1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * Copyright (c) 1994 John S. Dyson
6  * Copyright (c) 1994 David Greenman
7  * Copyright (c) 2003 Peter Wemm
8  * Copyright (c) 2005-2008 Alan L. Cox <alc@cs.rice.edu>
9  * Copyright (c) 2008, 2009 The DragonFly Project.
10  * Copyright (c) 2008, 2009 Jordan Gordeev.
11  * All rights reserved.
12  *
13  * This code is derived from software contributed to Berkeley by
14  * the Systems Programming Group of the University of Utah Computer
15  * Science Department and William Jolitz of UUNET Technologies Inc.
16  *
17  * Redistribution and use in source and binary forms, with or without
18  * modification, are permitted provided that the following conditions
19  * are met:
20  * 1. Redistributions of source code must retain the above copyright
21  *    notice, this list of conditions and the following disclaimer.
22  * 2. Redistributions in binary form must reproduce the above copyright
23  *    notice, this list of conditions and the following disclaimer in the
24  *    documentation and/or other materials provided with the distribution.
25  * 3. All advertising materials mentioning features or use of this software
26  *    must display the following acknowledgement:
27  *	This product includes software developed by the University of
28  *	California, Berkeley and its contributors.
29  * 4. Neither the name of the University nor the names of its contributors
30  *    may be used to endorse or promote products derived from this software
31  *    without specific prior written permission.
32  *
33  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
34  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
35  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
36  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
37  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
38  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
39  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
41  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
42  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
43  * SUCH DAMAGE.
44  *
45  *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
46  * $FreeBSD: src/sys/i386/i386/pmap.c,v 1.250.2.18 2002/03/06 22:48:53 silby Exp $
47  */
48 
49 /*
50  * Manages physical address maps.
51  */
52 
53 #if JG
54 #include "opt_pmap.h"
55 #endif
56 #include "opt_msgbuf.h"
57 
58 #include <sys/param.h>
59 #include <sys/systm.h>
60 #include <sys/kernel.h>
61 #include <sys/proc.h>
62 #include <sys/msgbuf.h>
63 #include <sys/vmmeter.h>
64 #include <sys/mman.h>
65 #include <sys/vmspace.h>
66 
67 #include <vm/vm.h>
68 #include <vm/vm_param.h>
69 #include <sys/sysctl.h>
70 #include <sys/lock.h>
71 #include <vm/vm_kern.h>
72 #include <vm/vm_page.h>
73 #include <vm/vm_map.h>
74 #include <vm/vm_object.h>
75 #include <vm/vm_extern.h>
76 #include <vm/vm_pageout.h>
77 #include <vm/vm_pager.h>
78 #include <vm/vm_zone.h>
79 
80 #include <sys/user.h>
81 #include <sys/thread2.h>
82 #include <sys/sysref2.h>
83 #include <sys/spinlock2.h>
84 #include <vm/vm_page2.h>
85 
86 #include <machine/cputypes.h>
87 #include <machine/md_var.h>
88 #include <machine/specialreg.h>
89 #include <machine/smp.h>
90 #include <machine/globaldata.h>
91 #include <machine/pmap.h>
92 #include <machine/pmap_inval.h>
93 
94 #include <ddb/ddb.h>
95 
96 #include <stdio.h>
97 #include <assert.h>
98 #include <stdlib.h>
99 #include <pthread.h>
100 
101 #define PMAP_KEEP_PDIRS
102 #ifndef PMAP_SHPGPERPROC
103 #define PMAP_SHPGPERPROC 1000
104 #endif
105 
106 #if defined(DIAGNOSTIC)
107 #define PMAP_DIAGNOSTIC
108 #endif
109 
110 #define MINPV 2048
111 
112 #if !defined(PMAP_DIAGNOSTIC)
113 #define PMAP_INLINE __inline
114 #else
115 #define PMAP_INLINE
116 #endif
117 
118 /*
119  * Get PDEs and PTEs for user/kernel address space
120  */
121 static pd_entry_t *pmap_pde(pmap_t pmap, vm_offset_t va);
122 #define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
123 
124 #define pmap_pde_v(pte)		((*(pd_entry_t *)pte & VPTE_V) != 0)
125 #define pmap_pte_w(pte)		((*(pt_entry_t *)pte & VPTE_WIRED) != 0)
126 #define pmap_pte_m(pte)		((*(pt_entry_t *)pte & VPTE_M) != 0)
127 #define pmap_pte_u(pte)		((*(pt_entry_t *)pte & VPTE_A) != 0)
128 #define pmap_pte_v(pte)		((*(pt_entry_t *)pte & VPTE_V) != 0)
129 
130 /*
131  * Given a map and a machine independent protection code,
132  * convert to a vax protection code.
133  */
134 #define pte_prot(m, p)		\
135 	(protection_codes[p & (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE)])
136 static int protection_codes[8];
137 
138 struct pmap kernel_pmap;
139 static TAILQ_HEAD(,pmap)	pmap_list = TAILQ_HEAD_INITIALIZER(pmap_list);
140 
141 static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
142 
143 static vm_object_t kptobj;
144 
145 static int nkpt;
146 
147 static uint64_t	KPDphys;	/* phys addr of kernel level 2 */
148 uint64_t		KPDPphys;	/* phys addr of kernel level 3 */
149 uint64_t		KPML4phys;	/* phys addr of kernel level 4 */
150 
151 extern int vmm_enabled;
152 extern void *vkernel_stack;
153 
154 /*
155  * Data for the pv entry allocation mechanism
156  */
157 static vm_zone_t pvzone;
158 static struct vm_zone pvzone_store;
159 static struct vm_object pvzone_obj;
160 static int pv_entry_count=0, pv_entry_max=0, pv_entry_high_water=0;
161 static int pmap_pagedaemon_waken = 0;
162 static struct pv_entry *pvinit;
163 
164 /*
165  * All those kernel PT submaps that BSD is so fond of
166  */
167 pt_entry_t *CMAP1 = NULL, *ptmmap;
168 caddr_t CADDR1 = NULL;
169 static pt_entry_t *msgbufmap;
170 
171 uint64_t KPTphys;
172 
173 static PMAP_INLINE void	free_pv_entry (pv_entry_t pv);
174 static pv_entry_t get_pv_entry (void);
175 static void	i386_protection_init (void);
176 static __inline void	pmap_clearbit (vm_page_t m, int bit);
177 
178 static void	pmap_remove_all (vm_page_t m);
179 static int pmap_remove_pte (struct pmap *pmap, pt_entry_t *ptq,
180 				vm_offset_t sva);
181 static void pmap_remove_page (struct pmap *pmap, vm_offset_t va);
182 static int pmap_remove_entry (struct pmap *pmap, vm_page_t m,
183 				vm_offset_t va);
184 static boolean_t pmap_testbit (vm_page_t m, int bit);
185 static void pmap_insert_entry (pmap_t pmap, vm_offset_t va,
186 		vm_page_t mpte, vm_page_t m);
187 
188 static vm_page_t pmap_allocpte (pmap_t pmap, vm_offset_t va);
189 
190 static int pmap_release_free_page (pmap_t pmap, vm_page_t p);
191 static vm_page_t _pmap_allocpte (pmap_t pmap, vm_pindex_t ptepindex);
192 #if JGPMAP32
193 static pt_entry_t * pmap_pte_quick (pmap_t pmap, vm_offset_t va);
194 #endif
195 static vm_page_t pmap_page_lookup (vm_object_t object, vm_pindex_t pindex);
196 static int pmap_unuse_pt (pmap_t, vm_offset_t, vm_page_t);
197 
198 /*
199  * pmap_pte_quick:
200  *
201  *	Super fast pmap_pte routine best used when scanning the pv lists.
202  *	This eliminates many course-grained invltlb calls.  Note that many of
203  *	the pv list scans are across different pmaps and it is very wasteful
204  *	to do an entire invltlb when checking a single mapping.
205  *
206  *	Should only be called while in a critical section.
207  */
208 #if JGPMAP32
209 static __inline pt_entry_t *pmap_pte(pmap_t pmap, vm_offset_t va);
210 
211 static pt_entry_t *
212 pmap_pte_quick(pmap_t pmap, vm_offset_t va)
213 {
214 	return pmap_pte(pmap, va);
215 }
216 #endif
217 
218 /* Return a non-clipped PD index for a given VA */
219 static __inline vm_pindex_t
220 pmap_pde_pindex(vm_offset_t va)
221 {
222 	return va >> PDRSHIFT;
223 }
224 
225 /* Return various clipped indexes for a given VA */
226 static __inline vm_pindex_t
227 pmap_pte_index(vm_offset_t va)
228 {
229 
230 	return ((va >> PAGE_SHIFT) & ((1ul << NPTEPGSHIFT) - 1));
231 }
232 
233 static __inline vm_pindex_t
234 pmap_pde_index(vm_offset_t va)
235 {
236 
237 	return ((va >> PDRSHIFT) & ((1ul << NPDEPGSHIFT) - 1));
238 }
239 
240 static __inline vm_pindex_t
241 pmap_pdpe_index(vm_offset_t va)
242 {
243 
244 	return ((va >> PDPSHIFT) & ((1ul << NPDPEPGSHIFT) - 1));
245 }
246 
247 static __inline vm_pindex_t
248 pmap_pml4e_index(vm_offset_t va)
249 {
250 
251 	return ((va >> PML4SHIFT) & ((1ul << NPML4EPGSHIFT) - 1));
252 }
253 
254 /* Return a pointer to the PML4 slot that corresponds to a VA */
255 static __inline pml4_entry_t *
256 pmap_pml4e(pmap_t pmap, vm_offset_t va)
257 {
258 
259 	return (&pmap->pm_pml4[pmap_pml4e_index(va)]);
260 }
261 
262 /* Return a pointer to the PDP slot that corresponds to a VA */
263 static __inline pdp_entry_t *
264 pmap_pml4e_to_pdpe(pml4_entry_t *pml4e, vm_offset_t va)
265 {
266 	pdp_entry_t *pdpe;
267 
268 	pdpe = (pdp_entry_t *)PHYS_TO_DMAP(*pml4e & VPTE_FRAME);
269 	return (&pdpe[pmap_pdpe_index(va)]);
270 }
271 
272 /* Return a pointer to the PDP slot that corresponds to a VA */
273 static __inline pdp_entry_t *
274 pmap_pdpe(pmap_t pmap, vm_offset_t va)
275 {
276 	pml4_entry_t *pml4e;
277 
278 	pml4e = pmap_pml4e(pmap, va);
279 	if ((*pml4e & VPTE_V) == 0)
280 		return NULL;
281 	return (pmap_pml4e_to_pdpe(pml4e, va));
282 }
283 
284 /* Return a pointer to the PD slot that corresponds to a VA */
285 static __inline pd_entry_t *
286 pmap_pdpe_to_pde(pdp_entry_t *pdpe, vm_offset_t va)
287 {
288 	pd_entry_t *pde;
289 
290 	pde = (pd_entry_t *)PHYS_TO_DMAP(*pdpe & VPTE_FRAME);
291 	return (&pde[pmap_pde_index(va)]);
292 }
293 
294 /* Return a pointer to the PD slot that corresponds to a VA */
295 static __inline pd_entry_t *
296 pmap_pde(pmap_t pmap, vm_offset_t va)
297 {
298 	pdp_entry_t *pdpe;
299 
300 	pdpe = pmap_pdpe(pmap, va);
301 	if (pdpe == NULL || (*pdpe & VPTE_V) == 0)
302 		 return NULL;
303 	return (pmap_pdpe_to_pde(pdpe, va));
304 }
305 
306 /* Return a pointer to the PT slot that corresponds to a VA */
307 static __inline pt_entry_t *
308 pmap_pde_to_pte(pd_entry_t *pde, vm_offset_t va)
309 {
310 	pt_entry_t *pte;
311 
312 	pte = (pt_entry_t *)PHYS_TO_DMAP(*pde & VPTE_FRAME);
313 	return (&pte[pmap_pte_index(va)]);
314 }
315 
316 /* Return a pointer to the PT slot that corresponds to a VA */
317 static __inline pt_entry_t *
318 pmap_pte(pmap_t pmap, vm_offset_t va)
319 {
320 	pd_entry_t *pde;
321 
322 	pde = pmap_pde(pmap, va);
323 	if (pde == NULL || (*pde & VPTE_V) == 0)
324 		return NULL;
325 	if ((*pde & VPTE_PS) != 0)	/* compat with i386 pmap_pte() */
326 		return ((pt_entry_t *)pde);
327 	return (pmap_pde_to_pte(pde, va));
328 }
329 
330 
331 #if JGV
332 PMAP_INLINE pt_entry_t *
333 vtopte(vm_offset_t va)
334 {
335 	uint64_t mask = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT +
336 				  NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1);
337 
338 	return (PTmap + ((va >> PAGE_SHIFT) & mask));
339 }
340 
341 static __inline pd_entry_t *
342 vtopde(vm_offset_t va)
343 {
344 	uint64_t mask = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT +
345 				  NPML4EPGSHIFT)) - 1);
346 
347 	return (PDmap + ((va >> PDRSHIFT) & mask));
348 }
349 #else
350 static PMAP_INLINE pt_entry_t *
351 vtopte(vm_offset_t va)
352 {
353 	pt_entry_t *x;
354 	x = pmap_pte(&kernel_pmap, va);
355 	assert(x != NULL);
356 	return x;
357 }
358 
359 static __inline pd_entry_t *
360 vtopde(vm_offset_t va)
361 {
362 	pd_entry_t *x;
363 	x = pmap_pde(&kernel_pmap, va);
364 	assert(x != NULL);
365 	return x;
366 }
367 #endif
368 
369 static uint64_t
370 allocpages(vm_paddr_t *firstaddr, int n)
371 {
372 	uint64_t ret;
373 
374 	ret = *firstaddr;
375 #if JGV
376 	bzero((void *)ret, n * PAGE_SIZE);
377 #endif
378 	*firstaddr += n * PAGE_SIZE;
379 	return (ret);
380 }
381 
382 static void
383 create_dmap_vmm(vm_paddr_t *firstaddr)
384 {
385 	void *stack_addr;
386 	int pml4_stack_index;
387 	int pdp_stack_index;
388 	int pd_stack_index;
389 	long i,j;
390 	int regs[4];
391 	int amd_feature;
392 
393 	uint64_t KPDP_DMAP_phys = allocpages(firstaddr, NDMPML4E);
394 	uint64_t KPDP_VSTACK_phys = allocpages(firstaddr, 1);
395 	uint64_t KPD_VSTACK_phys = allocpages(firstaddr, 1);
396 
397 	pml4_entry_t *KPML4virt = (pml4_entry_t *)PHYS_TO_DMAP(KPML4phys);
398 	pdp_entry_t *KPDP_DMAP_virt = (pdp_entry_t *)PHYS_TO_DMAP(KPDP_DMAP_phys);
399 	pdp_entry_t *KPDP_VSTACK_virt = (pdp_entry_t *)PHYS_TO_DMAP(KPDP_VSTACK_phys);
400 	pd_entry_t *KPD_VSTACK_virt = (pd_entry_t *)PHYS_TO_DMAP(KPD_VSTACK_phys);
401 
402 	bzero(KPDP_DMAP_virt, NDMPML4E * PAGE_SIZE);
403 	bzero(KPDP_VSTACK_virt, 1 * PAGE_SIZE);
404 	bzero(KPD_VSTACK_virt, 1 * PAGE_SIZE);
405 
406 	do_cpuid(0x80000001, regs);
407 	amd_feature = regs[3];
408 
409 	/* Build the mappings for the first 512GB */
410 	if (amd_feature & AMDID_PAGE1GB) {
411 		/* In pages of 1 GB, if supported */
412 		for (i = 0; i < NPDPEPG; i++) {
413 			KPDP_DMAP_virt[i] = ((uint64_t)i << PDPSHIFT);
414 			KPDP_DMAP_virt[i] |= VPTE_RW | VPTE_V | VPTE_PS | VPTE_U;
415 		}
416 	} else {
417 		/* In page of 2MB, otherwise */
418 		for (i = 0; i < NPDPEPG; i++) {
419 			uint64_t KPD_DMAP_phys = allocpages(firstaddr, 1);
420 			pd_entry_t *KPD_DMAP_virt = (pd_entry_t *)PHYS_TO_DMAP(KPD_DMAP_phys);
421 
422 			bzero(KPD_DMAP_virt, PAGE_SIZE);
423 
424 			KPDP_DMAP_virt[i] = KPD_DMAP_phys;
425 			KPDP_DMAP_virt[i] |= VPTE_RW | VPTE_V | VPTE_U;
426 
427 			/* For each PD, we have to allocate NPTEPG PT */
428 			for (j = 0; j < NPTEPG; j++) {
429 				KPD_DMAP_virt[j] = (i << PDPSHIFT) | (j << PDRSHIFT);
430 				KPD_DMAP_virt[j] |= VPTE_RW | VPTE_V | VPTE_PS | VPTE_U;
431 			}
432 		}
433 	}
434 
435 	/* DMAP for the first 512G */
436 	KPML4virt[0] = KPDP_DMAP_phys;
437 	KPML4virt[0] |= VPTE_RW | VPTE_V | VPTE_U;
438 
439 	/* create a 2 MB map of the new stack */
440 	pml4_stack_index = (uint64_t)&stack_addr >> PML4SHIFT;
441 	KPML4virt[pml4_stack_index] = KPDP_VSTACK_phys;
442 	KPML4virt[pml4_stack_index] |= VPTE_RW | VPTE_V | VPTE_U;
443 
444 	pdp_stack_index = ((uint64_t)&stack_addr & PML4MASK) >> PDPSHIFT;
445 	KPDP_VSTACK_virt[pdp_stack_index] = KPD_VSTACK_phys;
446 	KPDP_VSTACK_virt[pdp_stack_index] |= VPTE_RW | VPTE_V | VPTE_U;
447 
448 	pd_stack_index = ((uint64_t)&stack_addr & PDPMASK) >> PDRSHIFT;
449 	KPD_VSTACK_virt[pd_stack_index] = (uint64_t) vkernel_stack;
450 	KPD_VSTACK_virt[pd_stack_index] |= VPTE_RW | VPTE_V | VPTE_U | VPTE_PS;
451 }
452 
453 static void
454 create_pagetables(vm_paddr_t *firstaddr, int64_t ptov_offset)
455 {
456 	int i;
457 	pml4_entry_t *KPML4virt;
458 	pdp_entry_t *KPDPvirt;
459 	pd_entry_t *KPDvirt;
460 	pt_entry_t *KPTvirt;
461 	int kpml4i = pmap_pml4e_index(ptov_offset);
462 	int kpdpi = pmap_pdpe_index(ptov_offset);
463 	int kpdi = pmap_pde_index(ptov_offset);
464 
465 	/*
466          * Calculate NKPT - number of kernel page tables.  We have to
467          * accomodoate prealloction of the vm_page_array, dump bitmap,
468          * MSGBUF_SIZE, and other stuff.  Be generous.
