1 /*
2  * Copyright (c) 2006 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $DragonFly: src/sys/platform/vkernel/platform/init.c,v 1.56 2008/05/27 07:48:00 dillon Exp $
35  */
36 
37 #include <sys/types.h>
38 #include <sys/systm.h>
39 #include <sys/kernel.h>
40 #include <sys/stat.h>
41 #include <sys/mman.h>
42 #include <sys/cons.h>
43 #include <sys/random.h>
44 #include <sys/vkernel.h>
45 #include <sys/tls.h>
46 #include <sys/reboot.h>
47 #include <sys/proc.h>
48 #include <sys/msgbuf.h>
49 #include <sys/vmspace.h>
50 #include <sys/socket.h>
51 #include <sys/sockio.h>
52 #include <sys/sysctl.h>
53 #include <sys/un.h>
54 #include <vm/vm_page.h>
55 #include <sys/mplock2.h>
56 
57 #include <machine/cpu.h>
58 #include <machine/globaldata.h>
59 #include <machine/tls.h>
60 #include <machine/md_var.h>
61 #include <machine/vmparam.h>
62 #include <cpu/specialreg.h>
63 
64 #include <net/if.h>
65 #include <net/if_arp.h>
66 #include <net/ethernet.h>
67 #include <net/bridge/if_bridgevar.h>
68 #include <netinet/in.h>
69 #include <arpa/inet.h>
70 
71 #include <stdio.h>
72 #include <stdlib.h>
73 #include <stdarg.h>
74 #include <stdbool.h>
75 #include <unistd.h>
76 #include <fcntl.h>
77 #include <string.h>
78 #include <err.h>
79 #include <errno.h>
80 #include <assert.h>
81 #include <sysexits.h>
82 
83 vm_paddr_t phys_avail[16];
84 vm_paddr_t Maxmem;
85 vm_paddr_t Maxmem_bytes;
86 int physmem;
87 int MemImageFd = -1;
88 struct vkdisk_info DiskInfo[VKDISK_MAX];
89 int DiskNum;
90 struct vknetif_info NetifInfo[VKNETIF_MAX];
91 int NetifNum;
92 char *pid_file;
93 vm_offset_t KvaStart;
94 vm_offset_t KvaEnd;
95 vm_offset_t KvaSize;
96 vm_offset_t virtual_start;
97 vm_offset_t virtual_end;
98 vm_offset_t virtual2_start;
99 vm_offset_t virtual2_end;
100 vm_offset_t kernel_vm_end;
101 vm_offset_t crashdumpmap;
102 vm_offset_t clean_sva;
103 vm_offset_t clean_eva;
104 struct msgbuf *msgbufp;
105 caddr_t ptvmmap;
106 vpte_t	*KernelPTD;
107 vpte_t	*KernelPTA;	/* Warning: Offset for direct VA translation */
108 void *dmap_min_address;
109 u_int cpu_feature;	/* XXX */
110 int tsc_present;
111 int64_t tsc_frequency;
112 int optcpus;		/* number of cpus - see mp_start() */
113 int lwp_cpu_lock;	/* if/how to lock virtual CPUs to real CPUs */
114 int real_ncpus;		/* number of real CPUs */
115 int next_cpu;		/* next real CPU to lock a virtual CPU to */
116 
117 struct privatespace *CPU_prvspace;
118 
119 static struct trapframe proc0_tf;
120 static void *proc0paddr;
121 
122 static void init_sys_memory(char *imageFile);
123 static void init_kern_memory(void);
124 static void init_globaldata(void);
125 static void init_vkernel(void);
126 static void init_disk(char *diskExp[], int diskFileNum, enum vkdisk_type type);
127 static void init_netif(char *netifExp[], int netifFileNum);
128 static void writepid(void);
129 static void cleanpid(void);
130 static int unix_connect(const char *path);
131 static void usage_err(const char *ctl, ...);
132 static void usage_help(_Bool);
133 
134 static int save_ac;
135 static char **save_av;
136 
137 /*
138  * Kernel startup for virtual kernels - standard main()
139  */
140 int
141 main(int ac, char **av)
142 {
143 	char *memImageFile = NULL;
144 	char *netifFile[VKNETIF_MAX];
145 	char *diskFile[VKDISK_MAX];
146 	char *cdFile[VKDISK_MAX];
147 	char *suffix;
148 	char *endp;
149 	int netifFileNum = 0;
150 	int diskFileNum = 0;
151 	int cdFileNum = 0;
152 	int bootOnDisk = -1;	/* set below to vcd (0) or vkd (1) */
153 	int c;
154 	int i;
155 	int j;
156 	int n;
157 	int isq;
158 	int real_vkernel_enable;
159 	int supports_sse;
160 	size_t vsize;
161 
162 	save_ac = ac;
163 	save_av = av;
164 
165 	/*
166 	 * Process options
167 	 */
168 	kernel_mem_readonly = 1;
169 #ifdef SMP
170 	optcpus = 2;
171 #endif
172 	lwp_cpu_lock = LCL_NONE;
173 
174 	real_vkernel_enable = 0;
175 	vsize = sizeof(real_vkernel_enable);
176 	sysctlbyname("vm.vkernel_enable", &real_vkernel_enable, &vsize, NULL,0);
177 
178 	if (real_vkernel_enable == 0) {
179 		errx(1, "vm.vkernel_enable is 0, must be set "
180 			"to 1 to execute a vkernel!");
181 	}
182 
183 	real_ncpus = 1;
184 	vsize = sizeof(real_ncpus);
185 	sysctlbyname("hw.ncpu", &real_ncpus, &vsize, NULL, 0);
186 
187 	if (ac < 2)
188 		usage_help(false);
189 
190 	while ((c = getopt(ac, av, "c:hsvl:m:n:r:e:i:p:I:U")) != -1) {
191 		switch(c) {
192 		case 'e':
193 			/*
194 			 * name=value:name=value:name=value...
