1 /*
2  * Copyright (c) 2006 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 #include <sys/types.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/stat.h>
39 #include <sys/mman.h>
40 #include <sys/cons.h>
41 #include <sys/random.h>
42 #include <sys/vkernel.h>
43 #include <sys/tls.h>
44 #include <sys/reboot.h>
45 #include <sys/proc.h>
46 #include <sys/msgbuf.h>
47 #include <sys/vmspace.h>
48 #include <sys/socket.h>
49 #include <sys/sockio.h>
50 #include <sys/sysctl.h>
51 #include <sys/un.h>
52 #include <vm/vm_page.h>
53 #include <vm/vm_map.h>
54 #include <sys/mplock2.h>
55 #include <sys/wait.h>
56 #include <sys/vmm.h>
57 
58 #include <machine/cpu.h>
59 #include <machine/globaldata.h>
60 #include <machine/tls.h>
61 #include <machine/md_var.h>
62 #include <machine/vmparam.h>
63 #include <cpu/specialreg.h>
64 
65 #include <net/if.h>
66 #include <net/if_arp.h>
67 #include <net/ethernet.h>
68 #include <net/bridge/if_bridgevar.h>
69 #include <netinet/in.h>
70 #include <arpa/inet.h>
71 #include <net/if_var.h>
72 
73 #include <stdio.h>
74 #include <stdlib.h>
75 #include <stdarg.h>
76 #include <stdbool.h>
77 #include <unistd.h>
78 #include <fcntl.h>
79 #include <string.h>
80 #include <err.h>
81 #include <errno.h>
82 #include <assert.h>
83 #include <sysexits.h>
84 
85 #define EX_VKERNEL_REBOOT	32
86 
87 vm_paddr_t phys_avail[16];
88 vm_paddr_t Maxmem;
89 vm_paddr_t Maxmem_bytes;
90 long physmem;
91 int MemImageFd = -1;
92 struct vkdisk_info DiskInfo[VKDISK_MAX];
93 int DiskNum;
94 struct vknetif_info NetifInfo[VKNETIF_MAX];
95 int NetifNum;
96 char *pid_file;
97 vm_offset_t KvaStart;
98 vm_offset_t KvaEnd;
99 vm_offset_t KvaSize;
100 vm_offset_t virtual_start;
101 vm_offset_t virtual_end;
102 vm_offset_t virtual2_start;
103 vm_offset_t virtual2_end;
104 vm_offset_t kernel_vm_end;
105 vm_offset_t crashdumpmap;
106 vm_offset_t clean_sva;
107 vm_offset_t clean_eva;
108 struct msgbuf *msgbufp;
109 caddr_t ptvmmap;
110 vpte_t	*KernelPTD;
111 vpte_t	*KernelPTA;	/* Warning: Offset for direct VA translation */
112 void *dmap_min_address;
113 void *vkernel_stack;
114 u_int cpu_feature;	/* XXX */
115 int tsc_present;
116 int tsc_invariant;
117 int tsc_mpsync;
118 int64_t tsc_frequency;
119 int optcpus;		/* number of cpus - see mp_start() */
120 int lwp_cpu_lock;	/* if/how to lock virtual CPUs to real CPUs */
121 int real_ncpus;		/* number of real CPUs */
122 int next_cpu;		/* next real CPU to lock a virtual CPU to */
123 int vkernel_b_arg;	/* no of logical CPU bits - only SMP */
124 int vkernel_B_arg;	/* no of core bits - only SMP */
125 int vmm_enabled;	/* VMM HW assisted enable */
126 struct privatespace *CPU_prvspace;
127 
128 extern uint64_t KPML4phys;	/* phys addr of kernel level 4 */
129 
130 static struct trapframe proc0_tf;
131 static void *proc0paddr;
132 
133 static void init_sys_memory(char *imageFile);
134 static void init_kern_memory(void);
135 static void init_kern_memory_vmm(void);
136 static void init_globaldata(void);
137 static void init_vkernel(void);
138 static void init_disk(char *diskExp[], int diskFileNum, enum vkdisk_type type);
139 static void init_netif(char *netifExp[], int netifFileNum);
140 static void writepid(void);
141 static void cleanpid(void);
142 static int unix_connect(const char *path);
143 static void usage_err(const char *ctl, ...);
144 static void usage_help(_Bool);
145 static void init_locks(void);
146 
147 static int save_ac;
148 static char **save_av;
149 
150 /*
151  * Kernel startup for virtual kernels - standard main()
152  */
153 int main(int ac, char **av) {
154 	char *memImageFile = NULL;
155 	char *netifFile[VKNETIF_MAX];
156 	char *diskFile[VKDISK_MAX];
157 	char *cdFile[VKDISK_MAX];
158 	char *suffix;
159 	char *endp;
160 	char *tmp;
161 	char *tok;
162 	int netifFileNum = 0;
163 	int diskFileNum = 0;
164 	int cdFileNum = 0;
165 	int bootOnDisk = -1;	/* set below to vcd (0) or vkd (1) */
166 	int c;
167 	int i;
168 	int j;
169 	int n;
170 	int isq;
171 	int pos;
172 	int eflag;
173 	int dflag = 0;		/* disable vmm */
174 	int real_vkernel_enable;
175 	int supports_sse;
176 	size_t vsize;
177 	size_t kenv_size;
178 	size_t kenv_size2;
179 	pid_t pid;
180 	int status;
181 	struct sigaction sa;
182 
183 	/*
184 	 * Currently a bad hack but rtld-elf needs LD_SHAREDLIB_BASE to
185 	 * be set to force it to mmap() shared libraries into low memory,
186 	 * so our module loader can link against the related symbols.
187 	 */
188 	if (getenv("LD_SHAREDLIB_BASE") == NULL) {
189 		setenv("LD_SHAREDLIB_BASE", "0x10000000", 1);
190 		execv(av[0], av);
191 		fprintf(stderr, "Must run %s with full path\n", av[0]);
192 		exit(1);
193 	}
194 
195 	while ((pid = fork()) != 0) {
196 		/* Ignore signals */
197 		bzero(&sa, sizeof(sa));
198 		sigemptyset(&sa.sa_mask);
199 		sa.sa_handler = SIG_IGN;
200 		sigaction(SIGINT, &sa, NULL);
201 		sigaction(SIGQUIT, &sa, NULL);
202 		sigaction(SIGHUP, &sa, NULL);
203 
204 		/*
205 		 * Wait for child to terminate, exit if
206 		 * someone stole our child.
207 		 */
208 		while (waitpid(pid, &status, 0) != pid) {
209 			if (errno == ECHILD)
210 				exit(1);
211 		}
212 		if (WEXITSTATUS(status) != EX_VKERNEL_REBOOT)
213 			return 0;
214 	}
215 
216 	/*
217 	 * Starting for real
218 	 */
219 	save_ac = ac;
220 	save_av = av;
221 	eflag = 0;
222 	pos = 0;
223 	kenv_size = 0;
224 	/*
225 	 * Process options
226 	 */
227 	kernel_mem_readonly = 1;
228 	optcpus = 2;
229 	vkernel_b_arg = 0;
230 	vkernel_B_arg = 0;
231 	lwp_cpu_lock = LCL_NONE;
232 
233 	real_vkernel_enable = 0;
234 	vsize = sizeof(real_vkernel_enable);
235 	sysctlbyname("vm.vkernel_enable", &real_vkernel_enable, &vsize, NULL,0);
236 
237 	if (real_vkernel_enable == 0) {
238 		errx(1, "vm.vkernel_enable is 0, must be set "
239 			"to 1 to execute a vkernel!");
240 	}
241 
242 	real_ncpus = 1;
243 	vsize = sizeof(real_ncpus);
244 	sysctlbyname("hw.ncpu", &real_ncpus, &vsize, NULL, 0);
245 
246 	if (ac < 2)
247 		usage_help(false);
248 
249 	while ((c = getopt(ac, av, "c:hsvl:m:n:r:e:i:p:I:Ud")) != -1) {
250 		switch(c) {
251 		case 'd':
252 			dflag = 1;
253 			break;
254 		case 'e':
255 			/*
256 			 * name=value:name=value:name=value...