469          *
470          * Maxmem is in pages.
471          */
472         nkpt = (Maxmem * (sizeof(struct vm_page) * 2) + MSGBUF_SIZE) / NBPDR;
473 	/*
474 	 * Allocate pages
475 	 */
476 	KPML4phys = allocpages(firstaddr, 1);
477 	KPDPphys = allocpages(firstaddr, NKPML4E);
478 	KPDphys = allocpages(firstaddr, NKPDPE);
479 	KPTphys = allocpages(firstaddr, nkpt);
480 
481 	KPML4virt = (pml4_entry_t *)PHYS_TO_DMAP(KPML4phys);
482 	KPDPvirt = (pdp_entry_t *)PHYS_TO_DMAP(KPDPphys);
483 	KPDvirt = (pd_entry_t *)PHYS_TO_DMAP(KPDphys);
484 	KPTvirt = (pt_entry_t *)PHYS_TO_DMAP(KPTphys);
485 
486 	bzero(KPML4virt, 1 * PAGE_SIZE);
487 	bzero(KPDPvirt, NKPML4E * PAGE_SIZE);
488 	bzero(KPDvirt, NKPDPE * PAGE_SIZE);
489 	bzero(KPTvirt, nkpt * PAGE_SIZE);
490 
491 	/* Now map the page tables at their location within PTmap */
492 	for (i = 0; i < nkpt; i++) {
493 		KPDvirt[i + kpdi] = KPTphys + (i << PAGE_SHIFT);
494 		KPDvirt[i + kpdi] |= VPTE_RW | VPTE_V | VPTE_U;
495 	}
496 
497 	/* And connect up the PD to the PDP */
498 	for (i = 0; i < NKPDPE; i++) {
499 		KPDPvirt[i + kpdpi] = KPDphys + (i << PAGE_SHIFT);
500 		KPDPvirt[i + kpdpi] |= VPTE_RW | VPTE_V | VPTE_U;
501 	}
502 
503 	/* And recursively map PML4 to itself in order to get PTmap */
504 	KPML4virt[PML4PML4I] = KPML4phys;
505 	KPML4virt[PML4PML4I] |= VPTE_RW | VPTE_V | VPTE_U;
506 
507 	/* Connect the KVA slot up to the PML4 */
508 	KPML4virt[kpml4i] = KPDPphys;
509 	KPML4virt[kpml4i] |= VPTE_RW | VPTE_V | VPTE_U;
510 }
511 
512 /*
513  * Typically used to initialize a fictitious page by vm/device_pager.c
514  */
515 void
516 pmap_page_init(struct vm_page *m)
517 {
518 	vm_page_init(m);
519 	TAILQ_INIT(&m->md.pv_list);
520 }
521 
522 /*
523  *	Bootstrap the system enough to run with virtual memory.
524  *
525  *	On the i386 this is called after mapping has already been enabled
526  *	and just syncs the pmap module with what has already been done.
527  *	[We can't call it easily with mapping off since the kernel is not
528  *	mapped with PA == VA, hence we would have to relocate every address
529  *	from the linked base (virtual) address "KERNBASE" to the actual
530  *	(physical) address starting relative to 0]
531  */
532 void
533 pmap_bootstrap(vm_paddr_t *firstaddr, int64_t ptov_offset)
534 {
535 	vm_offset_t va;
536 	pt_entry_t *pte;
537 
538 	/*
539 	 * Create an initial set of page tables to run the kernel in.
540 	 */
541 	create_pagetables(firstaddr, ptov_offset);
542 
543 	/* Create the DMAP for the VMM */
544 	if(vmm_enabled) {
545 		create_dmap_vmm(firstaddr);
546 	}
547 
548 	virtual_start = KvaStart;
549 	virtual_end = KvaEnd;
550 
551 	/*
552 	 * Initialize protection array.
553 	 */
554 	i386_protection_init();
555 
556 	/*
557 	 * The kernel's pmap is statically allocated so we don't have to use
558 	 * pmap_create, which is unlikely to work correctly at this part of
559 	 * the boot sequence (XXX and which no longer exists).
560 	 *
561 	 * The kernel_pmap's pm_pteobj is used only for locking and not
562 	 * for mmu pages.
563 	 */
564 	kernel_pmap.pm_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(KPML4phys);
565 	kernel_pmap.pm_count = 1;
566 	/* don't allow deactivation */
567 	CPUMASK_ASSALLONES(kernel_pmap.pm_active);
568 	kernel_pmap.pm_pteobj = NULL;	/* see pmap_init */
569 	TAILQ_INIT(&kernel_pmap.pm_pvlist);
570 	TAILQ_INIT(&kernel_pmap.pm_pvlist_free);
571 	lwkt_token_init(&kernel_pmap.pm_token, "kpmap_tok");
572 	spin_init(&kernel_pmap.pm_spin, "pmapbootstrap");
573 
574 	/*
575 	 * Reserve some special page table entries/VA space for temporary
576 	 * mapping of pages.
577 	 */
578 #define	SYSMAP(c, p, v, n)	\
579 	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
580 
581 	va = virtual_start;
582 	pte = pmap_pte(&kernel_pmap, va);
583 	/*
584 	 * CMAP1/CMAP2 are used for zeroing and copying pages.
585 	 */
586 	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
587 
588 #if JGV
589 	/*
590 	 * Crashdump maps.
591 	 */
592 	SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
593 #endif
594 
595 	/*
596 	 * ptvmmap is used for reading arbitrary physical pages via
597 	 * /dev/mem.
598 	 */
599 	SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
600 
601 	/*
602 	 * msgbufp is used to map the system message buffer.
603 	 * XXX msgbufmap is not used.
604 	 */
605 	SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
606 	       atop(round_page(MSGBUF_SIZE)))
607 
608 	virtual_start = va;
609 
610 	*CMAP1 = 0;
611 	/* Not ready to do an invltlb yet for VMM*/
612 	if (!vmm_enabled)
613 		cpu_invltlb();
614 
615 }
616 
617 /*
618  *	Initialize the pmap module.
619  *	Called by vm_init, to initialize any structures that the pmap
620  *	system needs to map virtual memory.
621  *	pmap_init has been enhanced to support in a fairly consistant
622  *	way, discontiguous physical memory.
623  */
624 void
625 pmap_init(void)
626 {
627 	int i;
628 	int initial_pvs;
629 
630 	/*
631 	 * object for kernel page table pages
632 	 */
633 	/* JG I think the number can be arbitrary */
634 	kptobj = vm_object_allocate(OBJT_DEFAULT, 5);
635 	kernel_pmap.pm_pteobj = kptobj;
636 
637 	/*
638 	 * Allocate memory for random pmap data structures.  Includes the
639 	 * pv_head_table.
640 	 */
641 	for(i = 0; i < vm_page_array_size; i++) {
642 		vm_page_t m;
643 
644 		m = &vm_page_array[i];
645 		TAILQ_INIT(&m->md.pv_list);
646 		m->md.pv_list_count = 0;
647 	}
648 
649 	/*
650 	 * init the pv free list
651 	 */
652 	initial_pvs = vm_page_array_size;
653 	if (initial_pvs < MINPV)
654 		initial_pvs = MINPV;
655 	pvzone = &pvzone_store;
656 	pvinit = (struct pv_entry *) kmem_alloc(&kernel_map,
657 		initial_pvs * sizeof (struct pv_entry));
658 	zbootinit(pvzone, "PV ENTRY", sizeof (struct pv_entry), pvinit,
659 		initial_pvs);
660 
661 	/*
662 	 * Now it is safe to enable pv_table recording.
663 	 */
664 	pmap_initialized = TRUE;
665 }
666 
667 /*
668  * Initialize the address space (zone) for the pv_entries.  Set a
669  * high water mark so that the system can recover from excessive
670  * numbers of pv entries.
671  */
672 void
673 pmap_init2(void)
674 {
675 	int shpgperproc = PMAP_SHPGPERPROC;
676 
677 	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
678 	pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
679 	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
680 	pv_entry_high_water = 9 * (pv_entry_max / 10);
681 	zinitna(pvzone, &pvzone_obj, NULL, 0, pv_entry_max, ZONE_INTERRUPT, 1);
682 }
683 
684 
685 /***************************************************
686  * Low level helper routines.....
687  ***************************************************/
688 
689 /*
690  * The modification bit is not tracked for any pages in this range. XXX
691  * such pages in this maps should always use pmap_k*() functions and not
692  * be managed anyhow.
693  *
694  * XXX User and kernel address spaces are independant for virtual kernels,
695  * this function only applies to the kernel pmap.
696  */
697 static int
698 pmap_track_modified(pmap_t pmap, vm_offset_t va)
699 {
700 	if (pmap != &kernel_pmap)
701 		return 1;
702 	if ((va < clean_sva) || (va >= clean_eva))
703 		return 1;
704 	else
705 		return 0;
706 }
707 
708 /*
709  * Extract the physical page address associated with the map/VA pair.
710  *
711  * No requirements.
712  */
713 vm_paddr_t
714 pmap_extract(pmap_t pmap, vm_offset_t va)
715 {
716 	vm_paddr_t rtval;
717 	pt_entry_t *pte;
718 	pd_entry_t pde, *pdep;
719 
720 	lwkt_gettoken(&vm_token);
721 	rtval = 0;
722 	pdep = pmap_pde(pmap, va);
723 	if (pdep != NULL) {
724 		pde = *pdep;
725 		if (pde) {
726 			if ((pde & VPTE_PS) != 0) {
727 				/* JGV */
728 				rtval = (pde & PG_PS_FRAME) | (va & PDRMASK);
729 			} else {
730 				pte = pmap_pde_to_pte(pdep, va);
731 				rtval = (*pte & VPTE_FRAME) | (va & PAGE_MASK);
732 			}
733 		}
734 	}
735 	lwkt_reltoken(&vm_token);
736 	return rtval;
737 }
738 
739 /*
740  * Similar to extract but checks protections, SMP-friendly short-cut for
741  * vm_fault_page[_quick]().
742  */
743 vm_page_t
744 pmap_fault_page_quick(pmap_t pmap __unused, vm_offset_t vaddr __unused,
745 		      vm_prot_t prot __unused)
746 {
747 	return(NULL);
748 }
749 
750 /*
751  *	Routine:	pmap_kextract
752  *	Function:
753  *		Extract the physical page address associated
754  *		kernel virtual address.
755  */
756 vm_paddr_t
757 pmap_kextract(vm_offset_t va)
758 {
759 	pd_entry_t pde;
760 	vm_paddr_t pa;
761 
762 	KKASSERT(va >= KvaStart && va < KvaEnd);
763 
764 	/*
765 	 * The DMAP region is not included in [KvaStart, KvaEnd)
766 	 */
767 #if 0
768 	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
769 		pa = DMAP_TO_PHYS(va);
770 	} else {
771 #endif
772 		pde = *vtopde(va);
773 		if (pde & VPTE_PS) {
774 			/* JGV */
775 			pa = (pde & PG_PS_FRAME) | (va & PDRMASK);
776 		} else {
777 			/*
778 			 * Beware of a concurrent promotion that changes the
779 			 * PDE at this point!  For example, vtopte() must not
780 			 * be used to access the PTE because it would use the
781 			 * new PDE.  It is, however, safe to use the old PDE
782 			 * because the page table page is preserved by the
783 			 * promotion.
784 			 */
785 			pa = *pmap_pde_to_pte(&pde, va);
786 			pa = (pa & VPTE_FRAME) | (va & PAGE_MASK);
787 		}
788 #if 0
789 	}
790 #endif
791 	return pa;
792 }
793 
794 /***************************************************
795  * Low level mapping routines.....
796  ***************************************************/
797 
798 /*
799  * Enter a mapping into kernel_pmap.  Mappings created in this fashion
800  * are not managed.  Mappings must be immediately accessible on all cpus.
801  *
802  * Call pmap_inval_pte() to invalidate the virtual pte and clean out the
803  * real pmap and handle related races before storing the new vpte.
804  */
805 void
806 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
807 {
808 	pt_entry_t *pte;
809 	pt_entry_t npte;
810 
811 	KKASSERT(va >= KvaStart && va < KvaEnd);
812 	npte = pa | VPTE_RW | VPTE_V | VPTE_U;
813 	pte = vtopte(va);
814 	if (*pte & VPTE_V)
815 		pmap_inval_pte(pte, &kernel_pmap, va);
816 	*pte = npte;
817 }
818 
819 /*
820  * Enter an unmanaged KVA mapping for the private use of the current
821  * cpu only.  pmap_kenter_sync() may be called to make the mapping usable
822  * by other cpus.