195 			 * name="value"...
196 			 *
197 			 * Allow values to be quoted but note that shells
198 			 * may remove the quotes, so using this feature
199 			 * to embed colons may require a backslash.
200 			 */
201 			n = strlen(optarg);
202 			isq = 0;
203 			kern_envp = malloc(n + 2);
204 			for (i = j = 0; i < n; ++i) {
205 				if (optarg[i] == '"')
206 					isq ^= 1;
207 				else if (optarg[i] == '\'')
208 					isq ^= 2;
209 				else if (isq == 0 && optarg[i] == ':')
210 					kern_envp[j++] = 0;
211 				else
212 					kern_envp[j++] = optarg[i];
213 			}
214 			kern_envp[j++] = 0;
215 			kern_envp[j++] = 0;
216 			break;
217 		case 's':
218 			boothowto |= RB_SINGLE;
219 			break;
220 		case 'v':
221 			bootverbose = 1;
222 			break;
223 		case 'i':
224 			memImageFile = optarg;
225 			break;
226 		case 'I':
227 			if (netifFileNum < VKNETIF_MAX)
228 				netifFile[netifFileNum++] = strdup(optarg);
229 			break;
230 		case 'r':
231 			if (bootOnDisk < 0)
232 				bootOnDisk = 1;
233 			if (diskFileNum + cdFileNum < VKDISK_MAX)
234 				diskFile[diskFileNum++] = strdup(optarg);
235 			break;
236 		case 'c':
237 			if (bootOnDisk < 0)
238 				bootOnDisk = 0;
239 			if (diskFileNum + cdFileNum < VKDISK_MAX)
240 				cdFile[cdFileNum++] = strdup(optarg);
241 			break;
242 		case 'm':
243 			Maxmem_bytes = strtoull(optarg, &suffix, 0);
244 			if (suffix) {
245 				switch(*suffix) {
246 				case 'g':
247 				case 'G':
248 					Maxmem_bytes <<= 30;
249 					break;
250 				case 'm':
251 				case 'M':
252 					Maxmem_bytes <<= 20;
253 					break;
254 				case 'k':
255 				case 'K':
256 					Maxmem_bytes <<= 10;
257 					break;
258 				default:
259 					Maxmem_bytes = 0;
260 					usage_err("Bad maxmem option");
261 					/* NOT REACHED */
262 					break;
263 				}
264 			}
265 			break;
266 		case 'l':
267 			next_cpu = -1;
268 			if (strncmp("map", optarg, 3) == 0) {
269 				lwp_cpu_lock = LCL_PER_CPU;
270 				if (optarg[3] == ',') {
271 					next_cpu = strtol(optarg+4, &endp, 0);
272 					if (*endp != '\0')
273 						usage_err("Bad target CPU number at '%s'", endp);
274 				} else {
275 					next_cpu = 0;
276 				}
277 				if (next_cpu < 0 || next_cpu > real_ncpus - 1)
278 					usage_err("Bad target CPU, valid range is 0-%d", real_ncpus - 1);
279 			} else if (strncmp("any", optarg, 3) == 0) {
280 				lwp_cpu_lock = LCL_NONE;
281 			} else {
282 				lwp_cpu_lock = LCL_SINGLE_CPU;
283 				next_cpu = strtol(optarg, &endp, 0);
284 				if (*endp != '\0')
285 					usage_err("Bad target CPU number at '%s'", endp);
286 				if (next_cpu < 0 || next_cpu > real_ncpus - 1)
287 					usage_err("Bad target CPU, valid range is 0-%d", real_ncpus - 1);
288 			}
289 			break;
290 		case 'n':
291 			/*
292 			 * This value is set up by mp_start(), don't just
293 			 * set ncpus here.
294 			 */
295 #ifdef SMP
296 			optcpus = strtol(optarg, NULL, 0);
297 			if (optcpus < 1 || optcpus > MAXCPU)
298 				usage_err("Bad ncpus, valid range is 1-%d", MAXCPU);
299 #else
300 			if (strtol(optarg, NULL, 0) != 1) {
301 				usage_err("You built a UP vkernel, only 1 cpu!");
302 			}
303 #endif
304 
305 			break;
306 		case 'p':
307 			pid_file = optarg;
308 			break;
309 		case 'U':
310 			kernel_mem_readonly = 0;
311 			break;
312 		case 'h':
313 			usage_help(true);
314 			break;
315 		default:
316 			usage_help(false);
317 		}
318 	}
319 
320 	writepid();
321 	cpu_disable_intr();
322 	init_sys_memory(memImageFile);
323 	init_kern_memory();
324 	init_globaldata();
325 	init_vkernel();
326 	setrealcpu();
327 	init_kqueue();
328 
329 	/*
330 	 * Check TSC
331 	 */
332 	vsize = sizeof(tsc_present);
333 	sysctlbyname("hw.tsc_present", &tsc_present, &vsize, NULL, 0);
334 	vsize = sizeof(tsc_frequency);
335 	sysctlbyname("hw.tsc_frequency", &tsc_frequency, &vsize, NULL, 0);
336 	if (tsc_present)
337 		cpu_feature |= CPUID_TSC;
338 
339 	/*
340 	 * Check SSE
341 	 */
342 	vsize = sizeof(supports_sse);
343 	supports_sse = 0;
344 	sysctlbyname("hw.instruction_sse", &supports_sse, &vsize, NULL, 0);
345 	init_fpu(supports_sse);
346 	if (supports_sse)
347 		cpu_feature |= CPUID_SSE | CPUID_FXSR;
348 
349 	/*
350 	 * We boot from the first installed disk.
