintf(stderr, ctl, va);
1517 	va_end(va);
1518 	fprintf(stderr, "\n");
1519 	exit(EX_USAGE);
1520 }
1521 
1522 static
1523 void
1524 usage_help(_Bool help)
1525 {
1526 	fprintf(stderr, "Usage: %s [-hsUvd] [-c file] [-e name=value:name=value:...]\n"
1527 	    "\t[-i file] [-I interface[:address1[:address2][/netmask]]] [-l cpulock]\n"
1528 	    "\t[-m size] [-n numcpus[:lbits[:cbits]]]\n"
1529 	    "\t[-p file] [-r file]\n", save_av[0]);
1530 
1531 	if (help)
1532 		fprintf(stderr, "\nArguments:\n"
1533 		    "\t-c\tSpecify a readonly CD-ROM image file to be used by the kernel.\n"
1534 		    "\t-e\tSpecify an environment to be used by the kernel.\n"
1535 		    "\t-h\tThis list of options.\n"
1536 		    "\t-i\tSpecify a memory image file to be used by the virtual kernel.\n"
1537 		    "\t-I\tCreate a virtual network device.\n"
1538 		    "\t-l\tSpecify which, if any, real CPUs to lock virtual CPUs to.\n"
1539 		    "\t-m\tSpecify the amount of memory to be used by the kernel in bytes.\n"
1540 		    "\t-n\tSpecify the number of CPUs and the topology you wish to emulate:\n"
1541 		    "\t\t\tnumcpus - number of cpus\n"
1542 		    "\t\t\tlbits - specify the number of bits within APICID(=CPUID)\n"
1543 		    "\t\t\t        needed for representing the logical ID.\n"
1544 		    "\t\t\t        Controls the number of threads/core:\n"
1545 		    "\t\t\t        (0 bits - 1 thread, 1 bit - 2 threads).\n"
1546 		    "\t\t\tcbits - specify the number of bits within APICID(=CPUID)\n"
1547 		    "\t\t\t        needed for representing the core ID.\n"
1548 		    "\t\t\t        Controls the number of cores/package:\n"
1549 		    "\t\t\t        (0 bits - 1 core, 1 bit - 2 cores).\n"
1550 		    "\t-p\tSpecify a file in which to store the process ID.\n"
1551 		    "\t-r\tSpecify a R/W disk image file to be used by the kernel.\n"
1552 		    "\t-s\tBoot into single-user mode.\n"
1553 		    "\t-U\tEnable writing to kernel memory and module loading.\n"
1554 		    "\t-v\tTurn on verbose booting.\n");
1555 
1556 	exit(EX_USAGE);
1557 }
1558 
1559 void
1560 cpu_reset(void)
1561 {
1562 	kprintf("cpu reset, rebooting vkernel\n");
1563 	closefrom(3);
1564 	cleanpid();
1565 	exit(EX_VKERNEL_REBOOT);
1566 
1567 }
1568 
1569 void
1570 cpu_halt(void)
1571 {
1572 	kprintf("cpu halt, exiting vkernel\n");
1573 	cleanpid();
1574 	exit(EX_OK);
1575 }
1576 
1577 void
1578 setrealcpu(void)
1579 {
1580 	switch(lwp_cpu_lock) {
1581 	case LCL_PER_CPU:
1582 		if (bootverbose)
1583 			kprintf("Locking CPU%d to real cpu %d\n",
1584 				mycpuid, next_cpu);
1585 		usched_set(getpid(), USCHED_SET_CPU, &next_cpu, sizeof(next_cpu));
1586 		next_cpu++;
1587 		if (next_cpu >= real_ncpus)
1588 			next_cpu = 0;
1589 		break;
1590 	case LCL_SINGLE_CPU:
1591 		if (bootverbose)
1592 			kprintf("Locking CPU%d to real cpu %d\n",
1593 				mycpuid, next_cpu);
1594 		usched_set(getpid(), USCHED_SET_CPU, &next_cpu, sizeof(next_cpu));
1595 		break;
1596 	default:
1597 		/* do not map virtual cpus to real cpus */
1598 		break;
1599 	}
1600 }
1601 
1602 /*
1603  * Allocate and free memory for module loading.  The loaded module
1604  * has to be placed somewhere near the current kernel binary load
1605  * point or the relocations will not work.
1606  *
1607  * I'm not sure why this isn't working.
1608  */
1609 int
1610 vkernel_module_memory_alloc(vm_offset_t *basep, size_t bytes)
1611 {
1612 #if 1
1613 	size_t xtra;
1614 	xtra = (PAGE_SIZE - (vm_offset_t)sbrk(0)) & PAGE_MASK;
1615 	*basep = (vm_offset_t)sbrk(xtra + bytes) + xtra;
1616 	bzero((void *)*basep, bytes);
1617 #else
1618 	*basep = (vm_offset_t)mmap((void *)0x000000000, bytes,
1619 				   PROT_READ|PROT_WRITE|PROT_EXEC,
1620 				   MAP_ANON|MAP_SHARED, -1, 0);
1621 	if ((void *)*basep == MAP_FAILED)
1622 		return ENOMEM;
1623 #endif
1624 	return 0;
1625 }
1626 
1627 void
1628 vkernel_module_memory_free(vm_offset_t base, size_t bytes)
1629 {
1630 #if 0
1631 #if 0
1632 	munmap((void *)base, bytes);
1633 #endif
1634 #endif
1635 }
1636