1 /*
2  * Copyright (c) 2006 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 #include <sys/types.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/stat.h>
39 #include <sys/mman.h>
40 #include <sys/cons.h>
41 #include <sys/random.h>
42 #include <sys/vkernel.h>
43 #include <sys/tls.h>
44 #include <sys/reboot.h>
45 #include <sys/proc.h>
46 #include <sys/msgbuf.h>
47 #include <sys/vmspace.h>
48 #include <sys/socket.h>
49 #include <sys/sockio.h>
50 #include <sys/sysctl.h>
51 #include <sys/un.h>
52 #include <vm/vm_page.h>
53 #include <vm/vm_map.h>
54 #include <sys/mplock2.h>
55 #include <sys/wait.h>
56 #include <sys/vmm.h>
57 
58 #include <machine/cpu.h>
59 #include <machine/globaldata.h>
60 #include <machine/tls.h>
61 #include <machine/md_var.h>
62 #include <machine/vmparam.h>
63 #include <cpu/specialreg.h>
64 
65 #include <net/if.h>
66 #include <net/if_arp.h>
67 #include <net/ethernet.h>
68 #include <net/bridge/if_bridgevar.h>
69 #include <netinet/in.h>
70 #include <arpa/inet.h>
71 #include <net/if_var.h>
72 
73 #include <stdio.h>
74 #include <stdlib.h>
75 #include <stdarg.h>
76 #include <stdbool.h>
77 #include <unistd.h>
78 #include <fcntl.h>
79 #include <string.h>
80 #include <err.h>
81 #include <errno.h>
82 #include <assert.h>
83 #include <sysexits.h>
84 
85 #define EX_VKERNEL_REBOOT	32
86 
87 vm_phystable_t phys_avail[16];
88 vm_paddr_t Maxmem;
89 vm_paddr_t Maxmem_bytes;
90 long physmem;
91 int MemImageFd = -1;
92 struct vkdisk_info DiskInfo[VKDISK_MAX];
93 int DiskNum;
94 struct vknetif_info NetifInfo[VKNETIF_MAX];
95 int NetifNum;
96 char *pid_file;
97 vm_offset_t KvaStart;
98 vm_offset_t KvaEnd;
99 vm_offset_t KvaSize;
100 vm_offset_t virtual_start;
101 vm_offset_t virtual_end;
102 vm_offset_t virtual2_start;
103 vm_offset_t virtual2_end;
104 vm_offset_t kernel_vm_end;
105 vm_offset_t crashdumpmap;
106 vm_offset_t clean_sva;
107 vm_offset_t clean_eva;
108 struct msgbuf *msgbufp;
109 caddr_t ptvmmap;
110 vpte_t	*KernelPTD;
111 vpte_t	*KernelPTA;	/* Warning: Offset for direct VA translation */
112 void *dmap_min_address;
113 void *vkernel_stack;
114 u_int cpu_feature;	/* XXX */
115 int tsc_present;
116 int tsc_invariant;
117 int tsc_mpsync;
118 int optcpus;		/* number of cpus - see mp_start() */
119 int cpu_bits;
120 int lwp_cpu_lock;	/* if/how to lock virtual CPUs to real CPUs */
121 int real_ncpus;		/* number of real CPUs */
122 int next_cpu;		/* next real CPU to lock a virtual CPU to */
123 int vkernel_b_arg;	/* no of logical CPU bits - only SMP */
124 int vkernel_B_arg;	/* no of core bits - only SMP */
125 int vmm_enabled;	/* VMM HW assisted enable */
126 int use_precise_timer = 0;	/* use a precise timer (more expensive) */
127 struct privatespace *CPU_prvspace;
128 
129 tsc_uclock_t tsc_frequency;
130 tsc_uclock_t tsc_oneus_approx;
131 
132 extern uint64_t KPML4phys;	/* phys addr of kernel level 4 */
133 
134 static struct trapframe proc0_tf;
135 static void *proc0paddr;
136 
137 static void init_sys_memory(char *imageFile);
138 static void init_kern_memory(void);
139 static void init_kern_memory_vmm(void);
140 static void init_globaldata(void);
141 static void init_vkernel(void);
142 static void init_disk(char **diskExp, int *diskFlags, int diskFileNum, enum vkdisk_type type);
143 static void init_netif(char *netifExp[], int netifFileNum);
144 static void writepid(void);
145 static void cleanpid(void);
146 static int unix_connect(const char *path);
147 static void usage_err(const char *ctl, ...) __printflike(1, 2);
148 static void usage_help(_Bool);
149 static void init_locks(void);
150 static void handle_term(int);
151 
152 pid_t childpid;
153 
154 static int save_ac;
155 static int prezeromem;
156 static char **save_av;
157 
158 /*
159  * Kernel startup for virtual kernels - standard main()
160  */
161 int
162 main(int ac, char **av)
163 {
164 	char *memImageFile = NULL;
165 	char *netifFile[VKNETIF_MAX];
166 	char *diskFile[VKDISK_MAX];
167 	char *cdFile[VKDISK_MAX];
168 	char *suffix;
169 	char *endp;
170 	char *tmp;
171 	char *tok;
172 	int diskFlags[VKDISK_MAX];
173 	int netifFileNum = 0;
174 	int diskFileNum = 0;
175 	int cdFileNum = 0;
176 	int bootOnDisk = -1;	/* set below to vcd (0) or vkd (1) */
177 	int c;
178 	int i;
179 	int j;
180 	int n;
181 	int isq;
182 	int pos;
183 	int eflag;
184 	int dflag = 0;		/* disable vmm */
185 	int real_vkernel_enable;
186 	int supports_sse;
187 	uint32_t mxcsr_mask;
188 	size_t vsize;
189 	size_t msize;
190 	size_t kenv_size;
191 	size_t kenv_size2;
192 	int status;
193 	struct sigaction sa;
194 
195 	/*
196 	 * Currently a bad hack but rtld-elf needs LD_SHAREDLIB_BASE to
197 	 * be set to force it to mmap() shared libraries into low memory,
198 	 * so our module loader can link against the related symbols.
199 	 */
200 	if (getenv("LD_SHAREDLIB_BASE") == NULL) {
201 		setenv("LD_SHAREDLIB_BASE", "0x10000000", 1);
202 		execv(av[0], av);
203 		fprintf(stderr, "Must run %s with full path\n", av[0]);
204 		exit(1);
205 	}
206 
207 	while ((childpid = fork()) != 0) {
208 		/* Ignore signals */
209 		bzero(&sa, sizeof(sa));
210 		sigemptyset(&sa.sa_mask);
211 		sa.sa_handler = SIG_IGN;
212 		sigaction(SIGINT, &sa, NULL);
213 		sigaction(SIGQUIT, &sa, NULL);
214 		sigaction(SIGHUP, &sa, NULL);
215 
216 		/*
217 		 * Forward SIGTERM to the child so that
218 		 * the shutdown process initiates correctly.
219 		 */
220 		sa.sa_handler = handle_term;
221 		sigaction(SIGTERM, &sa, NULL);
222 
223 		/*
224 		 * Wait for child to terminate, exit if
225 		 * someone stole our child.