351 	 */
352 	if (bootOnDisk == 1) {
353 		init_disk(diskFile, diskFileNum, VKD_DISK);
354 		init_disk(cdFile, cdFileNum, VKD_CD);
355 	} else {
356 		init_disk(cdFile, cdFileNum, VKD_CD);
357 		init_disk(diskFile, diskFileNum, VKD_DISK);
358 	}
359 	init_netif(netifFile, netifFileNum);
360 	init_exceptions();
361 	mi_startup();
362 	/* NOT REACHED */
363 	exit(EX_SOFTWARE);
364 }
365 
366 /*
367  * Initialize system memory.  This is the virtual kernel's 'RAM'.
368  */
369 static
370 void
371 init_sys_memory(char *imageFile)
372 {
373 	struct stat st;
374 	int i;
375 	int fd;
376 
377 	/*
378 	 * Figure out the system memory image size.  If an image file was
379 	 * specified and -m was not specified, use the image file's size.
380 	 */
381 
382 	if (imageFile && stat(imageFile, &st) == 0 && Maxmem_bytes == 0)
383 		Maxmem_bytes = (vm_paddr_t)st.st_size;
384 	if ((imageFile == NULL || stat(imageFile, &st) < 0) &&
385 	    Maxmem_bytes == 0) {
386 		err(1, "Cannot create new memory file %s unless "
387 		       "system memory size is specified with -m",
388 		       imageFile);
389 		/* NOT REACHED */
390 	}
391 
392 	/*
393 	 * Maxmem must be known at this time
394 	 */
395 	if (Maxmem_bytes < 32 * 1024 * 1024 || (Maxmem_bytes & SEG_MASK)) {
396 		err(1, "Bad maxmem specification: 32MB minimum, "
397 		       "multiples of %dMB only",
398 		       SEG_SIZE / 1024 / 1024);
399 		/* NOT REACHED */
400 	}
401 
402 	/*
403 	 * Generate an image file name if necessary, then open/create the
404 	 * file exclusively locked.  Do not allow multiple virtual kernels
405 	 * to use the same image file.
406 	 */
407 	if (imageFile == NULL) {
408 		for (i = 0; i < 1000000; ++i) {
409 			asprintf(&imageFile, "/var/vkernel/memimg.%06d", i);
410 			fd = open(imageFile,
411 				  O_RDWR|O_CREAT|O_EXLOCK|O_NONBLOCK, 0644);
412 			if (fd < 0 && errno == EWOULDBLOCK) {
413 				free(imageFile);
414 				continue;
415 			}
416 			break;
417 		}
418 	} else {
419 		fd = open(imageFile, O_RDWR|O_CREAT|O_EXLOCK|O_NONBLOCK, 0644);
420 	}
421 	fprintf(stderr, "Using memory file: %s\n", imageFile);
422 	if (fd < 0 || fstat(fd, &st) < 0) {
423 		err(1, "Unable to open/create %s", imageFile);
424 		/* NOT REACHED */
425 	}
426 
427 	/*
428 	 * Truncate or extend the file as necessary.  Clean out the contents
429 	 * of the file, we want it to be full of holes so we don't waste
430 	 * time reading in data from an old file that we no longer care
431 	 * about.
432 	 */
433 	ftruncate(fd, 0);
434 	ftruncate(fd, Maxmem_bytes);
435 
436 	MemImageFd = fd;
437 	Maxmem = Maxmem_bytes >> PAGE_SHIFT;
438 	physmem = Maxmem;
439 }
440 
441 /*
442  * Initialize kernel memory.  This reserves kernel virtual memory by using
443  * MAP_VPAGETABLE
444  */
445 
446 static
447 void
448 init_kern_memory(void)
449 {
450 	void *base;
451 	void *try;
452 	char dummy;
453 	char *topofstack = &dummy;
454 	int i;
455 	void *firstfree;
456 
457 	/*
458 	 * Memory map our kernel virtual memory space.  Note that the
459 	 * kernel image itself is not made part of this memory for the
460 	 * moment.
461 	 *
462 	 * The memory map must be segment-aligned so we can properly
463 	 * offset KernelPTD.
464 	 *
465 	 * If the system kernel has a different MAXDSIZ, it might not
466 	 * be possible to map kernel memory in its prefered location.
467 	 * Try a number of different locations.
468 	 */
469 	try = (void *)(512UL << 30);
470 	base = NULL;
471 	while ((char *)try + KERNEL_KVA_SIZE < topofstack) {
472 		base = mmap(try, KERNEL_KVA_SIZE, PROT_READ|PROT_WRITE,
473 			    MAP_FILE|MAP_SHARED|MAP_VPAGETABLE,
474 			    MemImageFd, (off_t)try);
475 		if (base == try)
476 			break;
477 		if (base != MAP_FAILED)
478 			munmap(base, KERNEL_KVA_SIZE);
479 		try = (char *)try + (512UL << 30);
480 	}
481 	if (base != try) {
482 		err(1, "Unable to mmap() kernel virtual memory!");
483 		/* NOT REACHED */
484 	}
485 	madvise(base, KERNEL_KVA_SIZE, MADV_NOSYNC);
486 	KvaStart = (vm_offset_t)base;
487 	KvaSize = KERNEL_KVA_SIZE;
488 	KvaEnd = KvaStart + KvaSize;
489 
490 	/* cannot use kprintf yet */
491 	printf("KVM mapped at %p-%p\n", (void *)KvaStart, (void *)KvaEnd);
492 
493 	/* MAP_FILE? */
494 	dmap_min_address = mmap(0, DMAP_SIZE, PROT_READ|PROT_WRITE,
495 				MAP_NOCORE|MAP_NOSYNC|MAP_SHARED,
496 				MemImageFd, 0);
497 	if (dmap_min_address == MAP_FAILED) {
498 		err(1, "Unable to mmap() kernel DMAP region!");
499 		/* NOT REACHED */
500 	}
501 
502 	firstfree = 0;
503 	pmap_bootstrap((vm_paddr_t *)&firstfree, (int64_t)base);
504 
505 	mcontrol(base, KERNEL_KVA_SIZE, MADV_SETMAP,
506 		 0 | VPTE_R | VPTE_W | VPTE_V);
507 
508 	/*
509 	 * phys_avail[] represents unallocated physical memory.  MI code
510 	 * will use phys_avail[] to create the vm_page array.