257 			 * name="value"...
258 			 *
259 			 * Allow values to be quoted but note that shells
260 			 * may remove the quotes, so using this feature
261 			 * to embed colons may require a backslash.
262 			 */
263 			n = strlen(optarg);
264 			isq = 0;
265 
266 			if (eflag == 0) {
267 				kenv_size = n + 2;
268 				kern_envp = malloc(kenv_size);
269 				if (kern_envp == NULL)
270 					errx(1, "Couldn't allocate %zd bytes for kern_envp", kenv_size);
271 			} else {
272 				kenv_size2 = kenv_size + n + 1;
273 				pos = kenv_size - 1;
274 				if ((tmp = realloc(kern_envp, kenv_size2)) == NULL)
275 					errx(1, "Couldn't reallocate %zd bytes for kern_envp", kenv_size2);
276 				kern_envp = tmp;
277 				kenv_size = kenv_size2;
278 			}
279 
280 			for (i = 0, j = pos; i < n; ++i) {
281 				if (optarg[i] == '"')
282 					isq ^= 1;
283 				else if (optarg[i] == '\'')
284 					isq ^= 2;
285 				else if (isq == 0 && optarg[i] == ':')
286 					kern_envp[j++] = 0;
287 				else
288 					kern_envp[j++] = optarg[i];
289 			}
290 			kern_envp[j++] = 0;
291 			kern_envp[j++] = 0;
292 			eflag++;
293 			break;
294 		case 's':
295 			boothowto |= RB_SINGLE;
296 			break;
297 		case 'v':
298 			bootverbose = 1;
299 			break;
300 		case 'i':
301 			memImageFile = optarg;
302 			break;
303 		case 'I':
304 			if (netifFileNum < VKNETIF_MAX)
305 				netifFile[netifFileNum++] = strdup(optarg);
306 			break;
307 		case 'r':
308 			if (bootOnDisk < 0)
309 				bootOnDisk = 1;
310 			if (diskFileNum + cdFileNum < VKDISK_MAX)
311 				diskFile[diskFileNum++] = strdup(optarg);
312 			break;
313 		case 'c':
314 			if (bootOnDisk < 0)
315 				bootOnDisk = 0;
316 			if (diskFileNum + cdFileNum < VKDISK_MAX)
317 				cdFile[cdFileNum++] = strdup(optarg);
318 			break;
319 		case 'm':
320 			Maxmem_bytes = strtoull(optarg, &suffix, 0);
321 			if (suffix) {
322 				switch(*suffix) {
323 				case 'g':
324 				case 'G':
325 					Maxmem_bytes <<= 30;
326 					break;
327 				case 'm':
328 				case 'M':
329 					Maxmem_bytes <<= 20;
330 					break;
331 				case 'k':
332 				case 'K':
333 					Maxmem_bytes <<= 10;
334 					break;
335 				default:
336 					Maxmem_bytes = 0;
337 					usage_err("Bad maxmem option");
338 					/* NOT REACHED */
339 					break;
340 				}
341 			}
342 			break;
343 		case 'l':
344 			next_cpu = -1;
345 			if (strncmp("map", optarg, 3) == 0) {
346 				lwp_cpu_lock = LCL_PER_CPU;
347 				if (optarg[3] == ',') {
348 					next_cpu = strtol(optarg+4, &endp, 0);
349 					if (*endp != '\0')
350 						usage_err("Bad target CPU number at '%s'", endp);
351 				} else {
352 					next_cpu = 0;
353 				}
354 				if (next_cpu < 0 || next_cpu > real_ncpus - 1)
355 					usage_err("Bad target CPU, valid range is 0-%d", real_ncpus - 1);
356 			} else if (strncmp("any", optarg, 3) == 0) {
357 				lwp_cpu_lock = LCL_NONE;
358 			} else {
359 				lwp_cpu_lock = LCL_SINGLE_CPU;
360 				next_cpu = strtol(optarg, &endp, 0);
361 				if (*endp != '\0')
362 					usage_err("Bad target CPU number at '%s'", endp);
363 				if (next_cpu < 0 || next_cpu > real_ncpus - 1)
364 					usage_err("Bad target CPU, valid range is 0-%d", real_ncpus - 1);
365 			}
366 			break;
367 		case 'n':
368 			/*
369 			 * This value is set up by mp_start(), don't just
370 			 * set ncpus here.
371 			 */
372 			tok = strtok(optarg, ":");
373 			optcpus = strtol(tok, NULL, 0);
374 			if (optcpus < 1 || optcpus > MAXCPU)
375 				usage_err("Bad ncpus, valid range is 1-%d", MAXCPU);
376 
377 			/* :lbits argument */
378 			tok = strtok(NULL, ":");
379 			if (tok != NULL) {
380 				vkernel_b_arg = strtol(tok, NULL, 0);
381 
382 				/* :cbits argument */
383 				tok = strtok(NULL, ":");
384 				if (tok != NULL) {
385 					vkernel_B_arg = strtol(tok, NULL, 0);
386 				}
387 
388 			}
389 			break;
390 		case 'p':
391 			pid_file = optarg;
392 			break;
393 		case 'U':
394 			kernel_mem_readonly = 0;
395 			break;
396 		case 'h':
397 			usage_help(true);
398 			break;
399 		default:
400 			usage_help(false);
401 		}
402 	}
403 
404 	/*
405 	 * Check VMM presence
406 	 */
407 	vsize = sizeof(vmm_enabled);
408 	sysctlbyname("hw.vmm.enable", &vmm_enabled, &vsize, NULL, 0);
409 	vmm_enabled = (vmm_enabled && !dflag);
410 
411 	writepid();
412 	cpu_disable_intr();
413 	if (vmm_enabled) {
414 		/* use a MAP_ANON directly */
415 		init_kern_memory_vmm();
416 	} else {
417 		init_sys_memory(memImageFile);
418 		init_kern_memory();
419 	}
420 	init_globaldata();
421 	init_vkernel();
422 	setrealcpu();
423 	init_kqueue();
424 
425 	vmm_guest = 1;
426 
427 	/*
428 	 * Check TSC
429 	 */
430 	vsize = sizeof(tsc_present);
431 	sysctlbyname("hw.tsc_present", &tsc_present, &vsize, NULL, 0);
432 	vsize = sizeof(tsc_invariant);
433 	sysctlbyname("hw.tsc_invariant", &tsc_invariant, &vsize, NULL, 0);
434 	vsize = sizeof(tsc_mpsync);
435 	sysctlbyname("hw.tsc_mpsync", &tsc_mpsync, &vsize, NULL, 0);
436 	vsize = sizeof(tsc_frequency);
437 	sysctlbyname("hw.tsc_frequency", &tsc_frequency, &vsize, NULL, 0);
438 	if (tsc_present)
439 		cpu_feature |= CPUID_TSC;
440 
441 	/*
442 	 * Check SSE
443 	 */
444 	vsize = sizeof(supports_sse);
445 	supports_sse = 0;
446 	sysctlbyname("hw.instruction_sse", &supports_sse, &vsize, NULL, 0);
447 	init_fpu(supports_sse);
448 	if (supports_sse)
449 		cpu_feature |= CPUID_SSE | CPUID_FXSR;
450 
451 	/*
452 	 * We boot from the first installed disk.
