1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * Copyright (c) 1994 John S. Dyson
6  * Copyright (c) 1994 David Greenman
7  * Copyright (c) 2003 Peter Wemm
8  * Copyright (c) 2005-2008 Alan L. Cox <alc@cs.rice.edu>
9  * Copyright (c) 2008, 2009 The DragonFly Project.
10  * Copyright (c) 2008, 2009 Jordan Gordeev.
11  * All rights reserved.
12  *
13  * This code is derived from software contributed to Berkeley by
14  * the Systems Programming Group of the University of Utah Computer
15  * Science Department and William Jolitz of UUNET Technologies Inc.
16  *
17  * Redistribution and use in source and binary forms, with or without
18  * modification, are permitted provided that the following conditions
19  * are met:
20  * 1. Redistributions of source code must retain the above copyright
21  *    notice, this list of conditions and the following disclaimer.
22  * 2. Redistributions in binary form must reproduce the above copyright
23  *    notice, this list of conditions and the following disclaimer in the
24  *    documentation and/or other materials provided with the distribution.
25  * 3. All advertising materials mentioning features or use of this software
26  *    must display the following acknowledgement:
27  *	This product includes software developed by the University of
28  *	California, Berkeley and its contributors.
29  * 4. Neither the name of the University nor the names of its contributors
30  *    may be used to endorse or promote products derived from this software
31  *    without specific prior written permission.
32  *
33  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
34  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
35  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
36  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
37  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
38  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
39  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
41  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
42  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
43  * SUCH DAMAGE.
44  *
45  *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
46  * $FreeBSD: src/sys/i386/i386/pmap.c,v 1.250.2.18 2002/03/06 22:48:53 silby Exp $
47  */
48 
49 /*
50  * Manages physical address maps.
51  *
52  * In most cases the vm_token must be held when manipulating a user pmap
53  * or elements within a vm_page, and the kvm_token must be held when
54  * manipulating the kernel pmap.  Operations on user pmaps may require
55  * additional synchronization.
56  *
57  * In some cases the caller may hold the required tokens to prevent pmap
58  * functions from blocking on those same tokens.  This typically only works
59  * for lookup-style operations.
60  */
61 
62 #if JG
63 #include "opt_pmap.h"
64 #endif
65 #include "opt_msgbuf.h"
66 
67 #include <sys/param.h>
68 #include <sys/systm.h>
69 #include <sys/kernel.h>
70 #include <sys/proc.h>
71 #include <sys/msgbuf.h>
72 #include <sys/vmmeter.h>
73 #include <sys/mman.h>
74 #include <sys/vmspace.h>
75 
76 #include <vm/vm.h>
77 #include <vm/vm_param.h>
78 #include <sys/sysctl.h>
79 #include <sys/lock.h>
80 #include <vm/vm_kern.h>
81 #include <vm/vm_page.h>
82 #include <vm/vm_map.h>
83 #include <vm/vm_object.h>
84 #include <vm/vm_extern.h>
85 #include <vm/vm_pageout.h>
86 #include <vm/vm_pager.h>
87 #include <vm/vm_zone.h>
88 
89 #include <sys/user.h>
90 #include <sys/thread2.h>
91 #include <sys/sysref2.h>
92 
93 #include <machine/cputypes.h>
94 #include <machine/md_var.h>
95 #include <machine/specialreg.h>
96 #include <machine/smp.h>
97 #include <machine/globaldata.h>
98 #include <machine/pmap.h>
99 #include <machine/pmap_inval.h>
100 
101 #include <ddb/ddb.h>
102 
103 #include <stdio.h>
104 #include <assert.h>
105 #include <stdlib.h>
106 
107 #define PMAP_KEEP_PDIRS
108 #ifndef PMAP_SHPGPERPROC
109 #define PMAP_SHPGPERPROC 200
110 #endif
111 
112 #if defined(DIAGNOSTIC)
113 #define PMAP_DIAGNOSTIC
114 #endif
115 
116 #define MINPV 2048
117 
118 #if !defined(PMAP_DIAGNOSTIC)
119 #define PMAP_INLINE __inline
120 #else
121 #define PMAP_INLINE
122 #endif
123 
124 /*
125  * Get PDEs and PTEs for user/kernel address space
126  */
127 static pd_entry_t *pmap_pde(pmap_t pmap, vm_offset_t va);
128 #define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
129 
130 #define pmap_pde_v(pte)		((*(pd_entry_t *)pte & VPTE_V) != 0)
131 #define pmap_pte_w(pte)		((*(pt_entry_t *)pte & VPTE_WIRED) != 0)
132 #define pmap_pte_m(pte)		((*(pt_entry_t *)pte & VPTE_M) != 0)
133 #define pmap_pte_u(pte)		((*(pt_entry_t *)pte & VPTE_A) != 0)
134 #define pmap_pte_v(pte)		((*(pt_entry_t *)pte & VPTE_V) != 0)
135 
136 /*
137  * Given a map and a machine independent protection code,
138  * convert to a vax protection code.