823  *
824  * It is illegal for the mapping to be accessed by other cpus unleess
825  * pmap_kenter_sync*() is called.
826  */
827 void
828 pmap_kenter_quick(vm_offset_t va, vm_paddr_t pa)
829 {
830 	pt_entry_t *pte;
831 	pt_entry_t npte;
832 
833 	KKASSERT(va >= KvaStart && va < KvaEnd);
834 
835 	npte = (vpte_t)pa | VPTE_RW | VPTE_V | VPTE_U;
836 	pte = vtopte(va);
837 
838 	if (*pte & VPTE_V)
839 		pmap_inval_pte_quick(pte, &kernel_pmap, va);
840 	*pte = npte;
841 }
842 
843 /*
844  * Synchronize a kvm mapping originally made for the private use on
845  * some other cpu so it can be used on our cpu.  Turns out to be the
846  * same madvise() call, because we have to sync the real pmaps anyway.
847  *
848  * XXX add MADV_RESYNC to improve performance.
849  */
850 void
851 pmap_kenter_sync_quick(vm_offset_t va)
852 {
853 	cpu_invlpg((void *)va);
854 }
855 
856 /*
857  * Remove an unmanaged mapping created with pmap_kenter*().
858  */
859 void
860 pmap_kremove(vm_offset_t va)
861 {
862 	pt_entry_t *pte;
863 
864 	KKASSERT(va >= KvaStart && va < KvaEnd);
865 
866 	pte = vtopte(va);
867 	if (*pte & VPTE_V)
868 		pmap_inval_pte(pte, &kernel_pmap, va);
869 	*pte = 0;
870 }
871 
872 /*
873  * Remove an unmanaged mapping created with pmap_kenter*() but synchronize
874  * only with this cpu.
875  *
876  * Unfortunately because we optimize new entries by testing VPTE_V later
877  * on, we actually still have to synchronize with all the cpus.  XXX maybe
878  * store a junk value and test against 0 in the other places instead?
879  */
880 void
881 pmap_kremove_quick(vm_offset_t va)
882 {
883 	pt_entry_t *pte;
884 
885 	KKASSERT(va >= KvaStart && va < KvaEnd);
886 
887 	pte = vtopte(va);
888 	if (*pte & VPTE_V)
889 		pmap_inval_pte(pte, &kernel_pmap, va); /* NOT _quick */
890 	*pte = 0;
891 }
892 
893 /*
894  *	Used to map a range of physical addresses into kernel
895  *	virtual address space.
896  *
897  *	For now, VM is already on, we only need to map the
898  *	specified memory.
899  */
900 vm_offset_t
901 pmap_map(vm_offset_t *virtp, vm_paddr_t start, vm_paddr_t end, int prot)
902 {
903 	return PHYS_TO_DMAP(start);
904 }
905 
906 
907 /*
908  * Map a set of unmanaged VM pages into KVM.
909  */
910 void
911 pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
912 {
913 	vm_offset_t end_va;
914 
915 	end_va = va + count * PAGE_SIZE;
916 	KKASSERT(va >= KvaStart && end_va < KvaEnd);
917 
918 	while (va < end_va) {
919 		pt_entry_t *pte;
920 
921 		pte = vtopte(va);
922 		if (*pte & VPTE_V)
923 			pmap_inval_pte(pte, &kernel_pmap, va);
924 		*pte = VM_PAGE_TO_PHYS(*m) | VPTE_RW | VPTE_V | VPTE_U;
925 		va += PAGE_SIZE;
926 		m++;
927 	}
928 }
929 
930 /*
931  * Undo the effects of pmap_qenter*().
932  */
933 void
934 pmap_qremove(vm_offset_t va, int count)
935 {
936 	vm_offset_t end_va;
937 
938 	end_va = va + count * PAGE_SIZE;
939 	KKASSERT(va >= KvaStart && end_va < KvaEnd);
940 
941 	while (va < end_va) {
942 		pt_entry_t *pte;
943 
944 		pte = vtopte(va);
945 		if (*pte & VPTE_V)
946 			pmap_inval_pte(pte, &kernel_pmap, va);
947 		*pte = 0;
948 		va += PAGE_SIZE;
949 	}
950 }
951 
952 /*
953  * This routine works like vm_page_lookup() but also blocks as long as the
954  * page is busy.  This routine does not busy the page it returns.
955  *
956  * Unless the caller is managing objects whos pages are in a known state,
957  * the call should be made with a critical section held so the page's object
958  * association remains valid on return.
959  */
960 static vm_page_t
961 pmap_page_lookup(vm_object_t object, vm_pindex_t pindex)
962 {
963 	vm_page_t m;
964 
965 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
966 	m = vm_page_lookup_busy_wait(object, pindex, FALSE, "pplookp");
967 
968 	return(m);
969 }
970 
971 /*
972  * Create a new thread and optionally associate it with a (new) process.
973  * NOTE! the new thread's cpu may not equal the current cpu.
974  */
975 void
976 pmap_init_thread(thread_t td)
977 {
978 	/* enforce pcb placement */
979 	td->td_pcb = (struct pcb *)(td->td_kstack + td->td_kstack_size) - 1;
980 	td->td_savefpu = &td->td_pcb->pcb_save;
981 	td->td_sp = (char *)td->td_pcb - 16; /* JG is -16 needed on x86_64? */
982 }
983 
984 /*
985  * This routine directly affects the fork perf for a process.
986  */
987 void
988 pmap_init_proc(struct proc *p)
989 {
990 }
991 
992 /***************************************************
993  * Page table page management routines.....
994  ***************************************************/
995 
996 static __inline int pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va,
997 			vm_page_t m);
998 
999 /*
1000  * This routine unholds page table pages, and if the hold count
1001  * drops to zero, then it decrements the wire count.
1002  *
1003  * We must recheck that this is the last hold reference after busy-sleeping
1004  * on the page.
1005  */
1006 static int
1007 _pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va, vm_page_t m)
1008 {
1009 	vm_page_busy_wait(m, FALSE, "pmuwpt");
1010 	KASSERT(m->queue == PQ_NONE,
1011 		("_pmap_unwire_pte_hold: %p->queue != PQ_NONE", m));
1012 
1013 	if (m->hold_count == 1) {
1014 		/*
1015 		 * Unmap the page table page.
1016 		 */
1017 		//abort(); /* JG */
1018 		/* pmap_inval_add(info, pmap, -1); */
1019 
1020 		if (m->pindex >= (NUPDE + NUPDPE)) {
1021 			/* PDP page */
1022 			pml4_entry_t *pml4;
1023 			pml4 = pmap_pml4e(pmap, va);
1024 			*pml4 = 0;
1025 		} else if (m->pindex >= NUPDE) {
1026 			/* PD page */
1027 			pdp_entry_t *pdp;
1028 			pdp = pmap_pdpe(pmap, va);
1029 			*pdp = 0;
1030 		} else {
1031 			/* PT page */
1032 			pd_entry_t *pd;
1033 			pd = pmap_pde(pmap, va);
1034 			*pd = 0;
1035 		}
1036 
1037 		KKASSERT(pmap->pm_stats.resident_count > 0);
1038 		--pmap->pm_stats.resident_count;
1039 
1040 		if (pmap->pm_ptphint == m)
1041 			pmap->pm_ptphint = NULL;
1042 
1043 		if (m->pindex < NUPDE) {
1044 			/* We just released a PT, unhold the matching PD */
1045 			vm_page_t pdpg;
1046 
1047 			pdpg = PHYS_TO_VM_PAGE(*pmap_pdpe(pmap, va) & VPTE_FRAME);
1048 			pmap_unwire_pte_hold(pmap, va, pdpg);
1049 		}
1050 		if (m->pindex >= NUPDE && m->pindex < (NUPDE + NUPDPE)) {
1051 			/* We just released a PD, unhold the matching PDP */
1052 			vm_page_t pdppg;
1053 
1054 			pdppg = PHYS_TO_VM_PAGE(*pmap_pml4e(pmap, va) & VPTE_FRAME);
1055 			pmap_unwire_pte_hold(pmap, va, pdppg);
1056 		}
1057 
1058 		/*
1059 		 * This was our last hold, the page had better be unwired
1060 		 * after we decrement wire_count.
1061 		 *
1062 		 * FUTURE NOTE: shared page directory page could result in
1063 		 * multiple wire counts.
1064 		 */
1065 		vm_page_unhold(m);
1066 		--m->wire_count;
1067 		KKASSERT(m->wire_count == 0);
1068 		atomic_add_int(&vmstats.v_wire_count, -1);
1069 		vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
1070 		vm_page_flash(m);
1071 		vm_page_free_zero(m);
1072 		return 1;
1073 	} else {
1074 		KKASSERT(m->hold_count > 1);
1075 		vm_page_unhold(m);
1076 		vm_page_wakeup(m);
1077 		return 0;
1078 	}
1079 }
1080 
1081 static __inline int
1082 pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va, vm_page_t m)
1083 {
1084 	KKASSERT(m->hold_count > 0);
1085 	if (m->hold_count > 1) {
1086 		vm_page_unhold(m);
1087 		return 0;
1088 	} else {
1089 		return _pmap_unwire_pte_hold(pmap, va, m);
1090 	}
1091 }
1092 
1093 /*
1094  * After removing a page table entry, this routine is used to
1095  * conditionally free the page, and manage the hold/wire counts.
1096  */
1097 static int
1098 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
1099 {
1100 	/* JG Use FreeBSD/amd64 or FreeBSD/i386 ptepde approaches? */
1101 	vm_pindex_t ptepindex;
1102 
1103 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(pmap->pm_pteobj));
1104 
1105 	if (mpte == NULL) {
1106 		/*
1107 		 * page table pages in the kernel_pmap are not managed.
1108 		 */
1109 		if (pmap == &kernel_pmap)
1110 			return(0);
1111 		ptepindex = pmap_pde_pindex(va);
1112 		if (pmap->pm_ptphint &&
1113 			(pmap->pm_ptphint->pindex == ptepindex)) {
1114 			mpte = pmap->pm_ptphint;
1115 		} else {
1116 			mpte = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
1117 			pmap->pm_ptphint = mpte;
1118 			vm_page_wakeup(mpte);
1119 		}
1120 	}
1121 
1122 	return pmap_unwire_pte_hold(pmap, va, mpte);
1123 }
1124 
1125 /*
1126  * Initialize pmap0/vmspace0 .  Since process 0 never enters user mode we
1127  * just dummy it up so it works well enough for fork().
1128  *
1129  * In DragonFly, process pmaps may only be used to manipulate user address
1130  * space, never kernel address space.
1131  */
1132 void
1133 pmap_pinit0(struct pmap *pmap)
1134 {
1135 	pmap_pinit(pmap);
1136 }
1137 
1138 /*
1139  * Initialize a preallocated and zeroed pmap structure,
1140  * such as one in a vmspace structure.
1141  */
1142 void
1143 pmap_pinit(struct pmap *pmap)
1144 {
1145 	vm_page_t ptdpg;
1146 
1147 	/*
1148 	 * No need to allocate page table space yet but we do need a valid
1149 	 * page directory table.
1150 	 */
1151 	if (pmap->pm_pml4 == NULL) {
1152 		pmap->pm_pml4 =
1153 		    (pml4_entry_t *)kmem_alloc_pageable(&kernel_map, PAGE_SIZE);
1154 	}
1155 
1156 	/*
1157 	 * Allocate an object for the ptes
1158 	 */
1159 	if (pmap->pm_pteobj == NULL)
1160 		pmap->pm_pteobj = vm_object_allocate(OBJT_DEFAULT, NUPDE + NUPDPE + PML4PML4I + 1);
1161 
1162 	/*
1163 	 * Allocate the page directory page, unless we already have
1164 	 * one cached.  If we used the cached page the wire_count will
1165 	 * already be set appropriately.
1166 	 */
1167 	if ((ptdpg = pmap->pm_pdirm) == NULL) {
1168 		ptdpg = vm_page_grab(pmap->pm_pteobj,
1169 				     NUPDE + NUPDPE + PML4PML4I,
1170 				     VM_ALLOC_NORMAL | VM_ALLOC_RETRY |
1171 				     VM_ALLOC_ZERO);
1172 		pmap->pm_pdirm = ptdpg;
1173 		vm_page_flag_clear(ptdpg, PG_MAPPED);
1174 		vm_page_wire(ptdpg);
1175 		vm_page_wakeup(ptdpg);
1176 		pmap_kenter((vm_offset_t)pmap->pm_pml4, VM_PAGE_TO_PHYS(ptdpg));
1177 	}
1178 	pmap->pm_count = 1;
1179 	CPUMASK_ASSZERO(pmap->pm_active);
1180 	pmap->pm_ptphint = NULL;
1181 	TAILQ_INIT(&pmap->pm_pvlist);
1182 	TAILQ_INIT(&pmap->pm_pvlist_free);
1183 	spin_init(&pmap->pm_spin, "pmapinit");
1184 	lwkt_token_init(&pmap->pm_token, "pmap_tok");
1185 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1186 	pmap->pm_stats.resident_count = 1;
1187 }
1188 
1189 /*
1190  * Clean up a pmap structure so it can be physically freed.  This routine
1191  * is called by the vmspace dtor function.  A great deal of pmap data is
1192  * left passively mapped to improve vmspace management so we have a bit
1193  * of cleanup work to do here.
1194  *
1195  * No requirements.
1196  */
1197 void
1198 pmap_puninit(pmap_t pmap)
1199 {
1200 	vm_page_t p;
1201 
1202 	KKASSERT(CPUMASK_TESTZERO(pmap->pm_active));
1203 	if ((p = pmap->pm_pdirm) != NULL) {
1204 		KKASSERT(pmap->pm_pml4 != NULL);
1205 		pmap_kremove((vm_offset_t)pmap->pm_pml4);
1206 		vm_page_busy_wait(p, FALSE, "pgpun");
1207 		p->wire_count--;
1208 		atomic_add_int(&vmstats.v_wire_count, -1);
1209 		vm_page_free_zero(p);
1210 		pmap->pm_pdirm = NULL;
1211 	}
1212 	if (pmap->pm_pml4) {
1213 		kmem_free(&kernel_map, (vm_offset_t)pmap->pm_pml4, PAGE_SIZE);
1214 		pmap->pm_pml4 = NULL;
1215 	}
1216 	if (pmap->pm_pteobj) {
1217 		vm_object_deallocate(pmap->pm_pteobj);
1218 		pmap->pm_pteobj = NULL;
1219 	}
1220 }
1221 
1222 /*
1223  * Wire in kernel global address entries.  To avoid a race condition
1224  * between pmap initialization and pmap_growkernel, this procedure
1225  * adds the pmap to the master list (which growkernel scans to update),
1226  * then copies the template.
1227  *
1228  * In a virtual kernel there are no kernel global address entries.
1229  *
1230  * No requirements.
1231  */
1232 void
1233 pmap_pinit2(struct pmap *pmap)
1234 {
1235 	spin_lock(&pmap_spin);
1236 	TAILQ_INSERT_TAIL(&pmap_list, pmap, pm_pmnode);
1237 	spin_unlock(&pmap_spin);
1238 }
1239 
1240 /*
1241  * Attempt to release and free a vm_page in a pmap.  Returns 1 on success,
1242  * 0 on failure (if the procedure had to sleep).
1243  *
1244  * When asked to remove the page directory page itself, we actually just
1245  * leave it cached so we do not have to incur the SMP inval overhead of
1246  * removing the kernel mapping.  pmap_puninit() will take care of it.
1247  */
1248 static int
1249 pmap_release_free_page(struct pmap *pmap, vm_page_t p)
1250 {
1251 	/*
1252 	 * This code optimizes the case of freeing non-busy
1253 	 * page-table pages.  Those pages are zero now, and
1254 	 * might as well be placed directly into the zero queue.