453 	 */
454 	if (bootOnDisk == 1) {
455 		init_disk(diskFile, diskFileNum, VKD_DISK);
456 		init_disk(cdFile, cdFileNum, VKD_CD);
457 	} else {
458 		init_disk(cdFile, cdFileNum, VKD_CD);
459 		init_disk(diskFile, diskFileNum, VKD_DISK);
460 	}
461 
462 	init_netif(netifFile, netifFileNum);
463 	init_exceptions();
464 	mi_startup();
465 	/* NOT REACHED */
466 	exit(EX_SOFTWARE);
467 }
468 
469 /*
470  * Initialize system memory.  This is the virtual kernel's 'RAM'.
471  */
472 static
473 void
474 init_sys_memory(char *imageFile)
475 {
476 	struct stat st;
477 	int i;
478 	int fd;
479 
480 	/*
481 	 * Figure out the system memory image size.  If an image file was
482 	 * specified and -m was not specified, use the image file's size.
483 	 */
484 	if (imageFile && stat(imageFile, &st) == 0 && Maxmem_bytes == 0)
485 		Maxmem_bytes = (vm_paddr_t)st.st_size;
486 	if ((imageFile == NULL || stat(imageFile, &st) < 0) &&
487 	    Maxmem_bytes == 0) {
488 		errx(1, "Cannot create new memory file %s unless "
489 		       "system memory size is specified with -m",
490 		       imageFile);
491 		/* NOT REACHED */
492 	}
493 
494 	/*
495 	 * Maxmem must be known at this time
496 	 */
497 	if (Maxmem_bytes < 64 * 1024 * 1024 || (Maxmem_bytes & SEG_MASK)) {
498 		errx(1, "Bad maxmem specification: 64MB minimum, "
499 		       "multiples of %dMB only",
500 		       SEG_SIZE / 1024 / 1024);
501 		/* NOT REACHED */
502 	}
503 
504 	/*
505 	 * Generate an image file name if necessary, then open/create the
506 	 * file exclusively locked.  Do not allow multiple virtual kernels
507 	 * to use the same image file.
508 	 *
509 	 * Don't iterate through a million files if we do not have write
510 	 * access to the directory, stop if our open() failed on a
511 	 * non-existant file.  Otherwise opens can fail for any number
512 	 */
513 	if (imageFile == NULL) {
514 		for (i = 0; i < 1000000; ++i) {
515 			asprintf(&imageFile, "/var/vkernel/memimg.%06d", i);
516 			fd = open(imageFile,
517 				  O_RDWR|O_CREAT|O_EXLOCK|O_NONBLOCK, 0644);
518 			if (fd < 0 && stat(imageFile, &st) == 0) {
519 				free(imageFile);
520 				continue;
521 			}
522 			break;
523 		}
524 	} else {
525 		fd = open(imageFile, O_RDWR|O_CREAT|O_EXLOCK|O_NONBLOCK, 0644);
526 	}
527 	fprintf(stderr, "Using memory file: %s\n", imageFile);
528 	if (fd < 0 || fstat(fd, &st) < 0) {
529 		err(1, "Unable to open/create %s", imageFile);
530 		/* NOT REACHED */
531 	}
532 
533 	/*
534 	 * Truncate or extend the file as necessary.  Clean out the contents
535 	 * of the file, we want it to be full of holes so we don't waste
536 	 * time reading in data from an old file that we no longer care
537 	 * about.
538 	 */
539 	ftruncate(fd, 0);
540 	ftruncate(fd, Maxmem_bytes);
541 
542 	MemImageFd = fd;
543 	Maxmem = Maxmem_bytes >> PAGE_SHIFT;
544 	physmem = Maxmem;
545 }
546 
547 /*
548  * Initialize kernel memory.  This reserves kernel virtual memory by using
549  * MAP_VPAGETABLE
550  */
551 
552 static
553 void
554 init_kern_memory(void)
555 {
556 	void *base;
557 	int i;
558 	void *firstfree;
559 
560 	/*
561 	 * Memory map our kernel virtual memory space.  Note that the
562 	 * kernel image itself is not made part of this memory for the
563 	 * moment.
564 	 *
565 	 * The memory map must be segment-aligned so we can properly
566 	 * offset KernelPTD.
567 	 *
568 	 * If the system kernel has a different MAXDSIZ, it might not
569 	 * be possible to map kernel memory in its prefered location.
570 	 * Try a number of different locations.
571 	 */
572 
573 	base = mmap((void*)KERNEL_KVA_START, KERNEL_KVA_SIZE, PROT_READ|PROT_WRITE,
574 		    MAP_FILE|MAP_SHARED|MAP_VPAGETABLE|MAP_FIXED|MAP_TRYFIXED,
575 		    MemImageFd, (off_t)KERNEL_KVA_START);
576 
577 	if (base == MAP_FAILED) {
578 		err(1, "Unable to mmap() kernel virtual memory!");
579 		/* NOT REACHED */
580 	}
581 	madvise(base, KERNEL_KVA_SIZE, MADV_NOSYNC);
582 	KvaStart = (vm_offset_t)base;
583 	KvaSize = KERNEL_KVA_SIZE;
584 	KvaEnd = KvaStart + KvaSize;
585 
586 	/* cannot use kprintf yet */
587 	printf("KVM mapped at %p-%p\n", (void *)KvaStart, (void *)KvaEnd);
588 
589 	/* MAP_FILE? */
590 	dmap_min_address = mmap(0, DMAP_SIZE, PROT_READ|PROT_WRITE,
591 				MAP_NOCORE|MAP_NOSYNC|MAP_SHARED,
592 				MemImageFd, 0);
593 	if (dmap_min_address == MAP_FAILED) {
594 		err(1, "Unable to mmap() kernel DMAP region!");
595 		/* NOT REACHED */
596 	}
597 
598 	/*
599 	 * Bootstrap the kernel_pmap
600 	 */
601 	firstfree = NULL;
602 	pmap_bootstrap((vm_paddr_t *)&firstfree, (int64_t)base);
603 
604 	mcontrol(base, KERNEL_KVA_SIZE, MADV_SETMAP,
605 		 0 | VPTE_RW | VPTE_V);
606 
607 	/*
608 	 * phys_avail[] represents unallocated physical memory.  MI code
609 	 * will use phys_avail[] to create the vm_page array.
610 	 */
611 	phys_avail[0] = (vm_paddr_t)firstfree;
612 	phys_avail[0] = (phys_avail[0] + PAGE_MASK) & ~(vm_paddr_t)PAGE_MASK;
613 	phys_avail[1] = Maxmem_bytes;
614 
615 #if JGV
616 	/*
617 	 * (virtual_start, virtual_end) represent unallocated kernel virtual
618 	 * memory.  MI code will create kernel_map using these parameters.
619 	 */
620 	virtual_start = KvaStart + (long)firstfree;
621 	virtual_start = (virtual_start + PAGE_MASK) & ~(vm_offset_t)PAGE_MASK;
622 	virtual_end = KvaStart + KERNEL_KVA_SIZE;
623 #endif
624 
625 	/*
626 	 * pmap_growkernel() will set the correct value.
