1 /*
2  * Copyright (c) 2006 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 #include <sys/types.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/stat.h>
39 #include <sys/mman.h>
40 #include <sys/cons.h>
41 #include <sys/random.h>
42 #include <sys/vkernel.h>
43 #include <sys/tls.h>
44 #include <sys/reboot.h>
45 #include <sys/proc.h>
46 #include <sys/msgbuf.h>
47 #include <sys/vmspace.h>
48 #include <sys/socket.h>
49 #include <sys/sockio.h>
50 #include <sys/sysctl.h>
51 #include <sys/un.h>
52 #include <vm/vm_page.h>
53 #include <vm/vm_map.h>
54 #include <sys/mplock2.h>
55 #include <sys/wait.h>
56 #include <sys/vmm.h>
57 
58 #include <machine/cpu.h>
59 #include <machine/globaldata.h>
60 #include <machine/tls.h>
61 #include <machine/md_var.h>
62 #include <machine/vmparam.h>
63 #include <cpu/specialreg.h>
64 
65 #include <net/if.h>
66 #include <net/if_arp.h>
67 #include <net/ethernet.h>
68 #include <net/bridge/if_bridgevar.h>
69 #include <netinet/in.h>
70 #include <arpa/inet.h>
71 #include <net/if_var.h>
72 
73 #include <stdio.h>
74 #include <stdlib.h>
75 #include <stdarg.h>
76 #include <stdbool.h>
77 #include <unistd.h>
78 #include <fcntl.h>
79 #include <string.h>
80 #include <err.h>
81 #include <errno.h>
82 #include <assert.h>
83 #include <sysexits.h>
84 
85 #define EX_VKERNEL_REBOOT	32
86 
87 vm_phystable_t phys_avail[16];
88 vm_paddr_t Maxmem;
89 vm_paddr_t Maxmem_bytes;
90 long physmem;
91 int MemImageFd = -1;
92 struct vkdisk_info DiskInfo[VKDISK_MAX];
93 int DiskNum;
94 struct vknetif_info NetifInfo[VKNETIF_MAX];
95 int NetifNum;
96 char *pid_file;
97 vm_offset_t KvaStart;
98 vm_offset_t KvaEnd;
99 vm_offset_t KvaSize;
100 vm_offset_t virtual_start;
101 vm_offset_t virtual_end;
102 vm_offset_t virtual2_start;
103 vm_offset_t virtual2_end;
104 vm_offset_t kernel_vm_end;
105 vm_offset_t crashdumpmap;
106 vm_offset_t clean_sva;
107 vm_offset_t clean_eva;
108 struct msgbuf *msgbufp;
109 caddr_t ptvmmap;
110 vpte_t	*KernelPTD;
111 vpte_t	*KernelPTA;	/* Warning: Offset for direct VA translation */
112 void *dmap_min_address;
113 void *vkernel_stack;
114 u_int cpu_feature;	/* XXX */
115 int tsc_present;
116 int tsc_invariant;
117 int tsc_mpsync;
118 int64_t tsc_frequency;
119 int optcpus;		/* number of cpus - see mp_start() */
120 int cpu_bits;
121 int lwp_cpu_lock;	/* if/how to lock virtual CPUs to real CPUs */
122 int real_ncpus;		/* number of real CPUs */
123 int next_cpu;		/* next real CPU to lock a virtual CPU to */
124 int vkernel_b_arg;	/* no of logical CPU bits - only SMP */
125 int vkernel_B_arg;	/* no of core bits - only SMP */
126 int vmm_enabled;	/* VMM HW assisted enable */
127 int use_precise_timer = 0;	/* use a precise timer (more expensive) */
128 struct privatespace *CPU_prvspace;
129 
130 extern uint64_t KPML4phys;	/* phys addr of kernel level 4 */
131 
132 static struct trapframe proc0_tf;
133 static void *proc0paddr;
134 
135 static void init_sys_memory(char *imageFile);
136 static void init_kern_memory(void);
137 static void init_kern_memory_vmm(void);
138 static void init_globaldata(void);
139 static void init_vkernel(void);
140 static void init_disk(char **diskExp, int *diskFlags, int diskFileNum, enum vkdisk_type type);
141 static void init_netif(char *netifExp[], int netifFileNum);
142 static void writepid(void);
143 static void cleanpid(void);
144 static int unix_connect(const char *path);
145 static void usage_err(const char *ctl, ...);
146 static void usage_help(_Bool);
147 static void init_locks(void);
148 static void handle_term(int);
149 
150 pid_t childpid;
151 
152 static int save_ac;
153 static int prezeromem;
154 static char **save_av;
155 
156 /*
157  * Kernel startup for virtual kernels - standard main()
158  */
159 int
160 main(int ac, char **av)
161 {
162 	char *memImageFile = NULL;
163 	char *netifFile[VKNETIF_MAX];
164 	char *diskFile[VKDISK_MAX];
165 	char *cdFile[VKDISK_MAX];
166 	char *suffix;
167 	char *endp;
168 	char *tmp;
169 	char *tok;
170 	int diskFlags[VKDISK_MAX];
171 	int netifFileNum = 0;
172 	int diskFileNum = 0;
173 	int cdFileNum = 0;
174 	int bootOnDisk = -1;	/* set below to vcd (0) or vkd (1) */
175 	int c;
176 	int i;
177 	int j;
178 	int n;
179 	int isq;
180 	int pos;
181 	int eflag;
182 	int dflag = 0;		/* disable vmm */
183 	int real_vkernel_enable;
184 	int supports_sse;
185 	uint32_t mxcsr_mask;
186 	size_t vsize;
187 	size_t msize;
188 	size_t kenv_size;
189 	size_t kenv_size2;
190 	int status;
191 	struct sigaction sa;
192 
193 	/*
194 	 * Currently a bad hack but rtld-elf needs LD_SHAREDLIB_BASE to
195 	 * be set to force it to mmap() shared libraries into low memory,
196 	 * so our module loader can link against the related symbols.
197 	 */
198 	if (getenv("LD_SHAREDLIB_BASE") == NULL) {
199 		setenv("LD_SHAREDLIB_BASE", "0x10000000", 1);
200 		execv(av[0], av);
201 		fprintf(stderr, "Must run %s with full path\n", av[0]);
202 		exit(1);
203 	}
204 
205 	while ((childpid = fork()) != 0) {
206 		/* Ignore signals */
207 		bzero(&sa, sizeof(sa));
208 		sigemptyset(&sa.sa_mask);
209 		sa.sa_handler = SIG_IGN;
210 		sigaction(SIGINT, &sa, NULL);
211 		sigaction(SIGQUIT, &sa, NULL);
212 		sigaction(SIGHUP, &sa, NULL);
213 
214 		/*
215 		 * Forward SIGTERM to the child so that
216 		 * the shutdown process initiates correctly.
217 		 */
218 		sa.sa_handler = handle_term;
219 		sigaction(SIGTERM, &sa, NULL);
220 
221 		/*
222 		 * Wait for child to terminate, exit if
223 		 * someone stole our child.