226 		 */
227 		while (waitpid(childpid, &status, 0) != childpid) {
228 			if (errno == ECHILD)
229 				exit(1);
230 		}
231 		if (WEXITSTATUS(status) != EX_VKERNEL_REBOOT)
232 			return 0;
233 	}
234 
235 	/*
236 	 * Starting for real
237 	 */
238 	save_ac = ac;
239 	save_av = av;
240 	eflag = 0;
241 	pos = 0;
242 	kenv_size = 0;
243 
244 	/*
245 	 * Process options
246 	 */
247 	kernel_mem_readonly = 1;
248 	optcpus = 2;
249 	cpu_bits = 1;
250 	vkernel_b_arg = 0;
251 	vkernel_B_arg = 0;
252 	lwp_cpu_lock = LCL_NONE;
253 
254 	real_vkernel_enable = 0;
255 	vsize = sizeof(real_vkernel_enable);
256 	sysctlbyname("vm.vkernel_enable", &real_vkernel_enable, &vsize, NULL,0);
257 
258 	if (real_vkernel_enable == 0) {
259 		errx(1, "vm.vkernel_enable is 0, must be set "
260 			"to 1 to execute a vkernel!");
261 	}
262 
263 	real_ncpus = 1;
264 	vsize = sizeof(real_ncpus);
265 	sysctlbyname("hw.ncpu", &real_ncpus, &vsize, NULL, 0);
266 
267 	if (ac < 2)
268 		usage_help(false);
269 
270 	while ((c = getopt(ac, av, "c:hsvztTl:m:n:r:R:e:i:p:I:Ud")) != -1) {
271 		switch(c) {
272 		case 'd':
273 			dflag = 1;
274 			break;
275 		case 'e':
276 			/*
277 			 * name=value:name=value:name=value...
278 			 * name="value"...
279 			 *
280 			 * Allow values to be quoted but note that shells
281 			 * may remove the quotes, so using this feature
282 			 * to embed colons may require a backslash.
283 			 */
284 			n = strlen(optarg);
285 			isq = 0;
286 
287 			if (eflag == 0) {
288 				kenv_size = n + 2;
289 				kern_envp = malloc(kenv_size);
290 				if (kern_envp == NULL)
291 					errx(1, "Couldn't allocate %zd bytes for kern_envp", kenv_size);
292 			} else {
293 				kenv_size2 = kenv_size + n + 1;
294 				pos = kenv_size - 1;
295 				if ((tmp = realloc(kern_envp, kenv_size2)) == NULL)
296 					errx(1, "Couldn't reallocate %zd bytes for kern_envp", kenv_size2);
297 				kern_envp = tmp;
298 				kenv_size = kenv_size2;
299 			}
300 
301 			for (i = 0, j = pos; i < n; ++i) {
302 				if (optarg[i] == '"')
303 					isq ^= 1;
304 				else if (optarg[i] == '\'')
305 					isq ^= 2;
306 				else if (isq == 0 && optarg[i] == ':')
307 					kern_envp[j++] = 0;
308 				else
309 					kern_envp[j++] = optarg[i];
310 			}
311 			kern_envp[j++] = 0;
312 			kern_envp[j++] = 0;
313 			eflag++;
314 			break;
315 		case 's':
316 			boothowto |= RB_SINGLE;
317 			break;
318 		case 't':
319 			use_precise_timer = 1;
320 			break;
321 		case 'v':
322 			bootverbose = 1;
323 			break;
324 		case 'i':
325 			memImageFile = optarg;
326 			break;
327 		case 'I':
328 			if (netifFileNum < VKNETIF_MAX)
329 				netifFile[netifFileNum++] = strdup(optarg);
330 			break;
331 		case 'r':
332 		case 'R':
333 			if (bootOnDisk < 0)
334 				bootOnDisk = 1;
335 			if (diskFileNum + cdFileNum < VKDISK_MAX) {
336 				diskFile[diskFileNum] = strdup(optarg);
337 				diskFlags[diskFileNum] = (c == 'R');
338 				++diskFileNum;
339 			}
340 			break;
341 		case 'c':
342 			if (bootOnDisk < 0)
343 				bootOnDisk = 0;
344 			if (diskFileNum + cdFileNum < VKDISK_MAX)
345 				cdFile[cdFileNum++] = strdup(optarg);
346 			break;
347 		case 'm':
348 			Maxmem_bytes = strtoull(optarg, &suffix, 0);
349 			if (suffix) {
350 				switch(*suffix) {
351 				case 'g':
352 				case 'G':
353 					Maxmem_bytes <<= 30;
354 					break;
355 				case 'm':
356 				case 'M':
357 					Maxmem_bytes <<= 20;
358 					break;
359 				case 'k':
360 				case 'K':
361 					Maxmem_bytes <<= 10;
362 					break;
363 				default:
364 					Maxmem_bytes = 0;
365 					usage_err("Bad maxmem option");
366 					/* NOT REACHED */
367 					break;
368 				}
369 			}
370 			break;
371 		case 'l':
372 			next_cpu = -1;
373 			if (strncmp("map", optarg, 3) == 0) {
374 				lwp_cpu_lock = LCL_PER_CPU;
375 				if (optarg[3] == ',') {
376 					next_cpu = strtol(optarg+4, &endp, 0);
377 					if (*endp != '\0')
378 						usage_err("Bad target CPU number at '%s'", endp);
379 				} else {
380 					next_cpu = 0;
381 				}
382 				if (next_cpu < 0 || next_cpu > real_ncpus - 1)
383 					usage_err("Bad target CPU, valid range is 0-%d", real_ncpus - 1);
384 			} else if (strncmp("any", optarg, 3) == 0) {
385 				lwp_cpu_lock = LCL_NONE;
386 			} else {
387 				lwp_cpu_lock = LCL_SINGLE_CPU;
388 				next_cpu = strtol(optarg, &endp, 0);
389 				if (*endp != '\0')
390 					usage_err("Bad target CPU number at '%s'", endp);
391 				if (next_cpu < 0 || next_cpu > real_ncpus - 1)
392 					usage_err("Bad target CPU, valid range is 0-%d", real_ncpus - 1);
393 			}
394 			break;
395 		case 'n':
396 			/*
397 			 * This value is set up by mp_start(), don't just
398 			 * set ncpus here.
399 			 */
400 			tok = strtok(optarg, ":");
401 			optcpus = strtol(tok, NULL, 0);
402 			if (optcpus < 1 || optcpus > MAXCPU)
403 				usage_err("Bad ncpus, valid range is 1-%d", MAXCPU);
404 			cpu_bits = 1;
405 			while ((1 << cpu_bits) < optcpus)
406 				++cpu_bits;
407 
408 			/*
409 			 * By default assume simple hyper-threading
410 			 */
411 			vkernel_b_arg = 1;
412 			vkernel_B_arg = cpu_bits - vkernel_b_arg;
413 
414 			/*
415 			 * [:lbits[:cbits]] override # of cpu bits
416 			 * for logical and core extraction, supplying
417 			 * defaults for any omission.
418 			 */
419 			tok = strtok(NULL, ":");
420 			if (tok != NULL) {
421 				vkernel_b_arg = strtol(tok, NULL, 0);
422 				vkernel_B_arg = cpu_bits - vkernel_b_arg;
423 
424 				/* :cbits argument */
425 				tok = strtok(NULL, ":");
426 				if (tok != NULL) {
427 					vkernel_B_arg = strtol(tok, NULL, 0);
428 				}
429 			}
430 			break;
431 		case 'p':
432 			pid_file = optarg;
433 			break;
434 		case 'U':
435 			kernel_mem_readonly = 0;
436 			break;
437 		case 'h':
438 			usage_help(true);
439 			break;
440 		case 'z':
441 			prezeromem = 1;
442 			break;
443 		default:
444 			usage_help(false);
445 		}
446 	}
447 
448 	/*
449 	 * Check VMM presence
450 	 */
451 	vsize = sizeof(vmm_enabled);
452 	sysctlbyname("hw.vmm.enable", &vmm_enabled, &vsize, NULL, 0);
453 	vmm_enabled = (vmm_enabled && !dflag);
454 
455 	writepid();
456 	cpu_disable_intr();
457 	if (vmm_enabled) {
458 		/* use a MAP_ANON directly */
459 		printf("VMM is available\n");
460 		init_kern_memory_vmm();
461 	} else {
462 		printf("VMM is not available\n");
463 		init_sys_memory(memImageFile);
464 		init_kern_memory();
465 	}
466 	init_globaldata();
467 	init_vkernel();
468 	setrealcpu();
469 	init_kqueue();
470 
471 	vmm_guest = VMM_GUEST_VKERNEL;
472 
473 	/*
474 	 * Check TSC
475 	 */
476 	vsize = sizeof(tsc_present);
477 	sysctlbyname("hw.tsc_present", &tsc_present, &vsize, NULL, 0);
478 	vsize = sizeof(tsc_invariant);
479 	sysctlbyname("hw.tsc_invariant", &tsc_invariant, &vsize, NULL, 0);
480 	vsize = sizeof(tsc_mpsync);
481 	sysctlbyname("hw.tsc_mpsync", &tsc_mpsync, &vsize, NULL, 0);
482 	vsize = sizeof(tsc_frequency);
483 	sysctlbyname("hw.tsc_frequency", &tsc_frequency, &vsize, NULL, 0);
484 	if (tsc_present)
485 		cpu_feature |= CPUID_TSC;
486 	tsc_oneus_approx = ((tsc_frequency|1) + 999999) / 1000000;
487 
488 	/*
489 	 * Check SSE
490 	 */
491 	vsize = sizeof(supports_sse);
492 	supports_sse = 0;
493 	sysctlbyname("hw.instruction_sse", &supports_sse, &vsize, NULL, 0);
494 	sysctlbyname("hw.mxcsr_mask", &mxcsr_mask, &msize, NULL, 0);
495 	init_fpu(supports_sse);
496 	if (supports_sse)
497 		cpu_feature |= CPUID_SSE | CPUID_FXSR;
498 
499 	/*
500 	 * We boot from the first installed disk.