1255 	 */
1256 	if (vm_page_busy_try(p, FALSE)) {
1257 		vm_page_sleep_busy(p, FALSE, "pmaprl");
1258 		return 0;
1259 	}
1260 
1261 	/*
1262 	 * Remove the page table page from the processes address space.
1263 	 */
1264 	if (p->pindex == NUPDE + NUPDPE + PML4PML4I) {
1265 		/*
1266 		 * We are the pml4 table itself.
1267 		 */
1268 		/* XXX anything to do here? */
1269 	} else if (p->pindex >= (NUPDE + NUPDPE)) {
1270 		/*
1271 		 * We are a PDP page.
1272 		 * We look for the PML4 entry that points to us.
1273 		 */
1274 		vm_page_t m4 = vm_page_lookup(pmap->pm_pteobj, NUPDE + NUPDPE + PML4PML4I);
1275 		KKASSERT(m4 != NULL);
1276 		pml4_entry_t *pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m4));
1277 		int idx = (p->pindex - (NUPDE + NUPDPE)) % NPML4EPG;
1278 		KKASSERT(pml4[idx] != 0);
1279 		pml4[idx] = 0;
1280 		m4->hold_count--;
1281 		/* JG What about wire_count? */
1282 	} else if (p->pindex >= NUPDE) {
1283 		/*
1284 		 * We are a PD page.
1285 		 * We look for the PDP entry that points to us.
1286 		 */
1287 		vm_page_t m3 = vm_page_lookup(pmap->pm_pteobj, NUPDE + NUPDPE + (p->pindex - NUPDE) / NPDPEPG);
1288 		KKASSERT(m3 != NULL);
1289 		pdp_entry_t *pdp = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m3));
1290 		int idx = (p->pindex - NUPDE) % NPDPEPG;
1291 		KKASSERT(pdp[idx] != 0);
1292 		pdp[idx] = 0;
1293 		m3->hold_count--;
1294 		/* JG What about wire_count? */
1295 	} else {
1296 		/* We are a PT page.
1297 		 * We look for the PD entry that points to us.
1298 		 */
1299 		vm_page_t m2 = vm_page_lookup(pmap->pm_pteobj, NUPDE + p->pindex / NPDEPG);
1300 		KKASSERT(m2 != NULL);
1301 		pd_entry_t *pd = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m2));
1302 		int idx = p->pindex % NPDEPG;
1303 		pd[idx] = 0;
1304 		m2->hold_count--;
1305 		/* JG What about wire_count? */
1306 	}
1307 	KKASSERT(pmap->pm_stats.resident_count > 0);
1308 	--pmap->pm_stats.resident_count;
1309 
1310 	if (p->hold_count)  {
1311 		panic("pmap_release: freeing held pt page "
1312 		      "pmap=%p pg=%p dmap=%p pi=%ld {%ld,%ld,%ld}",
1313 		      pmap, p, (void *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(p)),
1314 		      p->pindex, NUPDE, NUPDPE, PML4PML4I);
1315 	}
1316 	if (pmap->pm_ptphint && (pmap->pm_ptphint->pindex == p->pindex))
1317 		pmap->pm_ptphint = NULL;
1318 
1319 	/*
1320 	 * We leave the top-level page table page cached, wired, and mapped in
1321 	 * the pmap until the dtor function (pmap_puninit()) gets called.
1322 	 * However, still clean it up so we can set PG_ZERO.
1323 	 */
1324 	if (p->pindex == NUPDE + NUPDPE + PML4PML4I) {
1325 		bzero(pmap->pm_pml4, PAGE_SIZE);
1326 		vm_page_flag_set(p, PG_ZERO);
1327 		vm_page_wakeup(p);
1328 	} else {
1329 		abort();
1330 		p->wire_count--;
1331 		atomic_add_int(&vmstats.v_wire_count, -1);
1332 		/* JG eventually revert to using vm_page_free_zero() */
1333 		vm_page_free(p);
1334 	}
1335 	return 1;
1336 }
1337 
1338 /*
1339  * this routine is called if the page table page is not
1340  * mapped correctly.
1341  */
1342 static vm_page_t
1343 _pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex)
1344 {
1345 	vm_page_t m, pdppg, pdpg;
1346 
1347 	/*
1348 	 * Find or fabricate a new pagetable page.  Handle allocation
1349 	 * races by checking m->valid.
1350 	 */
1351 	m = vm_page_grab(pmap->pm_pteobj, ptepindex,
1352 			 VM_ALLOC_NORMAL | VM_ALLOC_ZERO | VM_ALLOC_RETRY);
1353 
1354 	KASSERT(m->queue == PQ_NONE,
1355 		("_pmap_allocpte: %p->queue != PQ_NONE", m));
1356 
1357 	/*
1358 	 * Increment the hold count for the page we will be returning to
1359 	 * the caller.
1360 	 */
1361 	m->hold_count++;
1362 	vm_page_wire(m);
1363 
1364 	/*
1365 	 * Map the pagetable page into the process address space, if
1366 	 * it isn't already there.
1367 	 */
1368 	++pmap->pm_stats.resident_count;
1369 
1370 	if (ptepindex >= (NUPDE + NUPDPE)) {
1371 		pml4_entry_t *pml4;
1372 		vm_pindex_t pml4index;
1373 
1374 		/* Wire up a new PDP page */
1375 		pml4index = ptepindex - (NUPDE + NUPDPE);
1376 		pml4 = &pmap->pm_pml4[pml4index];
1377 		*pml4 = VM_PAGE_TO_PHYS(m) |
1378 		    VPTE_RW | VPTE_V | VPTE_U |
1379 		    VPTE_A | VPTE_M;
1380 	} else if (ptepindex >= NUPDE) {
1381 		vm_pindex_t pml4index;
1382 		vm_pindex_t pdpindex;
1383 		pml4_entry_t *pml4;
1384 		pdp_entry_t *pdp;
1385 
1386 		/* Wire up a new PD page */
1387 		pdpindex = ptepindex - NUPDE;
1388 		pml4index = pdpindex >> NPML4EPGSHIFT;
1389 
1390 		pml4 = &pmap->pm_pml4[pml4index];
1391 		if ((*pml4 & VPTE_V) == 0) {
1392 			/* Have to allocate a new PDP page, recurse */
1393 			if (_pmap_allocpte(pmap, NUPDE + NUPDPE + pml4index)
1394 			     == NULL) {
1395 				--m->wire_count;
1396 				vm_page_free(m);
1397 				return (NULL);
1398 			}
1399 		} else {
1400 			/* Add reference to the PDP page */
1401 			pdppg = PHYS_TO_VM_PAGE(*pml4 & VPTE_FRAME);
1402 			pdppg->hold_count++;
1403 		}
1404 		pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & VPTE_FRAME);
1405 
1406 		/* Now find the pdp page */
1407 		pdp = &pdp[pdpindex & ((1ul << NPDPEPGSHIFT) - 1)];
1408 		KKASSERT(*pdp == 0);	/* JG DEBUG64 */
1409 		*pdp = VM_PAGE_TO_PHYS(m) | VPTE_RW | VPTE_V | VPTE_U |
1410 		       VPTE_A | VPTE_M;
1411 	} else {
1412 		vm_pindex_t pml4index;
1413 		vm_pindex_t pdpindex;
1414 		pml4_entry_t *pml4;
1415 		pdp_entry_t *pdp;
1416 		pd_entry_t *pd;
1417 
1418 		/* Wire up a new PT page */
1419 		pdpindex = ptepindex >> NPDPEPGSHIFT;
1420 		pml4index = pdpindex >> NPML4EPGSHIFT;
1421 
1422 		/* First, find the pdp and check that its valid. */
1423 		pml4 = &pmap->pm_pml4[pml4index];
1424 		if ((*pml4 & VPTE_V) == 0) {
1425 			/* We miss a PDP page. We ultimately need a PD page.
1426 			 * Recursively allocating a PD page will allocate
1427 			 * the missing PDP page and will also allocate
1428 			 * the PD page we need.
1429 			 */
1430 			/* Have to allocate a new PD page, recurse */
1431 			if (_pmap_allocpte(pmap, NUPDE + pdpindex)
1432 			     == NULL) {
1433 				--m->wire_count;
1434 				vm_page_free(m);
1435 				return (NULL);
1436 			}
1437 			pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & VPTE_FRAME);
1438 			pdp = &pdp[pdpindex & ((1ul << NPDPEPGSHIFT) - 1)];
1439 		} else {
1440 			pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & VPTE_FRAME);
1441 			pdp = &pdp[pdpindex & ((1ul << NPDPEPGSHIFT) - 1)];
1442 			if ((*pdp & VPTE_V) == 0) {
1443 				/* Have to allocate a new PD page, recurse */
1444 				if (_pmap_allocpte(pmap, NUPDE + pdpindex)
1445 				     == NULL) {
1446 					--m->wire_count;
1447 					vm_page_free(m);
1448 					return (NULL);
1449 				}
1450 			} else {
1451 				/* Add reference to the PD page */
1452 				pdpg = PHYS_TO_VM_PAGE(*pdp & VPTE_FRAME);
1453 				pdpg->hold_count++;
1454 			}
1455 		}
1456 		pd = (pd_entry_t *)PHYS_TO_DMAP(*pdp & VPTE_FRAME);
1457 
1458 		/* Now we know where the page directory page is */
1459 		pd = &pd[ptepindex & ((1ul << NPDEPGSHIFT) - 1)];
1460 		KKASSERT(*pd == 0);	/* JG DEBUG64 */
1461 		*pd = VM_PAGE_TO_PHYS(m) | VPTE_RW | VPTE_V | VPTE_U |
1462 		      VPTE_A | VPTE_M;
1463 	}
1464 
1465 	/*
1466 	 * Set the page table hint
1467 	 */
1468 	pmap->pm_ptphint = m;
1469 	vm_page_flag_set(m, PG_MAPPED);
1470 	vm_page_wakeup(m);
1471 
1472 	return m;
1473 }
1474 
1475 /*
1476  * Determine the page table page required to access the VA in the pmap
1477  * and allocate it if necessary.  Return a held vm_page_t for the page.
1478  *
1479  * Only used with user pmaps.
1480  */
1481 static vm_page_t
1482 pmap_allocpte(pmap_t pmap, vm_offset_t va)
1483 {
1484 	vm_pindex_t ptepindex;
1485 	pd_entry_t *pd;
1486 	vm_page_t m;
1487 
1488 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(pmap->pm_pteobj));
1489 
1490 	/*
1491 	 * Calculate pagetable page index
1492 	 */
1493 	ptepindex = pmap_pde_pindex(va);
1494 
1495 	/*
1496 	 * Get the page directory entry
1497 	 */
1498 	pd = pmap_pde(pmap, va);
1499 
1500 	/*
1501 	 * This supports switching from a 2MB page to a
1502 	 * normal 4K page.
1503 	 */
1504 	if (pd != NULL && (*pd & (VPTE_PS | VPTE_V)) == (VPTE_PS | VPTE_V)) {
1505 		panic("no promotion/demotion yet");
1506 		*pd = 0;
1507 		pd = NULL;
1508 		/*cpu_invltlb();*/
1509 		/*smp_invltlb();*/
1510 	}
1511 
1512 	/*
1513 	 * If the page table page is mapped, we just increment the
1514 	 * hold count, and activate it.
1515 	 */
1516 	if (pd != NULL && (*pd & VPTE_V) != 0) {
1517 		/* YYY hint is used here on i386 */
1518 		m = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
1519 		pmap->pm_ptphint = m;
1520 		vm_page_hold(m);
1521 		vm_page_wakeup(m);
1522 		return m;
1523 	}
1524 	/*
1525 	 * Here if the pte page isn't mapped, or if it has been deallocated.
1526 	 */
1527 	return _pmap_allocpte(pmap, ptepindex);
1528 }
1529 
1530 
1531 /***************************************************
1532  * Pmap allocation/deallocation routines.
1533  ***************************************************/
1534 
1535 /*
1536  * Release any resources held by the given physical map.
1537  * Called when a pmap initialized by pmap_pinit is being released.
1538  * Should only be called if the map contains no valid mappings.
1539  *
1540  * Caller must hold pmap->pm_token
1541  */
1542 static int pmap_release_callback(struct vm_page *p, void *data);
1543 
1544 void
1545 pmap_release(struct pmap *pmap)
1546 {
1547 	vm_object_t object = pmap->pm_pteobj;
1548 	struct rb_vm_page_scan_info info;
1549 
1550 	KKASSERT(pmap != &kernel_pmap);
1551 
1552 	lwkt_gettoken(&vm_token);
1553 #if defined(DIAGNOSTIC)
1554 	if (object->ref_count != 1)
1555 		panic("pmap_release: pteobj reference count != 1");
1556 #endif
1557 
1558 	info.pmap = pmap;
1559 	info.object = object;
1560 
1561 	KASSERT(CPUMASK_TESTZERO(pmap->pm_active),
1562 		("pmap %p still active! %016jx",
1563 		pmap,
1564 		(uintmax_t)CPUMASK_LOWMASK(pmap->pm_active)));
1565 
1566 	spin_lock(&pmap_spin);
1567 	TAILQ_REMOVE(&pmap_list, pmap, pm_pmnode);
1568 	spin_unlock(&pmap_spin);
1569 
1570 	vm_object_hold(object);
1571 	do {
1572 		info.error = 0;
1573 		info.mpte = NULL;
1574 		info.limit = object->generation;
1575 
1576 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
1577 				        pmap_release_callback, &info);
1578 		if (info.error == 0 && info.mpte) {
1579 			if (!pmap_release_free_page(pmap, info.mpte))
1580 				info.error = 1;
1581 		}
1582 	} while (info.error);
1583 	vm_object_drop(object);
1584 	lwkt_reltoken(&vm_token);
1585 }
1586 
1587 static int
1588 pmap_release_callback(struct vm_page *p, void *data)
1589 {
1590 	struct rb_vm_page_scan_info *info = data;
1591 
1592 	if (p->pindex == NUPDE + NUPDPE + PML4PML4I) {
1593 		info->mpte = p;
1594 		return(0);
1595 	}
1596 	if (!pmap_release_free_page(info->pmap, p)) {
1597 		info->error = 1;
1598 		return(-1);
1599 	}
1600 	if (info->object->generation != info->limit) {
1601 		info->error = 1;
1602 		return(-1);
1603 	}
1604 	return(0);
1605 }
1606 
1607 /*
1608  * Grow the number of kernel page table entries, if needed.
1609  *
1610  * No requirements.