139  */
140 #define pte_prot(m, p)		\
141 	(protection_codes[p & (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE)])
142 static int protection_codes[8];
143 
144 struct pmap kernel_pmap;
145 static TAILQ_HEAD(,pmap)	pmap_list = TAILQ_HEAD_INITIALIZER(pmap_list);
146 
147 static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
148 
149 static vm_object_t kptobj;
150 
151 static int nkpt;
152 
153 static uint64_t	KPDphys;	/* phys addr of kernel level 2 */
154 uint64_t		KPDPphys;	/* phys addr of kernel level 3 */
155 uint64_t		KPML4phys;	/* phys addr of kernel level 4 */
156 
157 
158 /*
159  * Data for the pv entry allocation mechanism
160  */
161 static vm_zone_t pvzone;
162 static struct vm_zone pvzone_store;
163 static struct vm_object pvzone_obj;
164 static int pv_entry_count=0, pv_entry_max=0, pv_entry_high_water=0;
165 static int pmap_pagedaemon_waken = 0;
166 static struct pv_entry *pvinit;
167 
168 /*
169  * All those kernel PT submaps that BSD is so fond of
170  */
171 pt_entry_t *CMAP1 = 0, *ptmmap;
172 caddr_t CADDR1 = 0;
173 static pt_entry_t *msgbufmap;
174 
175 uint64_t KPTphys;
176 
177 static PMAP_INLINE void	free_pv_entry (pv_entry_t pv);
178 static pv_entry_t get_pv_entry (void);
179 static void	i386_protection_init (void);
180 static __inline void	pmap_clearbit (vm_page_t m, int bit);
181 
182 static void	pmap_remove_all (vm_page_t m);
183 static int pmap_remove_pte (struct pmap *pmap, pt_entry_t *ptq,
184 				vm_offset_t sva);
185 static void pmap_remove_page (struct pmap *pmap, vm_offset_t va);
186 static int pmap_remove_entry (struct pmap *pmap, vm_page_t m,
187 				vm_offset_t va);
188 static boolean_t pmap_testbit (vm_page_t m, int bit);
189 static void pmap_insert_entry (pmap_t pmap, vm_offset_t va,
190 		vm_page_t mpte, vm_page_t m);
191 
192 static vm_page_t pmap_allocpte (pmap_t pmap, vm_offset_t va);
193 
194 static int pmap_release_free_page (pmap_t pmap, vm_page_t p);
195 static vm_page_t _pmap_allocpte (pmap_t pmap, vm_pindex_t ptepindex);
196 #if JGPMAP32
197 static pt_entry_t * pmap_pte_quick (pmap_t pmap, vm_offset_t va);
198 #endif
199 static vm_page_t pmap_page_lookup (vm_object_t object, vm_pindex_t pindex);
200 static int pmap_unuse_pt (pmap_t, vm_offset_t, vm_page_t);
201 
202 /*
203  * pmap_pte_quick:
204  *
205  *	Super fast pmap_pte routine best used when scanning the pv lists.
206  *	This eliminates many course-grained invltlb calls.  Note that many of
207  *	the pv list scans are across different pmaps and it is very wasteful
208  *	to do an entire invltlb when checking a single mapping.
209  *
210  *	Should only be called while in a critical section.
211  */
212 #if JGPMAP32
213 static __inline pt_entry_t *pmap_pte(pmap_t pmap, vm_offset_t va);
214 
215 static pt_entry_t *
216 pmap_pte_quick(pmap_t pmap, vm_offset_t va)
217 {
218 	return pmap_pte(pmap, va);
219 }
220 #endif
221 
222 /* Return a non-clipped PD index for a given VA */
223 static __inline vm_pindex_t
224 pmap_pde_pindex(vm_offset_t va)
225 {
226 	return va >> PDRSHIFT;
227 }
228 
229 /* Return various clipped indexes for a given VA */
230 static __inline vm_pindex_t
231 pmap_pte_index(vm_offset_t va)
232 {
233 
234 	return ((va >> PAGE_SHIFT) & ((1ul << NPTEPGSHIFT) - 1));
235 }
236 
237 static __inline vm_pindex_t
238 pmap_pde_index(vm_offset_t va)
239 {
240 
241 	return ((va >> PDRSHIFT) & ((1ul << NPDEPGSHIFT) - 1));
242 }
243 
244 static __inline vm_pindex_t
245 pmap_pdpe_index(vm_offset_t va)
246 {
247 
248 	return ((va >> PDPSHIFT) & ((1ul << NPDPEPGSHIFT) - 1));
249 }
250 
251 static __inline vm_pindex_t
252 pmap_pml4e_index(vm_offset_t va)
253 {
254 
255 	return ((va >> PML4SHIFT) & ((1ul << NPML4EPGSHIFT) - 1));
256 }
257 
258 /* Return a pointer to the PML4 slot that corresponds to a VA */
259 static __inline pml4_entry_t *
260 pmap_pml4e(pmap_t pmap, vm_offset_t va)
261 {
262 
263 	return (&pmap->pm_pml4[pmap_pml4e_index(va)]);
264 }
265 
266 /* Return a pointer to the PDP slot that corresponds to a VA */
267 static __inline pdp_entry_t *
268 pmap_pml4e_to_pdpe(pml4_entry_t *pml4e, vm_offset_t va)
269 {
270 	pdp_entry_t *pdpe;
271 
272 	pdpe = (pdp_entry_t *)PHYS_TO_DMAP(*pml4e & VPTE_FRAME);
273 	return (&pdpe[pmap_pdpe_index(va)]);
274 }
275 
276 /* Return a pointer to the PDP slot that corresponds to a VA */
277 static __inline pdp_entry_t *
278 pmap_pdpe(pmap_t pmap, vm_offset_t va)
279 {
280 	pml4_entry_t *pml4e;
281 
282 	pml4e = pmap_pml4e(pmap, va);
283 	if ((*pml4e & VPTE_V) == 0)
284 		return NULL;
285 	return (pmap_pml4e_to_pdpe(pml4e, va));
286 }
287 
288 /* Return a pointer to the PD slot that corresponds to a VA */
289 static __inline pd_entry_t *