224 		 */
225 		while (waitpid(childpid, &status, 0) != childpid) {
226 			if (errno == ECHILD)
227 				exit(1);
228 		}
229 		if (WEXITSTATUS(status) != EX_VKERNEL_REBOOT)
230 			return 0;
231 	}
232 
233 	/*
234 	 * Starting for real
235 	 */
236 	save_ac = ac;
237 	save_av = av;
238 	eflag = 0;
239 	pos = 0;
240 	kenv_size = 0;
241 
242 	/*
243 	 * Process options
244 	 */
245 	kernel_mem_readonly = 1;
246 	optcpus = 2;
247 	cpu_bits = 1;
248 	vkernel_b_arg = 0;
249 	vkernel_B_arg = 0;
250 	lwp_cpu_lock = LCL_NONE;
251 
252 	real_vkernel_enable = 0;
253 	vsize = sizeof(real_vkernel_enable);
254 	sysctlbyname("vm.vkernel_enable", &real_vkernel_enable, &vsize, NULL,0);
255 
256 	if (real_vkernel_enable == 0) {
257 		errx(1, "vm.vkernel_enable is 0, must be set "
258 			"to 1 to execute a vkernel!");
259 	}
260 
261 	real_ncpus = 1;
262 	vsize = sizeof(real_ncpus);
263 	sysctlbyname("hw.ncpu", &real_ncpus, &vsize, NULL, 0);
264 
265 	if (ac < 2)
266 		usage_help(false);
267 
268 	while ((c = getopt(ac, av, "c:hsvztl:m:n:r:R:e:i:p:I:Ud")) != -1) {
269 		switch(c) {
270 		case 'd':
271 			dflag = 1;
272 			break;
273 		case 'e':
274 			/*
275 			 * name=value:name=value:name=value...
276 			 * name="value"...
277 			 *
278 			 * Allow values to be quoted but note that shells
279 			 * may remove the quotes, so using this feature
280 			 * to embed colons may require a backslash.
281 			 */
282 			n = strlen(optarg);
283 			isq = 0;
284 
285 			if (eflag == 0) {
286 				kenv_size = n + 2;
287 				kern_envp = malloc(kenv_size);
288 				if (kern_envp == NULL)
289 					errx(1, "Couldn't allocate %zd bytes for kern_envp", kenv_size);
290 			} else {
291 				kenv_size2 = kenv_size + n + 1;
292 				pos = kenv_size - 1;
293 				if ((tmp = realloc(kern_envp, kenv_size2)) == NULL)
294 					errx(1, "Couldn't reallocate %zd bytes for kern_envp", kenv_size2);
295 				kern_envp = tmp;
296 				kenv_size = kenv_size2;
297 			}
298 
299 			for (i = 0, j = pos; i < n; ++i) {
300 				if (optarg[i] == '"')
301 					isq ^= 1;
302 				else if (optarg[i] == '\'')
303 					isq ^= 2;
304 				else if (isq == 0 && optarg[i] == ':')
305 					kern_envp[j++] = 0;
306 				else
307 					kern_envp[j++] = optarg[i];
308 			}
309 			kern_envp[j++] = 0;
310 			kern_envp[j++] = 0;
311 			eflag++;
312 			break;
313 		case 's':
314 			boothowto |= RB_SINGLE;
315 			break;
316 		case 't':
317 			use_precise_timer = 1;
318 			break;
319 		case 'v':
320 			bootverbose = 1;
321 			break;
322 		case 'i':
323 			memImageFile = optarg;
324 			break;
325 		case 'I':
326 			if (netifFileNum < VKNETIF_MAX)
327 				netifFile[netifFileNum++] = strdup(optarg);
328 			break;
329 		case 'r':
330 		case 'R':
331 			if (bootOnDisk < 0)
332 				bootOnDisk = 1;
333 			if (diskFileNum + cdFileNum < VKDISK_MAX) {
334 				diskFile[diskFileNum] = strdup(optarg);
335 				diskFlags[diskFileNum] = (c == 'R');
336 				++diskFileNum;
337 			}
338 			break;
339 		case 'c':
340 			if (bootOnDisk < 0)
341 				bootOnDisk = 0;
342 			if (diskFileNum + cdFileNum < VKDISK_MAX)
343 				cdFile[cdFileNum++] = strdup(optarg);
344 			break;
345 		case 'm':
346 			Maxmem_bytes = strtoull(optarg, &suffix, 0);
347 			if (suffix) {
348 				switch(*suffix) {
349 				case 'g':
350 				case 'G':
351 					Maxmem_bytes <<= 30;
352 					break;
353 				case 'm':
354 				case 'M':
355 					Maxmem_bytes <<= 20;
356 					break;
357 				case 'k':
358 				case 'K':
359 					Maxmem_bytes <<= 10;
360 					break;
361 				default:
362 					Maxmem_bytes = 0;
363 					usage_err("Bad maxmem option");
364 					/* NOT REACHED */
365 					break;
366 				}
367 			}
368 			break;
369 		case 'l':
370 			next_cpu = -1;
371 			if (strncmp("map", optarg, 3) == 0) {
372 				lwp_cpu_lock = LCL_PER_CPU;
373 				if (optarg[3] == ',') {
374 					next_cpu = strtol(optarg+4, &endp, 0);
375 					if (*endp != '\0')
376 						usage_err("Bad target CPU number at '%s'", endp);
377 				} else {
378 					next_cpu = 0;
379 				}
380 				if (next_cpu < 0 || next_cpu > real_ncpus - 1)
381 					usage_err("Bad target CPU, valid range is 0-%d", real_ncpus - 1);
382 			} else if (strncmp("any", optarg, 3) == 0) {
383 				lwp_cpu_lock = LCL_NONE;
384 			} else {
385 				lwp_cpu_lock = LCL_SINGLE_CPU;
386 				next_cpu = strtol(optarg, &endp, 0);
387 				if (*endp != '\0')
388 					usage_err("Bad target CPU number at '%s'", endp);
389 				if (next_cpu < 0 || next_cpu > real_ncpus - 1)
390 					usage_err("Bad target CPU, valid range is 0-%d", real_ncpus - 1);
391 			}
392 			break;
393 		case 'n':
394 			/*
395 			 * This value is set up by mp_start(), don't just
396 			 * set ncpus here.
397 			 */
398 			tok = strtok(optarg, ":");
399 			optcpus = strtol(tok, NULL, 0);
400 			if (optcpus < 1 || optcpus > MAXCPU)
401 				usage_err("Bad ncpus, valid range is 1-%d", MAXCPU);
402 			cpu_bits = 1;
403 			while ((1 << cpu_bits) < optcpus)
404 				++cpu_bits;
405 
406 			/*
407 			 * By default assume simple hyper-threading
408 			 */
409 			vkernel_b_arg = 1;
410 			vkernel_B_arg = cpu_bits - vkernel_b_arg;
411 
412 			/*
413 			 * [:lbits[:cbits]] override # of cpu bits
414 			 * for logical and core extraction, supplying
415 			 * defaults for any omission.
416 			 */
417 			tok = strtok(NULL, ":");
418 			if (tok != NULL) {
419 				vkernel_b_arg = strtol(tok, NULL, 0);
420 				vkernel_B_arg = cpu_bits - vkernel_b_arg;
421 
422 				/* :cbits argument */
423 				tok = strtok(NULL, ":");
424 				if (tok != NULL) {
425 					vkernel_B_arg = strtol(tok, NULL, 0);
426 				}
427 			}
428 			break;
429 		case 'p':
430 			pid_file = optarg;
431 			break;
432 		case 'U':
433 			kernel_mem_readonly = 0;
434 			break;
435 		case 'h':
436 			usage_help(true);
437 			break;
438 		case 'z':
439 			prezeromem = 1;
440 			break;
441 		default:
442 			usage_help(false);
443 		}
444 	}
445 
446 	/*
447 	 * Check VMM presence
448 	 */
449 	vsize = sizeof(vmm_enabled);
450 	sysctlbyname("hw.vmm.enable", &vmm_enabled, &vsize, NULL, 0);
451 	vmm_enabled = (vmm_enabled && !dflag);
452 
453 	writepid();
454 	cpu_disable_intr();
455 	if (vmm_enabled) {
456 		/* use a MAP_ANON directly */
457 		printf("VMM is available\n");
458 		init_kern_memory_vmm();
459 	} else {
460 		printf("VMM is not available\n");
461 		init_sys_memory(memImageFile);
462 		init_kern_memory();
463 	}
464 	init_globaldata();
465 	init_vkernel();
466 	setrealcpu();
467 	init_kqueue();
468 
469 	vmm_guest = VMM_GUEST_VKERNEL;
470 
471 	/*
472 	 * Check TSC
473 	 */
474 	vsize = sizeof(tsc_present);
475 	sysctlbyname("hw.tsc_present", &tsc_present, &vsize, NULL, 0);
476 	vsize = sizeof(tsc_invariant);
477 	sysctlbyname("hw.tsc_invariant", &tsc_invariant, &vsize, NULL, 0);
478 	vsize = sizeof(tsc_mpsync);
479 	sysctlbyname("hw.tsc_mpsync", &tsc_mpsync, &vsize, NULL, 0);
480 	vsize = sizeof(tsc_frequency);
481 	sysctlbyname("hw.tsc_frequency", &tsc_frequency, &vsize, NULL, 0);
482 	if (tsc_present)
483 		cpu_feature |= CPUID_TSC;
484 
485 	/*
486 	 * Check SSE
487 	 */
488 	vsize = sizeof(supports_sse);
489 	supports_sse = 0;
490 	sysctlbyname("hw.instruction_sse", &supports_sse, &vsize, NULL, 0);
491 	sysctlbyname("hw.mxcsr_mask", &mxcsr_mask, &msize, NULL, 0);
492 	init_fpu(supports_sse);
493 	if (supports_sse)
494 		cpu_feature |= CPUID_SSE | CPUID_FXSR;
495 
496 	/*
497 	 * We boot from the first installed disk.