1611  */
1612 void
1613 pmap_growkernel(vm_offset_t kstart, vm_offset_t kend)
1614 {
1615 	vm_offset_t addr;
1616 	vm_paddr_t paddr;
1617 	vm_offset_t ptppaddr;
1618 	vm_page_t nkpg;
1619 	pd_entry_t *pde, newpdir;
1620 	pdp_entry_t newpdp;
1621 
1622 	addr = kend;
1623 
1624 	vm_object_hold(kptobj);
1625 	if (kernel_vm_end == 0) {
1626 		kernel_vm_end = KvaStart;
1627 		nkpt = 0;
1628 		while ((*pmap_pde(&kernel_pmap, kernel_vm_end) & VPTE_V) != 0) {
1629 			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1630 			nkpt++;
1631 			if (kernel_vm_end - 1 >= kernel_map.max_offset) {
1632 				kernel_vm_end = kernel_map.max_offset;
1633 				break;
1634 			}
1635 		}
1636 	}
1637 	addr = roundup2(addr, PAGE_SIZE * NPTEPG);
1638 	if (addr - 1 >= kernel_map.max_offset)
1639 		addr = kernel_map.max_offset;
1640 	while (kernel_vm_end < addr) {
1641 		pde = pmap_pde(&kernel_pmap, kernel_vm_end);
1642 		if (pde == NULL) {
1643 			/* We need a new PDP entry */
1644 			nkpg = vm_page_alloc(kptobj, nkpt,
1645 			                     VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM
1646 					     | VM_ALLOC_INTERRUPT);
1647 			if (nkpg == NULL) {
1648 				panic("pmap_growkernel: no memory to "
1649 				      "grow kernel");
1650 			}
1651 			paddr = VM_PAGE_TO_PHYS(nkpg);
1652 			if ((nkpg->flags & PG_ZERO) == 0)
1653 				pmap_zero_page(paddr);
1654 			vm_page_flag_clear(nkpg, PG_ZERO);
1655 			newpdp = (pdp_entry_t)(paddr |
1656 			    VPTE_V | VPTE_RW | VPTE_U |
1657 			    VPTE_A | VPTE_M);
1658 			*pmap_pdpe(&kernel_pmap, kernel_vm_end) = newpdp;
1659 			nkpt++;
1660 			continue; /* try again */
1661 		}
1662 		if ((*pde & VPTE_V) != 0) {
1663 			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) &
1664 					~(PAGE_SIZE * NPTEPG - 1);
1665 			if (kernel_vm_end - 1 >= kernel_map.max_offset) {
1666 				kernel_vm_end = kernel_map.max_offset;
1667 				break;
1668 			}
1669 			continue;
1670 		}
1671 
1672 		/*
1673 		 * This index is bogus, but out of the way
1674 		 */
1675 		nkpg = vm_page_alloc(kptobj, nkpt,
1676 				     VM_ALLOC_NORMAL |
1677 				     VM_ALLOC_SYSTEM |
1678 				     VM_ALLOC_INTERRUPT);
1679 		if (nkpg == NULL)
1680 			panic("pmap_growkernel: no memory to grow kernel");
1681 
1682 		vm_page_wire(nkpg);
1683 		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1684 		pmap_zero_page(ptppaddr);
1685 		vm_page_flag_clear(nkpg, PG_ZERO);
1686 		newpdir = (pd_entry_t)(ptppaddr |
1687 		    VPTE_V | VPTE_RW | VPTE_U |
1688 		    VPTE_A | VPTE_M);
1689 		*pmap_pde(&kernel_pmap, kernel_vm_end) = newpdir;
1690 		nkpt++;
1691 
1692 		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) &
1693 				~(PAGE_SIZE * NPTEPG - 1);
1694 		if (kernel_vm_end - 1 >= kernel_map.max_offset) {
1695 			kernel_vm_end = kernel_map.max_offset;
1696 			break;
1697 		}
1698 	}
1699 	vm_object_drop(kptobj);
1700 }
1701 
1702 /*
1703  * Add a reference to the specified pmap.
1704  *
1705  * No requirements.
1706  */
1707 void
1708 pmap_reference(pmap_t pmap)
1709 {
1710 	if (pmap) {
1711 		lwkt_gettoken(&vm_token);
1712 		++pmap->pm_count;
1713 		lwkt_reltoken(&vm_token);
1714 	}
1715 }
1716 
1717 /************************************************************************
1718  *	   		VMSPACE MANAGEMENT				*
1719  ************************************************************************
1720  *
1721  * The VMSPACE management we do in our virtual kernel must be reflected
1722  * in the real kernel.  This is accomplished by making vmspace system
1723  * calls to the real kernel.
1724  */
1725 void
1726 cpu_vmspace_alloc(struct vmspace *vm)
1727 {
1728 	int r;
1729 	void *rp;
1730 	vpte_t vpte;
1731 
1732 	/*
1733 	 * If VMM enable, don't do nothing, we
1734 	 * are able to use real page tables
1735 	 */
1736 	if (vmm_enabled)
1737 		return;
1738 
1739 #define USER_SIZE	(VM_MAX_USER_ADDRESS - VM_MIN_USER_ADDRESS)
1740 
1741 	if (vmspace_create(&vm->vm_pmap, 0, NULL) < 0)
1742 		panic("vmspace_create() failed");
1743 
1744 	rp = vmspace_mmap(&vm->vm_pmap, VM_MIN_USER_ADDRESS, USER_SIZE,
1745 			  PROT_READ|PROT_WRITE,
1746 			  MAP_FILE|MAP_SHARED|MAP_VPAGETABLE|MAP_FIXED,
1747 			  MemImageFd, 0);
1748 	if (rp == MAP_FAILED)
1749 		panic("vmspace_mmap: failed");
1750 	vmspace_mcontrol(&vm->vm_pmap, VM_MIN_USER_ADDRESS, USER_SIZE,
1751 			 MADV_NOSYNC, 0);
1752 	vpte = VM_PAGE_TO_PHYS(vmspace_pmap(vm)->pm_pdirm) | VPTE_RW | VPTE_V | VPTE_U;
1753 	r = vmspace_mcontrol(&vm->vm_pmap, VM_MIN_USER_ADDRESS, USER_SIZE,
1754 			     MADV_SETMAP, vpte);
1755 	if (r < 0)
1756 		panic("vmspace_mcontrol: failed");
1757 }
1758 
1759 void
1760 cpu_vmspace_free(struct vmspace *vm)
1761 {
1762 	/*
1763 	 * If VMM enable, don't do nothing, we
1764 	 * are able to use real page tables
1765 	 */
1766 	if (vmm_enabled)
1767 		return;
1768 
1769 	if (vmspace_destroy(&vm->vm_pmap) < 0)
1770 		panic("vmspace_destroy() failed");
1771 }
1772 
1773 /***************************************************
1774 * page management routines.
1775  ***************************************************/
1776 
1777 /*
1778  * free the pv_entry back to the free list.  This function may be
1779  * called from an interrupt.
1780  */
1781 static __inline void
1782 free_pv_entry(pv_entry_t pv)
1783 {
1784 	pv_entry_count--;
1785 	KKASSERT(pv_entry_count >= 0);
1786 	zfree(pvzone, pv);
1787 }
1788 
1789 /*
1790  * get a new pv_entry, allocating a block from the system
1791  * when needed.  This function may be called from an interrupt.
1792  */
1793 static pv_entry_t
1794 get_pv_entry(void)
1795 {
1796 	pv_entry_count++;
1797 	if (pv_entry_high_water &&
1798 		(pv_entry_count > pv_entry_high_water) &&
1799 		(pmap_pagedaemon_waken == 0)) {
1800 		pmap_pagedaemon_waken = 1;
1801 		wakeup(&vm_pages_needed);
1802 	}
1803 	return zalloc(pvzone);
1804 }
1805 
1806 /*
1807  * This routine is very drastic, but can save the system
1808  * in a pinch.
1809  *
1810  * No requirements.
1811  */
1812 void
1813 pmap_collect(void)
1814 {
1815 	int i;
1816 	vm_page_t m;
1817 	static int warningdone=0;
1818 
1819 	if (pmap_pagedaemon_waken == 0)
1820 		return;
1821 	lwkt_gettoken(&vm_token);
1822 	pmap_pagedaemon_waken = 0;
1823 
1824 	if (warningdone < 5) {
1825 		kprintf("pmap_collect: collecting pv entries -- "
1826 			"suggest increasing PMAP_SHPGPERPROC\n");
1827 		warningdone++;
1828 	}
1829 
1830 	for (i = 0; i < vm_page_array_size; i++) {
1831 		m = &vm_page_array[i];
1832 		if (m->wire_count || m->hold_count)
1833 			continue;
1834 		if (vm_page_busy_try(m, TRUE) == 0) {
1835 			if (m->wire_count == 0 && m->hold_count == 0) {
1836 				pmap_remove_all(m);
1837 			}
1838 			vm_page_wakeup(m);
1839 		}
1840 	}
1841 	lwkt_reltoken(&vm_token);
1842 }
1843 
1844 
1845 /*
1846  * If it is the first entry on the list, it is actually
1847  * in the header and we must copy the following entry up
1848  * to the header.  Otherwise we must search the list for
1849  * the entry.  In either case we free the now unused entry.
1850  *
1851  * caller must hold vm_token.
1852  */
1853 static int
1854 pmap_remove_entry(struct pmap *pmap, vm_page_t m, vm_offset_t va)
1855 {
1856 	pv_entry_t pv;
1857 	int rtval;
1858 
1859 	if (m->md.pv_list_count < pmap->pm_stats.resident_count) {
1860 		TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
1861 			if (pmap == pv->pv_pmap && va == pv->pv_va)
1862 				break;
1863 		}
1864 	} else {
1865 		TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
1866 			if (va == pv->pv_va)
1867 				break;
1868 		}
1869 	}
1870 
1871 	/*
1872 	 * Note that pv_ptem is NULL if the page table page itself is not
1873 	 * managed, even if the page being removed IS managed.
1874 	 */
1875 	rtval = 0;
1876 	/* JGXXX When can 'pv' be NULL? */
1877 	if (pv) {
1878 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1879 		m->md.pv_list_count--;
1880 		atomic_add_int(&m->object->agg_pv_list_count, -1);
1881 		KKASSERT(m->md.pv_list_count >= 0);
1882 		if (TAILQ_EMPTY(&m->md.pv_list))
1883 			vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
1884 		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1885 		++pmap->pm_generation;
1886 		KKASSERT(pmap->pm_pteobj != NULL);
1887 		vm_object_hold(pmap->pm_pteobj);
1888 		rtval = pmap_unuse_pt(pmap, va, pv->pv_ptem);
1889 		vm_object_drop(pmap->pm_pteobj);
1890 		free_pv_entry(pv);
1891 	}
1892 	return rtval;
1893 }
1894 
1895 /*
1896  * Create a pv entry for page at pa for (pmap, va).  If the page table page
1897  * holding the VA is managed, mpte will be non-NULL.
1898  */
1899 static void
1900 pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t mpte, vm_page_t m)
1901 {
1902 	pv_entry_t pv;
1903 
1904 	crit_enter();
1905 	pv = get_pv_entry();
1906 	pv->pv_va = va;
1907 	pv->pv_pmap = pmap;
1908 	pv->pv_ptem = mpte;
1909 
1910 	TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1911 	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1912 	m->md.pv_list_count++;
1913 	atomic_add_int(&m->object->agg_pv_list_count, 1);
1914 
1915 	crit_exit();
1916 }
1917 
1918 /*
1919  * pmap_remove_pte: do the things to unmap a page in a process
1920  */
1921 static int
1922 pmap_remove_pte(struct pmap *pmap, pt_entry_t *ptq, vm_offset_t va)
1923 {
1924 	pt_entry_t oldpte;
1925 	vm_page_t m;
1926 
1927 	oldpte = pmap_inval_loadandclear(ptq, pmap, va);
1928 	if (oldpte & VPTE_WIRED)
1929 		--pmap->pm_stats.wired_count;
1930 	KKASSERT(pmap->pm_stats.wired_count >= 0);
1931 
1932 #if 0
1933 	/*
1934 	 * Machines that don't support invlpg, also don't support
1935 	 * PG_G.  XXX PG_G is disabled for SMP so don't worry about
1936 	 * the SMP case.
1937 	 */
1938 	if (oldpte & PG_G)
1939 		cpu_invlpg((void *)va);
1940 #endif
1941 	KKASSERT(pmap->pm_stats.resident_count > 0);
1942 	--pmap->pm_stats.resident_count;
1943 	if (oldpte & VPTE_MANAGED) {
1944 		m = PHYS_TO_VM_PAGE(oldpte);
1945 		if (oldpte & VPTE_M) {
1946 #if defined(PMAP_DIAGNOSTIC)
1947 			if (pmap_nw_modified(oldpte)) {
1948 				kprintf("pmap_remove: modified page not "
1949 					"writable: va: 0x%lx, pte: 0x%lx\n",
1950 					va, oldpte);
1951 			}
1952 #endif
1953 			if (pmap_track_modified(pmap, va))
1954 				vm_page_dirty(m);
1955 		}
1956 		if (oldpte & VPTE_A)
1957 			vm_page_flag_set(m, PG_REFERENCED);
1958 		return pmap_remove_entry(pmap, m, va);
1959 	} else {
1960 		return pmap_unuse_pt(pmap, va, NULL);
1961 	}
1962 
1963 	return 0;
1964 }
1965 
1966 /*
1967  * pmap_remove_page:
1968  *
1969  *	Remove a single page from a process address space.
1970  *
1971  *	This function may not be called from an interrupt if the pmap is
1972  *	not kernel_pmap.
1973  */
1974 static void
1975 pmap_remove_page(struct pmap *pmap, vm_offset_t va)
1976 {
1977 	pt_entry_t *pte;
1978 
1979 	pte = pmap_pte(pmap, va);
1980 	if (pte == NULL)
1981 		return;
1982 	if ((*pte & VPTE_V) == 0)
1983 		return;
1984 	pmap_remove_pte(pmap, pte, va);
1985 }
1986 
1987 /*
1988  * Remove the given range of addresses from the specified map.
1989  *
1990  * It is assumed that the start and end are properly rounded to
1991  * the page size.
1992  *
1993  * This function may not be called from an interrupt if the pmap is
1994  * not kernel_pmap.
1995  *
1996  * No requirements.
1997  */
1998 void
1999 pmap_remove(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
2000 {
2001 	vm_offset_t va_next;
2002 	pml4_entry_t *pml4e;
2003 	pdp_entry_t *pdpe;
2004 	pd_entry_t ptpaddr, *pde;
2005 	pt_entry_t *pte;
2006 
2007 	if (pmap == NULL)
2008 		return;
2009 
2010 	vm_object_hold(pmap->pm_pteobj);
2011 	lwkt_gettoken(&vm_token);
2012 	KKASSERT(pmap->pm_stats.resident_count >= 0);
2013 	if (pmap->pm_stats.resident_count == 0) {
2014 		lwkt_reltoken(&vm_token);
2015 		vm_object_drop(pmap->pm_pteobj);
2016 		return;
2017 	}
2018 
2019 	/*
2020 	 * special handling of removing one page.  a very
2021 	 * common operation and easy to short circuit some
2022 	 * code.
2023 	 */
2024 	if (sva + PAGE_SIZE == eva) {
2025 		pde = pmap_pde(pmap, sva);
2026 		if (pde && (*pde & VPTE_PS) == 0) {
2027 			pmap_remove_page(pmap, sva);
2028 			lwkt_reltoken(&vm_token);
2029 			vm_object_drop(pmap->pm_pteobj);
2030 			return;
2031 		}
2032 	}
2033 
2034 	for (; sva < eva; sva = va_next) {
2035 		pml4e = pmap_pml4e(pmap, sva);
2036 		if ((*pml4e & VPTE_V) == 0) {
2037 			va_next = (sva + NBPML4) & ~PML4MASK;
2038 			if (va_next < sva)
2039 				va_next = eva;
2040 			continue;
2041 		}
2042 
2043 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
2044 		if ((*pdpe & VPTE_V) == 0) {
2045 			va_next = (sva + NBPDP) & ~PDPMASK;
2046 			if (va_next < sva)
2047 				va_next = eva;
2048 			continue;
2049 		}
2050 
2051 		/*
2052 		 * Calculate index for next page table.
2053 		 */
2054 		va_next = (sva + NBPDR) & ~PDRMASK;
2055 		if (va_next < sva)
2056 			va_next = eva;
2057 
2058 		pde = pmap_pdpe_to_pde(pdpe, sva);
2059 		ptpaddr = *pde;
2060 
2061 		/*
2062 		 * Weed out invalid mappings.
2063 		 */
2064 		if (ptpaddr == 0)
2065 			continue;
2066 
2067 		/*
2068 		 * Check for large page.
