1 /*
2  * Copyright (c) 2006 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $DragonFly: src/sys/platform/vkernel/platform/init.c,v 1.56 2008/05/27 07:48:00 dillon Exp $
35  */
36 
37 #include <sys/types.h>
38 #include <sys/systm.h>
39 #include <sys/kernel.h>
40 #include <sys/stat.h>
41 #include <sys/mman.h>
42 #include <sys/cons.h>
43 #include <sys/random.h>
44 #include <sys/vkernel.h>
45 #include <sys/tls.h>
46 #include <sys/reboot.h>
47 #include <sys/proc.h>
48 #include <sys/msgbuf.h>
49 #include <sys/vmspace.h>
50 #include <sys/socket.h>
51 #include <sys/sockio.h>
52 #include <sys/sysctl.h>
53 #include <sys/un.h>
54 #include <vm/vm_page.h>
55 
56 #include <machine/cpu.h>
57 #include <machine/globaldata.h>
58 #include <machine/tls.h>
59 #include <machine/md_var.h>
60 #include <machine/vmparam.h>
61 #include <cpu/specialreg.h>
62 
63 #include <net/if.h>
64 #include <net/if_arp.h>
65 #include <net/ethernet.h>
66 #include <net/bridge/if_bridgevar.h>
67 #include <netinet/in.h>
68 #include <arpa/inet.h>
69 
70 #include <stdio.h>
71 #include <stdlib.h>
72 #include <stdarg.h>
73 #include <unistd.h>
74 #include <fcntl.h>
75 #include <string.h>
76 #include <err.h>
77 #include <errno.h>
78 #include <assert.h>
79 
80 vm_paddr_t phys_avail[16];
81 vm_paddr_t Maxmem;
82 vm_paddr_t Maxmem_bytes;
83 int MemImageFd = -1;
84 struct vkdisk_info DiskInfo[VKDISK_MAX];
85 int DiskNum;
86 struct vknetif_info NetifInfo[VKNETIF_MAX];
87 int NetifNum;
88 char *pid_file;
89 vm_offset_t KvaStart;
90 vm_offset_t KvaEnd;
91 vm_offset_t KvaSize;
92 vm_offset_t virtual_start;
93 vm_offset_t virtual_end;
94 vm_offset_t virtual2_start;
95 vm_offset_t virtual2_end;
96 vm_offset_t kernel_vm_end;
97 vm_offset_t crashdumpmap;
98 vm_offset_t clean_sva;
99 vm_offset_t clean_eva;
100 struct msgbuf *msgbufp;
101 caddr_t ptvmmap;
102 vpte_t	*KernelPTD;
103 vpte_t	*KernelPTA;	/* Warning: Offset for direct VA translation */
104 void *dmap_min_address;
105 u_int cpu_feature;	/* XXX */
106 int tsc_present;
107 int64_t tsc_frequency;
108 int optcpus;		/* number of cpus - see mp_start() */
109 int lwp_cpu_lock;	/* if/how to lock virtual CPUs to real CPUs */
110 int real_ncpus;		/* number of real CPUs */
111 int next_cpu;		/* next real CPU to lock a virtual CPU to */
112 
113 struct privatespace *CPU_prvspace;
114 
115 static struct trapframe proc0_tf;
116 static void *proc0paddr;
117 
118 static void init_sys_memory(char *imageFile);
119 static void init_kern_memory(void);
120 static void init_globaldata(void);
121 static void init_vkernel(void);
122 static void init_disk(char *diskExp[], int diskFileNum, enum vkdisk_type type);
123 static void init_netif(char *netifExp[], int netifFileNum);
124 static void writepid( void );
125 static void cleanpid( void );
126 static int unix_connect(const char *path);
127 static void usage(const char *ctl, ...);
128 
129 static int save_ac;
130 static char **save_av;
131 
132 /*
133  * Kernel startup for virtual kernels - standard main()
134  */
135 int
136 main(int ac, char **av)
137 {
138 	char *memImageFile = NULL;
139 	char *netifFile[VKNETIF_MAX];
140 	char *diskFile[VKDISK_MAX];
141 	char *cdFile[VKDISK_MAX];
142 	char *suffix;
143 	char *endp;
144 	int netifFileNum = 0;
145 	int diskFileNum = 0;
146 	int cdFileNum = 0;
147 	int bootOnDisk = -1;	/* set below to vcd (0) or vkd (1) */
148 	int c;
149 	int i;
150 	int j;
151 	int n;
152 	int isq;
153 	int real_vkernel_enable;
154 	int supports_sse;
155 	size_t vsize;
156 
157 	save_ac = ac;
158 	save_av = av;
159 
160 	/*
161 	 * Process options
162 	 */
163 	kernel_mem_readonly = 1;
164 #ifdef SMP
165 	optcpus = 2;
166 #endif
167 	lwp_cpu_lock = LCL_NONE;
168 
169 	real_vkernel_enable = 0;
170 	vsize = sizeof(real_vkernel_enable);
171 	sysctlbyname("vm.vkernel_enable", &real_vkernel_enable, &vsize, NULL,0);
172 
173 	if (real_vkernel_enable == 0) {
174 		errx(1, "vm.vkernel_enable is 0, must be set "
175 			"to 1 to execute a vkernel!");
176 	}
177 
178 	real_ncpus = 1;
179 	vsize = sizeof(real_ncpus);
180 	sysctlbyname("hw.ncpu", &real_ncpus, &vsize, NULL, 0);
181 
182 	while ((c = getopt(ac, av, "c:svl:m:n:r:e:i:p:I:U")) != -1) {
183 		switch(c) {
184 		case 'e':
185 			/*
186 			 * name=value:name=value:name=value...