498 	 */
499 	if (bootOnDisk == 1) {
500 		init_disk(diskFile, diskFlags, diskFileNum, VKD_DISK);
501 		init_disk(cdFile, NULL, cdFileNum, VKD_CD);
502 	} else {
503 		init_disk(cdFile, NULL, cdFileNum, VKD_CD);
504 		init_disk(diskFile, diskFlags, diskFileNum, VKD_DISK);
505 	}
506 
507 	init_netif(netifFile, netifFileNum);
508 	init_exceptions();
509 	mi_startup();
510 	/* NOT REACHED */
511 	exit(EX_SOFTWARE);
512 }
513 
514 /* SIGTERM handler */
515 static
516 void
517 handle_term(int sig)
518 {
519 	kill(childpid, sig);
520 }
521 
522 /*
523  * Initialize system memory.  This is the virtual kernel's 'RAM'.
524  */
525 static
526 void
527 init_sys_memory(char *imageFile)
528 {
529 	struct stat st;
530 	int i;
531 	int fd;
532 
533 	/*
534 	 * Figure out the system memory image size.  If an image file was
535 	 * specified and -m was not specified, use the image file's size.
536 	 */
537 	if (imageFile && stat(imageFile, &st) == 0 && Maxmem_bytes == 0)
538 		Maxmem_bytes = (vm_paddr_t)st.st_size;
539 	if ((imageFile == NULL || stat(imageFile, &st) < 0) &&
540 	    Maxmem_bytes == 0) {
541 		errx(1, "Cannot create new memory file %s unless "
542 		       "system memory size is specified with -m",
543 		       imageFile);
544 		/* NOT REACHED */
545 	}
546 
547 	/*
548 	 * Maxmem must be known at this time
549 	 */
550 	if (Maxmem_bytes < 64 * 1024 * 1024 || (Maxmem_bytes & SEG_MASK)) {
551 		errx(1, "Bad maxmem specification: 64MB minimum, "
552 		       "multiples of %dMB only",
553 		       SEG_SIZE / 1024 / 1024);
554 		/* NOT REACHED */
555 	}
556 
557 	/*
558 	 * Generate an image file name if necessary, then open/create the
559 	 * file exclusively locked.  Do not allow multiple virtual kernels
560 	 * to use the same image file.
561 	 *
562 	 * Don't iterate through a million files if we do not have write
563 	 * access to the directory, stop if our open() failed on a
564 	 * non-existant file.  Otherwise opens can fail for any number
565 	 */
566 	if (imageFile == NULL) {
567 		for (i = 0; i < 1000000; ++i) {
568 			asprintf(&imageFile, "/var/vkernel/memimg.%06d", i);
569 			fd = open(imageFile,
570 				  O_RDWR|O_CREAT|O_EXLOCK|O_NONBLOCK, 0644);
571 			if (fd < 0 && stat(imageFile, &st) == 0) {
572 				free(imageFile);
573 				continue;
574 			}
575 			break;
576 		}
577 	} else {
578 		fd = open(imageFile, O_RDWR|O_CREAT|O_EXLOCK|O_NONBLOCK, 0644);
579 	}
580 	fprintf(stderr, "Using memory file: %s\n", imageFile);
581 	if (fd < 0 || fstat(fd, &st) < 0) {
582 		err(1, "Unable to open/create %s", imageFile);
583 		/* NOT REACHED */
584 	}
585 
586 	/*
587 	 * Truncate or extend the file as necessary.  Clean out the contents
588 	 * of the file, we want it to be full of holes so we don't waste
589 	 * time reading in data from an old file that we no longer care
590 	 * about.
591 	 */
592 	ftruncate(fd, 0);
593 	ftruncate(fd, Maxmem_bytes);
594 
595 	MemImageFd = fd;
596 	Maxmem = Maxmem_bytes >> PAGE_SHIFT;
597 	physmem = Maxmem;
598 }
599 
600 /*
601  * Initialize kernel memory.  This reserves kernel virtual memory by using
602  * MAP_VPAGETABLE
603  */
604 
605 static
606 void
607 init_kern_memory(void)
608 {
609 	void *base;
610 	int i;
611 	void *firstfree;
612 
613 	/*
614 	 * Memory map our kernel virtual memory space.  Note that the
615 	 * kernel image itself is not made part of this memory for the
616 	 * moment.
617 	 *
618 	 * The memory map must be segment-aligned so we can properly
619 	 * offset KernelPTD.
620 	 *
621 	 * If the system kernel has a different MAXDSIZ, it might not
622 	 * be possible to map kernel memory in its prefered location.
623 	 * Try a number of different locations.
624 	 */
625 
626 	base = mmap((void*)KERNEL_KVA_START, KERNEL_KVA_SIZE,
627 		    PROT_READ|PROT_WRITE|PROT_EXEC,
628 		    MAP_FILE|MAP_SHARED|MAP_VPAGETABLE|MAP_FIXED|MAP_TRYFIXED,
629 		    MemImageFd, (off_t)KERNEL_KVA_START);
630 
631 	if (base == MAP_FAILED) {
632 		err(1, "Unable to mmap() kernel virtual memory!");
633 		/* NOT REACHED */
634 	}
635 	madvise(base, KERNEL_KVA_SIZE, MADV_NOSYNC);
636 	KvaStart = (vm_offset_t)base;
637 	KvaSize = KERNEL_KVA_SIZE;
638 	KvaEnd = KvaStart + KvaSize;
639 
640 	/* cannot use kprintf yet */
641 	printf("KVM mapped at %p-%p\n", (void *)KvaStart, (void *)KvaEnd);
642 
643 	/* MAP_FILE? */
644 	dmap_min_address = mmap(0, DMAP_SIZE, PROT_READ|PROT_WRITE,
645 				MAP_NOCORE|MAP_NOSYNC|MAP_SHARED,
646 				MemImageFd, 0);
647 	if (dmap_min_address == MAP_FAILED) {
648 		err(1, "Unable to mmap() kernel DMAP region!");
649 		/* NOT REACHED */
650 	}
651 
652 	/*
653 	 * Prefault the memory.  The vkernel is going to fault it all in
654 	 * anyway, and faults on the backing store itself are very expensive
655 	 * once we go SMP (contend a lot).  So do it now.
656 	 */
657 	if (prezeromem)
658 		bzero(dmap_min_address, Maxmem_bytes);
659 
660 	/*
661 	 * Bootstrap the kernel_pmap
662 	 */
663 	firstfree = NULL;
664 	pmap_bootstrap((vm_paddr_t *)&firstfree, (int64_t)base);
665 
666 	mcontrol(base, KERNEL_KVA_SIZE, MADV_SETMAP,
667 		 0 | VPTE_RW | VPTE_V);
668 
669 	/*
670 	 * phys_avail[] represents unallocated physical memory.  MI code
671 	 * will use phys_avail[] to create the vm_page array.