511 	 */
512 	phys_avail[0] = (vm_paddr_t)firstfree;
513 	phys_avail[0] = (phys_avail[0] + PAGE_MASK) & ~(vm_paddr_t)PAGE_MASK;
514 	phys_avail[1] = Maxmem_bytes;
515 
516 #if JGV
517 	/*
518 	 * (virtual_start, virtual_end) represent unallocated kernel virtual
519 	 * memory.  MI code will create kernel_map using these parameters.
520 	 */
521 	virtual_start = KvaStart + (long)firstfree;
522 	virtual_start = (virtual_start + PAGE_MASK) & ~(vm_offset_t)PAGE_MASK;
523 	virtual_end = KvaStart + KERNEL_KVA_SIZE;
524 #endif
525 
526 	/*
527 	 * pmap_growkernel() will set the correct value.
528 	 */
529 	kernel_vm_end = 0;
530 
531 	/*
532 	 * Allocate space for process 0's UAREA.
533 	 */
534 	proc0paddr = (void *)virtual_start;
535 	for (i = 0; i < UPAGES; ++i) {
536 		pmap_kenter_quick(virtual_start, phys_avail[0]);
537 		virtual_start += PAGE_SIZE;
538 		phys_avail[0] += PAGE_SIZE;
539 	}
540 
541 	/*
542 	 * crashdumpmap
543 	 */
544 	crashdumpmap = virtual_start;
545 	virtual_start += MAXDUMPPGS * PAGE_SIZE;
546 
547 	/*
548 	 * msgbufp maps the system message buffer
549 	 */
550 	assert((MSGBUF_SIZE & PAGE_MASK) == 0);
551 	msgbufp = (void *)virtual_start;
552 	for (i = 0; i < (MSGBUF_SIZE >> PAGE_SHIFT); ++i) {
553 		pmap_kenter_quick(virtual_start, phys_avail[0]);
554 		virtual_start += PAGE_SIZE;
555 		phys_avail[0] += PAGE_SIZE;
556 	}
557 	msgbufinit(msgbufp, MSGBUF_SIZE);
558 
559 	/*
560 	 * used by kern_memio for /dev/mem access
561 	 */
562 	ptvmmap = (caddr_t)virtual_start;
563 	virtual_start += PAGE_SIZE;
564 
565 	/*
566 	 * Bootstrap the kernel_pmap
567 	 */
568 #if JGV
569 	pmap_bootstrap();
570 #endif
571 }
572 
573 /*
574  * Map the per-cpu globaldata for cpu #0.  Allocate the space using
575  * virtual_start and phys_avail[0]
576  */
577 static
578 void
579 init_globaldata(void)
580 {
581 	int i;
582 	vm_paddr_t pa;
583 	vm_offset_t va;
584 
585 	/*
586 	 * Reserve enough KVA to cover possible cpus.  This is a considerable
587 	 * amount of KVA since the privatespace structure includes two
588 	 * whole page table mappings.
589 	 */
590 	virtual_start = (virtual_start + SEG_MASK) & ~(vm_offset_t)SEG_MASK;
591 	CPU_prvspace = (void *)virtual_start;
592 	virtual_start += sizeof(struct privatespace) * SMP_MAXCPU;
593 
594 	/*
595 	 * Allocate enough physical memory to cover the mdglobaldata
596 	 * portion of the space and the idle stack and map the pages
597 	 * into KVA.  For cpu #0 only.
598 	 */
599 	for (i = 0; i < sizeof(struct mdglobaldata); i += PAGE_SIZE) {
600 		pa = phys_avail[0];
601 		va = (vm_offset_t)&CPU_prvspace[0].mdglobaldata + i;
602 		pmap_kenter_quick(va, pa);
603 		phys_avail[0] += PAGE_SIZE;
604 	}
605 	for (i = 0; i < sizeof(CPU_prvspace[0].idlestack); i += PAGE_SIZE) {
606 		pa = phys_avail[0];
607 		va = (vm_offset_t)&CPU_prvspace[0].idlestack + i;
608 		pmap_kenter_quick(va, pa);
609 		phys_avail[0] += PAGE_SIZE;
610 	}
611 
612 	/*
613 	 * Setup the %gs for cpu #0.  The mycpu macro works after this
614 	 * point.  Note that %fs is used by pthreads.
615 	 */
616 	tls_set_gs(&CPU_prvspace[0], sizeof(struct privatespace));
617 }
618 
619 /*
620  * Initialize very low level systems including thread0, proc0, etc.
621  */
622 static
623 void
624 init_vkernel(void)
625 {
626 	struct mdglobaldata *gd;
627 
628 	gd = &CPU_prvspace[0].mdglobaldata;
629 	bzero(gd, sizeof(*gd));
630 
631 	gd->mi.gd_curthread = &thread0;
632 	thread0.td_gd = &gd->mi;
633 	ncpus = 1;
634 	ncpus2 = 1;	/* rounded down power of 2 */
635 	ncpus_fit = 1;	/* rounded up power of 2 */
636 	/* ncpus2_mask and ncpus_fit_mask are 0 */
637 	init_param1();
638 	gd->mi.gd_prvspace = &CPU_prvspace[0];
639 	mi_gdinit(&gd->mi, 0);
640 	cpu_gdinit(gd, 0);
641 	mi_proc0init(&gd->mi, proc0paddr);
642 	lwp0.lwp_md.md_regs = &proc0_tf;
643 
644 	/*init_locks();*/
645 #ifdef SMP
646 	/*
647 	 * Get the initial mplock with a count of 1 for the BSP.