187 			 * name="value"...
188 			 *
189 			 * Allow values to be quoted but note that shells
190 			 * may remove the quotes, so using this feature
191 			 * to embed colons may require a backslash.
192 			 */
193 			n = strlen(optarg);
194 			isq = 0;
195 			kern_envp = malloc(n + 2);
196 			for (i = j = 0; i < n; ++i) {
197 				if (optarg[i] == '"')
198 					isq ^= 1;
199 				else if (optarg[i] == '\'')
200 					isq ^= 2;
201 				else if (isq == 0 && optarg[i] == ':')
202 					kern_envp[j++] = 0;
203 				else
204 					kern_envp[j++] = optarg[i];
205 			}
206 			kern_envp[j++] = 0;
207 			kern_envp[j++] = 0;
208 			break;
209 		case 's':
210 			boothowto |= RB_SINGLE;
211 			break;
212 		case 'v':
213 			bootverbose = 1;
214 			break;
215 		case 'i':
216 			memImageFile = optarg;
217 			break;
218 		case 'I':
219 			if (netifFileNum < VKNETIF_MAX)
220 				netifFile[netifFileNum++] = strdup(optarg);
221 			break;
222 		case 'r':
223 			if (bootOnDisk < 0)
224 				bootOnDisk = 1;
225 			if (diskFileNum + cdFileNum < VKDISK_MAX)
226 				diskFile[diskFileNum++] = strdup(optarg);
227 			break;
228 		case 'c':
229 			if (bootOnDisk < 0)
230 				bootOnDisk = 0;
231 			if (diskFileNum + cdFileNum < VKDISK_MAX)
232 				cdFile[cdFileNum++] = strdup(optarg);
233 			break;
234 		case 'm':
235 			Maxmem_bytes = strtoull(optarg, &suffix, 0);
236 			if (suffix) {
237 				switch(*suffix) {
238 				case 'g':
239 				case 'G':
240 					Maxmem_bytes <<= 30;
241 					break;
242 				case 'm':
243 				case 'M':
244 					Maxmem_bytes <<= 20;
245 					break;
246 				case 'k':
247 				case 'K':
248 					Maxmem_bytes <<= 10;
249 					break;
250 				default:
251 					Maxmem_bytes = 0;
252 					usage("Bad maxmem option");
253 					/* NOT REACHED */
254 					break;
255 				}
256 			}
257 			break;
258 		case 'l':
259 			next_cpu = -1;
260 			if (strncmp("map", optarg, 3) == 0) {
261 				lwp_cpu_lock = LCL_PER_CPU;
262 				if (optarg[3] == ',') {
263 					next_cpu = strtol(optarg+4, &endp, 0);
264 					if (*endp != '\0')
265 						usage("Bad target CPU number at '%s'", endp);
266 				} else {
267 					next_cpu = 0;
268 				}
269 				if (next_cpu < 0 || next_cpu > real_ncpus - 1)
270 					usage("Bad target CPU, valid range is 0-%d", real_ncpus - 1);
271 			} else if (strncmp("any", optarg, 3) == 0) {
272 				lwp_cpu_lock = LCL_NONE;
273 			} else {
274 				lwp_cpu_lock = LCL_SINGLE_CPU;
275 				next_cpu = strtol(optarg, &endp, 0);
276 				if (*endp != '\0')
277 					usage("Bad target CPU number at '%s'", endp);
278 				if (next_cpu < 0 || next_cpu > real_ncpus - 1)
279 					usage("Bad target CPU, valid range is 0-%d", real_ncpus - 1);
280 			}
281 			break;
282 		case 'n':
283 			/*
284 			 * This value is set up by mp_start(), don't just
285 			 * set ncpus here.
286 			 */
287 #ifdef SMP
288 			optcpus = strtol(optarg, NULL, 0);
289 			if (optcpus < 1 || optcpus > MAXCPU)
290 				usage("Bad ncpus, valid range is 1-%d", MAXCPU);
291 #else
292 			if (strtol(optarg, NULL, 0) != 1) {
293 				usage("You built a UP vkernel, only 1 cpu!");
294 			}
295 #endif
296 
297 			break;
298 		case 'p':
299 			pid_file = optarg;
300 			break;
301 		case 'U':
302 			kernel_mem_readonly = 0;
303 			break;
304 		}
305 	}
306 
307 	writepid();
308 	cpu_disable_intr();
309 	init_sys_memory(memImageFile);
310 	init_kern_memory();
311 	init_globaldata();
312 	init_vkernel();
313 	setrealcpu();
314 	init_kqueue();
315 
316 	/*
317 	 * Check TSC
318 	 */
319 	vsize = sizeof(tsc_present);
320 	sysctlbyname("hw.tsc_present", &tsc_present, &vsize, NULL, 0);
321 	vsize = sizeof(tsc_frequency);
322 	sysctlbyname("hw.tsc_frequency", &tsc_frequency, &vsize, NULL, 0);
323 	if (tsc_present)
324 		cpu_feature |= CPUID_TSC;
325 
326 	/*
327 	 * Check SSE
328 	 */
329 	vsize = sizeof(supports_sse);
330 	supports_sse = 0;
331 	sysctlbyname("hw.instruction_sse", &supports_sse, &vsize, NULL, 0);
332 	init_fpu(supports_sse);
333 	if (supports_sse)
334 		cpu_feature |= CPUID_SSE | CPUID_FXSR;
335 
336 	/*
337 	 * We boot from the first installed disk.