672 	 */
673 	phys_avail[0].phys_beg = (vm_paddr_t)firstfree;
674 	phys_avail[0].phys_beg = (phys_avail[0].phys_beg + PAGE_MASK) &
675 				 ~(vm_paddr_t)PAGE_MASK;
676 	phys_avail[0].phys_end = Maxmem_bytes;
677 
678 #if JGV
679 	/*
680 	 * (virtual_start, virtual_end) represent unallocated kernel virtual
681 	 * memory.  MI code will create kernel_map using these parameters.
682 	 */
683 	virtual_start = KvaStart + (long)firstfree;
684 	virtual_start = (virtual_start + PAGE_MASK) & ~(vm_offset_t)PAGE_MASK;
685 	virtual_end = KvaStart + KERNEL_KVA_SIZE;
686 #endif
687 
688 	/*
689 	 * pmap_growkernel() will set the correct value.
690 	 */
691 	kernel_vm_end = 0;
692 
693 	/*
694 	 * Allocate space for process 0's UAREA.
695 	 */
696 	proc0paddr = (void *)virtual_start;
697 	for (i = 0; i < UPAGES; ++i) {
698 		pmap_kenter_quick(virtual_start, phys_avail[0].phys_beg);
699 		virtual_start += PAGE_SIZE;
700 		phys_avail[0].phys_beg += PAGE_SIZE;
701 	}
702 
703 	/*
704 	 * crashdumpmap
705 	 */
706 	crashdumpmap = virtual_start;
707 	virtual_start += MAXDUMPPGS * PAGE_SIZE;
708 
709 	/*
710 	 * msgbufp maps the system message buffer
711 	 */
712 	assert((MSGBUF_SIZE & PAGE_MASK) == 0);
713 	msgbufp = (void *)virtual_start;
714 	for (i = 0; i < (MSGBUF_SIZE >> PAGE_SHIFT); ++i) {
715 		pmap_kenter_quick(virtual_start, phys_avail[0].phys_beg);
716 		virtual_start += PAGE_SIZE;
717 		phys_avail[0].phys_beg += PAGE_SIZE;
718 	}
719 	msgbufinit(msgbufp, MSGBUF_SIZE);
720 
721 	/*
722 	 * used by kern_memio for /dev/mem access
723 	 */
724 	ptvmmap = (caddr_t)virtual_start;
725 	virtual_start += PAGE_SIZE;
726 }
727 
728 static
729 void
730 init_kern_memory_vmm(void)
731 {
732 	int i;
733 	void *firstfree;
734 	struct vmm_guest_options options;
735 	void *dmap_address;
736 
737 	KvaStart = (vm_offset_t)KERNEL_KVA_START;
738 	KvaSize = KERNEL_KVA_SIZE;
739 	KvaEnd = KvaStart + KvaSize;
740 
741 	Maxmem = Maxmem_bytes >> PAGE_SHIFT;
742 	physmem = Maxmem;
743 
744 	if (Maxmem_bytes < 64 * 1024 * 1024 || (Maxmem_bytes & SEG_MASK)) {
745 		errx(1, "Bad maxmem specification: 64MB minimum, "
746 		       "multiples of %dMB only",
747 		       SEG_SIZE / 1024 / 1024);
748 		/* NOT REACHED */
749 	}
750 
751 	/* Call the vmspace_create to allocate the internal
752 	 * vkernel structures. Won't do anything else (no new
753 	 * vmspace)
754 	 */
755 	if (vmspace_create(NULL, 0, NULL) < 0)
756 		panic("vmspace_create() failed");
757 
758 
759 	/*
760 	 * MAP_ANON the region of the VKERNEL phyisical memory
761 	 * (known as GPA - Guest Physical Address
762 	 */
763 	dmap_address = mmap(NULL, Maxmem_bytes,
764 			    PROT_READ|PROT_WRITE|PROT_EXEC,
765 			    MAP_ANON|MAP_SHARED, -1, 0);
766 	if (dmap_address == MAP_FAILED) {
767 		err(1, "Unable to mmap() RAM region!");
768 		/* NOT REACHED */
769 	}
770 	if (prezeromem)
771 		bzero(dmap_address, Maxmem_bytes);
772 
773 	/* Alloc a new stack in the lowmem */
774 	vkernel_stack = mmap(NULL, KERNEL_STACK_SIZE,
775 			     PROT_READ|PROT_WRITE|PROT_EXEC,
776 			     MAP_ANON, -1, 0);
777 	if (vkernel_stack == MAP_FAILED) {
778 		err(1, "Unable to allocate stack\n");
779 	}
780 
781 	/*
782 	 * Bootstrap the kernel_pmap
783 	 */
784 	firstfree = dmap_address;
785 	dmap_min_address = NULL; /* VIRT == PHYS in the first 512G */
786 	pmap_bootstrap((vm_paddr_t *)&firstfree, (uint64_t)KvaStart);
787 
788 	/*
789 	 * Enter VMM mode
790 	 */
791 	bzero(&options, sizeof(options));
792 	options.guest_cr3 = (register_t) KPML4phys;
793 	options.new_stack = (uint64_t) vkernel_stack + KERNEL_STACK_SIZE;
794 	options.master = 1;
795 	if (vmm_guest_ctl(VMM_GUEST_RUN, &options)) {
796 		err(1, "Unable to enter VMM mode.");
797 	}
798 
799 	/*
800 	 * phys_avail[] represents unallocated physical memory.  MI code
801 	 * will use phys_avail[] to create the vm_page array.
802 	 */
803 	phys_avail[0].phys_beg = (vm_paddr_t)firstfree;
804 	phys_avail[0].phys_beg = (phys_avail[0].phys_beg + PAGE_MASK) &
805 				 ~(vm_paddr_t)PAGE_MASK;
806 	phys_avail[0].phys_end = (vm_paddr_t)dmap_address + Maxmem_bytes;
807 
808 	/*
809 	 * pmap_growkernel() will set the correct value.
810 	 */
811 	kernel_vm_end = 0;
812 
813 	/*
814 	 * Allocate space for process 0's UAREA.
815 	 */
816 	proc0paddr = (void *)virtual_start;
817 	for (i = 0; i < UPAGES; ++i) {
818 		pmap_kenter_quick(virtual_start, phys_avail[0].phys_beg);
819 		virtual_start += PAGE_SIZE;
820 		phys_avail[0].phys_beg += PAGE_SIZE;
821 	}
822 
823 	/*
824 	 * crashdumpmap
825 	 */
826 	crashdumpmap = virtual_start;
827 	virtual_start += MAXDUMPPGS * PAGE_SIZE;
828 
829 	/*
830 	 * msgbufp maps the system message buffer
831 	 */
832 	assert((MSGBUF_SIZE & PAGE_MASK) == 0);
833 	msgbufp = (void *)virtual_start;
834 	for (i = 0; i < (MSGBUF_SIZE >> PAGE_SHIFT); ++i) {
835 
836 		pmap_kenter_quick(virtual_start, phys_avail[0].phys_beg);
837 		virtual_start += PAGE_SIZE;
838 		phys_avail[0].phys_beg += PAGE_SIZE;
839 	}
840 
841 	msgbufinit(msgbufp, MSGBUF_SIZE);
842 
843 	/*
844 	 * used by kern_memio for /dev/mem access
845 	 */
846 	ptvmmap = (caddr_t)virtual_start;
847 	virtual_start += PAGE_SIZE;
848 
849 	printf("vmm: Hardware pagetable enabled for guest\n");
850 }
851 
852 
853 /*
854  * Map the per-cpu globaldata for cpu #0.  Allocate the space using
855  * virtual_start and phys_avail[0]
856  */
857 static
858 void
859 init_globaldata(void)
860 {
861 	int i;
862 	vm_paddr_t pa;
863 	vm_offset_t va;
864 
865 	/*
866 	 * Reserve enough KVA to cover possible cpus.  This is a considerable
867 	 * amount of KVA since the privatespace structure includes two
868 	 * whole page table mappings.