290 pmap_pdpe_to_pde(pdp_entry_t *pdpe, vm_offset_t va)
291 {
292 	pd_entry_t *pde;
293 
294 	pde = (pd_entry_t *)PHYS_TO_DMAP(*pdpe & VPTE_FRAME);
295 	return (&pde[pmap_pde_index(va)]);
296 }
297 
298 /* Return a pointer to the PD slot that corresponds to a VA */
299 static __inline pd_entry_t *
300 pmap_pde(pmap_t pmap, vm_offset_t va)
301 {
302 	pdp_entry_t *pdpe;
303 
304 	pdpe = pmap_pdpe(pmap, va);
305 	if (pdpe == NULL || (*pdpe & VPTE_V) == 0)
306 		 return NULL;
307 	return (pmap_pdpe_to_pde(pdpe, va));
308 }
309 
310 /* Return a pointer to the PT slot that corresponds to a VA */
311 static __inline pt_entry_t *
312 pmap_pde_to_pte(pd_entry_t *pde, vm_offset_t va)
313 {
314 	pt_entry_t *pte;
315 
316 	pte = (pt_entry_t *)PHYS_TO_DMAP(*pde & VPTE_FRAME);
317 	return (&pte[pmap_pte_index(va)]);
318 }
319 
320 /* Return a pointer to the PT slot that corresponds to a VA */
321 static __inline pt_entry_t *
322 pmap_pte(pmap_t pmap, vm_offset_t va)
323 {
324 	pd_entry_t *pde;
325 
326 	pde = pmap_pde(pmap, va);
327 	if (pde == NULL || (*pde & VPTE_V) == 0)
328 		return NULL;
329 	if ((*pde & VPTE_PS) != 0)	/* compat with i386 pmap_pte() */
330 		return ((pt_entry_t *)pde);
331 	return (pmap_pde_to_pte(pde, va));
332 }
333 
334 
335 #if JGV
336 PMAP_INLINE pt_entry_t *
337 vtopte(vm_offset_t va)
338 {
339 	uint64_t mask = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT + NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1);
340 
341 	return (PTmap + ((va >> PAGE_SHIFT) & mask));
342 }
343 
344 static __inline pd_entry_t *
345 vtopde(vm_offset_t va)
346 {
347 	uint64_t mask = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1);
348 
349 	return (PDmap + ((va >> PDRSHIFT) & mask));
350 }
351 #else
352 static PMAP_INLINE pt_entry_t *
353 vtopte(vm_offset_t va)
354 {
355 	pt_entry_t *x;
356 	x = pmap_pte(&kernel_pmap, va);
357 	assert(x != NULL);
358 	return x;
359 }
360 
361 static __inline pd_entry_t *
362 vtopde(vm_offset_t va)
363 {
364 	pd_entry_t *x;
365 	x = pmap_pde(&kernel_pmap, va);
366 	assert(x != NULL);
367 	return x;
368 }
369 #endif
370 
371 static uint64_t
372 allocpages(vm_paddr_t *firstaddr, int n)
373 {
374 	uint64_t ret;
375 
376 	ret = *firstaddr;
377 #if JGV
378 	bzero((void *)ret, n * PAGE_SIZE);
379 #endif
380 	*firstaddr += n * PAGE_SIZE;
381 	return (ret);
382 }
383 
384 static void
385 create_pagetables(vm_paddr_t *firstaddr, int64_t ptov_offset)
386 {
387 	int i;
388 	pml4_entry_t *KPML4virt;
389 	pdp_entry_t *KPDPvirt;
390 	pd_entry_t *KPDvirt;
391 	pt_entry_t *KPTvirt;
392 	int kpml4i = pmap_pml4e_index(ptov_offset);
393 	int kpdpi = pmap_pdpe_index(ptov_offset);
394 
395 
396 	/* Allocate pages */
397 	KPML4phys = allocpages(firstaddr, 1);
398 	KPDPphys = allocpages(firstaddr, NKPML4E);
399 	KPDphys = allocpages(firstaddr, NKPDPE);
400 	KPTphys = allocpages(firstaddr, NKPT);
401 
402 	KPML4virt = (pml4_entry_t *)PHYS_TO_DMAP(KPML4phys);
403 	KPDPvirt = (pdp_entry_t *)PHYS_TO_DMAP(KPDPphys);
404 	KPDvirt = (pd_entry_t *)PHYS_TO_DMAP(KPDphys);
405 	KPTvirt = (pt_entry_t *)PHYS_TO_DMAP(KPTphys);
406 
407 	bzero(KPML4virt, 1 * PAGE_SIZE);
408 	bzero(KPDPvirt, NKPML4E * PAGE_SIZE);
409 	bzero(KPDvirt, NKPDPE * PAGE_SIZE);
410 	bzero(KPTvirt, NKPT * PAGE_SIZE);
411 
412 	/* Now map the page tables at their location within PTmap */
413 	for (i = 0; i < NKPT; i++) {
414 		KPDvirt[i] = KPTphys + (i << PAGE_SHIFT);
415 		KPDvirt[i] |= VPTE_R | VPTE_W | VPTE_V;
416 	}
417 
418 	/* And connect up the PD to the PDP */
419 	for (i = 0; i < NKPDPE; i++) {
420 		KPDPvirt[i + kpdpi] = KPDphys + (i << PAGE_SHIFT);
421 		KPDPvirt[i + kpdpi] |= VPTE_R | VPTE_W | VPTE_V;
422 	}
423 
424 	/* And recursively map PML4 to itself in order to get PTmap */
425 	KPML4virt[PML4PML4I] = KPML4phys;
426 	KPML4virt[PML4PML4I] |= VPTE_R | VPTE_W | VPTE_V;
427 
428 	/* Connect the KVA slot up to the PML4 */
429 	KPML4virt[kpml4i] = KPDPphys;
430 	KPML4virt[kpml4i] |= VPTE_R | VPTE_W | VPTE_V;
431 }
432 
433 /*
434  *	Bootstrap the system enough to run with virtual memory.
435  *
436  *	On the i386 this is called after mapping has already been enabled
437  *	and just syncs the pmap module with what has already been done.
438  *	[We can't call it easily with mapping off since the kernel is not
439  *	mapped with PA == VA, hence we would have to relocate every address
440  *	from the linked base (virtual) address "KERNBASE" to the actual
441  *	(physical) address starting relative to 0]
442  */
443 void
444 pmap_bootstrap(vm_paddr_t *firstaddr, int64_t ptov_offset)
445 {
446 	vm_offset_t va;
447 	pt_entry_t *pte;
448 
449 	/*
450 	 * Create an initial set of page tables to run the kernel in.