338 	 */
339 	if (bootOnDisk == 1) {
340 		init_disk(diskFile, diskFileNum, VKD_DISK);
341 		init_disk(cdFile, cdFileNum, VKD_CD);
342 	} else {
343 		init_disk(cdFile, cdFileNum, VKD_CD);
344 		init_disk(diskFile, diskFileNum, VKD_DISK);
345 	}
346 	init_netif(netifFile, netifFileNum);
347 	init_exceptions();
348 	mi_startup();
349 	/* NOT REACHED */
350 	exit(1);
351 }
352 
353 /*
354  * Initialize system memory.  This is the virtual kernel's 'RAM'.
355  */
356 static
357 void
358 init_sys_memory(char *imageFile)
359 {
360 	struct stat st;
361 	int i;
362 	int fd;
363 
364 	/*
365 	 * Figure out the system memory image size.  If an image file was
366 	 * specified and -m was not specified, use the image file's size.
367 	 */
368 
369 	if (imageFile && stat(imageFile, &st) == 0 && Maxmem_bytes == 0)
370 		Maxmem_bytes = (vm_paddr_t)st.st_size;
371 	if ((imageFile == NULL || stat(imageFile, &st) < 0) &&
372 	    Maxmem_bytes == 0) {
373 		err(1, "Cannot create new memory file %s unless "
374 		       "system memory size is specified with -m",
375 		       imageFile);
376 		/* NOT REACHED */
377 	}
378 
379 	/*
380 	 * Maxmem must be known at this time
381 	 */
382 	if (Maxmem_bytes < 32 * 1024 * 1024 || (Maxmem_bytes & SEG_MASK)) {
383 		err(1, "Bad maxmem specification: 32MB minimum, "
384 		       "multiples of %dMB only",
385 		       SEG_SIZE / 1024 / 1024);
386 		/* NOT REACHED */
387 	}
388 
389 	/*
390 	 * Generate an image file name if necessary, then open/create the
391 	 * file exclusively locked.  Do not allow multiple virtual kernels
392 	 * to use the same image file.
393 	 */
394 	if (imageFile == NULL) {
395 		for (i = 0; i < 1000000; ++i) {
396 			asprintf(&imageFile, "/var/vkernel/memimg.%06d", i);
397 			fd = open(imageFile,
398 				  O_RDWR|O_CREAT|O_EXLOCK|O_NONBLOCK, 0644);
399 			if (fd < 0 && errno == EWOULDBLOCK) {
400 				free(imageFile);
401 				continue;
402 			}
403 			break;
404 		}
405 	} else {
406 		fd = open(imageFile, O_RDWR|O_CREAT|O_EXLOCK|O_NONBLOCK, 0644);
407 	}
408 	fprintf(stderr, "Using memory file: %s\n", imageFile);
409 	if (fd < 0 || fstat(fd, &st) < 0) {
410 		err(1, "Unable to open/create %s", imageFile);
411 		/* NOT REACHED */
412 	}
413 
414 	/*
415 	 * Truncate or extend the file as necessary.
416 	 */
417 	if (st.st_size > Maxmem_bytes) {
418 		ftruncate(fd, Maxmem_bytes);
419 	} else if (st.st_size < Maxmem_bytes) {
420 		char *zmem;
421 		off_t off = st.st_size & ~SEG_MASK;
422 
423 		kprintf("%s: Reserving blocks for memory image\n", imageFile);
424 		zmem = malloc(SEG_SIZE);
425 		bzero(zmem, SEG_SIZE);
426 		lseek(fd, off, SEEK_SET);
427 		while (off < Maxmem_bytes) {
428 			if (write(fd, zmem, SEG_SIZE) != SEG_SIZE) {
429 				err(1, "Unable to reserve blocks for memory image");
430 				/* NOT REACHED */
431 			}
432 			off += SEG_SIZE;
433 		}
434 		if (fsync(fd) < 0)
435 			err(1, "Unable to reserve blocks for memory image");
436 		free(zmem);
437 	}
438 	MemImageFd = fd;
439 	Maxmem = Maxmem_bytes >> PAGE_SHIFT;
440 }
441 
442 /*
443  * Initialize kernel memory.  This reserves kernel virtual memory by using
444  * MAP_VPAGETABLE
445  */
446 
447 static
448 void
449 init_kern_memory(void)
450 {
451 	void *base;
452 	void *try;
453 	char dummy;
454 	char *topofstack = &dummy;
455 	int i;
456 	void *firstfree;
457 
458 	/*
459 	 * Memory map our kernel virtual memory space.  Note that the
460 	 * kernel image itself is not made part of this memory for the
461 	 * moment.
462 	 *
463 	 * The memory map must be segment-aligned so we can properly
464 	 * offset KernelPTD.
465 	 *
466 	 * If the system kernel has a different MAXDSIZ, it might not
467 	 * be possible to map kernel memory in its prefered location.
468 	 * Try a number of different locations.