869 	 */
870 	virtual_start = (virtual_start + SEG_MASK) & ~(vm_offset_t)SEG_MASK;
871 	CPU_prvspace = (void *)virtual_start;
872 	virtual_start += sizeof(struct privatespace) * SMP_MAXCPU;
873 
874 	/*
875 	 * Allocate enough physical memory to cover the mdglobaldata
876 	 * portion of the space and the idle stack and map the pages
877 	 * into KVA.  For cpu #0 only.
878 	 */
879 	for (i = 0; i < sizeof(struct mdglobaldata); i += PAGE_SIZE) {
880 		pa = phys_avail[0].phys_beg;
881 		va = (vm_offset_t)&CPU_prvspace[0].mdglobaldata + i;
882 		pmap_kenter_quick(va, pa);
883 		phys_avail[0].phys_beg += PAGE_SIZE;
884 	}
885 	for (i = 0; i < sizeof(CPU_prvspace[0].idlestack); i += PAGE_SIZE) {
886 		pa = phys_avail[0].phys_beg;
887 		va = (vm_offset_t)&CPU_prvspace[0].idlestack + i;
888 		pmap_kenter_quick(va, pa);
889 		phys_avail[0].phys_beg += PAGE_SIZE;
890 	}
891 
892 	/*
893 	 * Setup the %gs for cpu #0.  The mycpu macro works after this
894 	 * point.  Note that %fs is used by pthreads.
895 	 */
896 	tls_set_gs(&CPU_prvspace[0], sizeof(struct privatespace));
897 }
898 
899 
900 /*
901  * Initialize pool tokens and other necessary locks
902  */
903 static void
904 init_locks(void)
905 {
906 
907         /*
908          * Get the initial mplock with a count of 1 for the BSP.
909          * This uses a LOGICAL cpu ID, ie BSP == 0.
910          */
911         cpu_get_initial_mplock();
912 
913         /* our token pool needs to work early */
914         lwkt_token_pool_init();
915 
916 }
917 
918 
919 /*
920  * Initialize very low level systems including thread0, proc0, etc.
921  */
922 static
923 void
924 init_vkernel(void)
925 {
926 	struct mdglobaldata *gd;
927 
928 	gd = &CPU_prvspace[0].mdglobaldata;
929 	bzero(gd, sizeof(*gd));
930 
931 	gd->mi.gd_curthread = &thread0;
932 	thread0.td_gd = &gd->mi;
933 	ncpus = 1;
934 	ncpus2 = 1;	/* rounded down power of 2 */
935 	ncpus_fit = 1;	/* rounded up power of 2 */
936 	/* ncpus2_mask and ncpus_fit_mask are 0 */
937 	init_param1();
938 	gd->mi.gd_prvspace = &CPU_prvspace[0];
939 	mi_gdinit(&gd->mi, 0);
940 	cpu_gdinit(gd, 0);
941 	mi_proc0init(&gd->mi, proc0paddr);
942 	lwp0.lwp_md.md_regs = &proc0_tf;
943 
944 	init_locks();
945 	cninit();
946 	rand_initialize();
947 #if 0	/* #ifdef DDB */
948 	kdb_init();
949 	if (boothowto & RB_KDB)
950 		Debugger("Boot flags requested debugger");
951 #endif
952 	identcpu();
953 #if 0
954 	initializecpu();	/* Initialize CPU registers */
955 #endif
956 	init_param2((phys_avail[0].phys_end -
957 		     phys_avail[0].phys_beg) / PAGE_SIZE);
958 
959 #if 0
960 	/*
961 	 * Map the message buffer
962 	 */
963 	for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
964 		pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
965 	msgbufinit(msgbufp, MSGBUF_SIZE);
966 #endif
967 #if 0
968 	thread0.td_pcb_cr3 ... MMU
969 	lwp0.lwp_md.md_regs = &proc0_tf;
970 #endif
971 }
972 
973 /*
974  * Filesystem image paths for the virtual kernel are optional.
975  * If specified they each should point to a disk image,
976  * the first of which will become the root disk.
977  *
978  * The virtual kernel caches data from our 'disk' just like a normal kernel,
979  * so we do not really want the real kernel to cache the data too.  Use
980  * O_DIRECT to remove the duplication.
981  */
982 static
983 void
984 init_disk(char **diskExp, int *diskFlags, int diskFileNum, enum vkdisk_type type)
985 {
986 	char *serno;
987 	int i;
988 
989         if (diskFileNum == 0)
990                 return;
991 
992 	for (i=0; i < diskFileNum; i++){
993 		char *fname;
994 		fname = diskExp[i];
995 
996 		if (fname == NULL) {
997                         warnx("Invalid argument to '-r'");
998                         continue;
999                 }
1000 		/*
1001 		 * Check for a serial number for the virtual disk
1002 		 * passed from the command line.
1003 		 */
1004 		serno = fname;
1005 		strsep(&serno, ":");
1006 
1007 		if (DiskNum < VKDISK_MAX) {
1008 			struct stat st;
1009 			struct vkdisk_info *info = NULL;
1010 			int fd;
1011 			size_t l = 0;
1012 
1013 			if (type == VKD_DISK)
1014 			    fd = open(fname, O_RDWR|O_DIRECT, 0644);
1015 			else
1016 			    fd = open(fname, O_RDONLY|O_DIRECT, 0644);
1017 			if (fd < 0 || fstat(fd, &st) < 0) {
1018 				err(1, "Unable to open/create %s", fname);
1019 				/* NOT REACHED */
1020 			}
1021 			if (S_ISREG(st.st_mode) && (diskFlags[i] & 1) == 0) {
1022 				if (flock(fd, LOCK_EX|LOCK_NB) < 0) {
1023 					errx(1, "Disk image %s is already "
1024 						"in use\n", fname);
1025 					/* NOT REACHED */
1026 				}
1027 			}
1028 
1029 			info = &DiskInfo[DiskNum];
1030 			l = strlen(fname);
1031 
1032 			info->unit = i;
1033 			info->fd = fd;
1034 			info->type = type;
1035 			info->flags = diskFlags[i];
1036 			memcpy(info->fname, fname, l);
1037 			info->serno = NULL;
1038 			if (serno) {
1039 				if ((info->serno = malloc(SERNOLEN)) != NULL)
1040 					strlcpy(info->serno, serno, SERNOLEN);
1041 				else
1042 					warnx("Couldn't allocate memory for the operation");
1043 			}
1044 
1045 			if (DiskNum == 0) {
1046 				if (type == VKD_CD) {
1047 					rootdevnames[0] = "cd9660:vcd0";
1048 				} else if (type == VKD_DISK) {
1049 					rootdevnames[0] = "ufs:vkd0s0a";