648 	 * This uses a LOGICAL cpu ID, ie BSP == 0.
649 	 */
650 	cpu_get_initial_mplock();
651 #endif
652 	cninit();
653 	rand_initialize();
654 #if 0	/* #ifdef DDB */
655 	kdb_init();
656 	if (boothowto & RB_KDB)
657 		Debugger("Boot flags requested debugger");
658 #endif
659 	identcpu();
660 #if 0
661 	initializecpu();	/* Initialize CPU registers */
662 #endif
663 	init_param2((phys_avail[1] - phys_avail[0]) / PAGE_SIZE);
664 
665 #if 0
666 	/*
667 	 * Map the message buffer
668 	 */
669 	for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
670 		pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
671 	msgbufinit(msgbufp, MSGBUF_SIZE);
672 #endif
673 #if 0
674 	thread0.td_pcb_cr3 ... MMU
675 	lwp0.lwp_md.md_regs = &proc0_tf;
676 #endif
677 }
678 
679 /*
680  * Filesystem image paths for the virtual kernel are optional.
681  * If specified they each should point to a disk image,
682  * the first of which will become the root disk.
683  *
684  * The virtual kernel caches data from our 'disk' just like a normal kernel,
685  * so we do not really want the real kernel to cache the data too.  Use
686  * O_DIRECT to remove the duplication.
687  */
688 static
689 void
690 init_disk(char *diskExp[], int diskFileNum, enum vkdisk_type type)
691 {
692 	int i;
693 
694         if (diskFileNum == 0)
695                 return;
696 
697 	for(i=0; i < diskFileNum; i++){
698 		char *fname;
699 		fname = diskExp[i];
700 
701 		if (fname == NULL) {
702                         warnx("Invalid argument to '-r'");
703                         continue;
704                 }
705 
706 		if (DiskNum < VKDISK_MAX) {
707 			struct stat st;
708 			struct vkdisk_info* info = NULL;
709 			int fd;
710 			size_t l = 0;
711 
712 			if (type == VKD_DISK)
713 			    fd = open(fname, O_RDWR|O_DIRECT, 0644);
714 			else
715 			    fd = open(fname, O_RDONLY|O_DIRECT, 0644);
716 			if (fd < 0 || fstat(fd, &st) < 0) {
717 				err(1, "Unable to open/create %s", fname);
718 				/* NOT REACHED */
719 			}
720 			if (S_ISREG(st.st_mode)) {
721 				if (flock(fd, LOCK_EX|LOCK_NB) < 0) {
722 					errx(1, "Disk image %s is already "
723 						"in use\n", fname);
724 					/* NOT REACHED */
725 				}
726 			}
727 
728 			info = &DiskInfo[DiskNum];
729 			l = strlen(fname);
730 
731 			info->unit = i;
732 			info->fd = fd;
733 			info->type = type;
734 			memcpy(info->fname, fname, l);
735 
736 			if (DiskNum == 0) {
737 				if (type == VKD_CD) {
738 				    rootdevnames[0] = "cd9660:vcd0a";
739 				} else if (type == VKD_DISK) {
740 				    rootdevnames[0] = "ufs:vkd0s0a";
741 				    rootdevnames[1] = "ufs:vkd0s1a";
742 				}
743 			}
744 
745 			DiskNum++;
746 		} else {
747                         warnx("vkd%d (%s) > VKDISK_MAX", DiskNum, fname);
748                         continue;
749 		}
750 	}
751 }
752 
753 static
754 int
755 netif_set_tapflags(int tap_unit, int f, int s)
756 {
757 	struct ifreq ifr;
758 	int flags;
759 
760 	bzero(&ifr, sizeof(ifr));
761 
762 	snprintf(ifr.ifr_name, sizeof(ifr.ifr_name), "tap%d", tap_unit);
763 	if (ioctl(s, SIOCGIFFLAGS, &ifr) < 0) {
764 		warn("tap%d: ioctl(SIOCGIFFLAGS) failed", tap_unit);
765 		return -1;
766 	}
767 
768 	/*
769 	 * Adjust if_flags
770 	 *
771 	 * If the flags are already set/cleared, then we return
772 	 * immediately to avoid extra syscalls
773 	 */
774 	flags = (ifr.ifr_flags & 0xffff) | (ifr.ifr_flagshigh << 16);
775 	if (f < 0) {
776 		/* Turn off flags */
777 		f = -f;
778 		if ((flags & f) == 0)
779 			return 0;
780 		flags &= ~f;
781 	} else {
782 		/* Turn on flags */
783 		if (flags & f)
784 			return 0;
785 		flags |= f;
786 	}
787 
788 	/*
789 	 * Fix up ifreq.ifr_name, since it may be trashed
790 	 * in previous ioctl(SIOCGIFFLAGS)
791 	 */
792 	snprintf(ifr.ifr_name, sizeof(ifr.ifr_name), "tap%d", tap_unit);
793 