469 	 */
470 	try = (void *)(512UL << 30);
471 	base = NULL;
472 	while ((char *)try + KERNEL_KVA_SIZE < topofstack) {
473 		base = mmap(try, KERNEL_KVA_SIZE, PROT_READ|PROT_WRITE,
474 			    MAP_FILE|MAP_SHARED|MAP_VPAGETABLE,
475 			    MemImageFd, (off_t)try);
476 		if (base == try)
477 			break;
478 		if (base != MAP_FAILED)
479 			munmap(base, KERNEL_KVA_SIZE);
480 		try = (char *)try + (512UL << 30);
481 	}
482 	if (base != try) {
483 		err(1, "Unable to mmap() kernel virtual memory!");
484 		/* NOT REACHED */
485 	}
486 	madvise(base, KERNEL_KVA_SIZE, MADV_NOSYNC);
487 	KvaStart = (vm_offset_t)base;
488 	KvaSize = KERNEL_KVA_SIZE;
489 	KvaEnd = KvaStart + KvaSize;
490 	printf("KVM mapped at %p-%p\n", (void *)KvaStart, (void *)KvaEnd);
491 
492 	/* MAP_FILE? */
493 	dmap_min_address = mmap(0, DMAP_SIZE, PROT_READ|PROT_WRITE,
494 				MAP_NOCORE|MAP_NOSYNC|MAP_SHARED,
495 				MemImageFd, 0);
496 	if (dmap_min_address == MAP_FAILED) {
497 		err(1, "Unable to mmap() kernel DMAP region!");
498 		/* NOT REACHED */
499 	}
500 
501 	firstfree = 0;
502 	pmap_bootstrap((vm_paddr_t *)&firstfree, (int64_t)base);
503 
504 	mcontrol(base, KERNEL_KVA_SIZE, MADV_SETMAP,
505 		 0 | VPTE_R | VPTE_W | VPTE_V);
506 
507 	/*
508 	 * phys_avail[] represents unallocated physical memory.  MI code
509 	 * will use phys_avail[] to create the vm_page array.
510 	 */
511 	phys_avail[0] = (vm_paddr_t)firstfree;
512 	phys_avail[0] = (phys_avail[0] + PAGE_MASK) & ~(vm_paddr_t)PAGE_MASK;
513 	phys_avail[1] = Maxmem_bytes;
514 
515 #if JGV
516 	/*
517 	 * (virtual_start, virtual_end) represent unallocated kernel virtual
518 	 * memory.  MI code will create kernel_map using these parameters.
519 	 */
520 	virtual_start = KvaStart + (long)firstfree;
521 	virtual_start = (virtual_start + PAGE_MASK) & ~(vm_offset_t)PAGE_MASK;
522 	virtual_end = KvaStart + KERNEL_KVA_SIZE;
523 #endif
524 
525 	/*
526 	 * pmap_growkernel() will set the correct value.
527 	 */
528 	kernel_vm_end = 0;
529 
530 	/*
531 	 * Allocate space for process 0's UAREA.
532 	 */
533 	proc0paddr = (void *)virtual_start;
534 	for (i = 0; i < UPAGES; ++i) {
535 		pmap_kenter_quick(virtual_start, phys_avail[0]);
536 		virtual_start += PAGE_SIZE;
537 		phys_avail[0] += PAGE_SIZE;
538 	}
539 
540 	/*
541 	 * crashdumpmap
542 	 */
543 	crashdumpmap = virtual_start;
544 	virtual_start += MAXDUMPPGS * PAGE_SIZE;
545 
546 	/*
547 	 * msgbufp maps the system message buffer
548 	 */
549 	assert((MSGBUF_SIZE & PAGE_MASK) == 0);
550 	msgbufp = (void *)virtual_start;
551 	for (i = 0; i < (MSGBUF_SIZE >> PAGE_SHIFT); ++i) {
552 		pmap_kenter_quick(virtual_start, phys_avail[0]);
553 		virtual_start += PAGE_SIZE;
554 		phys_avail[0] += PAGE_SIZE;
555 	}
556 	msgbufinit(msgbufp, MSGBUF_SIZE);
557 
558 	/*
559 	 * used by kern_memio for /dev/mem access
560 	 */
561 	ptvmmap = (caddr_t)virtual_start;
562 	virtual_start += PAGE_SIZE;
563 
564 	/*
565 	 * Bootstrap the kernel_pmap
566 	 */
567 #if JGV
568 	pmap_bootstrap();
569 #endif
570 }
571 
572 /*
573  * Map the per-cpu globaldata for cpu #0.  Allocate the space using
574  * virtual_start and phys_avail[0]
575  */
576 static
577 void
578 init_globaldata(void)
579 {
580 	int i;
581 	vm_paddr_t pa;
582 	vm_offset_t va;
583 
584 	/*
585 	 * Reserve enough KVA to cover possible cpus.  This is a considerable
586 	 * amount of KVA since the privatespace structure includes two
587 	 * whole page table mappings.
588 	 */
589 	virtual_start = (virtual_start + SEG_MASK) & ~(vm_offset_t)SEG_MASK;
590 	CPU_prvspace = (void *)virtual_start;
591 	virtual_start += sizeof(struct privatespace) * SMP_MAXCPU;
592 
593 	/*
594 	 * Allocate enough physical memory to cover the mdglobaldata
595 	 * portion of the space and the idle stack and map the pages
596 	 * into KVA.  For cpu #0 only.
597 	 */
598 	for (i = 0; i < sizeof(struct mdglobaldata); i += PAGE_SIZE) {
599 		pa = phys_avail[0];
600 		va = (vm_offset_t)&CPU_prvspace[0].mdglobaldata + i;
601 		pmap_kenter_quick(va, pa);
602 		phys_avail[0] += PAGE_SIZE;
603 	}
604 	for (i = 0; i < sizeof(CPU_prvspace[0].idlestack); i += PAGE_SIZE) {
605 		pa = phys_avail[0];
606 		va = (vm_offset_t)&CPU_prvspace[0].idlestack + i;
607 		pmap_kenter_quick(va, pa);
608 		phys_avail[0] += PAGE_SIZE;
609 	}
610 
611 	/*
612 	 * Setup the %gs for cpu #0.  The mycpu macro works after this
613 	 * point.  Note that %fs is used by pthreads.
614 	 */
615 	tls_set_gs(&CPU_prvspace[0], sizeof(struct privatespace));
616 }
617 
618 /*
619  * Initialize very low level systems including thread0, proc0, etc.