451 	 */
452 	create_pagetables(firstaddr, ptov_offset);
453 
454 	virtual_start = KvaStart + *firstaddr;
455 	virtual_end = KvaEnd;
456 
457 	/*
458 	 * Initialize protection array.
459 	 */
460 	i386_protection_init();
461 
462 	/*
463 	 * The kernel's pmap is statically allocated so we don't have to use
464 	 * pmap_create, which is unlikely to work correctly at this part of
465 	 * the boot sequence (XXX and which no longer exists).
466 	 */
467 	kernel_pmap.pm_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(KPML4phys);
468 	kernel_pmap.pm_count = 1;
469 	kernel_pmap.pm_active = (cpumask_t)-1;	/* don't allow deactivation */
470 	TAILQ_INIT(&kernel_pmap.pm_pvlist);
471 	nkpt = NKPT;
472 
473 	/*
474 	 * Reserve some special page table entries/VA space for temporary
475 	 * mapping of pages.
476 	 */
477 #define	SYSMAP(c, p, v, n)	\
478 	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
479 
480 	va = virtual_start;
481 	pte = pmap_pte(&kernel_pmap, va);
482 
483 	/*
484 	 * CMAP1/CMAP2 are used for zeroing and copying pages.
485 	 */
486 	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
487 
488 #if JGV
489 	/*
490 	 * Crashdump maps.
491 	 */
492 	SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
493 #endif
494 
495 	/*
496 	 * ptvmmap is used for reading arbitrary physical pages via
497 	 * /dev/mem.
498 	 */
499 	SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
500 
501 	/*
502 	 * msgbufp is used to map the system message buffer.
503 	 * XXX msgbufmap is not used.
504 	 */
505 	SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
506 	       atop(round_page(MSGBUF_SIZE)))
507 
508 	virtual_start = va;
509 
510 	*CMAP1 = 0;
511 
512 	cpu_invltlb();
513 }
514 
515 /*
516  *	Initialize the pmap module.
517  *	Called by vm_init, to initialize any structures that the pmap
518  *	system needs to map virtual memory.
519  *	pmap_init has been enhanced to support in a fairly consistant
520  *	way, discontiguous physical memory.
521  */
522 void
523 pmap_init(void)
524 {
525 	int i;
526 	int initial_pvs;
527 
528 	/*
529 	 * object for kernel page table pages
530 	 */
531 	/* JG I think the number can be arbitrary */
532 	kptobj = vm_object_allocate(OBJT_DEFAULT, 5);
533 
534 	/*
535 	 * Allocate memory for random pmap data structures.  Includes the
536 	 * pv_head_table.
537 	 */
538 
539 	for(i = 0; i < vm_page_array_size; i++) {
540 		vm_page_t m;
541 
542 		m = &vm_page_array[i];
543 		TAILQ_INIT(&m->md.pv_list);
544 		m->md.pv_list_count = 0;
545 	}
546 
547 	/*
548 	 * init the pv free list
549 	 */
550 	initial_pvs = vm_page_array_size;
551 	if (initial_pvs < MINPV)
552 		initial_pvs = MINPV;
553 	pvzone = &pvzone_store;
554 	pvinit = (struct pv_entry *) kmem_alloc(&kernel_map,
555 		initial_pvs * sizeof (struct pv_entry));
556 	zbootinit(pvzone, "PV ENTRY", sizeof (struct pv_entry), pvinit,
557 		initial_pvs);
558 
559 	/*
560 	 * Now it is safe to enable pv_table recording.
561 	 */
562 	pmap_initialized = TRUE;
563 }
564 
565 /*
566  * Initialize the address space (zone) for the pv_entries.  Set a
567  * high water mark so that the system can recover from excessive
568  * numbers of pv entries.
569  */
570 void
571 pmap_init2(void)
572 {
573 	int shpgperproc = PMAP_SHPGPERPROC;
574 
575 	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
576 	pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
577 	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
578 	pv_entry_high_water = 9 * (pv_entry_max / 10);
579 	zinitna(pvzone, &pvzone_obj, NULL, 0, pv_entry_max, ZONE_INTERRUPT, 1);
580 }
581 
582 
583 /***************************************************
584  * Low level helper routines.....
585  ***************************************************/
586 
587 /*
588  * The modification bit is not tracked for any pages in this range. XXX
589  * such pages in this maps should always use pmap_k*() functions and not
590  * be managed anyhow.
591  *
592  * XXX User and kernel address spaces are independant for virtual kernels,
593  * this function only applies to the kernel pmap.
594  */
595 static int
596 pmap_track_modified(pmap_t pmap, vm_offset_t va)
597 {
598 	if (pmap != &kernel_pmap)
599 		return 1;
600 	if ((va < clean_sva) || (va >= clean_eva))
601 		return 1;
602 	else
603 		return 0;
604 }
605 
606 /*
607  * Extract the physical page address associated with the map/VA pair.
608  *
609  * No requirements.
610  */
611 vm_paddr_t
612 pmap_extract(pmap_t pmap, vm_offset_t va)
613 {
614 	vm_paddr_t rtval;
615 	pt_entry_t *pte;
616 	pd_entry_t pde, *pdep;
617 
618 	lwkt_gettoken(&vm_token);
619 	rtval = 0;
620 	pdep = pmap_pde(pmap, va);
621 	if (pdep != NULL) {
622 		pde = *pdep;
623 		if (pde) {
624 			if ((pde & VPTE_PS) != 0) {
625 				/* JGV */
626 				rtval = (pde & PG_PS_FRAME) | (va & PDRMASK);
627 			} else {
628 				pte = pmap_pde_to_pte(pdep, va);
629 				rtval = (*pte & VPTE_FRAME) | (va & PAGE_MASK);
630 			}
631 		}
632 	}
633 	lwkt_reltoken(&vm_token);
634 	return rtval;
635 }
636 
637 /*
638  *	Routine:	pmap_kextract
639  *	Function:
640  *		Extract the physical page address associated
641  *		kernel virtual address.