794 	ifr.ifr_flags = flags & 0xffff;
795 	ifr.ifr_flagshigh = flags >> 16;
796 	if (ioctl(s, SIOCSIFFLAGS, &ifr) < 0) {
797 		warn("tap%d: ioctl(SIOCSIFFLAGS) failed", tap_unit);
798 		return -1;
799 	}
800 	return 0;
801 }
802 
803 static
804 int
805 netif_set_tapaddr(int tap_unit, in_addr_t addr, in_addr_t mask, int s)
806 {
807 	struct ifaliasreq ifra;
808 	struct sockaddr_in *in;
809 
810 	bzero(&ifra, sizeof(ifra));
811 	snprintf(ifra.ifra_name, sizeof(ifra.ifra_name), "tap%d", tap_unit);
812 
813 	/* Setup address */
814 	in = (struct sockaddr_in *)&ifra.ifra_addr;
815 	in->sin_family = AF_INET;
816 	in->sin_len = sizeof(*in);
817 	in->sin_addr.s_addr = addr;
818 
819 	if (mask != 0) {
820 		/* Setup netmask */
821 		in = (struct sockaddr_in *)&ifra.ifra_mask;
822 		in->sin_len = sizeof(*in);
823 		in->sin_addr.s_addr = mask;
824 	}
825 
826 	if (ioctl(s, SIOCAIFADDR, &ifra) < 0) {
827 		warn("tap%d: ioctl(SIOCAIFADDR) failed", tap_unit);
828 		return -1;
829 	}
830 	return 0;
831 }
832 
833 static
834 int
835 netif_add_tap2brg(int tap_unit, const char *ifbridge, int s)
836 {
837 	struct ifbreq ifbr;
838 	struct ifdrv ifd;
839 
840 	bzero(&ifbr, sizeof(ifbr));
841 	snprintf(ifbr.ifbr_ifsname, sizeof(ifbr.ifbr_ifsname),
842 		 "tap%d", tap_unit);
843 
844 	bzero(&ifd, sizeof(ifd));
845 	strlcpy(ifd.ifd_name, ifbridge, sizeof(ifd.ifd_name));
846 	ifd.ifd_cmd = BRDGADD;
847 	ifd.ifd_len = sizeof(ifbr);
848 	ifd.ifd_data = &ifbr;
849 
850 	if (ioctl(s, SIOCSDRVSPEC, &ifd) < 0) {
851 		/*
852 		 * 'errno == EEXIST' means that the tap(4) is already
853 		 * a member of the bridge(4)
854 		 */
855 		if (errno != EEXIST) {
856 			warn("ioctl(%s, SIOCSDRVSPEC) failed", ifbridge);
857 			return -1;
858 		}
859 	}
860 	return 0;
861 }
862 
863 #define TAPDEV_OFLAGS	(O_RDWR | O_NONBLOCK)
864 
865 /*
866  * Locate the first unused tap(4) device file if auto mode is requested,
867  * or open the user supplied device file, and bring up the corresponding
868  * tap(4) interface.
869  *
870  * NOTE: Only tap(4) device file is supported currently
871  */
872 static
873 int
874 netif_open_tap(const char *netif, int *tap_unit, int s)
875 {
876 	char tap_dev[MAXPATHLEN];
877 	int tap_fd, failed;
878 	struct stat st;
879 	char *dname;
880 
881 	*tap_unit = -1;
882 
883 	if (strcmp(netif, "auto") == 0) {
884 		/*
885 		 * Find first unused tap(4) device file
886 		 */
887 		tap_fd = open("/dev/tap", TAPDEV_OFLAGS);
888 		if (tap_fd < 0) {
889 			warnc(errno, "Unable to find a free tap(4)");
890 			return -1;
891 		}
892 	} else {
893 		/*
894 		 * User supplied tap(4) device file or unix socket.
895 		 */
896 		if (netif[0] == '/')	/* Absolute path */
897 			strlcpy(tap_dev, netif, sizeof(tap_dev));
898 		else
899 			snprintf(tap_dev, sizeof(tap_dev), "/dev/%s", netif);
900 
901 		tap_fd = open(tap_dev, TAPDEV_OFLAGS);
902 
903 		/*
904 		 * If we cannot open normally try to connect to it.
905 		 */
906 		if (tap_fd < 0)
907 			tap_fd = unix_connect(tap_dev);
908 
909 		if (tap_fd < 0) {
910 			warn("Unable to open %s", tap_dev);
911 			return -1;
912 		}
913 	}
914 
915 	/*
916 	 * Check whether the device file is a tap(4)
917 	 */
918 	if (fstat(tap_fd, &st) < 0) {
919 		failed = 1;
920 	} else if (S_ISCHR(st.st_mode)) {
921 		dname = fdevname(tap_fd);
922 		if (dname)
923 			dname = strstr(dname, "tap");
924 		if (dname) {
925 			/*
926 			 * Bring up the corresponding tap(4) interface
927 			 */
928 			*tap_unit = strtol(dname + 3, NULL, 10);
929 			printf("TAP UNIT %d\n", *tap_unit);
930 			if (netif_set_tapflags(*tap_unit, IFF_UP, s) == 0)
931 				failed = 0;
932 			else
933 				failed = 1;
934 		} else {
935 			failed = 1;
936 		}
937 	} else if (S_ISSOCK(st.st_mode)) {
938 		/*
939 		 * Special socket connection (typically to vknet).  We
940 		 * do not have to do anything.