620  */
621 static
622 void
623 init_vkernel(void)
624 {
625 	struct mdglobaldata *gd;
626 
627 	gd = &CPU_prvspace[0].mdglobaldata;
628 	bzero(gd, sizeof(*gd));
629 
630 	gd->mi.gd_curthread = &thread0;
631 	thread0.td_gd = &gd->mi;
632 	ncpus = 1;
633 	ncpus2 = 1;	/* rounded down power of 2 */
634 	ncpus_fit = 1;	/* rounded up power of 2 */
635 	/* ncpus2_mask and ncpus_fit_mask are 0 */
636 	init_param1();
637 	gd->mi.gd_prvspace = &CPU_prvspace[0];
638 	mi_gdinit(&gd->mi, 0);
639 	cpu_gdinit(gd, 0);
640 	mi_proc0init(&gd->mi, proc0paddr);
641 	lwp0.lwp_md.md_regs = &proc0_tf;
642 
643 	/*init_locks();*/
644 	cninit();
645 	rand_initialize();
646 #if 0	/* #ifdef DDB */
647 	kdb_init();
648 	if (boothowto & RB_KDB)
649 		Debugger("Boot flags requested debugger");
650 #endif
651 	identcpu();
652 #if 0
653 	initializecpu();	/* Initialize CPU registers */
654 #endif
655 	init_param2((phys_avail[1] - phys_avail[0]) / PAGE_SIZE);
656 
657 #if 0
658 	/*
659 	 * Map the message buffer
660 	 */
661 	for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
662 		pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
663 	msgbufinit(msgbufp, MSGBUF_SIZE);
664 #endif
665 #if 0
666 	thread0.td_pcb_cr3 ... MMU
667 	lwp0.lwp_md.md_regs = &proc0_tf;
668 #endif
669 }
670 
671 /*
672  * Filesystem image paths for the virtual kernel are optional.
673  * If specified they each should point to a disk image,
674  * the first of which will become the root disk.
675  *
676  * The virtual kernel caches data from our 'disk' just like a normal kernel,
677  * so we do not really want the real kernel to cache the data too.  Use
678  * O_DIRECT to remove the duplication.
679  */
680 static
681 void
682 init_disk(char *diskExp[], int diskFileNum, enum vkdisk_type type)
683 {
684 	int i;
685 
686         if (diskFileNum == 0)
687                 return;
688 
689 	for(i=0; i < diskFileNum; i++){
690 		char *fname;
691 		fname = diskExp[i];
692 
693 		if (fname == NULL) {
694                         warnx("Invalid argument to '-r'");
695                         continue;
696                 }
697 
698 		if (DiskNum < VKDISK_MAX) {
699 			struct stat st;
700 			struct vkdisk_info* info = NULL;
701 			int fd;
702 			size_t l = 0;
703 
704 			if (type == VKD_DISK)
705 			    fd = open(fname, O_RDWR|O_DIRECT|O_EXLOCK|O_NONBLOCK, 0644);
706 			else
707 			    fd = open(fname, O_RDONLY|O_DIRECT, 0644);
708 			if (fd < 0 || fstat(fd, &st) < 0) {
709 				if (errno == EAGAIN)
710 					fprintf(stderr, "You may already have a vkernel using this disk image!\n");
711 				err(1, "Unable to open/create %s", fname);
712 				/* NOT REACHED */
713 			}
714 			/* get rid of O_NONBLOCK, keep O_DIRECT */
715 			if (type == VKD_DISK)
716 				fcntl(fd, F_SETFL, O_DIRECT);
717 
718 			info = &DiskInfo[DiskNum];
719 			l = strlen(fname);
720 
721 			info->unit = i;
722 			info->fd = fd;
723 			info->type = type;
724 			memcpy(info->fname, fname, l);
725 
726 			if (DiskNum == 0) {
727 				if (type == VKD_CD) {
728 				    rootdevnames[0] = "cd9660:vcd0a";
729 				} else if (type == VKD_DISK) {
730 				    rootdevnames[0] = "ufs:vkd0s0a";
731 				    rootdevnames[1] = "ufs:vkd0s1a";
732 				}
733 			}
734 
735 			DiskNum++;
736 		} else {
737                         warnx("vkd%d (%s) > VKDISK_MAX", DiskNum, fname);
738                         continue;
739 		}
740 	}
741 }
742 
743 static
744 int
745 netif_set_tapflags(int tap_unit, int f, int s)
746 {
747 	struct ifreq ifr;
748 	int flags;
749 
750 	bzero(&ifr, sizeof(ifr));
751 
752 	snprintf(ifr.ifr_name, sizeof(ifr.ifr_name), "tap%d", tap_unit);
753 	if (ioctl(s, SIOCGIFFLAGS, &ifr) < 0) {
754 		warn("tap%d: ioctl(SIOCGIFFLAGS) failed", tap_unit);
755 		return -1;
756 	}
757 
758 	/*
759 	 * Adjust if_flags
760 	 *
761 	 * If the flags are already set/cleared, then we return
762 	 * immediately to avoid extra syscalls
763 	 */
764 	flags = (ifr.ifr_flags & 0xffff) | (ifr.ifr_flagshigh << 16);
765 	if (f < 0) {
766 		/* Turn off flags */
767 		f = -f;
768 		if ((flags & f) == 0)
769 			return 0;
770 		flags &= ~f;
771 	} else {