501 	 */
502 	if (bootOnDisk == 1) {
503 		init_disk(diskFile, diskFlags, diskFileNum, VKD_DISK);
504 		init_disk(cdFile, NULL, cdFileNum, VKD_CD);
505 	} else {
506 		init_disk(cdFile, NULL, cdFileNum, VKD_CD);
507 		init_disk(diskFile, diskFlags, diskFileNum, VKD_DISK);
508 	}
509 
510 	init_netif(netifFile, netifFileNum);
511 	init_exceptions();
512 	mi_startup();
513 	/* NOT REACHED */
514 	exit(EX_SOFTWARE);
515 }
516 
517 /* SIGTERM handler */
518 static
519 void
520 handle_term(int sig)
521 {
522 	kill(childpid, sig);
523 }
524 
525 /*
526  * Initialize system memory.  This is the virtual kernel's 'RAM'.
527  */
528 static
529 void
530 init_sys_memory(char *imageFile)
531 {
532 	struct stat st;
533 	int i;
534 	int fd;
535 
536 	/*
537 	 * Figure out the system memory image size.  If an image file was
538 	 * specified and -m was not specified, use the image file's size.
539 	 */
540 	if (imageFile && stat(imageFile, &st) == 0 && Maxmem_bytes == 0)
541 		Maxmem_bytes = (vm_paddr_t)st.st_size;
542 	if ((imageFile == NULL || stat(imageFile, &st) < 0) &&
543 	    Maxmem_bytes == 0) {
544 		errx(1, "Cannot create new memory file %s unless "
545 		       "system memory size is specified with -m",
546 		       imageFile);
547 		/* NOT REACHED */
548 	}
549 
550 	/*
551 	 * Maxmem must be known at this time
552 	 */
553 	if (Maxmem_bytes < 64 * 1024 * 1024 || (Maxmem_bytes & SEG_MASK)) {
554 		errx(1, "Bad maxmem specification: 64MB minimum, "
555 		       "multiples of %dMB only",
556 		       SEG_SIZE / 1024 / 1024);
557 		/* NOT REACHED */
558 	}
559 
560 	/*
561 	 * Generate an image file name if necessary, then open/create the
562 	 * file exclusively locked.  Do not allow multiple virtual kernels
563 	 * to use the same image file.
564 	 *
565 	 * Don't iterate through a million files if we do not have write
566 	 * access to the directory, stop if our open() failed on a
567 	 * non-existant file.  Otherwise opens can fail for any number
568 	 */
569 	if (imageFile == NULL) {
570 		for (i = 0; i < 1000000; ++i) {
571 			asprintf(&imageFile, "/var/vkernel/memimg.%06d", i);
572 			fd = open(imageFile,
573 				  O_RDWR|O_CREAT|O_EXLOCK|O_NONBLOCK, 0644);
574 			if (fd < 0 && stat(imageFile, &st) == 0) {
575 				free(imageFile);
576 				continue;
577 			}
578 			break;
579 		}
580 	} else {
581 		fd = open(imageFile, O_RDWR|O_CREAT|O_EXLOCK|O_NONBLOCK, 0644);
582 	}
583 	fprintf(stderr, "Using memory file: %s\n", imageFile);
584 	if (fd < 0 || fstat(fd, &st) < 0) {
585 		err(1, "Unable to open/create %s", imageFile);
586 		/* NOT REACHED */
587 	}
588 
589 	/*
590 	 * Truncate or extend the file as necessary.  Clean out the contents
591 	 * of the file, we want it to be full of holes so we don't waste
592 	 * time reading in data from an old file that we no longer care
593 	 * about.
594 	 */
595 	ftruncate(fd, 0);
596 	ftruncate(fd, Maxmem_bytes);
597 
598 	MemImageFd = fd;
599 	Maxmem = Maxmem_bytes >> PAGE_SHIFT;
600 	physmem = Maxmem;
601 }
602 
603 /*
604  * Initialize kernel memory.  This reserves kernel virtual memory by using
605  * MAP_VPAGETABLE
606  */
607 
608 static
609 void
610 init_kern_memory(void)
611 {
612 	void *base;
613 	int i;
614 	void *firstfree;
615 
616 	/*
617 	 * Memory map our kernel virtual memory space.  Note that the
618 	 * kernel image itself is not made part of this memory for the
619 	 * moment.
620 	 *
621 	 * The memory map must be segment-aligned so we can properly
622 	 * offset KernelPTD.
623 	 *
624 	 * If the system kernel has a different MAXDSIZ, it might not
625 	 * be possible to map kernel memory in its prefered location.
626 	 * Try a number of different locations.
627 	 */
628 
629 	base = mmap((void*)KERNEL_KVA_START, KERNEL_KVA_SIZE,
630 		    PROT_READ|PROT_WRITE|PROT_EXEC,
631 		    MAP_FILE|MAP_SHARED|MAP_VPAGETABLE|MAP_FIXED|MAP_TRYFIXED,
632 		    MemImageFd, (off_t)KERNEL_KVA_START);
633 
634 	if (base == MAP_FAILED) {
635 		err(1, "Unable to mmap() kernel virtual memory!");
636 		/* NOT REACHED */
637 	}
638 	madvise(base, KERNEL_KVA_SIZE, MADV_NOSYNC);
639 	KvaStart = (vm_offset_t)base;
640 	KvaSize = KERNEL_KVA_SIZE;
641 	KvaEnd = KvaStart + KvaSize;
642 
643 	/* cannot use kprintf yet */
644 	printf("KVM mapped at %p-%p\n", (void *)KvaStart, (void *)KvaEnd);
645 
646 	/* MAP_FILE? */
647 	dmap_min_address = mmap(0, DMAP_SIZE, PROT_READ|PROT_WRITE,
648 				MAP_NOCORE|MAP_NOSYNC|MAP_SHARED,
649 				MemImageFd, 0);
650 	if (dmap_min_address == MAP_FAILED) {
651 		err(1, "Unable to mmap() kernel DMAP region!");
652 		/* NOT REACHED */
653 	}
654 
655 	/*
656 	 * Prefault the memory.  The vkernel is going to fault it all in
657 	 * anyway, and faults on the backing store itself are very expensive
658 	 * once we go SMP (contend a lot).  So do it now.