2069 		 */
2070 		if ((ptpaddr & VPTE_PS) != 0) {
2071 			/* JG FreeBSD has more complex treatment here */
2072 			KKASSERT(*pde != 0);
2073 			pmap_inval_pde(pde, pmap, sva);
2074 			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2075 			continue;
2076 		}
2077 
2078 		/*
2079 		 * Limit our scan to either the end of the va represented
2080 		 * by the current page table page, or to the end of the
2081 		 * range being removed.
2082 		 */
2083 		if (va_next > eva)
2084 			va_next = eva;
2085 
2086 		/*
2087 		 * NOTE: pmap_remove_pte() can block.
2088 		 */
2089 		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
2090 		    sva += PAGE_SIZE) {
2091 			if (*pte == 0)
2092 				continue;
2093 			if (pmap_remove_pte(pmap, pte, sva))
2094 				break;
2095 		}
2096 	}
2097 	lwkt_reltoken(&vm_token);
2098 	vm_object_drop(pmap->pm_pteobj);
2099 }
2100 
2101 /*
2102  * Removes this physical page from all physical maps in which it resides.
2103  * Reflects back modify bits to the pager.
2104  *
2105  * This routine may not be called from an interrupt.
2106  *
2107  * No requirements.
2108  */
2109 static void
2110 pmap_remove_all(vm_page_t m)
2111 {
2112 	pt_entry_t *pte, tpte;
2113 	pv_entry_t pv;
2114 
2115 #if defined(PMAP_DIAGNOSTIC)
2116 	/*
2117 	 * XXX this makes pmap_page_protect(NONE) illegal for non-managed
2118 	 * pages!
2119 	 */
2120 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
2121 		panic("pmap_page_protect: illegal for unmanaged page, va: 0x%08llx", (long long)VM_PAGE_TO_PHYS(m));
2122 	}
2123 #endif
2124 
2125 	lwkt_gettoken(&vm_token);
2126 	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2127 		KKASSERT(pv->pv_pmap->pm_stats.resident_count > 0);
2128 		--pv->pv_pmap->pm_stats.resident_count;
2129 
2130 		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2131 		KKASSERT(pte != NULL);
2132 
2133 		tpte = pmap_inval_loadandclear(pte, pv->pv_pmap, pv->pv_va);
2134 		if (tpte & VPTE_WIRED)
2135 			pv->pv_pmap->pm_stats.wired_count--;
2136 		KKASSERT(pv->pv_pmap->pm_stats.wired_count >= 0);
2137 
2138 		if (tpte & VPTE_A)
2139 			vm_page_flag_set(m, PG_REFERENCED);
2140 
2141 		/*
2142 		 * Update the vm_page_t clean and reference bits.
2143 		 */
2144 		if (tpte & VPTE_M) {
2145 #if defined(PMAP_DIAGNOSTIC)
2146 			if (pmap_nw_modified(tpte)) {
2147 				kprintf(
2148 	"pmap_remove_all: modified page not writable: va: 0x%lx, pte: 0x%lx\n",
2149 				    pv->pv_va, tpte);
2150 			}
2151 #endif
2152 			if (pmap_track_modified(pv->pv_pmap, pv->pv_va))
2153 				vm_page_dirty(m);
2154 		}
2155 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2156 		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
2157 		++pv->pv_pmap->pm_generation;
2158 		m->md.pv_list_count--;
2159 		atomic_add_int(&m->object->agg_pv_list_count, -1);
2160 		KKASSERT(m->md.pv_list_count >= 0);
2161 		if (TAILQ_EMPTY(&m->md.pv_list))
2162 			vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
2163 		vm_object_hold(pv->pv_pmap->pm_pteobj);
2164 		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
2165 		vm_object_drop(pv->pv_pmap->pm_pteobj);
2166 		free_pv_entry(pv);
2167 	}
2168 	KKASSERT((m->flags & (PG_MAPPED|PG_WRITEABLE)) == 0);
2169 	lwkt_reltoken(&vm_token);
2170 }
2171 
2172 /*
2173  * Set the physical protection on the specified range of this map
2174  * as requested.
2175  *
2176  * This function may not be called from an interrupt if the map is
2177  * not the kernel_pmap.
2178  *
2179  * No requirements.
2180  */
2181 void
2182 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2183 {
2184 	vm_offset_t va_next;
2185 	pml4_entry_t *pml4e;
2186 	pdp_entry_t *pdpe;
2187 	pd_entry_t ptpaddr, *pde;
2188 	pt_entry_t *pte;
2189 
2190 	/* JG review for NX */
2191 
2192 	if (pmap == NULL)
2193 		return;
2194 
2195 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2196 		pmap_remove(pmap, sva, eva);
2197 		return;
2198 	}
2199 
2200 	if (prot & VM_PROT_WRITE)
2201 		return;
2202 
2203 	lwkt_gettoken(&vm_token);
2204 
2205 	for (; sva < eva; sva = va_next) {
2206 
2207 		pml4e = pmap_pml4e(pmap, sva);
2208 		if ((*pml4e & VPTE_V) == 0) {
2209 			va_next = (sva + NBPML4) & ~PML4MASK;
2210 			if (va_next < sva)
2211 				va_next = eva;
2212 			continue;
2213 		}
2214 
2215 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
2216 		if ((*pdpe & VPTE_V) == 0) {
2217 			va_next = (sva + NBPDP) & ~PDPMASK;
2218 			if (va_next < sva)
2219 				va_next = eva;
2220 			continue;
2221 		}
2222 
2223 		va_next = (sva + NBPDR) & ~PDRMASK;
2224 		if (va_next < sva)
2225 			va_next = eva;
2226 
2227 		pde = pmap_pdpe_to_pde(pdpe, sva);
2228 		ptpaddr = *pde;
2229 
2230 		/*
2231 		 * Check for large page.
2232 		 */
2233 		if ((ptpaddr & VPTE_PS) != 0) {
2234 			/* JG correct? */
2235 			pmap_clean_pde(pde, pmap, sva);
2236 			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2237 			continue;
2238 		}
2239 
2240 		/*
2241 		 * Weed out invalid mappings. Note: we assume that the page
2242 		 * directory table is always allocated, and in kernel virtual.
2243 		 */
2244 		if (ptpaddr == 0)
2245 			continue;
2246 
2247 		if (va_next > eva)
2248 			va_next = eva;
2249 
2250 		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
2251 		    sva += PAGE_SIZE) {
2252 			pt_entry_t pbits;
2253 			vm_page_t m;
2254 
2255 			/*
2256 			 * Clean managed pages and also check the accessed
2257 			 * bit.  Just remove write perms for unmanaged
2258 			 * pages.  Be careful of races, turning off write
2259 			 * access will force a fault rather then setting
2260 			 * the modified bit at an unexpected time.
2261 			 */
2262 			if (*pte & VPTE_MANAGED) {
2263 				pbits = pmap_clean_pte(pte, pmap, sva);
2264 				m = NULL;
2265 				if (pbits & VPTE_A) {
2266 					m = PHYS_TO_VM_PAGE(pbits & VPTE_FRAME);
2267 					vm_page_flag_set(m, PG_REFERENCED);
2268 					atomic_clear_long(pte, VPTE_A);
2269 				}
2270 				if (pbits & VPTE_M) {
2271 					if (pmap_track_modified(pmap, sva)) {
2272 						if (m == NULL)
2273 							m = PHYS_TO_VM_PAGE(pbits & VPTE_FRAME);
2274 						vm_page_dirty(m);
2275 					}
2276 				}
2277 			} else {
2278 				pbits = pmap_setro_pte(pte, pmap, sva);
2279 			}
2280 		}
2281 	}
2282 	lwkt_reltoken(&vm_token);
2283 }
2284 
2285 /*
2286  * Enter a managed page into a pmap.  If the page is not wired related pmap
2287  * data can be destroyed at any time for later demand-operation.
2288  *
2289  * Insert the vm_page (m) at virtual address (v) in (pmap), with the
2290  * specified protection, and wire the mapping if requested.
2291  *
2292  * NOTE: This routine may not lazy-evaluate or lose information.  The
2293  * page must actually be inserted into the given map NOW.
2294  *
2295  * NOTE: When entering a page at a KVA address, the pmap must be the
2296  * kernel_pmap.
2297  *
2298  * No requirements.
2299  */
2300 void
2301 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
2302 	   boolean_t wired, vm_map_entry_t entry __unused)
2303 {
2304 	vm_paddr_t pa;
2305 	pd_entry_t *pde;
2306 	pt_entry_t *pte;
2307 	vm_paddr_t opa;
2308 	pt_entry_t origpte, newpte;
2309 	vm_page_t mpte;
2310 
2311 	if (pmap == NULL)
2312 		return;
2313 
2314 	va = trunc_page(va);
2315 
2316 	vm_object_hold(pmap->pm_pteobj);
2317 	lwkt_gettoken(&vm_token);
2318 
2319 	/*
2320 	 * Get the page table page.   The kernel_pmap's page table pages
2321 	 * are preallocated and have no associated vm_page_t.
2322 	 */
2323 	if (pmap == &kernel_pmap)
2324 		mpte = NULL;
2325 	else
2326 		mpte = pmap_allocpte(pmap, va);
2327 
2328 	pde = pmap_pde(pmap, va);
2329 	if (pde != NULL && (*pde & VPTE_V) != 0) {
2330 		if ((*pde & VPTE_PS) != 0)
2331 			panic("pmap_enter: attempted pmap_enter on 2MB page");
2332 		pte = pmap_pde_to_pte(pde, va);
2333 	} else {
2334 		panic("pmap_enter: invalid page directory va=%#lx", va);
2335 	}
2336 
2337 	KKASSERT(pte != NULL);
2338 	/*
2339 	 * Deal with races on the original mapping (though don't worry
2340 	 * about VPTE_A races) by cleaning it.  This will force a fault
2341 	 * if an attempt is made to write to the page.
2342 	 */
2343 	pa = VM_PAGE_TO_PHYS(m);
2344 	origpte = pmap_clean_pte(pte, pmap, va);
2345 	opa = origpte & VPTE_FRAME;
2346 
2347 	if (origpte & VPTE_PS)
2348 		panic("pmap_enter: attempted pmap_enter on 2MB page");
2349 
2350 	/*
2351 	 * Mapping has not changed, must be protection or wiring change.
2352 	 */
2353 	if (origpte && (opa == pa)) {
2354 		/*
2355 		 * Wiring change, just update stats. We don't worry about
2356 		 * wiring PT pages as they remain resident as long as there
2357 		 * are valid mappings in them. Hence, if a user page is wired,
2358 		 * the PT page will be also.
2359 		 */
2360 		if (wired && ((origpte & VPTE_WIRED) == 0))
2361 			++pmap->pm_stats.wired_count;
2362 		else if (!wired && (origpte & VPTE_WIRED))
2363 			--pmap->pm_stats.wired_count;
2364 
2365 		/*
2366 		 * Remove the extra pte reference.  Note that we cannot
2367 		 * optimize the RO->RW case because we have adjusted the
2368 		 * wiring count above and may need to adjust the wiring
2369 		 * bits below.
2370 		 */
2371 		if (mpte)
2372 			mpte->hold_count--;
2373 
2374 		/*
2375 		 * We might be turning off write access to the page,
2376 		 * so we go ahead and sense modify status.
2377 		 */
2378 		if (origpte & VPTE_MANAGED) {
2379 			if ((origpte & VPTE_M) &&
2380 			    pmap_track_modified(pmap, va)) {
2381 				vm_page_t om;
2382 				om = PHYS_TO_VM_PAGE(opa);
2383 				vm_page_dirty(om);
2384 			}
2385 			pa |= VPTE_MANAGED;
2386 			KKASSERT(m->flags & PG_MAPPED);
2387 		}
2388 		goto validate;
2389 	}
2390 	/*
2391 	 * Mapping has changed, invalidate old range and fall through to
2392 	 * handle validating new mapping.
2393 	 */
2394 	if (opa) {
2395 		int err;
2396 		err = pmap_remove_pte(pmap, pte, va);
2397 		if (err)
2398 			panic("pmap_enter: pte vanished, va: 0x%lx", va);
2399 	}
2400 
2401 	/*
2402 	 * Enter on the PV list if part of our managed memory. Note that we
2403 	 * raise IPL while manipulating pv_table since pmap_enter can be
2404 	 * called at interrupt time.
2405 	 */
2406 	if (pmap_initialized &&
2407 	    (m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
2408 		pmap_insert_entry(pmap, va, mpte, m);
2409 		pa |= VPTE_MANAGED;
2410 		vm_page_flag_set(m, PG_MAPPED);
2411 	}
2412 
2413 	/*
2414 	 * Increment counters
2415 	 */
2416 	++pmap->pm_stats.resident_count;
2417 	if (wired)
2418 		pmap->pm_stats.wired_count++;
2419 
2420 validate:
2421 	/*
2422 	 * Now validate mapping with desired protection/wiring.
2423 	 */
2424 	newpte = (pt_entry_t) (pa | pte_prot(pmap, prot) | VPTE_V | VPTE_U);
2425 
2426 	if (wired)
2427 		newpte |= VPTE_WIRED;
2428 //	if (pmap != &kernel_pmap)
2429 		newpte |= VPTE_U;
2430 
2431 	/*
2432 	 * If the mapping or permission bits are different from the
2433 	 * (now cleaned) original pte, an update is needed.  We've
2434 	 * already downgraded or invalidated the page so all we have
2435 	 * to do now is update the bits.
2436 	 *
2437 	 * XXX should we synchronize RO->RW changes to avoid another
2438 	 * fault?
2439 	 */
2440 	if ((origpte & ~(VPTE_RW|VPTE_M|VPTE_A)) != newpte) {
2441 		*pte = newpte | VPTE_A;
2442 		if (newpte & VPTE_RW)
2443 			vm_page_flag_set(m, PG_WRITEABLE);
2444 	}
2445 	KKASSERT((newpte & VPTE_MANAGED) == 0 || (m->flags & PG_MAPPED));
2446 	lwkt_reltoken(&vm_token);
2447 	vm_object_drop(pmap->pm_pteobj);
2448 }
2449 
2450 /*
2451  * This code works like pmap_enter() but assumes VM_PROT_READ and not-wired.
2452  *
2453  * Currently this routine may only be used on user pmaps, not kernel_pmap.
2454  *
2455  * No requirements.
2456  */
2457 void
2458 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m)
2459 {
2460 	pt_entry_t *pte;
2461 	vm_paddr_t pa;
2462 	vm_page_t mpte;
2463 	vm_pindex_t ptepindex;
2464 	pd_entry_t *ptepa;
2465 
2466 	KKASSERT(pmap != &kernel_pmap);
2467 
2468 	KKASSERT(va >= VM_MIN_USER_ADDRESS && va < VM_MAX_USER_ADDRESS);
2469 
2470 	/*
2471 	 * Calculate pagetable page index
2472 	 */
2473 	ptepindex = pmap_pde_pindex(va);
2474 
2475 	vm_object_hold(pmap->pm_pteobj);
2476 	lwkt_gettoken(&vm_token);
2477 
2478 	do {
2479 		/*
2480 		 * Get the page directory entry
2481 		 */
2482 		ptepa = pmap_pde(pmap, va);
2483 
2484 		/*
2485 		 * If the page table page is mapped, we just increment
2486 		 * the hold count, and activate it.
2487 		 */
2488 		if (ptepa && (*ptepa & VPTE_V) != 0) {
2489 			if (*ptepa & VPTE_PS)
2490 				panic("pmap_enter_quick: unexpected mapping into 2MB page");
2491 			if (pmap->pm_ptphint &&
2492 			    (pmap->pm_ptphint->pindex == ptepindex)) {
2493 				mpte = pmap->pm_ptphint;
2494 			} else {
2495 				mpte = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
2496 				pmap->pm_ptphint = mpte;
2497 				vm_page_wakeup(mpte);
2498 			}
2499 			if (mpte)
2500 				mpte->hold_count++;
2501 		} else {
2502 			mpte = _pmap_allocpte(pmap, ptepindex);
2503 		}
2504 	} while (mpte == NULL);
2505 
2506 	/*
2507 	 * Ok, now that the page table page has been validated, get the pte.