1050 					rootdevnames[1] = "ufs:vkd0s1a";
1051 				}
1052 			}
1053 
1054 			DiskNum++;
1055 		} else {
1056                         warnx("vkd%d (%s) > VKDISK_MAX", DiskNum, fname);
1057                         continue;
1058 		}
1059 	}
1060 }
1061 
1062 static
1063 int
1064 netif_set_tapflags(int tap_unit, int f, int s)
1065 {
1066 	struct ifreq ifr;
1067 	int flags;
1068 
1069 	bzero(&ifr, sizeof(ifr));
1070 
1071 	snprintf(ifr.ifr_name, sizeof(ifr.ifr_name), "tap%d", tap_unit);
1072 	if (ioctl(s, SIOCGIFFLAGS, &ifr) < 0) {
1073 		warn("tap%d: ioctl(SIOCGIFFLAGS) failed", tap_unit);
1074 		return -1;
1075 	}
1076 
1077 	/*
1078 	 * Adjust if_flags
1079 	 *
1080 	 * If the flags are already set/cleared, then we return
1081 	 * immediately to avoid extra syscalls
1082 	 */
1083 	flags = (ifr.ifr_flags & 0xffff) | (ifr.ifr_flagshigh << 16);
1084 	if (f < 0) {
1085 		/* Turn off flags */
1086 		f = -f;
1087 		if ((flags & f) == 0)
1088 			return 0;
1089 		flags &= ~f;
1090 	} else {
1091 		/* Turn on flags */
1092 		if (flags & f)
1093 			return 0;
1094 		flags |= f;
1095 	}
1096 
1097 	/*
1098 	 * Fix up ifreq.ifr_name, since it may be trashed
1099 	 * in previous ioctl(SIOCGIFFLAGS)
1100 	 */
1101 	snprintf(ifr.ifr_name, sizeof(ifr.ifr_name), "tap%d", tap_unit);
1102 
1103 	ifr.ifr_flags = flags & 0xffff;
1104 	ifr.ifr_flagshigh = flags >> 16;
1105 	if (ioctl(s, SIOCSIFFLAGS, &ifr) < 0) {
1106 		warn("tap%d: ioctl(SIOCSIFFLAGS) failed", tap_unit);
1107 		return -1;
1108 	}
1109 	return 0;
1110 }
1111 
1112 static
1113 int
1114 netif_set_tapaddr(int tap_unit, in_addr_t addr, in_addr_t mask, int s)
1115 {
1116 	struct ifaliasreq ifra;
1117 	struct sockaddr_in *in;
1118 
1119 	bzero(&ifra, sizeof(ifra));
1120 	snprintf(ifra.ifra_name, sizeof(ifra.ifra_name), "tap%d", tap_unit);
1121 
1122 	/* Setup address */
1123 	in = (struct sockaddr_in *)&ifra.ifra_addr;
1124 	in->sin_family = AF_INET;
1125 	in->sin_len = sizeof(*in);
1126 	in->sin_addr.s_addr = addr;
1127 
1128 	if (mask != 0) {
1129 		/* Setup netmask */
1130 		in = (struct sockaddr_in *)&ifra.ifra_mask;
1131 		in->sin_len = sizeof(*in);
1132 		in->sin_addr.s_addr = mask;
1133 	}
1134 
1135 	if (ioctl(s, SIOCAIFADDR, &ifra) < 0) {
1136 		warn("tap%d: ioctl(SIOCAIFADDR) failed", tap_unit);
1137 		return -1;
1138 	}
1139 	return 0;
1140 }
1141 
1142 static
1143 int
1144 netif_add_tap2brg(int tap_unit, const char *ifbridge, int s)
1145 {
1146 	struct ifbreq ifbr;
1147 	struct ifdrv ifd;
1148 
1149 	bzero(&ifbr, sizeof(ifbr));
1150 	snprintf(ifbr.ifbr_ifsname, sizeof(ifbr.ifbr_ifsname),
1151 		 "tap%d", tap_unit);
1152 
1153 	bzero(&ifd, sizeof(ifd));
1154 	strlcpy(ifd.ifd_name, ifbridge, sizeof(ifd.ifd_name));
1155 	ifd.ifd_cmd = BRDGADD;
1156 	ifd.ifd_len = sizeof(ifbr);
1157 	ifd.ifd_data = &ifbr;
1158 
1159 	if (ioctl(s, SIOCSDRVSPEC, &ifd) < 0) {
1160 		/*
1161 		 * 'errno == EEXIST' means that the tap(4) is already
1162 		 * a member of the bridge(4)
1163 		 */
1164 		if (errno != EEXIST) {
1165 			warn("ioctl(%s, SIOCSDRVSPEC) failed", ifbridge);
1166 			return -1;
1167 		}
1168 	}
1169 	return 0;
1170 }
1171 
1172 #define TAPDEV_OFLAGS	(O_RDWR | O_NONBLOCK)
1173 
1174 /*
1175  * Locate the first unused tap(4) device file if auto mode is requested,
1176  * or open the user supplied device file, and bring up the corresponding
1177  * tap(4) interface.
1178  *
1179  * NOTE: Only tap(4) device file is supported currently
1180  */
1181 static
1182 int
1183 netif_open_tap(const char *netif, int *tap_unit, int s)
1184 {
1185 	char tap_dev[MAXPATHLEN];
1186 	int tap_fd, failed;
1187 	struct stat st;
1188 	char *dname;
1189 
1190 	*tap_unit = -1;
1191 
1192 	if (strcmp(netif, "auto") == 0) {
1193 		/*
1194 		 * Find first unused tap(4) device file
1195 		 */
1196 		tap_fd = open("/dev/tap", TAPDEV_OFLAGS);
1197 		if (tap_fd < 0) {
1198 			warnc(errno, "Unable to find a free tap(4)");
1199 			return -1;
1200 		}
1201 	} else {
1202 		/*
1203 		 * User supplied tap(4) device file or unix socket.
1204 		 */
1205 		if (netif[0] == '/')	/* Absolute path */
1206 			strlcpy(tap_dev, netif, sizeof(tap_dev));
1207 		else
1208 			snprintf(tap_dev, sizeof(tap_dev), "/dev/%s", netif);
1209 
1210 		tap_fd = open(tap_dev, TAPDEV_OFLAGS);
1211 
1212 		/*
1213 		 * If we cannot open normally try to connect to it.
1214 		 */
1215 		if (tap_fd < 0)
1216 			tap_fd = unix_connect(tap_dev);
1217 
1218 		if (tap_fd < 0) {
1219 			warn("Unable to open %s", tap_dev);
1220 			return -1;
1221 		}
1222 	}
1223 
1224 	/*
1225 	 * Check whether the device file is a tap(4)
1226 	 */
1227 	if (fstat(tap_fd, &st) < 0) {
1228 		failed = 1;
1229 	} else if (S_ISCHR(st.st_mode)) {
1230 		dname = fdevname(tap_fd);
1231 		if (dname)
1232 			dname = strstr(dname, "tap");
1233 		if (dname) {
1234 			/*
1235 			 * Bring up the corresponding tap(4) interface
1236 			 */
1237 			*tap_unit = strtol(dname + 3, NULL, 10);
1238 			printf("TAP UNIT %d\n", *tap_unit);
1239 			if (netif_set_tapflags(*tap_unit, IFF_UP, s) == 0)
1240 				failed = 0;
1241 			else
1242 				failed = 1;
1243 		} else {
1244 			failed = 1;
1245 		}
1246 	} else if (S_ISSOCK(st.st_mode)) {
1247 		/*
1248 		 * Special socket connection (typically to vknet).  We
1249 		 * do not have to do anything.