941 		 */
942 		failed = 0;
943 	} else {
944 		failed = 1;
945 	}
946 
947 	if (failed) {
948 		warnx("%s is not a tap(4) device or socket", tap_dev);
949 		close(tap_fd);
950 		tap_fd = -1;
951 		*tap_unit = -1;
952 	}
953 	return tap_fd;
954 }
955 
956 static int
957 unix_connect(const char *path)
958 {
959 	struct sockaddr_un sunx;
960 	int len;
961 	int net_fd;
962 	int sndbuf = 262144;
963 	struct stat st;
964 
965 	snprintf(sunx.sun_path, sizeof(sunx.sun_path), "%s", path);
966 	len = offsetof(struct sockaddr_un, sun_path[strlen(sunx.sun_path)]);
967 	++len;	/* include nul */
968 	sunx.sun_family = AF_UNIX;
969 	sunx.sun_len = len;
970 
971 	net_fd = socket(AF_UNIX, SOCK_SEQPACKET, 0);
972 	if (net_fd < 0)
973 		return(-1);
974 	if (connect(net_fd, (void *)&sunx, len) < 0) {
975 		close(net_fd);
976 		return(-1);
977 	}
978 	setsockopt(net_fd, SOL_SOCKET, SO_SNDBUF, &sndbuf, sizeof(sndbuf));
979 	if (fstat(net_fd, &st) == 0)
980 		printf("Network socket buffer: %d bytes\n", st.st_blksize);
981 	fcntl(net_fd, F_SETFL, O_NONBLOCK);
982 	return(net_fd);
983 }
984 
985 #undef TAPDEV_MAJOR
986 #undef TAPDEV_MINOR
987 #undef TAPDEV_OFLAGS
988 
989 /*
990  * Following syntax is supported,
991  * 1) x.x.x.x             tap(4)'s address is x.x.x.x
992  *
993  * 2) x.x.x.x/z           tap(4)'s address is x.x.x.x
994  *                        tap(4)'s netmask len is z
995  *
996  * 3) x.x.x.x:y.y.y.y     tap(4)'s address is x.x.x.x
997  *                        pseudo netif's address is y.y.y.y
998  *
999  * 4) x.x.x.x:y.y.y.y/z   tap(4)'s address is x.x.x.x
1000  *                        pseudo netif's address is y.y.y.y
1001  *                        tap(4) and pseudo netif's netmask len are z
1002  *
1003  * 5) bridgeX             tap(4) will be added to bridgeX
1004  *
1005  * 6) bridgeX:y.y.y.y     tap(4) will be added to bridgeX
1006  *                        pseudo netif's address is y.y.y.y
1007  *
1008  * 7) bridgeX:y.y.y.y/z   tap(4) will be added to bridgeX
1009  *                        pseudo netif's address is y.y.y.y
1010  *                        pseudo netif's netmask len is z
1011  */
1012 static
1013 int
1014 netif_init_tap(int tap_unit, in_addr_t *addr, in_addr_t *mask, int s)
1015 {
1016 	in_addr_t tap_addr, netmask, netif_addr;
1017 	int next_netif_addr;
1018 	char *tok, *masklen_str, *ifbridge;
1019 
1020 	*addr = 0;
1021 	*mask = 0;
1022 
1023 	tok = strtok(NULL, ":/");
1024 	if (tok == NULL) {
1025 		/*
1026 		 * Nothing special, simply use tap(4) as backend
1027 		 */
1028 		return 0;
1029 	}
1030 
1031 	if (inet_pton(AF_INET, tok, &tap_addr) > 0) {
1032 		/*
1033 		 * tap(4)'s address is supplied
1034 		 */
1035 		ifbridge = NULL;
1036 
1037 		/*
1038 		 * If there is next token, then it may be pseudo
1039 		 * netif's address or netmask len for tap(4)
1040 		 */
1041 		next_netif_addr = 0;
1042 	} else {
1043 		/*
1044 		 * Not tap(4)'s address, assume it as a bridge(4)
1045 		 * iface name
1046 		 */
1047 		tap_addr = 0;
1048 		ifbridge = tok;
1049 
1050 		/*
1051 		 * If there is next token, then it must be pseudo
1052 		 * netif's address
1053 		 */
1054 		next_netif_addr = 1;
1055 	}
1056 
1057 	netmask = netif_addr = 0;
1058 
1059 	tok = strtok(NULL, ":/");
1060 	if (tok == NULL)
1061 		goto back;
1062 
1063 	if (inet_pton(AF_INET, tok, &netif_addr) <= 0) {
1064 		if (next_netif_addr) {
1065 			warnx("Invalid pseudo netif address: %s", tok);
1066 			return -1;
1067 		}
1068 		netif_addr = 0;
1069 
1070 		/*
1071 		 * Current token is not address, then it must be netmask len
1072 		 */
1073 		masklen_str = tok;
1074 	} else {
1075 		/*
1076 		 * Current token is pseudo netif address, if there is next token
1077 		 * it must be netmask len
1078 		 */
1079 		masklen_str = strtok(NULL, "/");
1080 	}
1081 
1082 	/* Calculate netmask */
1083 	if (masklen_str != NULL) {
1084 		u_long masklen;
1085 
1086 		masklen = strtoul(masklen_str, NULL, 10);
1087 		if (masklen < 32 && masklen > 0) {
1088 			netmask = htonl(~((1LL << (32 - masklen)) - 1)
1089 					& 0xffffffff);
1090 		} else {
1091 			warnx("Invalid netmask len: %lu", masklen);
1092 			return -1;
1093 		}
1094 	}
1095 
1096 	/* Make sure there is no more token left */
1097 	if (strtok(NULL, ":/") != NULL) {
1098 		warnx("Invalid argument to '-I'");
1099 		return -1;
1100 	}
1101 
1102 back:
1103 	if (tap_unit < 0) {
1104 		/* Do nothing */
1105 	} else if (ifbridge == NULL) {
1106 		/* Set tap(4) address/netmask */
1107 		if (netif_set_tapaddr(tap_unit, tap_addr, netmask, s) < 0)
1108 			return -1;
1109 	} else {
1110 		/* Tie tap(4) to bridge(4) */
1111 		if (netif_add_tap2brg(tap_unit, ifbridge, s) < 0)
1112 			return -1;
1113 	}
1114 
1115 	*addr = netif_addr;
1116 	*mask = netmask;
1117 	return 0;
1118 }
1119 
1120 /*
1121  * NetifInfo[] will be filled for pseudo netif initialization.
1122  * NetifNum will be bumped to reflect the number of valid entries
1123  * in NetifInfo[].