642  */
643 vm_paddr_t
644 pmap_kextract(vm_offset_t va)
645 {
646 	pd_entry_t pde;
647 	vm_paddr_t pa;
648 
649 	KKASSERT(va >= KvaStart && va < KvaEnd);
650 
651 	/*
652 	 * The DMAP region is not included in [KvaStart, KvaEnd)
653 	 */
654 #if 0
655 	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
656 		pa = DMAP_TO_PHYS(va);
657 	} else {
658 #endif
659 		pde = *vtopde(va);
660 		if (pde & VPTE_PS) {
661 			/* JGV */
662 			pa = (pde & PG_PS_FRAME) | (va & PDRMASK);
663 		} else {
664 			/*
665 			 * Beware of a concurrent promotion that changes the
666 			 * PDE at this point!  For example, vtopte() must not
667 			 * be used to access the PTE because it would use the
668 			 * new PDE.  It is, however, safe to use the old PDE
669 			 * because the page table page is preserved by the
670 			 * promotion.
671 			 */
672 			pa = *pmap_pde_to_pte(&pde, va);
673 			pa = (pa & VPTE_FRAME) | (va & PAGE_MASK);
674 		}
675 #if 0
676 	}
677 #endif
678 	return pa;
679 }
680 
681 /***************************************************
682  * Low level mapping routines.....
683  ***************************************************/
684 
685 /*
686  * Enter a mapping into kernel_pmap.  Mappings created in this fashion
687  * are not managed.  Mappings must be immediately accessible on all cpus.
688  *
689  * Call pmap_inval_pte() to invalidate the virtual pte and clean out the
690  * real pmap and handle related races before storing the new vpte.
691  */
692 void
693 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
694 {
695 	pt_entry_t *pte;
696 	pt_entry_t npte;
697 
698 	KKASSERT(va >= KvaStart && va < KvaEnd);
699 	npte = pa | VPTE_R | VPTE_W | VPTE_V;
700 	pte = vtopte(va);
701 	if (*pte & VPTE_V)
702 		pmap_inval_pte(pte, &kernel_pmap, va);
703 	*pte = npte;
704 }
705 
706 /*
707  * Enter an unmanaged KVA mapping for the private use of the current
708  * cpu only.  pmap_kenter_sync() may be called to make the mapping usable
709  * by other cpus.
710  *
711  * It is illegal for the mapping to be accessed by other cpus unleess
712  * pmap_kenter_sync*() is called.
713  */
714 void
715 pmap_kenter_quick(vm_offset_t va, vm_paddr_t pa)
716 {
717 	pt_entry_t *pte;
718 	pt_entry_t npte;
719 
720 	KKASSERT(va >= KvaStart && va < KvaEnd);
721 
722 	npte = (vpte_t)pa | VPTE_R | VPTE_W | VPTE_V;
723 	pte = vtopte(va);
724 	if (*pte & VPTE_V)
725 		pmap_inval_pte_quick(pte, &kernel_pmap, va);
726 	*pte = npte;
727 	//cpu_invlpg((void *)va);
728 }
729 
730 /*
731  * Synchronize a kvm mapping originally made for the private use on
732  * some other cpu so it can be used on all cpus.
733  *
734  * XXX add MADV_RESYNC to improve performance.
735  */
736 void
737 pmap_kenter_sync(vm_offset_t va)
738 {
739 	madvise((void *)va, PAGE_SIZE, MADV_INVAL);
740 }
741 
742 /*
743  * Synchronize a kvm mapping originally made for the private use on
744  * some other cpu so it can be used on our cpu.  Turns out to be the
745  * same madvise() call, because we have to sync the real pmaps anyway.
746  *
747  * XXX add MADV_RESYNC to improve performance.
748  */
749 void
750 pmap_kenter_sync_quick(vm_offset_t va)
751 {
752 	madvise((void *)va, PAGE_SIZE, MADV_INVAL);
753 }
754 
755 /*
756  * Remove an unmanaged mapping created with pmap_kenter*().
757  */
758 void
759 pmap_kremove(vm_offset_t va)
760 {
761 	pt_entry_t *pte;
762 
763 	KKASSERT(va >= KvaStart && va < KvaEnd);
764 
765 	pte = vtopte(va);
766 	if (*pte & VPTE_V)
767 		pmap_inval_pte(pte, &kernel_pmap, va);
768 	*pte = 0;
769 }
770 
771 /*
772  * Remove an unmanaged mapping created with pmap_kenter*() but synchronize
773  * only with this cpu.
774  *
775  * Unfortunately because we optimize new entries by testing VPTE_V later
776  * on, we actually still have to synchronize with all the cpus.  XXX maybe
777  * store a junk value and test against 0 in the other places instead?
778  */
779 void
780 pmap_kremove_quick(vm_offset_t va)
781 {
782 	pt_entry_t *pte;
783 
784 	KKASSERT(va >= KvaStart && va < KvaEnd);
785 
786 	pte = vtopte(va);
787 	if (*pte & VPTE_V)
788 		pmap_inval_pte(pte, &kernel_pmap, va); /* NOT _quick */
789 	*pte = 0;
790 }
791 
792 /*
793  *	Used to map a range of physical addresses into kernel
794  *	virtual address space.
795  *
796  *	For now, VM is already on, we only need to map the
797  *	specified memory.
798  */
799 vm_offset_t
800 pmap_map(vm_offset_t *virtp, vm_paddr_t start, vm_paddr_t end, int prot)
801 {
802 	return PHYS_TO_DMAP(start);
803 }
804 
805 
806 /*
807  * Map a set of unmanaged VM pages into KVM.