1250 		 */
1251 		failed = 0;
1252 	} else {
1253 		failed = 1;
1254 	}
1255 
1256 	if (failed) {
1257 		warnx("%s is not a tap(4) device or socket", tap_dev);
1258 		close(tap_fd);
1259 		tap_fd = -1;
1260 		*tap_unit = -1;
1261 	}
1262 	return tap_fd;
1263 }
1264 
1265 static int
1266 unix_connect(const char *path)
1267 {
1268 	struct sockaddr_un sunx;
1269 	int len;
1270 	int net_fd;
1271 	int sndbuf = 262144;
1272 	struct stat st;
1273 
1274 	snprintf(sunx.sun_path, sizeof(sunx.sun_path), "%s", path);
1275 	len = offsetof(struct sockaddr_un, sun_path[strlen(sunx.sun_path)]);
1276 	++len;	/* include nul */
1277 	sunx.sun_family = AF_UNIX;
1278 	sunx.sun_len = len;
1279 
1280 	net_fd = socket(AF_UNIX, SOCK_SEQPACKET, 0);
1281 	if (net_fd < 0)
1282 		return(-1);
1283 	if (connect(net_fd, (void *)&sunx, len) < 0) {
1284 		close(net_fd);
1285 		return(-1);
1286 	}
1287 	setsockopt(net_fd, SOL_SOCKET, SO_SNDBUF, &sndbuf, sizeof(sndbuf));
1288 	if (fstat(net_fd, &st) == 0)
1289 		printf("Network socket buffer: %d bytes\n", st.st_blksize);
1290 	fcntl(net_fd, F_SETFL, O_NONBLOCK);
1291 	return(net_fd);
1292 }
1293 
1294 #undef TAPDEV_MAJOR
1295 #undef TAPDEV_MINOR
1296 #undef TAPDEV_OFLAGS
1297 
1298 /*
1299  * Following syntax is supported,
1300  * 1) x.x.x.x             tap(4)'s address is x.x.x.x
1301  *
1302  * 2) x.x.x.x/z           tap(4)'s address is x.x.x.x
1303  *                        tap(4)'s netmask len is z
1304  *
1305  * 3) x.x.x.x:y.y.y.y     tap(4)'s address is x.x.x.x
1306  *                        pseudo netif's address is y.y.y.y
1307  *
1308  * 4) x.x.x.x:y.y.y.y/z   tap(4)'s address is x.x.x.x
1309  *                        pseudo netif's address is y.y.y.y
1310  *                        tap(4) and pseudo netif's netmask len are z
1311  *
1312  * 5) bridgeX             tap(4) will be added to bridgeX
1313  *
1314  * 6) bridgeX:y.y.y.y     tap(4) will be added to bridgeX
1315  *                        pseudo netif's address is y.y.y.y
1316  *
1317  * 7) bridgeX:y.y.y.y/z   tap(4) will be added to bridgeX
1318  *                        pseudo netif's address is y.y.y.y
1319  *                        pseudo netif's netmask len is z
1320  */
1321 static
1322 int
1323 netif_init_tap(int tap_unit, in_addr_t *addr, in_addr_t *mask, int s)
1324 {
1325 	in_addr_t tap_addr, netmask, netif_addr;
1326 	int next_netif_addr;
1327 	char *tok, *masklen_str, *ifbridge;
1328 
1329 	*addr = 0;
1330 	*mask = 0;
1331 
1332 	tok = strtok(NULL, ":/");
1333 	if (tok == NULL) {
1334 		/*
1335 		 * Nothing special, simply use tap(4) as backend
1336 		 */
1337 		return 0;
1338 	}
1339 
1340 	if (inet_pton(AF_INET, tok, &tap_addr) > 0) {
1341 		/*
1342 		 * tap(4)'s address is supplied
1343 		 */
1344 		ifbridge = NULL;
1345 
1346 		/*
1347 		 * If there is next token, then it may be pseudo
1348 		 * netif's address or netmask len for tap(4)
1349 		 */
1350 		next_netif_addr = 0;
1351 	} else {
1352 		/*
1353 		 * Not tap(4)'s address, assume it as a bridge(4)
1354 		 * iface name
1355 		 */
1356 		tap_addr = 0;
1357 		ifbridge = tok;
1358 
1359 		/*
1360 		 * If there is next token, then it must be pseudo
1361 		 * netif's address
1362 		 */
1363 		next_netif_addr = 1;
1364 	}
1365 
1366 	netmask = netif_addr = 0;
1367 
1368 	tok = strtok(NULL, ":/");
1369 	if (tok == NULL)
1370 		goto back;
1371 
1372 	if (inet_pton(AF_INET, tok, &netif_addr) <= 0) {
1373 		if (next_netif_addr) {
1374 			warnx("Invalid pseudo netif address: %s", tok);
1375 			return -1;
1376 		}
1377 		netif_addr = 0;
1378 
1379 		/*
1380 		 * Current token is not address, then it must be netmask len
1381 		 */
1382 		masklen_str = tok;
1383 	} else {
1384 		/*
1385 		 * Current token is pseudo netif address, if there is next token
1386 		 * it must be netmask len
1387 		 */
1388 		masklen_str = strtok(NULL, "/");
1389 	}
1390 
1391 	/* Calculate netmask */
1392 	if (masklen_str != NULL) {
1393 		u_long masklen;
1394 
1395 		masklen = strtoul(masklen_str, NULL, 10);
1396 		if (masklen < 32 && masklen > 0) {
1397 			netmask = htonl(~((1LL << (32 - masklen)) - 1)
1398 					& 0xffffffff);
1399 		} else {
1400 			warnx("Invalid netmask len: %lu", masklen);
1401 			return -1;
1402 		}
1403 	}
1404 
1405 	/* Make sure there is no more token left */
1406 	if (strtok(NULL, ":/") != NULL) {
1407 		warnx("Invalid argument to '-I'");
1408 		return -1;
1409 	}
1410 
1411 back:
1412 	if (tap_unit < 0) {
1413 		/* Do nothing */
1414 	} else if (ifbridge == NULL) {
1415 		/* Set tap(4) address/netmask */
1416 		if (netif_set_tapaddr(tap_unit, tap_addr, netmask, s) < 0)
1417 			return -1;
1418 	} else {
1419 		/* Tie tap(4) to bridge(4) */
1420 		if (netif_add_tap2brg(tap_unit, ifbridge, s) < 0)
1421 			return -1;
1422 	}
1423 
1424 	*addr = netif_addr;
1425 	*mask = netmask;
1426 	return 0;
1427 }
1428 
1429 /*
1430  * NetifInfo[] will be filled for pseudo netif initialization.
1431  * NetifNum will be bumped to reflect the number of valid entries
1432  * in NetifInfo[].
1433  */
1434 static
1435 void
1436 init_netif(char *netifExp[], int netifExpNum)
1437 {
1438 	int i, s;
1439 	char *tmp;
1440 
1441 	if (netifExpNum == 0)
1442 		return;
1443 
1444 	s = socket(AF_INET, SOCK_DGRAM, 0);	/* for ioctl(SIOC) */
1445 	if (s < 0)
1446 		return;
1447 
1448 	for (i = 0; i < netifExpNum; ++i) {
1449 		struct vknetif_info *info;
1450 		in_addr_t netif_addr, netif_mask;
1451 		int tap_fd, tap_unit;
1452 		char *netif;
1453 
1454 		/* Extract MAC address if there is one */
1455 		tmp = netifExp[i];
1456 		strsep(&tmp, "=");
1457 
1458 		netif = strtok(netifExp[i], ":");
1459 		if (netif == NULL) {
1460 			warnx("Invalid argument to '-I'");
1461 			continue;
1462 		}
1463 
1464 		/*
1465 		 * Open tap(4) device file and bring up the
1466 		 * corresponding interface
1467 		 */
1468 		tap_fd = netif_open_tap(netif, &tap_unit, s);
1469 		if (tap_fd < 0)
1470 			continue;
1471 
1472 		/*
1473 		 * Initialize tap(4) and get address/netmask
1474 		 * for pseudo netif
1475 		 *
1476 		 * NB: Rest part of netifExp[i] is passed
1477 		 *     to netif_init_tap() implicitly.
1478 		 */
1479 		if (netif_init_tap(tap_unit, &netif_addr, &netif_mask, s) < 0) {
1480 			/*
1481 			 * NB: Closing tap(4) device file will bring
1482 			 *     down the corresponding interface
1483 			 */
1484 			close(tap_fd);
1485 			continue;
1486 		}
1487 
1488 		info = &NetifInfo[NetifNum];
1489 		bzero(info, sizeof(*info));
1490 		info->tap_fd = tap_fd;
1491 		info->tap_unit = tap_unit;
1492 		info->netif_addr = netif_addr;
1493 		info->netif_mask = netif_mask;
1494 		/*
1495 		 * If tmp isn't NULL it means a MAC could have been
1496 		 * specified so attempt to convert it.
1497 		 * Setting enaddr to NULL will tell vke_attach() we
1498 		 * need a pseudo-random MAC address.