1124  */
1125 static
1126 void
1127 init_netif(char *netifExp[], int netifExpNum)
1128 {
1129 	int i, s;
1130 
1131 	if (netifExpNum == 0)
1132 		return;
1133 
1134 	s = socket(AF_INET, SOCK_DGRAM, 0);	/* for ioctl(SIOC) */
1135 	if (s < 0)
1136 		return;
1137 
1138 	for (i = 0; i < netifExpNum; ++i) {
1139 		struct vknetif_info *info;
1140 		in_addr_t netif_addr, netif_mask;
1141 		int tap_fd, tap_unit;
1142 		char *netif;
1143 
1144 		netif = strtok(netifExp[i], ":");
1145 		if (netif == NULL) {
1146 			warnx("Invalid argument to '-I'");
1147 			continue;
1148 		}
1149 
1150 		/*
1151 		 * Open tap(4) device file and bring up the
1152 		 * corresponding interface
1153 		 */
1154 		tap_fd = netif_open_tap(netif, &tap_unit, s);
1155 		if (tap_fd < 0)
1156 			continue;
1157 
1158 		/*
1159 		 * Initialize tap(4) and get address/netmask
1160 		 * for pseudo netif
1161 		 *
1162 		 * NB: Rest part of netifExp[i] is passed
1163 		 *     to netif_init_tap() implicitly.
1164 		 */
1165 		if (netif_init_tap(tap_unit, &netif_addr, &netif_mask, s) < 0) {
1166 			/*
1167 			 * NB: Closing tap(4) device file will bring
1168 			 *     down the corresponding interface
1169 			 */
1170 			close(tap_fd);
1171 			continue;
1172 		}
1173 
1174 		info = &NetifInfo[NetifNum];
1175 		info->tap_fd = tap_fd;
1176 		info->tap_unit = tap_unit;
1177 		info->netif_addr = netif_addr;
1178 		info->netif_mask = netif_mask;
1179 
1180 		NetifNum++;
1181 		if (NetifNum >= VKNETIF_MAX)	/* XXX will this happen? */
1182 			break;
1183 	}
1184 	close(s);
1185 }
1186 
1187 static
1188 void
1189 writepid( void )
1190 {
1191 	pid_t self;
1192 	FILE *fp;
1193 
1194 	if (pid_file != NULL) {
1195 		self = getpid();
1196 		fp = fopen(pid_file, "w");
1197 
1198 		if (fp != NULL) {
1199 			fprintf(fp, "%ld\n", (long)self);
1200 			fclose(fp);
1201 		}
1202 		else {
1203 			perror("Warning: couldn't open pidfile");
1204 		}
1205 	}
1206 }
1207 
1208 static
1209 void
1210 cleanpid( void )
1211 {
1212 	if (pid_file != NULL) {
1213 		if ( unlink(pid_file) != 0 )
1214 			perror("Warning: couldn't remove pidfile");
1215 	}
1216 }
1217 
1218 static
1219 void
1220 usage_err(const char *ctl, ...)
1221 {
1222 	va_list va;
1223 
1224 	va_start(va, ctl);
1225 	vfprintf(stderr, ctl, va);
1226 	va_end(va);
1227 	fprintf(stderr, "\n");
1228 	exit(EX_USAGE);
1229 }
1230 
1231 static
1232 void
1233 usage_help(_Bool help)
1234 {
1235 	fprintf(stderr, "Usage: %s [-hsUv] [-c file] [-e name=value:name=value:...]\n"
1236 	    "\t[-i file] [-I interface[:address1[:address2][/netmask]]] [-l cpulock]\n"
1237 	    "\t[-m size] [-n numcpus] [-p file] [-r file]\n", save_av[0]);
1238 
1239 	if (help)
1240 		fprintf(stderr, "\nArguments:\n"
1241 		    "\t-c\tSpecify a readonly CD-ROM image file to be used by the kernel.\n"
1242 		    "\t-e\tSpecify an environment to be used by the kernel.\n"
1243 		    "\t-h\tThis list of options.\n"
1244 		    "\t-i\tSpecify a memory image file to be used by the virtual kernel.\n"
1245 		    "\t-I\tCreate a virtual network device.\n"
1246 		    "\t-l\tSpecify which, if any, real CPUs to lock virtual CPUs to.\n"
1247 		    "\t-m\tSpecify the amount of memory to be used by the kernel in bytes.\n"
1248 		    "\t-n\tSpecify the number of CPUs you wish to emulate.\n"
1249 		    "\t-p\tSpecify a file in which to store the process ID.\n"
1250 		    "\t-r\tSpecify a R/W disk image file to be used by the kernel.\n"
1251 		    "\t-s\tBoot into single-user mode.\n"
1252 		    "\t-U\tEnable writing to kernel memory and module loading.\n"
1253 		    "\t-v\tTurn on verbose booting.\n");
1254 
1255 	exit(EX_USAGE);
1256 }
1257 
1258 void
1259 cpu_reset(void)
1260 {
1261 	kprintf("cpu reset, rebooting vkernel\n");
1262 	closefrom(3);
1263 	cleanpid();
1264 	execv(save_av[0], save_av);
1265 }
1266 
1267 void
1268 cpu_halt(void)
1269 {
1270 	kprintf("cpu halt, exiting vkernel\n");
1271 	cleanpid();
1272 	exit(EX_OK);
1273 }
1274 
1275 void
1276 setrealcpu(void)
1277 {
1278 	switch(lwp_cpu_lock) {
1279 	case LCL_PER_CPU:
1280 		if (bootverbose)
1281 			kprintf("Locking CPU%d to real cpu %d\n",
1282 				mycpuid, next_cpu);
1283 		usched_set(getpid(), USCHED_SET_CPU, &next_cpu, sizeof(next_cpu));
1284 		next_cpu++;
1285 		if (next_cpu >= real_ncpus)
1286 			next_cpu = 0;
1287 		break;
1288 	case LCL_SINGLE_CPU:
1289 		if (bootverbose)
1290 			kprintf("Locking CPU%d to real cpu %d\n",
1291 				mycpuid, next_cpu);
1292 		usched_set(getpid(), USCHED_SET_CPU, &next_cpu, sizeof(next_cpu));
1293 		break;
1294 	default:
1295 		/* do not map virtual cpus to real cpus */
1296 		break;
1297 	}
1298 }
1299