627 	 */
628 	kernel_vm_end = 0;
629 
630 	/*
631 	 * Allocate space for process 0's UAREA.
632 	 */
633 	proc0paddr = (void *)virtual_start;
634 	for (i = 0; i < UPAGES; ++i) {
635 		pmap_kenter_quick(virtual_start, phys_avail[0]);
636 		virtual_start += PAGE_SIZE;
637 		phys_avail[0] += PAGE_SIZE;
638 	}
639 
640 	/*
641 	 * crashdumpmap
642 	 */
643 	crashdumpmap = virtual_start;
644 	virtual_start += MAXDUMPPGS * PAGE_SIZE;
645 
646 	/*
647 	 * msgbufp maps the system message buffer
648 	 */
649 	assert((MSGBUF_SIZE & PAGE_MASK) == 0);
650 	msgbufp = (void *)virtual_start;
651 	for (i = 0; i < (MSGBUF_SIZE >> PAGE_SHIFT); ++i) {
652 		pmap_kenter_quick(virtual_start, phys_avail[0]);
653 		virtual_start += PAGE_SIZE;
654 		phys_avail[0] += PAGE_SIZE;
655 	}
656 	msgbufinit(msgbufp, MSGBUF_SIZE);
657 
658 	/*
659 	 * used by kern_memio for /dev/mem access
660 	 */
661 	ptvmmap = (caddr_t)virtual_start;
662 	virtual_start += PAGE_SIZE;
663 }
664 
665 static
666 void
667 init_kern_memory_vmm(void)
668 {
669 	int i;
670 	void *firstfree;
671 	struct vmm_guest_options options;
672 	void *dmap_address;
673 
674 	KvaStart = (vm_offset_t)KERNEL_KVA_START;
675 	KvaSize = KERNEL_KVA_SIZE;
676 	KvaEnd = KvaStart + KvaSize;
677 
678 	Maxmem = Maxmem_bytes >> PAGE_SHIFT;
679 	physmem = Maxmem;
680 
681 	if (Maxmem_bytes < 64 * 1024 * 1024 || (Maxmem_bytes & SEG_MASK)) {
682 		errx(1, "Bad maxmem specification: 64MB minimum, "
683 		       "multiples of %dMB only",
684 		       SEG_SIZE / 1024 / 1024);
685 		/* NOT REACHED */
686 	}
687 
688 	/* Call the vmspace_create to allocate the internal
689 	 * vkernel structures. Won't do anything else (no new
690 	 * vmspace)
691 	 */
692 	if (vmspace_create(NULL, 0, NULL) < 0)
693 		panic("vmspace_create() failed");
694 
695 
696 	/*
697 	 * MAP_ANON the region of the VKERNEL phyisical memory
698 	 * (known as GPA - Guest Physical Address
699 	 */
700 	dmap_address = mmap(NULL, Maxmem_bytes, PROT_READ|PROT_WRITE|PROT_EXEC,
701 	    MAP_ANON|MAP_SHARED, -1, 0);
702 	if (dmap_address == MAP_FAILED) {
703 		err(1, "Unable to mmap() RAM region!");
704 		/* NOT REACHED */
705 	}
706 
707 	/* Alloc a new stack in the lowmem */
708 	vkernel_stack = mmap(NULL, KERNEL_STACK_SIZE,
709 	    PROT_READ|PROT_WRITE|PROT_EXEC,
710 	    MAP_ANON, -1, 0);
711 	if (vkernel_stack == MAP_FAILED) {
712 		err(1, "Unable to allocate stack\n");
713 	}
714 
715 	/*
716 	 * Bootstrap the kernel_pmap
717 	 */
718 	firstfree = dmap_address;
719 	dmap_min_address = NULL; /* VIRT == PHYS in the first 512G */
720 	pmap_bootstrap((vm_paddr_t *)&firstfree, (uint64_t)KvaStart);
721 
722 	/*
723 	 * Enter VMM mode
724 	 */
725 	options.guest_cr3 = (register_t) KPML4phys;
726 	options.new_stack = (uint64_t) vkernel_stack + KERNEL_STACK_SIZE;
727 	options.master = 1;
728 	if (vmm_guest_ctl(VMM_GUEST_RUN, &options)) {
729 		err(1, "Unable to enter VMM mode.");
730 	}
731 
732 	/*
733 	 * phys_avail[] represents unallocated physical memory.  MI code
734 	 * will use phys_avail[] to create the vm_page array.
735 	 */
736 	phys_avail[0] = (vm_paddr_t)firstfree;
737 	phys_avail[0] = (phys_avail[0] + PAGE_MASK) & ~(vm_paddr_t)PAGE_MASK;
738 	phys_avail[1] = (vm_paddr_t)dmap_address + Maxmem_bytes;
739 
740 	/*
741 	 * pmap_growkernel() will set the correct value.
742 	 */
743 	kernel_vm_end = 0;
744 
745 	/*
746 	 * Allocate space for process 0's UAREA.
747 	 */
748 	proc0paddr = (void *)virtual_start;
749 	for (i = 0; i < UPAGES; ++i) {
750 		pmap_kenter_quick(virtual_start, phys_avail[0]);
751 		virtual_start += PAGE_SIZE;
752 		phys_avail[0] += PAGE_SIZE;
753 	}
754 
755 	/*
756 	 * crashdumpmap
757 	 */
758 	crashdumpmap = virtual_start;
759 	virtual_start += MAXDUMPPGS * PAGE_SIZE;
760 
761 	/*
762 	 * msgbufp maps the system message buffer
763 	 */
764 	assert((MSGBUF_SIZE & PAGE_MASK) == 0);
765 	msgbufp = (void *)virtual_start;
766 	for (i = 0; i < (MSGBUF_SIZE >> PAGE_SHIFT); ++i) {
767 
768 		pmap_kenter_quick(virtual_start, phys_avail[0]);
769 		virtual_start += PAGE_SIZE;
770 		phys_avail[0] += PAGE_SIZE;
771 	}
772 
773 	msgbufinit(msgbufp, MSGBUF_SIZE);
774 
775 	/*
776 	 * used by kern_memio for /dev/mem access
777 	 */
778 	ptvmmap = (caddr_t)virtual_start;
779 	virtual_start += PAGE_SIZE;
780 
781 	printf("vmm: Hardware pagetable enabled for guest\n");
782 }
783 
784 
785 /*
786  * Map the per-cpu globaldata for cpu #0.  Allocate the space using
787  * virtual_start and phys_avail[0]
788  */
789 static
790 void
791 init_globaldata(void)
792 {
793 	int i;
794 	vm_paddr_t pa;
795 	vm_offset_t va;
796 
797 	/*
798 	 * Reserve enough KVA to cover possible cpus.  This is a considerable
799 	 * amount of KVA since the privatespace structure includes two
800 	 * whole page table mappings.
801 	 */
802 	virtual_start = (virtual_start + SEG_MASK) & ~(vm_offset_t)SEG_MASK;
803 	CPU_prvspace = (void *)virtual_start;
804 	virtual_start += sizeof(struct privatespace) * SMP_MAXCPU;
805 
806 	/*
807 	 * Allocate enough physical memory to cover the mdglobaldata
808 	 * portion of the space and the idle stack and map the pages
809 	 * into KVA.  For cpu #0 only.