659 	 */
660 	if (prezeromem)
661 		bzero(dmap_min_address, Maxmem_bytes);
662 
663 	/*
664 	 * Bootstrap the kernel_pmap
665 	 */
666 	firstfree = NULL;
667 	pmap_bootstrap((vm_paddr_t *)&firstfree, (int64_t)base);
668 
669 	mcontrol(base, KERNEL_KVA_SIZE, MADV_SETMAP,
670 		 0 | VPTE_RW | VPTE_V);
671 
672 	/*
673 	 * phys_avail[] represents unallocated physical memory.  MI code
674 	 * will use phys_avail[] to create the vm_page array.
675 	 */
676 	phys_avail[0].phys_beg = (vm_paddr_t)firstfree;
677 	phys_avail[0].phys_beg = (phys_avail[0].phys_beg + PAGE_MASK) &
678 				 ~(vm_paddr_t)PAGE_MASK;
679 	phys_avail[0].phys_end = Maxmem_bytes;
680 
681 #if 0 /* JGV */
682 	/*
683 	 * (virtual_start, virtual_end) represent unallocated kernel virtual
684 	 * memory.  MI code will create kernel_map using these parameters.
685 	 */
686 	virtual_start = KvaStart + (long)firstfree;
687 	virtual_start = (virtual_start + PAGE_MASK) & ~(vm_offset_t)PAGE_MASK;
688 	virtual_end = KvaStart + KERNEL_KVA_SIZE;
689 #endif
690 
691 	/*
692 	 * pmap_growkernel() will set the correct value.
693 	 */
694 	kernel_vm_end = 0;
695 
696 	/*
697 	 * Allocate space for process 0's UAREA.
698 	 */
699 	proc0paddr = (void *)virtual_start;
700 	for (i = 0; i < UPAGES; ++i) {
701 		pmap_kenter_quick(virtual_start, phys_avail[0].phys_beg);
702 		virtual_start += PAGE_SIZE;
703 		phys_avail[0].phys_beg += PAGE_SIZE;
704 	}
705 
706 	/*
707 	 * crashdumpmap
708 	 */
709 	crashdumpmap = virtual_start;
710 	virtual_start += MAXDUMPPGS * PAGE_SIZE;
711 
712 	/*
713 	 * msgbufp maps the system message buffer
714 	 */
715 	assert((MSGBUF_SIZE & PAGE_MASK) == 0);
716 	msgbufp = (void *)virtual_start;
717 	for (i = 0; i < (MSGBUF_SIZE >> PAGE_SHIFT); ++i) {
718 		pmap_kenter_quick(virtual_start, phys_avail[0].phys_beg);
719 		virtual_start += PAGE_SIZE;
720 		phys_avail[0].phys_beg += PAGE_SIZE;
721 	}
722 	msgbufinit(msgbufp, MSGBUF_SIZE);
723 
724 	/*
725 	 * used by kern_memio for /dev/mem access
726 	 */
727 	ptvmmap = (caddr_t)virtual_start;
728 	virtual_start += PAGE_SIZE;
729 }
730 
731 static
732 void
733 init_kern_memory_vmm(void)
734 {
735 	int i;
736 	void *firstfree;
737 	struct vmm_guest_options options;
738 	void *dmap_address;
739 
740 	KvaStart = (vm_offset_t)KERNEL_KVA_START;
741 	KvaSize = KERNEL_KVA_SIZE;
742 	KvaEnd = KvaStart + KvaSize;
743 
744 	Maxmem = Maxmem_bytes >> PAGE_SHIFT;
745 	physmem = Maxmem;
746 
747 	if (Maxmem_bytes < 64 * 1024 * 1024 || (Maxmem_bytes & SEG_MASK)) {
748 		errx(1, "Bad maxmem specification: 64MB minimum, "
749 		       "multiples of %dMB only",
750 		       SEG_SIZE / 1024 / 1024);
751 		/* NOT REACHED */
752 	}
753 
754 	/* Call the vmspace_create to allocate the internal
755 	 * vkernel structures. Won't do anything else (no new
756 	 * vmspace)
757 	 */
758 	if (vmspace_create(NULL, 0, NULL) < 0)
759 		panic("vmspace_create() failed");
760 
761 
762 	/*
763 	 * MAP_ANON the region of the VKERNEL phyisical memory
764 	 * (known as GPA - Guest Physical Address
765 	 */
766 	dmap_address = mmap(NULL, Maxmem_bytes,
767 			    PROT_READ|PROT_WRITE|PROT_EXEC,
768 			    MAP_ANON|MAP_SHARED, -1, 0);
769 	if (dmap_address == MAP_FAILED) {
770 		err(1, "Unable to mmap() RAM region!");
771 		/* NOT REACHED */
772 	}
773 	if (prezeromem)
774 		bzero(dmap_address, Maxmem_bytes);
775 
776 	/* Alloc a new stack in the lowmem */
777 	vkernel_stack = mmap(NULL, KERNEL_STACK_SIZE,
778 			     PROT_READ|PROT_WRITE|PROT_EXEC,
779 			     MAP_ANON, -1, 0);
780 	if (vkernel_stack == MAP_FAILED) {
781 		err(1, "Unable to allocate stack\n");
782 	}
783 
784 	/*
785 	 * Bootstrap the kernel_pmap
786 	 */
787 	firstfree = dmap_address;
788 	dmap_min_address = NULL; /* VIRT == PHYS in the first 512G */
789 	pmap_bootstrap((vm_paddr_t *)&firstfree, (uint64_t)KvaStart);
790 
791 	/*
792 	 * Enter VMM mode
793 	 */
794 	bzero(&options, sizeof(options));
795 	options.guest_cr3 = (register_t) KPML4phys;
796 	options.new_stack = (uint64_t) vkernel_stack + KERNEL_STACK_SIZE;
797 	options.master = 1;
798 	if (vmm_guest_ctl(VMM_GUEST_RUN, &options)) {
799 		err(1, "Unable to enter VMM mode.");
800 	}
801 
802 	/*
803 	 * phys_avail[] represents unallocated physical memory.  MI code
804 	 * will use phys_avail[] to create the vm_page array.
805 	 */
806 	phys_avail[0].phys_beg = (vm_paddr_t)firstfree;
807 	phys_avail[0].phys_beg = (phys_avail[0].phys_beg + PAGE_MASK) &
808 				 ~(vm_paddr_t)PAGE_MASK;
809 	phys_avail[0].phys_end = (vm_paddr_t)dmap_address + Maxmem_bytes;
810 
811 	/*
812 	 * pmap_growkernel() will set the correct value.
813 	 */
814 	kernel_vm_end = 0;
815 
816 	/*
817 	 * Allocate space for process 0's UAREA.
818 	 */
819 	proc0paddr = (void *)virtual_start;
820 	for (i = 0; i < UPAGES; ++i) {
821 		pmap_kenter_quick(virtual_start, phys_avail[0].phys_beg);
822 		virtual_start += PAGE_SIZE;
823 		phys_avail[0].phys_beg += PAGE_SIZE;
824 	}
825 
826 	/*
827 	 * crashdumpmap
828 	 */
829 	crashdumpmap = virtual_start;
830 	virtual_start += MAXDUMPPGS * PAGE_SIZE;
831 
832 	/*
833 	 * msgbufp maps the system message buffer
834 	 */
835 	assert((MSGBUF_SIZE & PAGE_MASK) == 0);
836 	msgbufp = (void *)virtual_start;
837 	for (i = 0; i < (MSGBUF_SIZE >> PAGE_SHIFT); ++i) {
838 
839 		pmap_kenter_quick(virtual_start, phys_avail[0].phys_beg);
840 		virtual_start += PAGE_SIZE;
841 		phys_avail[0].phys_beg += PAGE_SIZE;
842 	}
843 
844 	msgbufinit(msgbufp, MSGBUF_SIZE);
845 
846 	/*
847 	 * used by kern_memio for /dev/mem access
848 	 */
849 	ptvmmap = (caddr_t)virtual_start;
850 	virtual_start += PAGE_SIZE;
851 
852 	printf("vmm: Hardware pagetable enabled for guest\n");
853 }
854 
855 
856 /*
857  * Map the per-cpu globaldata for cpu #0.  Allocate the space using
858  * virtual_start and phys_avail[0]
859  */
860 static
861 void
862 init_globaldata(void)
863 {
864 	int i;
865 	vm_paddr_t pa;
866 	vm_offset_t va;
867 
868 	/*
869 	 * Reserve enough KVA to cover possible cpus.  This is a considerable
870 	 * amount of KVA since the privatespace structure includes two
871 	 * whole page table mappings.