772 		/* Turn on flags */
773 		if (flags & f)
774 			return 0;
775 		flags |= f;
776 	}
777 
778 	/*
779 	 * Fix up ifreq.ifr_name, since it may be trashed
780 	 * in previous ioctl(SIOCGIFFLAGS)
781 	 */
782 	snprintf(ifr.ifr_name, sizeof(ifr.ifr_name), "tap%d", tap_unit);
783 
784 	ifr.ifr_flags = flags & 0xffff;
785 	ifr.ifr_flagshigh = flags >> 16;
786 	if (ioctl(s, SIOCSIFFLAGS, &ifr) < 0) {
787 		warn("tap%d: ioctl(SIOCSIFFLAGS) failed", tap_unit);
788 		return -1;
789 	}
790 	return 0;
791 }
792 
793 static
794 int
795 netif_set_tapaddr(int tap_unit, in_addr_t addr, in_addr_t mask, int s)
796 {
797 	struct ifaliasreq ifra;
798 	struct sockaddr_in *in;
799 
800 	bzero(&ifra, sizeof(ifra));
801 	snprintf(ifra.ifra_name, sizeof(ifra.ifra_name), "tap%d", tap_unit);
802 
803 	/* Setup address */
804 	in = (struct sockaddr_in *)&ifra.ifra_addr;
805 	in->sin_family = AF_INET;
806 	in->sin_len = sizeof(*in);
807 	in->sin_addr.s_addr = addr;
808 
809 	if (mask != 0) {
810 		/* Setup netmask */
811 		in = (struct sockaddr_in *)&ifra.ifra_mask;
812 		in->sin_len = sizeof(*in);
813 		in->sin_addr.s_addr = mask;
814 	}
815 
816 	if (ioctl(s, SIOCAIFADDR, &ifra) < 0) {
817 		warn("tap%d: ioctl(SIOCAIFADDR) failed", tap_unit);
818 		return -1;
819 	}
820 	return 0;
821 }
822 
823 static
824 int
825 netif_add_tap2brg(int tap_unit, const char *ifbridge, int s)
826 {
827 	struct ifbreq ifbr;
828 	struct ifdrv ifd;
829 
830 	bzero(&ifbr, sizeof(ifbr));
831 	snprintf(ifbr.ifbr_ifsname, sizeof(ifbr.ifbr_ifsname),
832 		 "tap%d", tap_unit);
833 
834 	bzero(&ifd, sizeof(ifd));
835 	strlcpy(ifd.ifd_name, ifbridge, sizeof(ifd.ifd_name));
836 	ifd.ifd_cmd = BRDGADD;
837 	ifd.ifd_len = sizeof(ifbr);
838 	ifd.ifd_data = &ifbr;
839 
840 	if (ioctl(s, SIOCSDRVSPEC, &ifd) < 0) {
841 		/*
842 		 * 'errno == EEXIST' means that the tap(4) is already
843 		 * a member of the bridge(4)
844 		 */
845 		if (errno != EEXIST) {
846 			warn("ioctl(%s, SIOCSDRVSPEC) failed", ifbridge);
847 			return -1;
848 		}
849 	}
850 	return 0;
851 }
852 
853 #define TAPDEV_OFLAGS	(O_RDWR | O_NONBLOCK)
854 
855 /*
856  * Locate the first unused tap(4) device file if auto mode is requested,
857  * or open the user supplied device file, and bring up the corresponding
858  * tap(4) interface.
859  *
860  * NOTE: Only tap(4) device file is supported currently
861  */
862 static
863 int
864 netif_open_tap(const char *netif, int *tap_unit, int s)
865 {
866 	char tap_dev[MAXPATHLEN];
867 	int tap_fd, failed;
868 	struct stat st;
869 	char *dname;
870 
871 	*tap_unit = -1;
872 
873 	if (strcmp(netif, "auto") == 0) {
874 		/*
875 		 * Find first unused tap(4) device file
876 		 */
877 		tap_fd = open("/dev/tap", TAPDEV_OFLAGS);
878 		if (tap_fd < 0) {
879 			warnc(errno, "Unable to find a free tap(4)");
880 			return -1;
881 		}
882 	} else {
883 		/*
884 		 * User supplied tap(4) device file or unix socket.
885 		 */
886 		if (netif[0] == '/')	/* Absolute path */
887 			strlcpy(tap_dev, netif, sizeof(tap_dev));
888 		else
889 			snprintf(tap_dev, sizeof(tap_dev), "/dev/%s", netif);
890 
891 		tap_fd = open(tap_dev, TAPDEV_OFLAGS);
892 
893 		/*
894 		 * If we cannot open normally try to connect to it.
895 		 */
896 		if (tap_fd < 0)
897 			tap_fd = unix_connect(tap_dev);
898 
899 		if (tap_fd < 0) {
900 			warn("Unable to open %s", tap_dev);
901 			return -1;
902 		}
903 	}
904 
905 	/*
906 	 * Check whether the device file is a tap(4)
907 	 */
908 	if (fstat(tap_fd, &st) < 0) {
909 		failed = 1;
910 	} else if (S_ISCHR(st.st_mode)) {
911 		dname = fdevname(tap_fd);
912 		if (dname)
913 			dname = strstr(dname, "tap");
914 		if (dname) {
915 			/*
916 			 * Bring up the corresponding tap(4) interface
917 			 */
918 			*tap_unit = strtol(dname + 3, NULL, 10);
919 			printf("TAP UNIT %d\n", *tap_unit);
920 			if (netif_set_tapflags(*tap_unit, IFF_UP, s) == 0)
921 				failed = 0;
922 			else
923 				failed = 1;
924 		} else {
925 			failed = 1;
926 		}
927 	} else if (S_ISSOCK(st.st_mode)) {
928 		/*
929 		 * Special socket connection (typically to vknet).  We
930 		 * do not have to do anything.