808  */
809 void
810 pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
811 {
812 	vm_offset_t end_va;
813 
814 	end_va = va + count * PAGE_SIZE;
815 	KKASSERT(va >= KvaStart && end_va < KvaEnd);
816 
817 	while (va < end_va) {
818 		pt_entry_t *pte;
819 
820 		pte = vtopte(va);
821 		if (*pte & VPTE_V)
822 			pmap_inval_pte(pte, &kernel_pmap, va);
823 		*pte = VM_PAGE_TO_PHYS(*m) | VPTE_R | VPTE_W | VPTE_V;
824 		va += PAGE_SIZE;
825 		m++;
826 	}
827 }
828 
829 /*
830  * Undo the effects of pmap_qenter*().
831  */
832 void
833 pmap_qremove(vm_offset_t va, int count)
834 {
835 	vm_offset_t end_va;
836 
837 	end_va = va + count * PAGE_SIZE;
838 	KKASSERT(va >= KvaStart && end_va < KvaEnd);
839 
840 	while (va < end_va) {
841 		pt_entry_t *pte;
842 
843 		pte = vtopte(va);
844 		if (*pte & VPTE_V)
845 			pmap_inval_pte(pte, &kernel_pmap, va);
846 		*pte = 0;
847 		va += PAGE_SIZE;
848 	}
849 }
850 
851 /*
852  * This routine works like vm_page_lookup() but also blocks as long as the
853  * page is busy.  This routine does not busy the page it returns.
854  *
855  * Unless the caller is managing objects whos pages are in a known state,
856  * the call should be made with a critical section held so the page's object
857  * association remains valid on return.
858  */
859 static vm_page_t
860 pmap_page_lookup(vm_object_t object, vm_pindex_t pindex)
861 {
862 	vm_page_t m;
863 
864 	do {
865 		m = vm_page_lookup(object, pindex);
866 	} while (m && vm_page_sleep_busy(m, FALSE, "pplookp"));
867 
868 	return(m);
869 }
870 
871 /*
872  * Create a new thread and optionally associate it with a (new) process.
873  * NOTE! the new thread's cpu may not equal the current cpu.
874  */
875 void
876 pmap_init_thread(thread_t td)
877 {
878 	/* enforce pcb placement */
879 	td->td_pcb = (struct pcb *)(td->td_kstack + td->td_kstack_size) - 1;
880 	td->td_savefpu = &td->td_pcb->pcb_save;
881 	td->td_sp = (char *)td->td_pcb - 16; /* JG is -16 needed on x86_64? */
882 }
883 
884 /*
885  * This routine directly affects the fork perf for a process.
886  */
887 void
888 pmap_init_proc(struct proc *p)
889 {
890 }
891 
892 /*
893  * Dispose the UPAGES for a process that has exited.
894  * This routine directly impacts the exit perf of a process.
895  */
896 void
897 pmap_dispose_proc(struct proc *p)
898 {
899 	KASSERT(p->p_lock == 0, ("attempt to dispose referenced proc! %p", p));
900 }
901 
902 /***************************************************
903  * Page table page management routines.....
904  ***************************************************/
905 
906 static __inline int pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va,
907 			vm_page_t m);
908 
909 /*
910  * This routine unholds page table pages, and if the hold count
911  * drops to zero, then it decrements the wire count.
912  *
913  * We must recheck that this is the last hold reference after busy-sleeping
914  * on the page.
915  */
916 static int
917 _pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va, vm_page_t m)
918 {
919 	while (vm_page_sleep_busy(m, FALSE, "pmuwpt"))
920 		;
921 	KASSERT(m->queue == PQ_NONE,
922 		("_pmap_unwire_pte_hold: %p->queue != PQ_NONE", m));
923 
924 	if (m->hold_count == 1) {
925 		/*
926 		 * Unmap the page table page.
927 		 */
928 		//abort(); /* JG */
929 		vm_page_busy(m);
930 		/* pmap_inval_add(info, pmap, -1); */
931 
932 		if (m->pindex >= (NUPDE + NUPDPE)) {
933 			/* PDP page */
934 			pml4_entry_t *pml4;
935 			pml4 = pmap_pml4e(pmap, va);
936 			*pml4 = 0;
937 		} else if (m->pindex >= NUPDE) {
938 			/* PD page */
939 			pdp_entry_t *pdp;
940 			pdp = pmap_pdpe(pmap, va);
941 			*pdp = 0;
942 		} else {
943 			/* PT page */
944 			pd_entry_t *pd;
945 			pd = pmap_pde(pmap, va);
946 			*pd = 0;
947 		}
948 
949 		KKASSERT(pmap->pm_stats.resident_count > 0);
950 		--pmap->pm_stats.resident_count;
951 
952 		if (pmap->pm_ptphint == m)
953 			pmap->pm_ptphint = NULL;
954 
955 		if (m->pindex < NUPDE) {
956 			/* We just released a PT, unhold the matching PD */
957 			vm_page_t pdpg;
958 
959 			pdpg = PHYS_TO_VM_PAGE(*pmap_pdpe(pmap, va) & VPTE_FRAME);
960 			pmap_unwire_pte_hold(pmap, va, pdpg);
961 		}
962 		if (m->pindex >= NUPDE && m->pindex < (NUPDE + NUPDPE)) {
963 			/* We just released a PD, unhold the matching PDP */
964 			vm_page_t pdppg;
965 
966 			pdppg = PHYS_TO_VM_PAGE(*pmap_pml4e(pmap, va) & VPTE_FRAME);
967 			pmap_unwire_pte_hold(pmap, va, pdppg);
968 		}
969 
970 		/*
971 		 * This was our last hold, the page had better be unwired
972 		 * after we decrement wire_count.
973 		 *
974 		 * FUTURE NOTE: shared page directory page could result in
975 		 * multiple wire counts.