872 	 */
873 	virtual_start = (virtual_start + SEG_MASK) & ~(vm_offset_t)SEG_MASK;
874 	CPU_prvspace = (void *)virtual_start;
875 	virtual_start += sizeof(struct privatespace) * SMP_MAXCPU;
876 
877 	/*
878 	 * Allocate enough physical memory to cover the mdglobaldata
879 	 * portion of the space and the idle stack and map the pages
880 	 * into KVA.  For cpu #0 only.
881 	 */
882 	for (i = 0; i < sizeof(struct mdglobaldata); i += PAGE_SIZE) {
883 		pa = phys_avail[0].phys_beg;
884 		va = (vm_offset_t)&CPU_prvspace[0].mdglobaldata + i;
885 		pmap_kenter_quick(va, pa);
886 		phys_avail[0].phys_beg += PAGE_SIZE;
887 	}
888 	for (i = 0; i < sizeof(CPU_prvspace[0].idlestack); i += PAGE_SIZE) {
889 		pa = phys_avail[0].phys_beg;
890 		va = (vm_offset_t)&CPU_prvspace[0].idlestack + i;
891 		pmap_kenter_quick(va, pa);
892 		phys_avail[0].phys_beg += PAGE_SIZE;
893 	}
894 
895 	/*
896 	 * Setup the %gs for cpu #0.  The mycpu macro works after this
897 	 * point.  Note that %fs is used by pthreads.
898 	 */
899 	tls_set_gs(&CPU_prvspace[0], sizeof(struct privatespace));
900 }
901 
902 
903 /*
904  * Initialize pool tokens and other necessary locks
905  */
906 static void
907 init_locks(void)
908 {
909 
910         /*
911          * Get the initial mplock with a count of 1 for the BSP.
912          * This uses a LOGICAL cpu ID, ie BSP == 0.
913          */
914         cpu_get_initial_mplock();
915 
916         /* our token pool needs to work early */
917         lwkt_token_pool_init();
918 
919 }
920 
921 
922 /*
923  * Initialize very low level systems including thread0, proc0, etc.
924  */
925 static
926 void
927 init_vkernel(void)
928 {
929 	struct mdglobaldata *gd;
930 
931 	gd = &CPU_prvspace[0].mdglobaldata;
932 	bzero(gd, sizeof(*gd));
933 
934 	gd->mi.gd_curthread = &thread0;
935 	thread0.td_gd = &gd->mi;
936 	ncpus = 1;
937 	ncpus_fit = 1;	/* rounded up power of 2 */
938 	/* ncpus_fit_mask are 0 */
939 	init_param1();
940 	gd->mi.gd_prvspace = &CPU_prvspace[0];
941 	mi_gdinit(&gd->mi, 0);
942 	cpu_gdinit(gd, 0);
943 	mi_proc0init(&gd->mi, proc0paddr);
944 	lwp0.lwp_md.md_regs = &proc0_tf;
945 
946 	init_locks();
947 	cninit();
948 	rand_initialize();
949 #if 0	/* #ifdef DDB */
950 	kdb_init();
951 	if (boothowto & RB_KDB)
952 		Debugger("Boot flags requested debugger");
953 #endif
954 	identcpu();
955 #if 0
956 	initializecpu();	/* Initialize CPU registers */
957 #endif
958 	init_param2((phys_avail[0].phys_end -
959 		     phys_avail[0].phys_beg) / PAGE_SIZE);
960 
961 #if 0
962 	/*
963 	 * Map the message buffer
964 	 */
965 	for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
966 		pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
967 	msgbufinit(msgbufp, MSGBUF_SIZE);
968 #endif
969 #if 0
970 	thread0.td_pcb_cr3 ... MMU
971 	lwp0.lwp_md.md_regs = &proc0_tf;
972 #endif
973 }
974 
975 /*
976  * Filesystem image paths for the virtual kernel are optional.
977  * If specified they each should point to a disk image,
978  * the first of which will become the root disk.
979  *
980  * The virtual kernel caches data from our 'disk' just like a normal kernel,
981  * so we do not really want the real kernel to cache the data too.  Use
982  * O_DIRECT to remove the duplication.
983  */
984 static
985 void
986 init_disk(char **diskExp, int *diskFlags, int diskFileNum, enum vkdisk_type type)
987 {
988 	char *serno;
989 	int i;
990 
991         if (diskFileNum == 0)
992                 return;
993 
994 	for (i=0; i < diskFileNum; i++){
995 		char *fname;
996 		fname = diskExp[i];
997 
998 		if (fname == NULL) {
999                         warnx("Invalid argument to '-r'");
1000                         continue;
1001                 }
1002 		/*
1003 		 * Check for a serial number for the virtual disk
1004 		 * passed from the command line.
1005 		 */
1006 		serno = fname;
1007 		strsep(&serno, ":");
1008 
1009 		if (DiskNum < VKDISK_MAX) {
1010 			struct stat st;
1011 			struct vkdisk_info *info = NULL;
1012 			int fd;
1013 			size_t l = 0;
1014 
1015 			if (type == VKD_DISK)
1016 			    fd = open(fname, O_RDWR|O_DIRECT, 0644);
1017 			else
1018 			    fd = open(fname, O_RDONLY|O_DIRECT, 0644);
1019 			if (fd < 0 || fstat(fd, &st) < 0) {
1020 				err(1, "Unable to open/create %s", fname);
1021 				/* NOT REACHED */
1022 			}
1023 			if (S_ISREG(st.st_mode) && (diskFlags[i] & 1) == 0) {
1024 				if (flock(fd, LOCK_EX|LOCK_NB) < 0) {
1025 					errx(1, "Disk image %s is already "
1026 						"in use\n", fname);
1027 					/* NOT REACHED */
1028 				}
1029 			}
1030 
1031 			info = &DiskInfo[DiskNum];
1032 			l = strlen(fname);
1033 
1034 			info->unit = i;
1035 			info->fd = fd;
1036 			info->type = type;
1037 			info->flags = diskFlags[i];
1038 			memcpy(info->fname, fname, l);
1039 			info->serno = NULL;
1040 			if (serno) {
1041 				if ((info->serno = malloc(SERNOLEN)) != NULL)
1042 					strlcpy(info->serno, serno, SERNOLEN);
1043 				else
1044 					warnx("Couldn't allocate memory for the operation");
1045 			}
1046 
1047 			if (DiskNum == 0) {
1048 				if (type == VKD_CD) {
1049 					rootdevnames[0] = "cd9660:vcd0";
1050 				} else if (type == VKD_DISK) {
1051 					rootdevnames[0] = "ufs:vkd0s0a";
1052 					rootdevnames[1] = "ufs:vkd0s1a";