931 		 */
932 		failed = 0;
933 	} else {
934 		failed = 1;
935 	}
936 
937 	if (failed) {
938 		warnx("%s is not a tap(4) device or socket", tap_dev);
939 		close(tap_fd);
940 		tap_fd = -1;
941 		*tap_unit = -1;
942 	}
943 	return tap_fd;
944 }
945 
946 static int
947 unix_connect(const char *path)
948 {
949 	struct sockaddr_un sunx;
950 	int len;
951 	int net_fd;
952 	int sndbuf = 262144;
953 	struct stat st;
954 
955 	snprintf(sunx.sun_path, sizeof(sunx.sun_path), "%s", path);
956 	len = offsetof(struct sockaddr_un, sun_path[strlen(sunx.sun_path)]);
957 	++len;	/* include nul */
958 	sunx.sun_family = AF_UNIX;
959 	sunx.sun_len = len;
960 
961 	net_fd = socket(AF_UNIX, SOCK_SEQPACKET, 0);
962 	if (net_fd < 0)
963 		return(-1);
964 	if (connect(net_fd, (void *)&sunx, len) < 0) {
965 		close(net_fd);
966 		return(-1);
967 	}
968 	setsockopt(net_fd, SOL_SOCKET, SO_SNDBUF, &sndbuf, sizeof(sndbuf));
969 	if (fstat(net_fd, &st) == 0)
970 		printf("Network socket buffer: %d bytes\n", st.st_blksize);
971 	fcntl(net_fd, F_SETFL, O_NONBLOCK);
972 	return(net_fd);
973 }
974 
975 #undef TAPDEV_MAJOR
976 #undef TAPDEV_MINOR
977 #undef TAPDEV_OFLAGS
978 
979 /*
980  * Following syntax is supported,
981  * 1) x.x.x.x             tap(4)'s address is x.x.x.x
982  *
983  * 2) x.x.x.x/z           tap(4)'s address is x.x.x.x
984  *                        tap(4)'s netmask len is z
985  *
986  * 3) x.x.x.x:y.y.y.y     tap(4)'s address is x.x.x.x
987  *                        pseudo netif's address is y.y.y.y
988  *
989  * 4) x.x.x.x:y.y.y.y/z   tap(4)'s address is x.x.x.x
990  *                        pseudo netif's address is y.y.y.y
991  *                        tap(4) and pseudo netif's netmask len are z
992  *
993  * 5) bridgeX             tap(4) will be added to bridgeX
994  *
995  * 6) bridgeX:y.y.y.y     tap(4) will be added to bridgeX
996  *                        pseudo netif's address is y.y.y.y
997  *
998  * 7) bridgeX:y.y.y.y/z   tap(4) will be added to bridgeX
999  *                        pseudo netif's address is y.y.y.y
1000  *                        pseudo netif's netmask len is z
1001  */
1002 static
1003 int
1004 netif_init_tap(int tap_unit, in_addr_t *addr, in_addr_t *mask, int s)
1005 {
1006 	in_addr_t tap_addr, netmask, netif_addr;
1007 	int next_netif_addr;
1008 	char *tok, *masklen_str, *ifbridge;
1009 
1010 	*addr = 0;
1011 	*mask = 0;
1012 
1013 	tok = strtok(NULL, ":/");
1014 	if (tok == NULL) {
1015 		/*
1016 		 * Nothing special, simply use tap(4) as backend
1017 		 */
1018 		return 0;
1019 	}
1020 
1021 	if (inet_pton(AF_INET, tok, &tap_addr) > 0) {
1022 		/*
1023 		 * tap(4)'s address is supplied
1024 		 */
1025 		ifbridge = NULL;
1026 
1027 		/*
1028 		 * If there is next token, then it may be pseudo
1029 		 * netif's address or netmask len for tap(4)
1030 		 */
1031 		next_netif_addr = 0;
1032 	} else {
1033 		/*
1034 		 * Not tap(4)'s address, assume it as a bridge(4)
1035 		 * iface name
1036 		 */
1037 		tap_addr = 0;
1038 		ifbridge = tok;
1039 
1040 		/*
1041 		 * If there is next token, then it must be pseudo
1042 		 * netif's address
1043 		 */
1044 		next_netif_addr = 1;
1045 	}
1046 
1047 	netmask = netif_addr = 0;
1048 
1049 	tok = strtok(NULL, ":/");
1050 	if (tok == NULL)
1051 		goto back;
1052 
1053 	if (inet_pton(AF_INET, tok, &netif_addr) <= 0) {
1054 		if (next_netif_addr) {
1055 			warnx("Invalid pseudo netif address: %s", tok);
1056 			return -1;
1057 		}
1058 		netif_addr = 0;
1059 
1060 		/*
1061 		 * Current token is not address, then it must be netmask len
1062 		 */
1063 		masklen_str = tok;
1064 	} else {
1065 		/*
1066 		 * Current token is pseudo netif address, if there is next token
1067 		 * it must be netmask len
1068 		 */
1069 		masklen_str = strtok(NULL, "/");
1070 	}
1071 
1072 	/* Calculate netmask */
1073 	if (masklen_str != NULL) {
1074 		u_long masklen;
1075 
1076 		masklen = strtoul(masklen_str, NULL, 10);
1077 		if (masklen < 32 && masklen > 0) {
1078 			netmask = htonl(~((1LL << (32 - masklen)) - 1)
1079 					& 0xffffffff);
1080 		} else {
1081 			warnx("Invalid netmask len: %lu", masklen);
1082 			return -1;
1083 		}
1084 	}
1085 
1086 	/* Make sure there is no more token left */
1087 	if (strtok(NULL, ":/") != NULL) {
1088 		warnx("Invalid argument to '-I'");
1089 		return -1;
1090 	}
1091 
1092 back:
1093 	if (tap_unit < 0) {
1094 		/* Do nothing */
1095 	} else if (ifbridge == NULL) {
1096 		/* Set tap(4) address/netmask */
1097 		if (netif_set_tapaddr(tap_unit, tap_addr, netmask, s) < 0)
1098 			return -1;
1099 	} else {
1100 		/* Tie tap(4) to bridge(4) */
1101 		if (netif_add_tap2brg(tap_unit, ifbridge, s) < 0)
1102 			return -1;
1103 	}
1104 
1105 	*addr = netif_addr;
1106 	*mask = netmask;
1107 	return 0;
1108 }
1109 
1110 /*
1111  * NetifInfo[] will be filled for pseudo netif initialization.