2508 	 * If the pte is already mapped undo mpte's hold_count and
2509 	 * just return.
2510 	 */
2511 	pte = pmap_pte(pmap, va);
2512 	if (*pte & VPTE_V) {
2513 		KKASSERT(mpte != NULL);
2514 		pmap_unwire_pte_hold(pmap, va, mpte);
2515 		pa = VM_PAGE_TO_PHYS(m);
2516 		KKASSERT(((*pte ^ pa) & VPTE_FRAME) == 0);
2517 		lwkt_reltoken(&vm_token);
2518 		vm_object_drop(pmap->pm_pteobj);
2519 		return;
2520 	}
2521 
2522 	/*
2523 	 * Enter on the PV list if part of our managed memory
2524 	 */
2525 	if ((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
2526 		pmap_insert_entry(pmap, va, mpte, m);
2527 		vm_page_flag_set(m, PG_MAPPED);
2528 	}
2529 
2530 	/*
2531 	 * Increment counters
2532 	 */
2533 	++pmap->pm_stats.resident_count;
2534 
2535 	pa = VM_PAGE_TO_PHYS(m);
2536 
2537 	/*
2538 	 * Now validate mapping with RO protection
2539 	 */
2540 	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
2541 		*pte = (vpte_t)pa | VPTE_V | VPTE_U;
2542 	else
2543 		*pte = (vpte_t)pa | VPTE_V | VPTE_U | VPTE_MANAGED;
2544 	/*pmap_inval_add(&info, pmap, va); shouldn't be needed 0->valid */
2545 	/*pmap_inval_flush(&info); don't need for vkernel */
2546 	lwkt_reltoken(&vm_token);
2547 	vm_object_drop(pmap->pm_pteobj);
2548 }
2549 
2550 /*
2551  * Make a temporary mapping for a physical address.  This is only intended
2552  * to be used for panic dumps.
2553  *
2554  * The caller is responsible for calling smp_invltlb().
2555  */
2556 void *
2557 pmap_kenter_temporary(vm_paddr_t pa, long i)
2558 {
2559 	pmap_kenter_quick(crashdumpmap + (i * PAGE_SIZE), pa);
2560 	return ((void *)crashdumpmap);
2561 }
2562 
2563 #define MAX_INIT_PT (96)
2564 
2565 /*
2566  * This routine preloads the ptes for a given object into the specified pmap.
2567  * This eliminates the blast of soft faults on process startup and
2568  * immediately after an mmap.
2569  *
2570  * No requirements.
2571  */
2572 static int pmap_object_init_pt_callback(vm_page_t p, void *data);
2573 
2574 void
2575 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_prot_t prot,
2576 		    vm_object_t object, vm_pindex_t pindex,
2577 		    vm_size_t size, int limit)
2578 {
2579 	struct rb_vm_page_scan_info info;
2580 	struct lwp *lp;
2581 	vm_size_t psize;
2582 
2583 	/*
2584 	 * We can't preinit if read access isn't set or there is no pmap
2585 	 * or object.
2586 	 */
2587 	if ((prot & VM_PROT_READ) == 0 || pmap == NULL || object == NULL)
2588 		return;
2589 
2590 	/*
2591 	 * We can't preinit if the pmap is not the current pmap
2592 	 */
2593 	lp = curthread->td_lwp;
2594 	if (lp == NULL || pmap != vmspace_pmap(lp->lwp_vmspace))
2595 		return;
2596 
2597 	psize = x86_64_btop(size);
2598 
2599 	if ((object->type != OBJT_VNODE) ||
2600 		((limit & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
2601 			(object->resident_page_count > MAX_INIT_PT))) {
2602 		return;
2603 	}
2604 
2605 	if (psize + pindex > object->size) {
2606 		if (object->size < pindex)
2607 			return;
2608 		psize = object->size - pindex;
2609 	}
2610 
2611 	if (psize == 0)
2612 		return;
2613 
2614 	/*
2615 	 * Use a red-black scan to traverse the requested range and load
2616 	 * any valid pages found into the pmap.
2617 	 *
2618 	 * We cannot safely scan the object's memq unless we are in a
2619 	 * critical section since interrupts can remove pages from objects.
2620 	 */
2621 	info.start_pindex = pindex;
2622 	info.end_pindex = pindex + psize - 1;
2623 	info.limit = limit;
2624 	info.mpte = NULL;
2625 	info.addr = addr;
2626 	info.pmap = pmap;
2627 
2628 	vm_object_hold_shared(object);
2629 	vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
2630 				pmap_object_init_pt_callback, &info);
2631 	vm_object_drop(object);
2632 }
2633 
2634 static
2635 int
2636 pmap_object_init_pt_callback(vm_page_t p, void *data)
2637 {
2638 	struct rb_vm_page_scan_info *info = data;
2639 	vm_pindex_t rel_index;
2640 	/*
2641 	 * don't allow an madvise to blow away our really
2642 	 * free pages allocating pv entries.
2643 	 */
2644 	if ((info->limit & MAP_PREFAULT_MADVISE) &&
2645 		vmstats.v_free_count < vmstats.v_free_reserved) {
2646 		    return(-1);
2647 	}
2648 
2649 	/*
2650 	 * Ignore list markers and ignore pages we cannot instantly
2651 	 * busy (while holding the object token).
2652 	 */
2653 	if (p->flags & PG_MARKER)
2654 		return 0;
2655 	if (vm_page_busy_try(p, TRUE))
2656 		return 0;
2657 	if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2658 	    (p->flags & PG_FICTITIOUS) == 0) {
2659 		if ((p->queue - p->pc) == PQ_CACHE)
2660 			vm_page_deactivate(p);
2661 		rel_index = p->pindex - info->start_pindex;
2662 		pmap_enter_quick(info->pmap,
2663 				 info->addr + x86_64_ptob(rel_index), p);
2664 	}
2665 	vm_page_wakeup(p);
2666 	return(0);
2667 }
2668 
2669 /*
2670  * Return TRUE if the pmap is in shape to trivially
2671  * pre-fault the specified address.
2672  *
2673  * Returns FALSE if it would be non-trivial or if a
2674  * pte is already loaded into the slot.
2675  *
2676  * No requirements.
2677  */
2678 int
2679 pmap_prefault_ok(pmap_t pmap, vm_offset_t addr)
2680 {
2681 	pt_entry_t *pte;
2682 	pd_entry_t *pde;
2683 	int ret;
2684 
2685 	lwkt_gettoken(&vm_token);
2686 	pde = pmap_pde(pmap, addr);
2687 	if (pde == NULL || *pde == 0) {
2688 		ret = 0;
2689 	} else {
2690 		pte = pmap_pde_to_pte(pde, addr);
2691 		ret = (*pte) ? 0 : 1;
2692 	}
2693 	lwkt_reltoken(&vm_token);
2694 	return (ret);
2695 }
2696 
2697 /*
2698  * Change the wiring attribute for a map/virtual-address pair.
2699  *
2700  * The mapping must already exist in the pmap.
2701  * No other requirements.
2702  */
2703 void
2704 pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired,
2705 		   vm_map_entry_t entry __unused)
2706 {
2707 	pt_entry_t *pte;
2708 
2709 	if (pmap == NULL)
2710 		return;
2711 
2712 	lwkt_gettoken(&vm_token);
2713 	pte = pmap_pte(pmap, va);
2714 
2715 	if (wired && !pmap_pte_w(pte))
2716 		pmap->pm_stats.wired_count++;
2717 	else if (!wired && pmap_pte_w(pte))
2718 		pmap->pm_stats.wired_count--;
2719 
2720 	/*
2721 	 * Wiring is not a hardware characteristic so there is no need to
2722 	 * invalidate TLB.  However, in an SMP environment we must use
2723 	 * a locked bus cycle to update the pte (if we are not using
2724 	 * the pmap_inval_*() API that is)... it's ok to do this for simple
2725 	 * wiring changes.
2726 	 */
2727 	if (wired)
2728 		atomic_set_long(pte, VPTE_WIRED);
2729 	else
2730 		atomic_clear_long(pte, VPTE_WIRED);
2731 	lwkt_reltoken(&vm_token);
2732 }
2733 
2734 /*
2735  *	Copy the range specified by src_addr/len
2736  *	from the source map to the range dst_addr/len
2737  *	in the destination map.
2738  *
2739  *	This routine is only advisory and need not do anything.
2740  */
2741 void
2742 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
2743 	vm_size_t len, vm_offset_t src_addr)
2744 {
2745 	/*
2746 	 * XXX BUGGY.  Amoung other things srcmpte is assumed to remain
2747 	 * valid through blocking calls, and that's just not going to
2748 	 * be the case.
2749 	 *
2750 	 * FIXME!
2751 	 */
2752 	return;
2753 }
2754 
2755 /*
2756  * pmap_zero_page:
2757  *
2758  *	Zero the specified physical page.
2759  *
2760  *	This function may be called from an interrupt and no locking is
2761  *	required.
2762  */
2763 void
2764 pmap_zero_page(vm_paddr_t phys)
2765 {
2766 	vm_offset_t va = PHYS_TO_DMAP(phys);
2767 
2768 	bzero((void *)va, PAGE_SIZE);
2769 }
2770 
2771 /*
2772  * pmap_page_assertzero:
2773  *
2774  *	Assert that a page is empty, panic if it isn't.
2775  */
2776 void
2777 pmap_page_assertzero(vm_paddr_t phys)
2778 {
2779 	int i;
2780 
2781 	crit_enter();
2782 	vm_offset_t virt = PHYS_TO_DMAP(phys);
2783 
2784 	for (i = 0; i < PAGE_SIZE; i += sizeof(int)) {
2785 	    if (*(int *)((char *)virt + i) != 0) {
2786 		panic("pmap_page_assertzero() @ %p not zero!",
2787 		    (void *)virt);
2788 	    }
2789 	}
2790 	crit_exit();
2791 }
2792 
2793 /*
2794  * pmap_zero_page:
2795  *
2796  *	Zero part of a physical page by mapping it into memory and clearing
2797  *	its contents with bzero.
2798  *
2799  *	off and size may not cover an area beyond a single hardware page.
2800  */
2801 void
2802 pmap_zero_page_area(vm_paddr_t phys, int off, int size)
2803 {
2804 	crit_enter();
2805 	vm_offset_t virt = PHYS_TO_DMAP(phys);
2806 	bzero((char *)virt + off, size);
2807 	crit_exit();
2808 }
2809 
2810 /*
2811  * pmap_copy_page:
2812  *
2813  *	Copy the physical page from the source PA to the target PA.
2814  *	This function may be called from an interrupt.  No locking
2815  *	is required.
2816  */
2817 void
2818 pmap_copy_page(vm_paddr_t src, vm_paddr_t dst)
2819 {
2820 	vm_offset_t src_virt, dst_virt;
2821 
2822 	crit_enter();
2823 	src_virt = PHYS_TO_DMAP(src);
2824 	dst_virt = PHYS_TO_DMAP(dst);
2825 	bcopy((void *)src_virt, (void *)dst_virt, PAGE_SIZE);
2826 	crit_exit();
2827 }
2828 
2829 /*
2830  * pmap_copy_page_frag:
2831  *
2832  *	Copy the physical page from the source PA to the target PA.
2833  *	This function may be called from an interrupt.  No locking
2834  *	is required.
2835  */
2836 void
2837 pmap_copy_page_frag(vm_paddr_t src, vm_paddr_t dst, size_t bytes)
2838 {
2839 	vm_offset_t src_virt, dst_virt;
2840 
2841 	crit_enter();
2842 	src_virt = PHYS_TO_DMAP(src);
2843 	dst_virt = PHYS_TO_DMAP(dst);
2844 	bcopy((char *)src_virt + (src & PAGE_MASK),
2845 	      (char *)dst_virt + (dst & PAGE_MASK),
2846 	      bytes);
2847 	crit_exit();
2848 }
2849 
2850 /*
2851  * Returns true if the pmap's pv is one of the first 16 pvs linked to
2852  * from this page.  This count may be changed upwards or downwards
2853  * in the future; it is only necessary that true be returned for a small
2854  * subset of pmaps for proper page aging.
2855  *
2856  * No other requirements.
2857  */
2858 boolean_t
2859 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
2860 {
2861 	pv_entry_t pv;
2862 	int loops = 0;
2863 
2864 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2865 		return FALSE;
2866 
2867 	crit_enter();
2868 	lwkt_gettoken(&vm_token);
2869 
2870 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2871 		if (pv->pv_pmap == pmap) {
2872 			lwkt_reltoken(&vm_token);
2873 			crit_exit();
2874 			return TRUE;
2875 		}
2876 		loops++;
2877 		if (loops >= 16)
2878 			break;
2879 	}
2880 	lwkt_reltoken(&vm_token);
2881 	crit_exit();
2882 	return (FALSE);
2883 }
2884 
2885 /*
2886  * Remove all pages from specified address space this aids process
2887  * exit speeds.  Also, this code is special cased for current
2888  * process only, but can have the more generic (and slightly slower)
2889  * mode enabled.  This is much faster than pmap_remove in the case
2890  * of running down an entire address space.
2891  *
2892  * No other requirements.
2893  */
2894 void
2895 pmap_remove_pages(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2896 {
2897 	pt_entry_t *pte, tpte;
2898 	pv_entry_t pv, npv;
2899 	vm_page_t m;
2900 	int save_generation;
2901 
2902 	if (pmap->pm_pteobj)
2903 		vm_object_hold(pmap->pm_pteobj);
2904 	lwkt_gettoken(&vm_token);
2905 
2906 	for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
2907 		if (pv->pv_va >= eva || pv->pv_va < sva) {
2908 			npv = TAILQ_NEXT(pv, pv_plist);
2909 			continue;
2910 		}
2911 
2912 		KKASSERT(pmap == pv->pv_pmap);
2913 
2914 		pte = pmap_pte(pmap, pv->pv_va);
2915 
2916 		/*
2917 		 * We cannot remove wired pages from a process' mapping
2918 		 * at this time
2919 		 */
2920 		if (*pte & VPTE_WIRED) {
2921 			npv = TAILQ_NEXT(pv, pv_plist);
2922 			continue;
2923 		}
2924 		tpte = pmap_inval_loadandclear(pte, pmap, pv->pv_va);
2925 
2926 		m = PHYS_TO_VM_PAGE(tpte & VPTE_FRAME);
2927 
2928 		KASSERT(m < &vm_page_array[vm_page_array_size],
2929 			("pmap_remove_pages: bad tpte %lx", tpte));
2930 
2931 		KKASSERT(pmap->pm_stats.resident_count > 0);
2932 		--pmap->pm_stats.resident_count;
2933 
2934 		/*
2935 		 * Update the vm_page_t clean and reference bits.
2936 		 */
2937 		if (tpte & VPTE_M) {
2938 			vm_page_dirty(m);
2939 		}
2940 
2941 		npv = TAILQ_NEXT(pv, pv_plist);
2942 		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
2943 		save_generation = ++pmap->pm_generation;
2944 
2945 		m->md.pv_list_count--;
2946 		atomic_add_int(&m->object->agg_pv_list_count, -1);
2947 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2948 		if (TAILQ_EMPTY(&m->md.pv_list))
2949 			vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
2950 
2951 		pmap_unuse_pt(pmap, pv->pv_va, pv->pv_ptem);
2952 		free_pv_entry(pv);
2953 
2954 		/*
2955 		 * Restart the scan if we blocked during the unuse or free
2956 		 * calls and other removals were made.