1053 				}
1054 			}
1055 
1056 			DiskNum++;
1057 		} else {
1058                         warnx("vkd%d (%s) > VKDISK_MAX", DiskNum, fname);
1059                         continue;
1060 		}
1061 	}
1062 }
1063 
1064 static
1065 int
1066 netif_set_tapflags(int tap_unit, int f, int s)
1067 {
1068 	struct ifreq ifr;
1069 	int flags;
1070 
1071 	bzero(&ifr, sizeof(ifr));
1072 
1073 	snprintf(ifr.ifr_name, sizeof(ifr.ifr_name), "tap%d", tap_unit);
1074 	if (ioctl(s, SIOCGIFFLAGS, &ifr) < 0) {
1075 		warn("tap%d: ioctl(SIOCGIFFLAGS) failed", tap_unit);
1076 		return -1;
1077 	}
1078 
1079 	/*
1080 	 * Adjust if_flags
1081 	 *
1082 	 * If the flags are already set/cleared, then we return
1083 	 * immediately to avoid extra syscalls
1084 	 */
1085 	flags = (ifr.ifr_flags & 0xffff) | (ifr.ifr_flagshigh << 16);
1086 	if (f < 0) {
1087 		/* Turn off flags */
1088 		f = -f;
1089 		if ((flags & f) == 0)
1090 			return 0;
1091 		flags &= ~f;
1092 	} else {
1093 		/* Turn on flags */
1094 		if (flags & f)
1095 			return 0;
1096 		flags |= f;
1097 	}
1098 
1099 	/*
1100 	 * Fix up ifreq.ifr_name, since it may be trashed
1101 	 * in previous ioctl(SIOCGIFFLAGS)
1102 	 */
1103 	snprintf(ifr.ifr_name, sizeof(ifr.ifr_name), "tap%d", tap_unit);
1104 
1105 	ifr.ifr_flags = flags & 0xffff;
1106 	ifr.ifr_flagshigh = flags >> 16;
1107 	if (ioctl(s, SIOCSIFFLAGS, &ifr) < 0) {
1108 		warn("tap%d: ioctl(SIOCSIFFLAGS) failed", tap_unit);
1109 		return -1;
1110 	}
1111 	return 0;
1112 }
1113 
1114 static
1115 int
1116 netif_set_tapaddr(int tap_unit, in_addr_t addr, in_addr_t mask, int s)
1117 {
1118 	struct ifaliasreq ifra;
1119 	struct sockaddr_in *in;
1120 
1121 	bzero(&ifra, sizeof(ifra));
1122 	snprintf(ifra.ifra_name, sizeof(ifra.ifra_name), "tap%d", tap_unit);
1123 
1124 	/* Setup address */
1125 	in = (struct sockaddr_in *)&ifra.ifra_addr;
1126 	in->sin_family = AF_INET;
1127 	in->sin_len = sizeof(*in);
1128 	in->sin_addr.s_addr = addr;
1129 
1130 	if (mask != 0) {
1131 		/* Setup netmask */
1132 		in = (struct sockaddr_in *)&ifra.ifra_mask;
1133 		in->sin_len = sizeof(*in);
1134 		in->sin_addr.s_addr = mask;
1135 	}
1136 
1137 	if (ioctl(s, SIOCAIFADDR, &ifra) < 0) {
1138 		warn("tap%d: ioctl(SIOCAIFADDR) failed", tap_unit);
1139 		return -1;
1140 	}
1141 	return 0;
1142 }
1143 
1144 static
1145 int
1146 netif_add_tap2brg(int tap_unit, const char *ifbridge, int s)
1147 {
1148 	struct ifbreq ifbr;
1149 	struct ifdrv ifd;
1150 
1151 	bzero(&ifbr, sizeof(ifbr));
1152 	snprintf(ifbr.ifbr_ifsname, sizeof(ifbr.ifbr_ifsname),
1153 		 "tap%d", tap_unit);
1154 
1155 	bzero(&ifd, sizeof(ifd));
1156 	strlcpy(ifd.ifd_name, ifbridge, sizeof(ifd.ifd_name));
1157 	ifd.ifd_cmd = BRDGADD;
1158 	ifd.ifd_len = sizeof(ifbr);
1159 	ifd.ifd_data = &ifbr;
1160 
1161 	if (ioctl(s, SIOCSDRVSPEC, &ifd) < 0) {
1162 		/*
1163 		 * 'errno == EEXIST' means that the tap(4) is already
1164 		 * a member of the bridge(4)
1165 		 */
1166 		if (errno != EEXIST) {
1167 			warn("ioctl(%s, SIOCSDRVSPEC) failed", ifbridge);
1168 			return -1;
1169 		}
1170 	}
1171 	return 0;
1172 }
1173 
1174 #define TAPDEV_OFLAGS	(O_RDWR | O_NONBLOCK)
1175 
1176 /*
1177  * Locate the first unused tap(4) device file if auto mode is requested,
1178  * or open the user supplied device file, and bring up the corresponding
1179  * tap(4) interface.
1180  *
1181  * NOTE: Only tap(4) device file is supported currently
1182  */
1183 static
1184 int
1185 netif_open_tap(const char *netif, int *tap_unit, int s)
1186 {
1187 	char tap_dev[MAXPATHLEN];
1188 	int tap_fd, failed;
1189 	struct stat st;
1190 	char *dname;
1191 
1192 	*tap_unit = -1;
1193 
1194 	if (strcmp(netif, "auto") == 0) {
1195 		/*
1196 		 * Find first unused tap(4) device file
1197 		 */
1198 		tap_fd = open("/dev/tap", TAPDEV_OFLAGS);
1199 		if (tap_fd < 0) {
1200 			warnc(errno, "Unable to find a free tap(4)");
1201 			return -1;
1202 		}
1203 	} else {
1204 		/*
1205 		 * User supplied tap(4) device file or unix socket.
1206 		 */
1207 		if (netif[0] == '/')	/* Absolute path */
1208 			strlcpy(tap_dev, netif, sizeof(tap_dev));
1209 		else
1210 			snprintf(tap_dev, sizeof(tap_dev), "/dev/%s", netif);
1211 
1212 		tap_fd = open(tap_dev, TAPDEV_OFLAGS);
1213 
1214 		/*
1215 		 * If we cannot open normally try to connect to it.
1216 		 */
1217 		if (tap_fd < 0)
1218 			tap_fd = unix_connect(tap_dev);
1219 
1220 		if (tap_fd < 0) {
1221 			warn("Unable to open %s", tap_dev);
1222 			return -1;
1223 		}
1224 	}
1225 
1226 	/*
1227 	 * Check whether the device file is a tap(4)
1228 	 */
1229 	if (fstat(tap_fd, &st) < 0) {
1230 		failed = 1;
1231 	} else if (S_ISCHR(st.st_mode)) {
1232 		dname = fdevname(tap_fd);
1233 		if (dname)
1234 			dname = strstr(dname, "tap");
1235 		if (dname) {
1236 			/*
1237 			 * Bring up the corresponding tap(4) interface
1238 			 */
1239 			*tap_unit = strtol(dname + 3, NULL, 10);
1240 			printf("TAP UNIT %d\n", *tap_unit);
1241 			if (netif_set_tapflags(*tap_unit, IFF_UP, s) == 0)
1242 				failed = 0;
1243 			else
1244 				failed = 1;
1245 		} else {
1246 			failed = 1;
1247 		}
1248 	} else if (S_ISSOCK(st.st_mode)) {
1249 		/*
1250 		 * Special socket connection (typically to vknet).  We
1251 		 * do not have to do anything.