976 		 */
977 		vm_page_unhold(m);
978 		--m->wire_count;
979 		KKASSERT(m->wire_count == 0);
980 		--vmstats.v_wire_count;
981 		vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
982 		vm_page_flash(m);
983 		vm_page_free_zero(m);
984 		return 1;
985 	} else {
986 		KKASSERT(m->hold_count > 1);
987 		vm_page_unhold(m);
988 		return 0;
989 	}
990 }
991 
992 static __inline int
993 pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va, vm_page_t m)
994 {
995 	KKASSERT(m->hold_count > 0);
996 	if (m->hold_count > 1) {
997 		vm_page_unhold(m);
998 		return 0;
999 	} else {
1000 		return _pmap_unwire_pte_hold(pmap, va, m);
1001 	}
1002 }
1003 
1004 /*
1005  * After removing a page table entry, this routine is used to
1006  * conditionally free the page, and manage the hold/wire counts.
1007  */
1008 static int
1009 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
1010 {
1011 	/* JG Use FreeBSD/amd64 or FreeBSD/i386 ptepde approaches? */
1012 	vm_pindex_t ptepindex;
1013 
1014 	if (mpte == NULL) {
1015 		/*
1016 		 * page table pages in the kernel_pmap are not managed.
1017 		 */
1018 		if (pmap == &kernel_pmap)
1019 			return(0);
1020 		ptepindex = pmap_pde_pindex(va);
1021 		if (pmap->pm_ptphint &&
1022 			(pmap->pm_ptphint->pindex == ptepindex)) {
1023 			mpte = pmap->pm_ptphint;
1024 		} else {
1025 			mpte = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
1026 			pmap->pm_ptphint = mpte;
1027 		}
1028 	}
1029 
1030 	return pmap_unwire_pte_hold(pmap, va, mpte);
1031 }
1032 
1033 /*
1034  * Initialize pmap0/vmspace0 .  Since process 0 never enters user mode we
1035  * just dummy it up so it works well enough for fork().
1036  *
1037  * In DragonFly, process pmaps may only be used to manipulate user address
1038  * space, never kernel address space.
1039  */
1040 void
1041 pmap_pinit0(struct pmap *pmap)
1042 {
1043 	pmap_pinit(pmap);
1044 }
1045 
1046 /*
1047  * Initialize a preallocated and zeroed pmap structure,
1048  * such as one in a vmspace structure.
1049  */
1050 void
1051 pmap_pinit(struct pmap *pmap)
1052 {
1053 	vm_page_t ptdpg;
1054 
1055 	/*
1056 	 * No need to allocate page table space yet but we do need a valid
1057 	 * page directory table.
1058 	 */
1059 	if (pmap->pm_pml4 == NULL) {
1060 		pmap->pm_pml4 =
1061 		    (pml4_entry_t *)kmem_alloc_pageable(&kernel_map, PAGE_SIZE);
1062 	}
1063 
1064 	/*
1065 	 * Allocate an object for the ptes
1066 	 */
1067 	if (pmap->pm_pteobj == NULL)
1068 		pmap->pm_pteobj = vm_object_allocate(OBJT_DEFAULT, NUPDE + NUPDPE + PML4PML4I + 1);
1069 
1070 	/*
1071 	 * Allocate the page directory page, unless we already have
1072 	 * one cached.  If we used the cached page the wire_count will
1073 	 * already be set appropriately.
1074 	 */
1075 	if ((ptdpg = pmap->pm_pdirm) == NULL) {
1076 		ptdpg = vm_page_grab(pmap->pm_pteobj, NUPDE + NUPDPE + PML4PML4I,
1077 				     VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1078 		pmap->pm_pdirm = ptdpg;
1079 		vm_page_flag_clear(ptdpg, PG_MAPPED | PG_BUSY);
1080 		ptdpg->valid = VM_PAGE_BITS_ALL;
1081 		if (ptdpg->wire_count == 0)
1082 			++vmstats.v_wire_count;
1083 		ptdpg->wire_count = 1;
1084 		pmap_kenter((vm_offset_t)pmap->pm_pml4, VM_PAGE_TO_PHYS(ptdpg));
1085 	}
1086 	if ((ptdpg->flags & PG_ZERO) == 0)
1087 		bzero(pmap->pm_pml4, PAGE_SIZE);
1088 
1089 	pmap->pm_count = 1;
1090 	pmap->pm_active = 0;
1091 	pmap->pm_ptphint = NULL;
1092 	TAILQ_INIT(&pmap->pm_pvlist);
1093 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1094 	pmap->pm_stats.resident_count = 1;
1095 }
1096 
1097 /*
1098  * Clean up a pmap structure so it can be physically freed.  This routine
1099  * is called by the vmspace dtor function.  A great deal of pmap data is
1100  * left passively mapped to improve vmspace management so we have a bit
1101  * of cleanup work to do here.
1102  *
1103  * No requirements.
1104  */
1105 void
1106 pmap_puninit(pmap_t pmap)
1107 {
1108 	vm_page_t p;
1109 
1110 	KKASSERT(pmap->pm_active == 0);
1111 	lwkt_gettoken(&vm_token);
1112 	if ((p = pmap->pm_pdirm) != NULL) {
1113 		KKASSERT(pmap->pm_pml4 != NULL);
1114 		pmap_kremove((vm_offset_t)pmap->pm_pml4);
1115 		p->wire_count--;
1116 		vmstats.v_wire_count--;
1117 		KKASSERT((p->flags & PG_BUSY) == 0);
1118 		vm_page_busy(p);
1119 		vm_page_free_zero(p);
1120 		pmap->pm_pdirm = NULL;
1121 	}
1122 	lwkt_reltoken(&vm_token);
1123 	if (pmap->pm_pml4) {
1124 		kmem_free(&kernel_map, (vm_offset_t)pmap->pm_pml4, PAGE_SIZE);
1125 		pmap->pm_pml4 = NULL;
1126 	}
1127 	if (pmap->pm_pteobj) {
1128 		vm_object_deallocate(pmap->pm_pteobj);
1129 		pmap->pm_pteobj = NULL;
1130 	}
1131 }
1132 
1133 /*
1134  * Wire in kernel global address entries.  To avoid a race condition
1135  * between pmap initialization and pmap_growkernel, this procedure
1136  * adds the pmap to the master list (which growkernel scans to update),
1137  * then copies the template.