1112  * NetifNum will be bumped to reflect the number of valid entries
1113  * in NetifInfo[].
1114  */
1115 static
1116 void
1117 init_netif(char *netifExp[], int netifExpNum)
1118 {
1119 	int i, s;
1120 
1121 	if (netifExpNum == 0)
1122 		return;
1123 
1124 	s = socket(AF_INET, SOCK_DGRAM, 0);	/* for ioctl(SIOC) */
1125 	if (s < 0)
1126 		return;
1127 
1128 	for (i = 0; i < netifExpNum; ++i) {
1129 		struct vknetif_info *info;
1130 		in_addr_t netif_addr, netif_mask;
1131 		int tap_fd, tap_unit;
1132 		char *netif;
1133 
1134 		netif = strtok(netifExp[i], ":");
1135 		if (netif == NULL) {
1136 			warnx("Invalid argument to '-I'");
1137 			continue;
1138 		}
1139 
1140 		/*
1141 		 * Open tap(4) device file and bring up the
1142 		 * corresponding interface
1143 		 */
1144 		tap_fd = netif_open_tap(netif, &tap_unit, s);
1145 		if (tap_fd < 0)
1146 			continue;
1147 
1148 		/*
1149 		 * Initialize tap(4) and get address/netmask
1150 		 * for pseudo netif
1151 		 *
1152 		 * NB: Rest part of netifExp[i] is passed
1153 		 *     to netif_init_tap() implicitly.
1154 		 */
1155 		if (netif_init_tap(tap_unit, &netif_addr, &netif_mask, s) < 0) {
1156 			/*
1157 			 * NB: Closing tap(4) device file will bring
1158 			 *     down the corresponding interface
1159 			 */
1160 			close(tap_fd);
1161 			continue;
1162 		}
1163 
1164 		info = &NetifInfo[NetifNum];
1165 		info->tap_fd = tap_fd;
1166 		info->tap_unit = tap_unit;
1167 		info->netif_addr = netif_addr;
1168 		info->netif_mask = netif_mask;
1169 
1170 		NetifNum++;
1171 		if (NetifNum >= VKNETIF_MAX)	/* XXX will this happen? */
1172 			break;
1173 	}
1174 	close(s);
1175 }
1176 
1177 static
1178 void
1179 writepid( void )
1180 {
1181 	pid_t self;
1182 	FILE *fp;
1183 
1184 	if (pid_file != NULL) {
1185 		self = getpid();
1186 		fp = fopen(pid_file, "w");
1187 
1188 		if (fp != NULL) {
1189 			fprintf(fp, "%ld\n", (long)self);
1190 			fclose(fp);
1191 		}
1192 		else {
1193 			perror("Warning: couldn't open pidfile");
1194 		}
1195 	}
1196 }
1197 
1198 static
1199 void
1200 cleanpid( void )
1201 {
1202 	if (pid_file != NULL) {
1203 		if ( unlink(pid_file) != 0 )
1204 			perror("Warning: couldn't remove pidfile");
1205 	}
1206 }
1207 
1208 static
1209 void
1210 usage(const char *ctl, ...)
1211 {
1212 	va_list va;
1213 
1214 	va_start(va, ctl);
1215 	vfprintf(stderr, ctl, va);
1216 	va_end(va);
1217 	fprintf(stderr, "\n");
1218 	exit(1);
1219 }
1220 
1221 void
1222 cpu_reset(void)
1223 {
1224 	kprintf("cpu reset, rebooting vkernel\n");
1225 	closefrom(3);
1226 	cleanpid();
1227 	execv(save_av[0], save_av);
1228 }
1229 
1230 void
1231 cpu_halt(void)
1232 {
1233 	kprintf("cpu halt, exiting vkernel\n");
1234 	cleanpid();
1235 	exit(0);
1236 }
1237 
1238 void
1239 setrealcpu(void)
1240 {
1241 	switch(lwp_cpu_lock) {
1242 	case LCL_PER_CPU:
1243 		if (bootverbose)
1244 			kprintf("Locking CPU%d to real cpu %d\n",
1245 				mycpuid, next_cpu);
1246 		usched_set(getpid(), USCHED_SET_CPU, &next_cpu, sizeof(next_cpu));
1247 		next_cpu++;
1248 		if (next_cpu >= real_ncpus)
1249 			next_cpu = 0;
1250 		break;
1251 	case LCL_SINGLE_CPU:
1252 		if (bootverbose)
1253 			kprintf("Locking CPU%d to real cpu %d\n",
1254 				mycpuid, next_cpu);
1255 		usched_set(getpid(), USCHED_SET_CPU, &next_cpu, sizeof(next_cpu));
1256 		break;
1257 	default:
1258 		/* do not map virtual cpus to real cpus */
1259 		break;
1260 	}
1261 }
1262