810 	 */
811 	for (i = 0; i < sizeof(struct mdglobaldata); i += PAGE_SIZE) {
812 		pa = phys_avail[0];
813 		va = (vm_offset_t)&CPU_prvspace[0].mdglobaldata + i;
814 		pmap_kenter_quick(va, pa);
815 		phys_avail[0] += PAGE_SIZE;
816 	}
817 	for (i = 0; i < sizeof(CPU_prvspace[0].idlestack); i += PAGE_SIZE) {
818 		pa = phys_avail[0];
819 		va = (vm_offset_t)&CPU_prvspace[0].idlestack + i;
820 		pmap_kenter_quick(va, pa);
821 		phys_avail[0] += PAGE_SIZE;
822 	}
823 
824 	/*
825 	 * Setup the %gs for cpu #0.  The mycpu macro works after this
826 	 * point.  Note that %fs is used by pthreads.
827 	 */
828 	tls_set_gs(&CPU_prvspace[0], sizeof(struct privatespace));
829 }
830 
831 
832 /*
833  * Initialize pool tokens and other necessary locks
834  */
835 static void
836 init_locks(void)
837 {
838 
839         /*
840          * Get the initial mplock with a count of 1 for the BSP.
841          * This uses a LOGICAL cpu ID, ie BSP == 0.
842          */
843         cpu_get_initial_mplock();
844 
845         /* our token pool needs to work early */
846         lwkt_token_pool_init();
847 
848 }
849 
850 
851 /*
852  * Initialize very low level systems including thread0, proc0, etc.
853  */
854 static
855 void
856 init_vkernel(void)
857 {
858 	struct mdglobaldata *gd;
859 
860 	gd = &CPU_prvspace[0].mdglobaldata;
861 	bzero(gd, sizeof(*gd));
862 
863 	gd->mi.gd_curthread = &thread0;
864 	thread0.td_gd = &gd->mi;
865 	ncpus = 1;
866 	ncpus2 = 1;	/* rounded down power of 2 */
867 	ncpus_fit = 1;	/* rounded up power of 2 */
868 	/* ncpus2_mask and ncpus_fit_mask are 0 */
869 	init_param1();
870 	gd->mi.gd_prvspace = &CPU_prvspace[0];
871 	mi_gdinit(&gd->mi, 0);
872 	cpu_gdinit(gd, 0);
873 	mi_proc0init(&gd->mi, proc0paddr);
874 	lwp0.lwp_md.md_regs = &proc0_tf;
875 
876 	init_locks();
877 	cninit();
878 	rand_initialize();
879 #if 0	/* #ifdef DDB */
880 	kdb_init();
881 	if (boothowto & RB_KDB)
882 		Debugger("Boot flags requested debugger");
883 #endif
884 	identcpu();
885 #if 0
886 	initializecpu();	/* Initialize CPU registers */
887 #endif
888 	init_param2((phys_avail[1] - phys_avail[0]) / PAGE_SIZE);
889 
890 #if 0
891 	/*
892 	 * Map the message buffer
893 	 */
894 	for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
895 		pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
896 	msgbufinit(msgbufp, MSGBUF_SIZE);
897 #endif
898 #if 0
899 	thread0.td_pcb_cr3 ... MMU
900 	lwp0.lwp_md.md_regs = &proc0_tf;
901 #endif
902 }
903 
904 /*
905  * Filesystem image paths for the virtual kernel are optional.
906  * If specified they each should point to a disk image,
907  * the first of which will become the root disk.
908  *
909  * The virtual kernel caches data from our 'disk' just like a normal kernel,
910  * so we do not really want the real kernel to cache the data too.  Use
911  * O_DIRECT to remove the duplication.
912  */
913 static
914 void
915 init_disk(char *diskExp[], int diskFileNum, enum vkdisk_type type)
916 {
917 	char *serno;
918 	int i;
919 
920         if (diskFileNum == 0)
921                 return;
922 
923 	for(i=0; i < diskFileNum; i++){
924 		char *fname;
925 		fname = diskExp[i];
926 
927 		if (fname == NULL) {
928                         warnx("Invalid argument to '-r'");
929                         continue;
930                 }
931 		/*
932 		 * Check for a serial number for the virtual disk
933 		 * passed from the command line.
934 		 */
935 		serno = fname;
936 		strsep(&serno, ":");
937 
938 		if (DiskNum < VKDISK_MAX) {
939 			struct stat st;
940 			struct vkdisk_info* info = NULL;
941 			int fd;
942 			size_t l = 0;
943 
944 			if (type == VKD_DISK)
945 			    fd = open(fname, O_RDWR|O_DIRECT, 0644);
946 			else
947 			    fd = open(fname, O_RDONLY|O_DIRECT, 0644);
948 			if (fd < 0 || fstat(fd, &st) < 0) {
949 				err(1, "Unable to open/create %s", fname);
950 				/* NOT REACHED */
951 			}
952 			if (S_ISREG(st.st_mode)) {
953 				if (flock(fd, LOCK_EX|LOCK_NB) < 0) {
954 					errx(1, "Disk image %s is already "
955 						"in use\n", fname);
956 					/* NOT REACHED */
957 				}
958 			}
959 
960 			info = &DiskInfo[DiskNum];
961 			l = strlen(fname);
962 
963 			info->unit = i;
964 			info->fd = fd;
965 			info->type = type;
966 			memcpy(info->fname, fname, l);
967 			info->serno = NULL;
968 			if (serno) {
969 				if ((info->serno = malloc(SERNOLEN)) != NULL)
970 					strlcpy(info->serno, serno, SERNOLEN);
971 				else
972 					warnx("Couldn't allocate memory for the operation");
973 			}
974 
975 			if (DiskNum == 0) {
976 				if (type == VKD_CD) {
977 				    rootdevnames[0] = "cd9660:vcd0a";
978 				} else if (type == VKD_DISK) {
979 				    rootdevnames[0] = "ufs:vkd0s0a";
980 				    rootdevnames[1] = "ufs:vkd0s1a";
981 				}
982 			}
983 
984 			DiskNum++;
985 		} else {
986                         warnx("vkd%d (%s) > VKDISK_MAX", DiskNum, fname);
987                         continue;
988 		}
989 	}
990 }
991 
992 static
993 int