1252 		 */
1253 		failed = 0;
1254 	} else {
1255 		failed = 1;
1256 	}
1257 
1258 	if (failed) {
1259 		warnx("%s is not a tap(4) device or socket", tap_dev);
1260 		close(tap_fd);
1261 		tap_fd = -1;
1262 		*tap_unit = -1;
1263 	}
1264 	return tap_fd;
1265 }
1266 
1267 static int
1268 unix_connect(const char *path)
1269 {
1270 	struct sockaddr_un sunx;
1271 	int len;
1272 	int net_fd;
1273 	int sndbuf = 262144;
1274 	struct stat st;
1275 
1276 	snprintf(sunx.sun_path, sizeof(sunx.sun_path), "%s", path);
1277 	len = offsetof(struct sockaddr_un, sun_path[strlen(sunx.sun_path)]);
1278 	++len;	/* include nul */
1279 	sunx.sun_family = AF_UNIX;
1280 	sunx.sun_len = len;
1281 
1282 	net_fd = socket(AF_UNIX, SOCK_SEQPACKET, 0);
1283 	if (net_fd < 0)
1284 		return(-1);
1285 	if (connect(net_fd, (void *)&sunx, len) < 0) {
1286 		close(net_fd);
1287 		return(-1);
1288 	}
1289 	setsockopt(net_fd, SOL_SOCKET, SO_SNDBUF, &sndbuf, sizeof(sndbuf));
1290 	if (fstat(net_fd, &st) == 0)
1291 		printf("Network socket buffer: %ld bytes\n", st.st_blksize);
1292 	fcntl(net_fd, F_SETFL, O_NONBLOCK);
1293 	return(net_fd);
1294 }
1295 
1296 #undef TAPDEV_MAJOR
1297 #undef TAPDEV_MINOR
1298 #undef TAPDEV_OFLAGS
1299 
1300 /*
1301  * Following syntax is supported,
1302  * 1) x.x.x.x             tap(4)'s address is x.x.x.x
1303  *
1304  * 2) x.x.x.x/z           tap(4)'s address is x.x.x.x
1305  *                        tap(4)'s netmask len is z
1306  *
1307  * 3) x.x.x.x:y.y.y.y     tap(4)'s address is x.x.x.x
1308  *                        pseudo netif's address is y.y.y.y
1309  *
1310  * 4) x.x.x.x:y.y.y.y/z   tap(4)'s address is x.x.x.x
1311  *                        pseudo netif's address is y.y.y.y
1312  *                        tap(4) and pseudo netif's netmask len are z
1313  *
1314  * 5) bridgeX             tap(4) will be added to bridgeX
1315  *
1316  * 6) bridgeX:y.y.y.y     tap(4) will be added to bridgeX
1317  *                        pseudo netif's address is y.y.y.y
1318  *
1319  * 7) bridgeX:y.y.y.y/z   tap(4) will be added to bridgeX
1320  *                        pseudo netif's address is y.y.y.y
1321  *                        pseudo netif's netmask len is z
1322  */
1323 static
1324 int
1325 netif_init_tap(int tap_unit, in_addr_t *addr, in_addr_t *mask, int s)
1326 {
1327 	in_addr_t tap_addr, netmask, netif_addr;
1328 	int next_netif_addr;
1329 	char *tok, *masklen_str, *ifbridge;
1330 
1331 	*addr = 0;
1332 	*mask = 0;
1333 
1334 	tok = strtok(NULL, ":/");
1335 	if (tok == NULL) {
1336 		/*
1337 		 * Nothing special, simply use tap(4) as backend
1338 		 */
1339 		return 0;
1340 	}
1341 
1342 	if (inet_pton(AF_INET, tok, &tap_addr) > 0) {
1343 		/*
1344 		 * tap(4)'s address is supplied
1345 		 */
1346 		ifbridge = NULL;
1347 
1348 		/*
1349 		 * If there is next token, then it may be pseudo
1350 		 * netif's address or netmask len for tap(4)
1351 		 */
1352 		next_netif_addr = 0;
1353 	} else {
1354 		/*
1355 		 * Not tap(4)'s address, assume it as a bridge(4)
1356 		 * iface name
1357 		 */
1358 		tap_addr = 0;
1359 		ifbridge = tok;
1360 
1361 		/*
1362 		 * If there is next token, then it must be pseudo
1363 		 * netif's address
1364 		 */
1365 		next_netif_addr = 1;
1366 	}
1367 
1368 	netmask = netif_addr = 0;
1369 
1370 	tok = strtok(NULL, ":/");
1371 	if (tok == NULL)
1372 		goto back;
1373 
1374 	if (inet_pton(AF_INET, tok, &netif_addr) <= 0) {
1375 		if (next_netif_addr) {
1376 			warnx("Invalid pseudo netif address: %s", tok);
1377 			return -1;
1378 		}
1379 		netif_addr = 0;
1380 
1381 		/*
1382 		 * Current token is not address, then it must be netmask len
1383 		 */
1384 		masklen_str = tok;
1385 	} else {
1386 		/*
1387 		 * Current token is pseudo netif address, if there is next token
1388 		 * it must be netmask len
1389 		 */
1390 		masklen_str = strtok(NULL, "/");
1391 	}
1392 
1393 	/* Calculate netmask */
1394 	if (masklen_str != NULL) {
1395 		u_long masklen;
1396 
1397 		masklen = strtoul(masklen_str, NULL, 10);
1398 		if (masklen < 32 && masklen > 0) {
1399 			netmask =
1400 			    htonl(rounddown2(0xffffffff, 1LL << (32 - masklen)));
1401 		} else {
1402 			warnx("Invalid netmask len: %lu", masklen);
1403 			return -1;
1404 		}
1405 	}
1406 
1407 	/* Make sure there is no more token left */
1408 	if (strtok(NULL, ":/") != NULL) {
1409 		warnx("Invalid argument to '-I'");
1410 		return -1;
1411 	}
1412 
1413 back:
1414 	if (tap_unit < 0) {
1415 		/* Do nothing */
1416 	} else if (ifbridge == NULL) {
1417 		/* Set tap(4) address/netmask */
1418 		if (netif_set_tapaddr(tap_unit, tap_addr, netmask, s) < 0)
1419 			return -1;
1420 	} else {
1421 		/* Tie tap(4) to bridge(4) */
1422 		if (netif_add_tap2brg(tap_unit, ifbridge, s) < 0)
1423 			return -1;
1424 	}
1425 
1426 	*addr = netif_addr;
1427 	*mask = netmask;
1428 	return 0;
1429 }
1430 
1431 /*
1432  * NetifInfo[] will be filled for pseudo netif initialization.
1433  * NetifNum will be bumped to reflect the number of valid entries
1434  * in NetifInfo[].
1435  */
1436 static
1437 void
1438 init_netif(char *netifExp[], int netifExpNum)
1439 {
1440 	int i, s;
1441 	char *tmp;
1442 
1443 	if (netifExpNum == 0)
1444 		return;
1445 
1446 	s = socket(AF_INET, SOCK_DGRAM, 0);	/* for ioctl(SIOC) */
1447 	if (s < 0)
1448 		return;
1449 
1450 	for (i = 0; i < netifExpNum; ++i) {
1451 		struct vknetif_info *info;
1452 		in_addr_t netif_addr, netif_mask;
1453 		int tap_fd, tap_unit;
1454 		char *netif;
1455 
1456 		/* Extract MAC address if there is one */
1457 		tmp = netifExp[i];
1458 		strsep(&tmp, "=");
1459 
1460 		netif = strtok(netifExp[i], ":");
1461 		if (netif == NULL) {
1462 			warnx("Invalid argument to '-I'");
1463 			continue;
1464 		}
1465 
1466 		/*
1467 		 * Open tap(4) device file and bring up the
1468 		 * corresponding interface
1469 		 */
1470 		tap_fd = netif_open_tap(netif, &tap_unit, s);
1471 		if (tap_fd < 0)
1472 			continue;
1473 
1474 		/*
1475 		 * Initialize tap(4) and get address/netmask
1476 		 * for pseudo netif
1477 		 *
1478 		 * NB: Rest part of netifExp[i] is passed
1479 		 *     to netif_init_tap() implicitly.
1480 		 */
1481 		if (netif_init_tap(tap_unit, &netif_addr, &netif_mask, s) < 0) {
1482 			/*
1483 			 * NB: Closing tap(4) device file will bring
1484 			 *     down the corresponding interface
1485 			 */
1486 			close(tap_fd);
1487 			continue;
1488 		}
1489 
1490 		info = &NetifInfo[NetifNum];
1491 		bzero(info, sizeof(*info));
1492 		info->tap_fd = tap_fd;
1493 		info->tap_unit = tap_unit;
1494 		info->netif_addr = netif_addr;
1495 		info->netif_mask = netif_mask;
1496 		/*
1497 		 * If tmp isn't NULL it means a MAC could have been
1498 		 * specified so attempt to convert it.