1499 		 */
1500 		if (tmp != NULL) {
1501 			if ((info->enaddr = malloc(ETHER_ADDR_LEN)) == NULL)
1502 				warnx("Couldn't allocate memory for the operation");
1503 			else {
1504 				if ((kether_aton(tmp, info->enaddr)) == NULL) {
1505 					free(info->enaddr);
1506 					info->enaddr = NULL;
1507 				}
1508 			}
1509 		}
1510 
1511 		NetifNum++;
1512 		if (NetifNum >= VKNETIF_MAX)	/* XXX will this happen? */
1513 			break;
1514 	}
1515 	close(s);
1516 }
1517 
1518 /*
1519  * Create the pid file and leave it open and locked while the vkernel is
1520  * running.  This allows a script to use /usr/bin/lockf to probe whether
1521  * a vkernel is still running (so as not to accidently kill an unrelated
1522  * process from a stale pid file).
1523  */
1524 static
1525 void
1526 writepid(void)
1527 {
1528 	char buf[32];
1529 	int fd;
1530 
1531 	if (pid_file != NULL) {
1532 		snprintf(buf, sizeof(buf), "%ld\n", (long)getpid());
1533 		fd = open(pid_file, O_RDWR|O_CREAT|O_EXLOCK|O_NONBLOCK, 0666);
1534 		if (fd < 0) {
1535 			if (errno == EWOULDBLOCK) {
1536 				perror("Failed to lock pidfile, "
1537 				       "vkernel already running");
1538 			} else {
1539 				perror("Failed to create pidfile");
1540 			}
1541 			exit(EX_SOFTWARE);
1542 		}
1543 		ftruncate(fd, 0);
1544 		write(fd, buf, strlen(buf));
1545 		/* leave the file open to maintain the lock */
1546 	}
1547 }
1548 
1549 static
1550 void
1551 cleanpid( void )
1552 {
1553 	if (pid_file != NULL) {
1554 		if (unlink(pid_file) < 0)
1555 			perror("Warning: couldn't remove pidfile");
1556 	}
1557 }
1558 
1559 static
1560 void
1561 usage_err(const char *ctl, ...)
1562 {
1563 	va_list va;
1564 
1565 	va_start(va, ctl);
1566 	vfprintf(stderr, ctl, va);
1567 	va_end(va);
1568 	fprintf(stderr, "\n");
1569 	exit(EX_USAGE);
1570 }
1571 
1572 static
1573 void
1574 usage_help(_Bool help)
1575 {
1576 	fprintf(stderr, "Usage: %s [-hsUvdt] [-c file] [-e name=value:name=value:...]\n"
1577 	    "\t[-i file] [-I interface[:address1[:address2][/netmask]]] [-l cpulock]\n"
1578 	    "\t[-m size] [-n numcpus[:lbits[:cbits]]]\n"
1579 	    "\t[-p file] [-r file]\n", save_av[0]);
1580 
1581 	if (help)
1582 		fprintf(stderr, "\nArguments:\n"
1583 		    "\t-c\tSpecify a readonly CD-ROM image file to be used by the kernel.\n"
1584 		    "\t-e\tSpecify an environment to be used by the kernel.\n"
1585 		    "\t-h\tThis list of options.\n"
1586 		    "\t-i\tSpecify a memory image file to be used by the virtual kernel.\n"
1587 		    "\t-I\tCreate a virtual network device.\n"
1588 		    "\t-l\tSpecify which, if any, real CPUs to lock virtual CPUs to.\n"
1589 		    "\t-m\tSpecify the amount of memory to be used by the kernel in bytes.\n"
1590 		    "\t-n\tSpecify the number of CPUs and the topology you wish to emulate:\n"
1591 		    "\t\t\tnumcpus - number of cpus\n"
1592 		    "\t\t\tlbits - specify the number of bits within APICID(=CPUID)\n"
1593 		    "\t\t\t        needed for representing the logical ID.\n"
1594 		    "\t\t\t        Controls the number of threads/core:\n"
1595 		    "\t\t\t        (0 bits - 1 thread, 1 bit - 2 threads).\n"
1596 		    "\t\t\tcbits - specify the number of bits within APICID(=CPUID)\n"
1597 		    "\t\t\t        needed for representing the core ID.\n"
1598 		    "\t\t\t        Controls the number of cores/package:\n"
1599 		    "\t\t\t        (0 bits - 1 core, 1 bit - 2 cores).\n"
1600 		    "\t-p\tSpecify a file in which to store the process ID.\n"
1601 		    "\t-r\tSpecify a R/W disk image file, iterates vkd0..n\n"
1602 		    "\t-R\tSpecify a COW disk image file, iterates vkd0..n\n"
1603 		    "\t-s\tBoot into single-user mode.\n"
1604 		    "\t-t\tUse a precise host timer when calculating clock values.\n"
1605 		    "\t-U\tEnable writing to kernel memory and module loading.\n"
1606 		    "\t-v\tTurn on verbose booting.\n");
1607 
1608 	exit(EX_USAGE);
1609 }
1610 
1611 void
1612 cpu_smp_stopped(void)
1613 {
1614 }
1615 
1616 void
1617 cpu_reset(void)
1618 {
1619 	kprintf("cpu reset, rebooting vkernel\n");
1620 	closefrom(3);
1621 	cleanpid();
1622 	exit(EX_VKERNEL_REBOOT);
1623 }
1624 
1625 void
1626 cpu_halt(void)
1627 {
1628 	kprintf("cpu halt, exiting vkernel\n");
1629 	cleanpid();
1630 	exit(EX_OK);
1631 }
1632 
1633 void
1634 setrealcpu(void)
1635 {
1636 	switch(lwp_cpu_lock) {
1637 	case LCL_PER_CPU:
1638 		if (bootverbose)
1639 			kprintf("Locking CPU%d to real cpu %d\n",
1640 				mycpuid, next_cpu);
1641 		usched_set(getpid(), USCHED_SET_CPU, &next_cpu, sizeof(next_cpu));
1642 		next_cpu++;
1643 		if (next_cpu >= real_ncpus)
1644 			next_cpu = 0;
1645 		break;
1646 	case LCL_SINGLE_CPU:
1647 		if (bootverbose)
1648 			kprintf("Locking CPU%d to real cpu %d\n",
1649 				mycpuid, next_cpu);
1650 		usched_set(getpid(), USCHED_SET_CPU, &next_cpu, sizeof(next_cpu));
1651 		break;
1652 	default:
1653 		/* do not map virtual cpus to real cpus */
1654 		break;
1655 	}
1656 }
1657 
1658 /*
1659  * Allocate and free memory for module loading.  The loaded module
1660  * has to be placed somewhere near the current kernel binary load
1661  * point or the relocations will not work.
1662  *
1663  * I'm not sure why this isn't working.
1664  */
1665 int
1666 vkernel_module_memory_alloc(vm_offset_t *basep, size_t bytes)
1667 {
1668 #if 1
1669 	size_t xtra;
1670 	xtra = (PAGE_SIZE - (vm_offset_t)sbrk(0)) & PAGE_MASK;
1671 	*basep = (vm_offset_t)sbrk(xtra + bytes) + xtra;
1672 	bzero((void *)*basep, bytes);
1673 #else
1674 	*basep = (vm_offset_t)mmap((void *)0x000000000, bytes,
1675 				   PROT_READ|PROT_WRITE|PROT_EXEC,
1676 				   MAP_ANON|MAP_SHARED, -1, 0);
1677 	if ((void *)*basep == MAP_FAILED)
1678 		return ENOMEM;
1679 #endif
1680 	return 0;
1681 }
1682 
1683 void
1684 vkernel_module_memory_free(vm_offset_t base, size_t bytes)
1685 {
1686 #if 0
1687 #if 0
1688 	munmap((void *)base, bytes);
1689 #endif
1690 #endif
1691 }
1692