994 netif_set_tapflags(int tap_unit, int f, int s)
995 {
996 	struct ifreq ifr;
997 	int flags;
998 
999 	bzero(&ifr, sizeof(ifr));
1000 
1001 	snprintf(ifr.ifr_name, sizeof(ifr.ifr_name), "tap%d", tap_unit);
1002 	if (ioctl(s, SIOCGIFFLAGS, &ifr) < 0) {
1003 		warn("tap%d: ioctl(SIOCGIFFLAGS) failed", tap_unit);
1004 		return -1;
1005 	}
1006 
1007 	/*
1008 	 * Adjust if_flags
1009 	 *
1010 	 * If the flags are already set/cleared, then we return
1011 	 * immediately to avoid extra syscalls
1012 	 */
1013 	flags = (ifr.ifr_flags & 0xffff) | (ifr.ifr_flagshigh << 16);
1014 	if (f < 0) {
1015 		/* Turn off flags */
1016 		f = -f;
1017 		if ((flags & f) == 0)
1018 			return 0;
1019 		flags &= ~f;
1020 	} else {
1021 		/* Turn on flags */
1022 		if (flags & f)
1023 			return 0;
1024 		flags |= f;
1025 	}
1026 
1027 	/*
1028 	 * Fix up ifreq.ifr_name, since it may be trashed
1029 	 * in previous ioctl(SIOCGIFFLAGS)
1030 	 */
1031 	snprintf(ifr.ifr_name, sizeof(ifr.ifr_name), "tap%d", tap_unit);
1032 
1033 	ifr.ifr_flags = flags & 0xffff;
1034 	ifr.ifr_flagshigh = flags >> 16;
1035 	if (ioctl(s, SIOCSIFFLAGS, &ifr) < 0) {
1036 		warn("tap%d: ioctl(SIOCSIFFLAGS) failed", tap_unit);
1037 		return -1;
1038 	}
1039 	return 0;
1040 }
1041 
1042 static
1043 int
1044 netif_set_tapaddr(int tap_unit, in_addr_t addr, in_addr_t mask, int s)
1045 {
1046 	struct ifaliasreq ifra;
1047 	struct sockaddr_in *in;
1048 
1049 	bzero(&ifra, sizeof(ifra));
1050 	snprintf(ifra.ifra_name, sizeof(ifra.ifra_name), "tap%d", tap_unit);
1051 
1052 	/* Setup address */
1053 	in = (struct sockaddr_in *)&ifra.ifra_addr;
1054 	in->sin_family = AF_INET;
1055 	in->sin_len = sizeof(*in);
1056 	in->sin_addr.s_addr = addr;
1057 
1058 	if (mask != 0) {
1059 		/* Setup netmask */
1060 		in = (struct sockaddr_in *)&ifra.ifra_mask;
1061 		in->sin_len = sizeof(*in);
1062 		in->sin_addr.s_addr = mask;
1063 	}
1064 
1065 	if (ioctl(s, SIOCAIFADDR, &ifra) < 0) {
1066 		warn("tap%d: ioctl(SIOCAIFADDR) failed", tap_unit);
1067 		return -1;
1068 	}
1069 	return 0;
1070 }
1071 
1072 static
1073 int
1074 netif_add_tap2brg(int tap_unit, const char *ifbridge, int s)
1075 {
1076 	struct ifbreq ifbr;
1077 	struct ifdrv ifd;
1078 
1079 	bzero(&ifbr, sizeof(ifbr));
1080 	snprintf(ifbr.ifbr_ifsname, sizeof(ifbr.ifbr_ifsname),
1081 		 "tap%d", tap_unit);
1082 
1083 	bzero(&ifd, sizeof(ifd));
1084 	strlcpy(ifd.ifd_name, ifbridge, sizeof(ifd.ifd_name));
1085 	ifd.ifd_cmd = BRDGADD;
1086 	ifd.ifd_len = sizeof(ifbr);
1087 	ifd.ifd_data = &ifbr;
1088 
1089 	if (ioctl(s, SIOCSDRVSPEC, &ifd) < 0) {
1090 		/*
1091 		 * 'errno == EEXIST' means that the tap(4) is already
1092 		 * a member of the bridge(4)
1093 		 */
1094 		if (errno != EEXIST) {
1095 			warn("ioctl(%s, SIOCSDRVSPEC) failed", ifbridge);
1096 			return -1;
1097 		}
1098 	}
1099 	return 0;
1100 }
1101 
1102 #define TAPDEV_OFLAGS	(O_RDWR | O_NONBLOCK)
1103 
1104 /*
1105  * Locate the first unused tap(4) device file if auto mode is requested,
1106  * or open the user supplied device file, and bring up the corresponding
1107  * tap(4) interface.
1108  *
1109  * NOTE: Only tap(4) device file is supported currently
1110  */
1111 static
1112 int
1113 netif_open_tap(const char *netif, int *tap_unit, int s)
1114 {
1115 	char tap_dev[MAXPATHLEN];
1116 	int tap_fd, failed;
1117 	struct stat st;
1118 	char *dname;
1119 
1120 	*tap_unit = -1;
1121 
1122 	if (strcmp(netif, "auto") == 0) {
1123 		/*
1124 		 * Find first unused tap(4) device file
1125 		 */
1126 		tap_fd = open("/dev/tap", TAPDEV_OFLAGS);
1127 		if (tap_fd < 0) {
1128 			warnc(errno, "Unable to find a free tap(4)");
1129 			return -1;
1130 		}
1131 	} else {
1132 		/*
1133 		 * User supplied tap(4) device file or unix socket.
1134 		 */
1135 		if (netif[0] == '/')	/* Absolute path */
1136 			strlcpy(tap_dev, netif, sizeof(tap_dev));
1137 		else
1138 			snprintf(tap_dev, sizeof(tap_dev), "/dev/%s", netif);
1139 
1140 		tap_fd = open(tap_dev, TAPDEV_OFLAGS);
1141 
1142 		/*
1143 		 * If we cannot open normally try to connect to it.
1144 		 */
1145 		if (tap_fd < 0)
1146 			tap_fd = unix_connect(tap_dev);
1147 
1148 		if (tap_fd < 0) {
1149 			warn("Unable to open %s", tap_dev);
1150 			return -1;
1151 		}
1152 	}
1153 
1154 	/*
1155 	 * Check whether the device file is a tap(4)
1156 	 */
1157 	if (fstat(tap_fd, &st) < 0) {
1158 		failed = 1;
1159 	} else if (S_ISCHR(st.st_mode)) {
1160 		dname = fdevname(tap_fd);
1161 		if (dname)
1162 			dname = strstr(dname, "tap");
1163 		if (dname) {
1164 			/*
1165 			 * Bring up the corresponding tap(4) interface
1166 			 */
1167 			*tap_unit = strtol(dname + 3, NULL, 10);
1168 			printf("TAP UNIT %d\n", *tap_unit);
1169 			if (netif_set_tapflags(*tap_unit, IFF_UP, s) == 0)
1170 				failed = 0;
1171 			else
1172 				failed = 1;
1173 		} else {
1174 			failed = 1;
1175 		}
1176 	} else if (S_ISSOCK(st.st_mode)) {
1177 		/*
1178 		 * Special socket connection (typically to vknet).  We
1179 		 * do not have to do anything.