2957 		 */
2958 		if (save_generation != pmap->pm_generation) {
2959 			kprintf("Warning: pmap_remove_pages race-A avoided\n");
2960 			npv = TAILQ_FIRST(&pmap->pm_pvlist);
2961 		}
2962 	}
2963 	lwkt_reltoken(&vm_token);
2964 	if (pmap->pm_pteobj)
2965 		vm_object_drop(pmap->pm_pteobj);
2966 }
2967 
2968 /*
2969  * pmap_testbit tests bits in active mappings of a VM page.
2970  */
2971 static boolean_t
2972 pmap_testbit(vm_page_t m, int bit)
2973 {
2974 	pv_entry_t pv;
2975 	pt_entry_t *pte;
2976 
2977 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2978 		return FALSE;
2979 
2980 	if (TAILQ_FIRST(&m->md.pv_list) == NULL)
2981 		return FALSE;
2982 
2983 	crit_enter();
2984 
2985 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2986 		/*
2987 		 * if the bit being tested is the modified bit, then
2988 		 * mark clean_map and ptes as never
2989 		 * modified.
2990 		 */
2991 		if (bit & (VPTE_A|VPTE_M)) {
2992 			if (!pmap_track_modified(pv->pv_pmap, pv->pv_va))
2993 				continue;
2994 		}
2995 
2996 #if defined(PMAP_DIAGNOSTIC)
2997 		if (pv->pv_pmap == NULL) {
2998 			kprintf("Null pmap (tb) at va: 0x%lx\n", pv->pv_va);
2999 			continue;
3000 		}
3001 #endif
3002 		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
3003 		if (*pte & bit) {
3004 			crit_exit();
3005 			return TRUE;
3006 		}
3007 	}
3008 	crit_exit();
3009 	return (FALSE);
3010 }
3011 
3012 /*
3013  * This routine is used to clear bits in ptes.  Certain bits require special
3014  * handling, in particular (on virtual kernels) the VPTE_M (modify) bit.
3015  *
3016  * This routine is only called with certain VPTE_* bit combinations.
3017  */
3018 static __inline void
3019 pmap_clearbit(vm_page_t m, int bit)
3020 {
3021 	pv_entry_t pv;
3022 	pt_entry_t *pte;
3023 	pt_entry_t pbits;
3024 
3025 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3026 		return;
3027 
3028 	crit_enter();
3029 
3030 	/*
3031 	 * Loop over all current mappings setting/clearing as appropos If
3032 	 * setting RO do we need to clear the VAC?
3033 	 */
3034 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3035 		/*
3036 		 * don't write protect pager mappings
3037 		 */
3038 		if (bit == VPTE_RW) {
3039 			if (!pmap_track_modified(pv->pv_pmap, pv->pv_va))
3040 				continue;
3041 		}
3042 
3043 #if defined(PMAP_DIAGNOSTIC)
3044 		if (pv->pv_pmap == NULL) {
3045 			kprintf("Null pmap (cb) at va: 0x%lx\n", pv->pv_va);
3046 			continue;
3047 		}
3048 #endif
3049 
3050 		/*
3051 		 * Careful here.  We can use a locked bus instruction to
3052 		 * clear VPTE_A or VPTE_M safely but we need to synchronize
3053 		 * with the target cpus when we mess with VPTE_RW.
3054 		 *
3055 		 * On virtual kernels we must force a new fault-on-write
3056 		 * in the real kernel if we clear the Modify bit ourselves,
3057 		 * otherwise the real kernel will not get a new fault and
3058 		 * will never set our Modify bit again.
3059 		 */
3060 		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
3061 		if (*pte & bit) {
3062 			if (bit == VPTE_RW) {
3063 				/*
3064 				 * We must also clear VPTE_M when clearing
3065 				 * VPTE_RW
3066 				 */
3067 				pbits = pmap_clean_pte(pte, pv->pv_pmap,
3068 						       pv->pv_va);
3069 				if (pbits & VPTE_M)
3070 					vm_page_dirty(m);
3071 			} else if (bit == VPTE_M) {
3072 				/*
3073 				 * We do not have to make the page read-only
3074 				 * when clearing the Modify bit.  The real
3075 				 * kernel will make the real PTE read-only
3076 				 * or otherwise detect the write and set
3077 				 * our VPTE_M again simply by us invalidating
3078 				 * the real kernel VA for the pmap (as we did
3079 				 * above).  This allows the real kernel to
3080 				 * handle the write fault without forwarding
3081 				 * the fault to us.
3082 				 */
3083 				atomic_clear_long(pte, VPTE_M);
3084 			} else if ((bit & (VPTE_RW|VPTE_M)) == (VPTE_RW|VPTE_M)) {
3085 				/*
3086 				 * We've been asked to clear W & M, I guess
3087 				 * the caller doesn't want us to update
3088 				 * the dirty status of the VM page.
3089 				 */
3090 				pmap_clean_pte(pte, pv->pv_pmap, pv->pv_va);
3091 			} else {
3092 				/*
3093 				 * We've been asked to clear bits that do
3094 				 * not interact with hardware.
3095 				 */
3096 				atomic_clear_long(pte, bit);
3097 			}
3098 		}
3099 	}
3100 	crit_exit();
3101 }
3102 
3103 /*
3104  * Lower the permission for all mappings to a given page.
3105  *
3106  * No other requirements.
3107  */
3108 void
3109 pmap_page_protect(vm_page_t m, vm_prot_t prot)
3110 {
3111 	/* JG NX support? */
3112 	if ((prot & VM_PROT_WRITE) == 0) {
3113 		lwkt_gettoken(&vm_token);
3114 		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
3115 			pmap_clearbit(m, VPTE_RW);
3116 			vm_page_flag_clear(m, PG_WRITEABLE);
3117 		} else {
3118 			pmap_remove_all(m);
3119 		}
3120 		lwkt_reltoken(&vm_token);
3121 	}
3122 }
3123 
3124 vm_paddr_t
3125 pmap_phys_address(vm_pindex_t ppn)
3126 {
3127 	return (x86_64_ptob(ppn));
3128 }
3129 
3130 /*
3131  * Return a count of reference bits for a page, clearing those bits.
3132  * It is not necessary for every reference bit to be cleared, but it
3133  * is necessary that 0 only be returned when there are truly no
3134  * reference bits set.
3135  *
3136  * XXX: The exact number of bits to check and clear is a matter that
3137  * should be tested and standardized at some point in the future for
3138  * optimal aging of shared pages.
3139  *
3140  * No other requirements.
3141  */
3142 int
3143 pmap_ts_referenced(vm_page_t m)
3144 {
3145 	pv_entry_t pv, pvf, pvn;
3146 	pt_entry_t *pte;
3147 	int rtval = 0;
3148 
3149 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3150 		return (rtval);
3151 
3152 	crit_enter();
3153 	lwkt_gettoken(&vm_token);
3154 
3155 	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3156 
3157 		pvf = pv;
3158 
3159 		do {
3160 			pvn = TAILQ_NEXT(pv, pv_list);
3161 
3162 			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3163 
3164 			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
3165 
3166 			if (!pmap_track_modified(pv->pv_pmap, pv->pv_va))
3167 				continue;
3168 
3169 			pte = pmap_pte(pv->pv_pmap, pv->pv_va);
3170 
3171 			if (pte && (*pte & VPTE_A)) {
3172 				atomic_clear_long(pte, VPTE_A);
3173 				rtval++;
3174 				if (rtval > 4) {
3175 					break;
3176 				}
3177 			}
3178 		} while ((pv = pvn) != NULL && pv != pvf);
3179 	}
3180 	lwkt_reltoken(&vm_token);
3181 	crit_exit();
3182 
3183 	return (rtval);
3184 }
3185 
3186 /*
3187  * Return whether or not the specified physical page was modified
3188  * in any physical maps.
3189  *
3190  * No other requirements.
3191  */
3192 boolean_t
3193 pmap_is_modified(vm_page_t m)
3194 {
3195 	boolean_t res;
3196 
3197 	lwkt_gettoken(&vm_token);
3198 	res = pmap_testbit(m, VPTE_M);
3199 	lwkt_reltoken(&vm_token);
3200 	return (res);
3201 }
3202 
3203 /*
3204  * Clear the modify bits on the specified physical page.
3205  *
3206  * No other requirements.
3207  */
3208 void
3209 pmap_clear_modify(vm_page_t m)
3210 {
3211 	lwkt_gettoken(&vm_token);
3212 	pmap_clearbit(m, VPTE_M);
3213 	lwkt_reltoken(&vm_token);
3214 }
3215 
3216 /*
3217  * Clear the reference bit on the specified physical page.
3218  *
3219  * No other requirements.
3220  */
3221 void
3222 pmap_clear_reference(vm_page_t m)
3223 {
3224 	lwkt_gettoken(&vm_token);
3225 	pmap_clearbit(m, VPTE_A);
3226 	lwkt_reltoken(&vm_token);
3227 }
3228 
3229 /*
3230  * Miscellaneous support routines follow
3231  */
3232 
3233 static void
3234 i386_protection_init(void)
3235 {
3236 	int *kp, prot;
3237 
3238 	kp = protection_codes;
3239 	for (prot = 0; prot < 8; prot++) {
3240 		if (prot & VM_PROT_READ)
3241 			*kp |= 0; /* if it's VALID is readeable */
3242 		if (prot & VM_PROT_WRITE)
3243 			*kp |= VPTE_RW;
3244 		if (prot & VM_PROT_EXECUTE)
3245 			*kp |= 0; /* if it's VALID is executable */
3246 		++kp;
3247 	}
3248 }
3249 
3250 /*
3251  * Sets the memory attribute for the specified page.
3252  */
3253 void
3254 pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
3255 {
3256 	/* This is a vkernel, do nothing */
3257 }
3258 
3259 /*
3260  * Change the PAT attribute on an existing kernel memory map.  Caller
3261  * must ensure that the virtual memory in question is not accessed
3262  * during the adjustment.
3263  */
3264 void
3265 pmap_change_attr(vm_offset_t va, vm_size_t count, int mode)
3266 {
3267 	/* This is a vkernel, do nothing */
3268 }
3269 
3270 /*
3271  * Perform the pmap work for mincore
3272  *
3273  * No other requirements.
3274  */
3275 int
3276 pmap_mincore(pmap_t pmap, vm_offset_t addr)
3277 {
3278 	pt_entry_t *ptep, pte;
3279 	vm_page_t m;
3280 	int val = 0;
3281 
3282 	lwkt_gettoken(&vm_token);
3283 	ptep = pmap_pte(pmap, addr);
3284 
3285 	if (ptep && (pte = *ptep) != 0) {
3286 		vm_paddr_t pa;
3287 
3288 		val = MINCORE_INCORE;
3289 		if ((pte & VPTE_MANAGED) == 0)
3290 			goto done;
3291 
3292 		pa = pte & VPTE_FRAME;
3293 
3294 		m = PHYS_TO_VM_PAGE(pa);
3295 
3296 		/*
3297 		 * Modified by us
3298 		 */
3299 		if (pte & VPTE_M)
3300 			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
3301 		/*
3302 		 * Modified by someone
3303 		 */
3304 		else if (m->dirty || pmap_is_modified(m))
3305 			val |= MINCORE_MODIFIED_OTHER;
3306 		/*
3307 		 * Referenced by us
3308 		 */
3309 		if (pte & VPTE_A)
3310 			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
3311 
3312 		/*
3313 		 * Referenced by someone
3314 		 */
3315 		else if ((m->flags & PG_REFERENCED) || pmap_ts_referenced(m)) {
3316 			val |= MINCORE_REFERENCED_OTHER;
3317 			vm_page_flag_set(m, PG_REFERENCED);
3318 		}
3319 	}
3320 done:
3321 	lwkt_reltoken(&vm_token);
3322 	return val;
3323 }
3324 
3325 /*
3326  * Replace p->p_vmspace with a new one.  If adjrefs is non-zero the new
3327  * vmspace will be ref'd and the old one will be deref'd.
3328  *
3329  * Caller must hold vmspace->vm_map.token for oldvm and newvm
3330  */
3331 void
3332 pmap_replacevm(struct proc *p, struct vmspace *newvm, int adjrefs)
3333 {
3334 	struct vmspace *oldvm;
3335 	struct lwp *lp;
3336 
3337 	crit_enter();
3338 	oldvm = p->p_vmspace;
3339 	if (oldvm != newvm) {
3340 		if (adjrefs)
3341 			vmspace_ref(newvm);
3342 		p->p_vmspace = newvm;
3343 		KKASSERT(p->p_nthreads == 1);
3344 		lp = RB_ROOT(&p->p_lwp_tree);
3345 		pmap_setlwpvm(lp, newvm);
3346 		if (adjrefs)
3347 			vmspace_rel(oldvm);
3348 	}
3349 	crit_exit();
3350 }
3351 
3352 /*
3353  * Set the vmspace for a LWP.  The vmspace is almost universally set the
3354  * same as the process vmspace, but virtual kernels need to swap out contexts
3355  * on a per-lwp basis.
3356  */
3357 void
3358 pmap_setlwpvm(struct lwp *lp, struct vmspace *newvm)
3359 {
3360 	struct vmspace *oldvm;
3361 	struct pmap *pmap;
3362 
3363 	oldvm = lp->lwp_vmspace;
3364 	if (oldvm != newvm) {
3365 		crit_enter();
3366 		lp->lwp_vmspace = newvm;
3367 		if (curthread->td_lwp == lp) {
3368 			pmap = vmspace_pmap(newvm);
3369 			ATOMIC_CPUMASK_ORBIT(pmap->pm_active, mycpu->gd_cpuid);
3370 			if (pmap->pm_active_lock & CPULOCK_EXCL)
3371 				pmap_interlock_wait(newvm);
3372 #if defined(SWTCH_OPTIM_STATS)
3373 			tlb_flush_count++;
3374 #endif
3375 			pmap = vmspace_pmap(oldvm);
3376 			ATOMIC_CPUMASK_NANDBIT(pmap->pm_active,
3377 					       mycpu->gd_cpuid);
3378 		}
3379 		crit_exit();
3380 	}
3381 }
3382 
3383 /*
3384  * The swtch code tried to switch in a heavy weight process whos pmap
3385  * is locked by another cpu.  We have to wait for the lock to clear before
3386  * the pmap can be used.
3387  */
3388 void
3389 pmap_interlock_wait (struct vmspace *vm)
3390 {
3391 	pmap_t pmap = vmspace_pmap(vm);
3392 
3393 	if (pmap->pm_active_lock & CPULOCK_EXCL) {
3394 		crit_enter();
3395 		while (pmap->pm_active_lock & CPULOCK_EXCL) {
3396 			cpu_ccfence();
3397 			pthread_yield();
3398 		}
3399 		crit_exit();
3400 	}
3401 }
3402 
3403 vm_offset_t
3404 pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
3405 {
3406 
3407 	if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
3408 		return addr;
3409 	}
3410 
3411 	addr = roundup2(addr, NBPDR);
3412 	return addr;
3413 }
3414 
3415 /*
3416  * Used by kmalloc/kfree, page already exists at va
3417  */
3418 vm_page_t
3419 pmap_kvtom(vm_offset_t va)
3420 {
3421 	vpte_t *ptep;
3422 
3423 	KKASSERT(va >= KvaStart && va < KvaEnd);
3424 	ptep = vtopte(va);
3425 	return(PHYS_TO_VM_PAGE(*ptep & PG_FRAME));
3426 }
3427 
3428 void
3429 pmap_object_init(vm_object_t object)
3430 {
3431 	/* empty */
3432 }
3433 
3434 void
3435 pmap_object_free(vm_object_t object)
3436 {
3437 	/* empty */
3438 }
3439