1499 		 * Setting enaddr to NULL will tell vke_attach() we
1500 		 * need a pseudo-random MAC address.
1501 		 */
1502 		if (tmp != NULL) {
1503 			if ((info->enaddr = malloc(ETHER_ADDR_LEN)) == NULL)
1504 				warnx("Couldn't allocate memory for the operation");
1505 			else {
1506 				if ((kether_aton(tmp, info->enaddr)) == NULL) {
1507 					free(info->enaddr);
1508 					info->enaddr = NULL;
1509 				}
1510 			}
1511 		}
1512 
1513 		NetifNum++;
1514 		if (NetifNum >= VKNETIF_MAX)	/* XXX will this happen? */
1515 			break;
1516 	}
1517 	close(s);
1518 }
1519 
1520 /*
1521  * Create the pid file and leave it open and locked while the vkernel is
1522  * running.  This allows a script to use /usr/bin/lockf to probe whether
1523  * a vkernel is still running (so as not to accidently kill an unrelated
1524  * process from a stale pid file).
1525  */
1526 static
1527 void
1528 writepid(void)
1529 {
1530 	char buf[32];
1531 	int fd;
1532 
1533 	if (pid_file != NULL) {
1534 		snprintf(buf, sizeof(buf), "%ld\n", (long)getpid());
1535 		fd = open(pid_file, O_RDWR|O_CREAT|O_EXLOCK|O_NONBLOCK, 0666);
1536 		if (fd < 0) {
1537 			if (errno == EWOULDBLOCK) {
1538 				perror("Failed to lock pidfile, "
1539 				       "vkernel already running");
1540 			} else {
1541 				perror("Failed to create pidfile");
1542 			}
1543 			exit(EX_SOFTWARE);
1544 		}
1545 		ftruncate(fd, 0);
1546 		write(fd, buf, strlen(buf));
1547 		/* leave the file open to maintain the lock */
1548 	}
1549 }
1550 
1551 static
1552 void
1553 cleanpid( void )
1554 {
1555 	if (pid_file != NULL) {
1556 		if (unlink(pid_file) < 0)
1557 			perror("Warning: couldn't remove pidfile");
1558 	}
1559 }
1560 
1561 static
1562 void
1563 usage_err(const char *ctl, ...)
1564 {
1565 	va_list va;
1566 
1567 	va_start(va, ctl);
1568 	vfprintf(stderr, ctl, va);
1569 	va_end(va);
1570 	fprintf(stderr, "\n");
1571 	exit(EX_USAGE);
1572 }
1573 
1574 static
1575 void
1576 usage_help(_Bool help)
1577 {
1578 	fprintf(stderr, "Usage: %s [-hsUvdt] [-c file] [-e name=value:name=value:...]\n"
1579 	    "\t[-i file] [-I interface[:address1[:address2][/netmask]]] [-l cpulock]\n"
1580 	    "\t[-m size] [-n numcpus[:lbits[:cbits]]]\n"
1581 	    "\t[-p file] [-r file]\n", save_av[0]);
1582 
1583 	if (help)
1584 		fprintf(stderr, "\nArguments:\n"
1585 		    "\t-c\tSpecify a readonly CD-ROM image file to be used by the kernel.\n"
1586 		    "\t-e\tSpecify an environment to be used by the kernel.\n"
1587 		    "\t-h\tThis list of options.\n"
1588 		    "\t-i\tSpecify a memory image file to be used by the virtual kernel.\n"
1589 		    "\t-I\tCreate a virtual network device.\n"
1590 		    "\t-l\tSpecify which, if any, real CPUs to lock virtual CPUs to.\n"
1591 		    "\t-m\tSpecify the amount of memory to be used by the kernel in bytes.\n"
1592 		    "\t-n\tSpecify the number of CPUs and the topology you wish to emulate:\n"
1593 		    "\t\t\tnumcpus - number of cpus\n"
1594 		    "\t\t\tlbits - specify the number of bits within APICID(=CPUID)\n"
1595 		    "\t\t\t        needed for representing the logical ID.\n"
1596 		    "\t\t\t        Controls the number of threads/core:\n"
1597 		    "\t\t\t        (0 bits - 1 thread, 1 bit - 2 threads).\n"
1598 		    "\t\t\tcbits - specify the number of bits within APICID(=CPUID)\n"
1599 		    "\t\t\t        needed for representing the core ID.\n"
1600 		    "\t\t\t        Controls the number of cores/package:\n"
1601 		    "\t\t\t        (0 bits - 1 core, 1 bit - 2 cores).\n"
1602 		    "\t-p\tSpecify a file in which to store the process ID.\n"
1603 		    "\t-r\tSpecify a R/W disk image file, iterates vkd0..n\n"
1604 		    "\t-R\tSpecify a COW disk image file, iterates vkd0..n\n"
1605 		    "\t-s\tBoot into single-user mode.\n"
1606 		    "\t-t\tUse a precise host timer when calculating clock values.\n"
1607 		    "\t-U\tEnable writing to kernel memory and module loading.\n"
1608 		    "\t-v\tTurn on verbose booting.\n");
1609 
1610 	exit(EX_USAGE);
1611 }
1612 
1613 void
1614 cpu_smp_stopped(void)
1615 {
1616 }
1617 
1618 void
1619 cpu_reset(void)
1620 {
1621 	kprintf("cpu reset, rebooting vkernel\n");
1622 	closefrom(3);
1623 	cleanpid();
1624 	exit(EX_VKERNEL_REBOOT);
1625 }
1626 
1627 void
1628 cpu_halt(void)
1629 {
1630 	kprintf("cpu halt, exiting vkernel\n");
1631 	cleanpid();
1632 	exit(EX_OK);
1633 }
1634 
1635 void
1636 setrealcpu(void)
1637 {
1638 	switch(lwp_cpu_lock) {
1639 	case LCL_PER_CPU:
1640 		if (bootverbose)
1641 			kprintf("Locking CPU%d to real cpu %d\n",
1642 				mycpuid, next_cpu);
1643 		usched_set(getpid(), USCHED_SET_CPU, &next_cpu, sizeof(next_cpu));
1644 		next_cpu++;
1645 		if (next_cpu >= real_ncpus)
1646 			next_cpu = 0;
1647 		break;
1648 	case LCL_SINGLE_CPU:
1649 		if (bootverbose)
1650 			kprintf("Locking CPU%d to real cpu %d\n",
1651 				mycpuid, next_cpu);
1652 		usched_set(getpid(), USCHED_SET_CPU, &next_cpu, sizeof(next_cpu));
1653 		break;
1654 	default:
1655 		/* do not map virtual cpus to real cpus */
1656 		break;
1657 	}
1658 }
1659 
1660 /*
1661  * Allocate and free memory for module loading.  The loaded module
1662  * has to be placed somewhere near the current kernel binary load
1663  * point or the relocations will not work.
1664  *
1665  * I'm not sure why this isn't working.
1666  */
1667 int
1668 vkernel_module_memory_alloc(vm_offset_t *basep, size_t bytes)
1669 {
1670 #if 1
1671 	size_t xtra;
1672 	xtra = (PAGE_SIZE - (vm_offset_t)sbrk(0)) & PAGE_MASK;
1673 	*basep = (vm_offset_t)sbrk(xtra + bytes) + xtra;
1674 	bzero((void *)*basep, bytes);
1675 #else
1676 	*basep = (vm_offset_t)mmap((void *)0x000000000, bytes,
1677 				   PROT_READ|PROT_WRITE|PROT_EXEC,
1678 				   MAP_ANON|MAP_SHARED, -1, 0);
1679 	if ((void *)*basep == MAP_FAILED)
1680 		return ENOMEM;
1681 #endif
1682 	return 0;
1683 }
1684 
1685 void
1686 vkernel_module_memory_free(vm_offset_t base, size_t bytes)
1687 {
1688 #if 0
1689 #if 0
1690 	munmap((void *)base, bytes);
1691 #endif
1692 #endif
1693 }
1694