1180 		 */
1181 		failed = 0;
1182 	} else {
1183 		failed = 1;
1184 	}
1185 
1186 	if (failed) {
1187 		warnx("%s is not a tap(4) device or socket", tap_dev);
1188 		close(tap_fd);
1189 		tap_fd = -1;
1190 		*tap_unit = -1;
1191 	}
1192 	return tap_fd;
1193 }
1194 
1195 static int
1196 unix_connect(const char *path)
1197 {
1198 	struct sockaddr_un sunx;
1199 	int len;
1200 	int net_fd;
1201 	int sndbuf = 262144;
1202 	struct stat st;
1203 
1204 	snprintf(sunx.sun_path, sizeof(sunx.sun_path), "%s", path);
1205 	len = offsetof(struct sockaddr_un, sun_path[strlen(sunx.sun_path)]);
1206 	++len;	/* include nul */
1207 	sunx.sun_family = AF_UNIX;
1208 	sunx.sun_len = len;
1209 
1210 	net_fd = socket(AF_UNIX, SOCK_SEQPACKET, 0);
1211 	if (net_fd < 0)
1212 		return(-1);
1213 	if (connect(net_fd, (void *)&sunx, len) < 0) {
1214 		close(net_fd);
1215 		return(-1);
1216 	}
1217 	setsockopt(net_fd, SOL_SOCKET, SO_SNDBUF, &sndbuf, sizeof(sndbuf));
1218 	if (fstat(net_fd, &st) == 0)
1219 		printf("Network socket buffer: %d bytes\n", st.st_blksize);
1220 	fcntl(net_fd, F_SETFL, O_NONBLOCK);
1221 	return(net_fd);
1222 }
1223 
1224 #undef TAPDEV_MAJOR
1225 #undef TAPDEV_MINOR
1226 #undef TAPDEV_OFLAGS
1227 
1228 /*
1229  * Following syntax is supported,
1230  * 1) x.x.x.x             tap(4)'s address is x.x.x.x
1231  *
1232  * 2) x.x.x.x/z           tap(4)'s address is x.x.x.x
1233  *                        tap(4)'s netmask len is z
1234  *
1235  * 3) x.x.x.x:y.y.y.y     tap(4)'s address is x.x.x.x
1236  *                        pseudo netif's address is y.y.y.y
1237  *
1238  * 4) x.x.x.x:y.y.y.y/z   tap(4)'s address is x.x.x.x
1239  *                        pseudo netif's address is y.y.y.y
1240  *                        tap(4) and pseudo netif's netmask len are z
1241  *
1242  * 5) bridgeX             tap(4) will be added to bridgeX
1243  *
1244  * 6) bridgeX:y.y.y.y     tap(4) will be added to bridgeX
1245  *                        pseudo netif's address is y.y.y.y
1246  *
1247  * 7) bridgeX:y.y.y.y/z   tap(4) will be added to bridgeX
1248  *                        pseudo netif's address is y.y.y.y
1249  *                        pseudo netif's netmask len is z
1250  */
1251 static
1252 int
1253 netif_init_tap(int tap_unit, in_addr_t *addr, in_addr_t *mask, int s)
1254 {
1255 	in_addr_t tap_addr, netmask, netif_addr;
1256 	int next_netif_addr;
1257 	char *tok, *masklen_str, *ifbridge;
1258 
1259 	*addr = 0;
1260 	*mask = 0;
1261 
1262 	tok = strtok(NULL, ":/");
1263 	if (tok == NULL) {
1264 		/*
1265 		 * Nothing special, simply use tap(4) as backend
1266 		 */
1267 		return 0;
1268 	}
1269 
1270 	if (inet_pton(AF_INET, tok, &tap_addr) > 0) {
1271 		/*
1272 		 * tap(4)'s address is supplied
1273 		 */
1274 		ifbridge = NULL;
1275 
1276 		/*
1277 		 * If there is next token, then it may be pseudo
1278 		 * netif's address or netmask len for tap(4)
1279 		 */
1280 		next_netif_addr = 0;
1281 	} else {
1282 		/*
1283 		 * Not tap(4)'s address, assume it as a bridge(4)
1284 		 * iface name
1285 		 */
1286 		tap_addr = 0;
1287 		ifbridge = tok;
1288 
1289 		/*
1290 		 * If there is next token, then it must be pseudo
1291 		 * netif's address
1292 		 */
1293 		next_netif_addr = 1;
1294 	}
1295 
1296 	netmask = netif_addr = 0;
1297 
1298 	tok = strtok(NULL, ":/");
1299 	if (tok == NULL)
1300 		goto back;
1301 
1302 	if (inet_pton(AF_INET, tok, &netif_addr) <= 0) {
1303 		if (next_netif_addr) {
1304 			warnx("Invalid pseudo netif address: %s", tok);
1305 			return -1;
1306 		}
1307 		netif_addr = 0;
1308 
1309 		/*
1310 		 * Current token is not address, then it must be netmask len
1311 		 */
1312 		masklen_str = tok;
1313 	} else {
1314 		/*
1315 		 * Current token is pseudo netif address, if there is next token
1316 		 * it must be netmask len
1317 		 */
1318 		masklen_str = strtok(NULL, "/");
1319 	}
1320 
1321 	/* Calculate netmask */
1322 	if (masklen_str != NULL) {
1323 		u_long masklen;
1324 
1325 		masklen = strtoul(masklen_str, NULL, 10);
1326 		if (masklen < 32 && masklen > 0) {
1327 			netmask = htonl(~((1LL << (32 - masklen)) - 1)
1328 					& 0xffffffff);
1329 		} else {
1330 			warnx("Invalid netmask len: %lu", masklen);
1331 			return -1;
1332 		}
1333 	}
1334 
1335 	/* Make sure there is no more token left */
1336 	if (strtok(NULL, ":/") != NULL) {
1337 		warnx("Invalid argument to '-I'");
1338 		return -1;
1339 	}
1340 
1341 back:
1342 	if (tap_unit < 0) {
1343 		/* Do nothing */
1344 	} else if (ifbridge == NULL) {
1345 		/* Set tap(4) address/netmask */
1346 		if (netif_set_tapaddr(tap_unit, tap_addr, netmask, s) < 0)
1347 			return -1;
1348 	} else {
1349 		/* Tie tap(4) to bridge(4) */
1350 		if (netif_add_tap2brg(tap_unit, ifbridge, s) < 0)
1351 			return -1;
1352 	}
1353 
1354 	*addr = netif_addr;
1355 	*mask = netmask;
1356 	return 0;
1357 }
1358 
1359 /*
1360  * NetifInfo[] will be filled for pseudo netif initialization.
1361  * NetifNum will be bumped to reflect the number of valid entries
1362  * in NetifInfo[].
1363  */
1364 static
1365 void
1366 init_netif(char *netifExp[], int netifExpNum)
1367 {
1368 	int i, s;
1369 	char *tmp;
1370 
1371 	if (netifExpNum == 0)
1372 		return;
1373 
1374 	s = socket(AF_INET, SOCK_DGRAM, 0);	/* for ioctl(SIOC) */
1375 	if (s < 0)
1376 		return;
1377 
1378 	for (i = 0; i < netifExpNum; ++i) {
1379 		struct vknetif_info *info;
1380 		in_addr_t netif_addr, netif_mask;
1381 		int tap_fd, tap_unit;
1382 		char *netif;
1383 
1384 		/* Extract MAC address if there is one */
1385 		tmp = netifExp[i];
1386 		strsep(&tmp, "=");
1387 
1388 		netif = strtok(netifExp[i], ":");
1389 		if (netif == NULL) {
1390 			warnx("Invalid argument to '-I'");
1391 			continue;
1392 		}
1393 
1394 		/*
1395 		 * Open tap(4) device file and bring up the
1396 		 * corresponding interface
1397 		 */
1398 		tap_fd = netif_open_tap(netif, &tap_unit, s);
1399 		if (tap_fd < 0)
1400 			continue;
1401 
1402 		/*
1403 		 * Initialize tap(4) and get address/netmask
1404 		 * for pseudo netif
1405 		 *
1406 		 * NB: Rest part of netifExp[i] is passed
1407 		 *     to netif_init_tap() implicitly.
1408 		 */
1409 		if (netif_init_tap(tap_unit, &netif_addr, &netif_mask, s) < 0) {
1410 			/*
1411 			 * NB: Closing tap(4) device file will bring
1412 			 *     down the corresponding interface
1413 			 */
1414 			close(tap_fd);
1415 			continue;
1416 		}
1417 
1418 		info = &NetifInfo[NetifNum];
1419 		bzero(info, sizeof(*info));
1420 		info->tap_fd = tap_fd;
1421 		info->tap_unit = tap_unit;
1422 		info->netif_addr = netif_addr;
1423 		info->netif_mask = netif_mask;
1424 		/*
1425 		 * If tmp isn't NULL it means a MAC could have been
1426 		 * specified so attempt to convert it.
1427 		 * Setting enaddr to NULL will tell vke_attach() we
1428 		 * need a pseudo-random MAC address.
1429 		 */
1430 		if (tmp != NULL) {
1431 			if ((info->enaddr = malloc(ETHER_ADDR_LEN)) == NULL)
1432 				warnx("Couldn't allocate memory for the operation");
1433 			else {
1434 				if ((kether_aton(tmp, info->enaddr)) == NULL) {
1435 					free(info->enaddr);
1436 					info->enaddr = NULL;
1437 				}
1438 			}
1439 		}
1440 
1441 		NetifNum++;
1442 		if (NetifNum >= VKNETIF_MAX)	/* XXX will this happen? */
1443 			break;
1444 	}
1445 	close(s);
1446 }
1447 
1448 /*
1449  * Create the pid file and leave it open and locked while the vkernel is
1450  * running.  This allows a script to use /usr/bin/lockf to probe whether
1451  * a vkernel is still running (so as not to accidently kill an unrelated
1452  * process from a stale pid file).
1453  */
1454 static
1455 void
1456 writepid(void)
1457 {
1458 	char buf[32];
1459 	int fd;
1460 
1461 	if (pid_file != NULL) {
1462 		snprintf(buf, sizeof(buf), "%ld\n", (long)getpid());
1463 		fd = open(pid_file, O_RDWR|O_CREAT|O_EXLOCK|O_NONBLOCK, 0666);
1464 		if (fd < 0) {
1465 			if (errno == EWOULDBLOCK) {
1466 				perror("Failed to lock pidfile, "
1467 				       "vkernel already running");
1468 			} else {
1469 				perror("Failed to create pidfile");
1470 			}
1471 			exit(EX_SOFTWARE);
1472 		}
1473 		ftruncate(fd, 0);
1474 		write(fd, buf, strlen(buf));
1475 		/* leave the file open to maintain the lock */
1476 	}
1477 }
1478 
1479 static
1480 void
1481 cleanpid( void )
1482 {
1483 	if (pid_file != NULL) {
1484 		if (unlink(pid_file) < 0)
1485 			perror("Warning: couldn't remove pidfile");
1486 	}
1487 }
1488 
1489 static
1490 void
1491 usage_err(const char *ctl, ...)
1492 {
1493 	va_list va;
1494 
1495 	va_start(va, ctl);
1496 	vfprintf(stderr, ctl, va);
1497 	va_end(va);
1498 	fprintf(stderr, "\n");
1499 	exit(EX_USAGE);
1500 }
1501 
1502 static
1503 void
1504 usage_help(_Bool help)
1505 {
1506 	fprintf(stderr, "Usage: %s [-hsUvd] [-c file] [-e name=value:name=value:...]\n"
1507 	    "\t[-i file] [-I interface[:address1[:address2][/netmask]]] [-l cpulock]\n"
1508 	    "\t[-m size] [-n numcpus[:lbits[:cbits]]]\n"
1509 	    "\t[-p file] [-r file]\n", save_av[0]);
1510 
1511 	if (help)
1512 		fprintf(stderr, "\nArguments:\n"
1513 		    "\t-c\tSpecify a readonly CD-ROM image file to be used by the kernel.\n"
1514 		    "\t-e\tSpecify an environment to be used by the kernel.\n"
1515 		    "\t-h\tThis list of options.\n"
1516 		    "\t-i\tSpecify a memory image file to be used by the virtual kernel.\n"
1517 		    "\t-I\tCreate a virtual network device.\n"
1518 		    "\t-l\tSpecify which, if any, real CPUs to lock virtual CPUs to.\n"
1519 		    "\t-m\tSpecify the amount of memory to be used by the kernel in bytes.\n"
1520 		    "\t-n\tSpecify the number of CPUs and the topology you wish to emulate:\n"
1521 		    "\t  \t- numcpus - number of cpus\n"
1522 		    "\t  \t- :lbits - specify the number of bits within APICID(=CPUID) needed for representing\n"
1523 		    "\t  \t  the logical ID. Controls the number of threads/core (0bits - 1 thread, 1bit - 2 threads).\n"
1524 		    "\t  \t- :cbits - specify the number of bits within APICID(=CPUID) needed for representing\n"
1525 		    "\t  \t  the core ID. Controls the number of core/package (0bits - 1 core, 1bit - 2 cores).\n"
1526 		    "\t-p\tSpecify a file in which to store the process ID.\n"
1527 		    "\t-r\tSpecify a R/W disk image file to be used by the kernel.\n"
1528 		    "\t-s\tBoot into single-user mode.\n"
1529 		    "\t-U\tEnable writing to kernel memory and module loading.\n"
1530 		    "\t-v\tTurn on verbose booting.\n");
1531 
1532 	exit(EX_USAGE);
1533 }
1534 
1535 void
1536 cpu_reset(void)
1537 {
1538 	kprintf("cpu reset, rebooting vkernel\n");
1539 	closefrom(3);
1540 	cleanpid();
1541 	exit(EX_VKERNEL_REBOOT);
1542 
1543 }
1544 
1545 void
1546 cpu_halt(void)
1547 {
1548 	kprintf("cpu halt, exiting vkernel\n");
1549 	cleanpid();
1550 	exit(EX_OK);
1551 }
1552 
1553 void
1554 setrealcpu(void)
1555 {
1556 	switch(lwp_cpu_lock) {
1557 	case LCL_PER_CPU:
1558 		if (bootverbose)
1559 			kprintf("Locking CPU%d to real cpu %d\n",
1560 				mycpuid, next_cpu);
1561 		usched_set(getpid(), USCHED_SET_CPU, &next_cpu, sizeof(next_cpu));
1562 		next_cpu++;
1563 		if (next_cpu >= real_ncpus)
1564 			next_cpu = 0;
1565 		break;
1566 	case LCL_SINGLE_CPU:
1567 		if (bootverbose)
1568 			kprintf("Locking CPU%d to real cpu %d\n",
1569 				mycpuid, next_cpu);
1570 		usched_set(getpid(), USCHED_SET_CPU, &next_cpu, sizeof(next_cpu));
1571 		break;
1572 	default:
1573 		/* do not map virtual cpus to real cpus */
1574 		break;
1575 	}
1576 }
1577 
1578 /*
1579  * Allocate and free memory for module loading.  The loaded module
1580  * has to be placed somewhere near the current kernel binary load
1581  * point or the relocations will not work.
1582  *
1583  * I'm not sure why this isn't working.
1584  */
1585 int
1586 vkernel_module_memory_alloc(vm_offset_t *basep, size_t bytes)
1587 {
1588 #if 1
1589 	size_t xtra;
1590 	xtra = (PAGE_SIZE - (vm_offset_t)sbrk(0)) & PAGE_MASK;
1591 	*basep = (vm_offset_t)sbrk(xtra + bytes) + xtra;
1592 	bzero((void *)*basep, bytes);
1593 #else
1594 	*basep = (vm_offset_t)mmap((void *)0x000000000, bytes,
1595 				   PROT_READ|PROT_WRITE|PROT_EXEC,
1596 				   MAP_ANON|MAP_SHARED, -1, 0);
1597 	if ((void *)*basep == MAP_FAILED)
1598 		return ENOMEM;
1599 #endif
1600 	return 0;
1601 }
1602 
1603 void
1604 vkernel_module_memory_free(vm_offset_t base, size_t bytes)
1605 {
1606 #if 0
1607 #if 0
1608 	munmap((void *)base, bytes);
1609 #endif
1610 #endif
1611 }
1612