1138  *
1139  * In a virtual kernel there are no kernel global address entries.
1140  *
1141  * No requirements.
1142  */
1143 void
1144 pmap_pinit2(struct pmap *pmap)
1145 {
1146 	crit_enter();
1147 	lwkt_gettoken(&vm_token);
1148 	TAILQ_INSERT_TAIL(&pmap_list, pmap, pm_pmnode);
1149 	lwkt_reltoken(&vm_token);
1150 	crit_exit();
1151 }
1152 
1153 /*
1154  * Attempt to release and free a vm_page in a pmap.  Returns 1 on success,
1155  * 0 on failure (if the procedure had to sleep).
1156  *
1157  * When asked to remove the page directory page itself, we actually just
1158  * leave it cached so we do not have to incur the SMP inval overhead of
1159  * removing the kernel mapping.  pmap_puninit() will take care of it.
1160  */
1161 static int
1162 pmap_release_free_page(struct pmap *pmap, vm_page_t p)
1163 {
1164 	/*
1165 	 * This code optimizes the case of freeing non-busy
1166 	 * page-table pages.  Those pages are zero now, and
1167 	 * might as well be placed directly into the zero queue.
1168 	 */
1169 	if (vm_page_sleep_busy(p, FALSE, "pmaprl"))
1170 		return 0;
1171 
1172 	vm_page_busy(p);
1173 
1174 	/*
1175 	 * Remove the page table page from the processes address space.
1176 	 */
1177 	if (p->pindex == NUPDE + NUPDPE + PML4PML4I) {
1178 		/*
1179 		 * We are the pml4 table itself.
1180 		 */
1181 		/* XXX anything to do here? */
1182 	} else if (p->pindex >= (NUPDE + NUPDPE)) {
1183 		/*
1184 		 * We are a PDP page.
1185 		 * We look for the PML4 entry that points to us.
1186 		 */
1187 		vm_page_t m4 = vm_page_lookup(pmap->pm_pteobj, NUPDE + NUPDPE + PML4PML4I);
1188 		KKASSERT(m4 != NULL);
1189 		pml4_entry_t *pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m4));
1190 		int idx = (p->pindex - (NUPDE + NUPDPE)) % NPML4EPG;
1191 		KKASSERT(pml4[idx] != 0);
1192 		pml4[idx] = 0;
1193 		m4->hold_count--;
1194 		/* JG What about wire_count? */
1195 	} else if (p->pindex >= NUPDE) {
1196 		/*
1197 		 * We are a PD page.
1198 		 * We look for the PDP entry that points to us.
1199 		 */
1200 		vm_page_t m3 = vm_page_lookup(pmap->pm_pteobj, NUPDE + NUPDPE + (p->pindex - NUPDE) / NPDPEPG);
1201 		KKASSERT(m3 != NULL);
1202 		pdp_entry_t *pdp = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m3));
1203 		int idx = (p->pindex - NUPDE) % NPDPEPG;
1204 		KKASSERT(pdp[idx] != 0);
1205 		pdp[idx] = 0;
1206 		m3->hold_count--;
1207 		/* JG What about wire_count? */
1208 	} else {
1209 		/* We are a PT page.
1210 		 * We look for the PD entry that points to us.
1211 		 */
1212 		vm_page_t m2 = vm_page_lookup(pmap->pm_pteobj, NUPDE + p->pindex / NPDEPG);
1213 		KKASSERT(m2 != NULL);
1214 		pd_entry_t *pd = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m2));
1215 		int idx = p->pindex % NPDEPG;
1216 		pd[idx] = 0;
1217 		m2->hold_count--;
1218 		/* JG What about wire_count? */
1219 	}
1220 	KKASSERT(pmap->pm_stats.resident_count > 0);
1221 	--pmap->pm_stats.resident_count;
1222 
1223 	if (p->hold_count)  {
1224 		panic("pmap_release: freeing held page table page");
1225 	}
1226 	if (pmap->pm_ptphint && (pmap->pm_ptphint->pindex == p->pindex))
1227 		pmap->pm_ptphint = NULL;
1228 
1229 	/*
1230 	 * We leave the top-level page table page cached, wired, and mapped in
1231 	 * the pmap until the dtor function (pmap_puninit()) gets called.
1232 	 * However, still clean it up so we can set PG_ZERO.
1233 	 */
1234 	if (p->pindex == NUPDE + NUPDPE + PML4PML4I) {
1235 		bzero(pmap->pm_pml4, PAGE_SIZE);
1236 		vm_page_flag_set(p, PG_ZERO);
1237 		vm_page_wakeup(p);
1238 	} else {
1239 		abort();
1240 		p->wire_count--;
1241 		vmstats.v_wire_count--;
1242 		/* JG eventually revert to using vm_page_free_zero() */
1243 		vm_page_free(p);
1244 	}
1245 	return 1;
1246 }
1247 
1248 /*
1249  * this routine is called if the page table page is not
1250  * mapped correctly.
1251  */
1252 static vm_page_t
1253 _pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex)
1254 {
1255 	vm_page_t m, pdppg, pdpg;
1256 
1257 	/*
1258 	 * Find or fabricate a new pagetable page
1259 	 */
1260 	m = vm_page_grab(pmap->pm_pteobj, ptepindex,
1261 			VM_ALLOC_NORMAL | VM_ALLOC_ZERO | VM_ALLOC_RETRY);
1262 
1263 	if ((m->flags & PG_ZERO) == 0) {
1264 		pmap_zero_page(VM_PAGE_TO_PHYS(m));
1265 	}
1266 
1267 	KASSERT(m->queue == PQ_NONE,
1268 		("_pmap_allocpte: %p->queue != PQ_NONE", m));
1269 
1270 	/*
1271 	 * Increment the hold count for the page we will be returning to
1272 	 * the caller.
1273 	 */
1274 	m->hold_count++;
1275 
1276 	if (m->wire_count == 0)
1277 		vmstats.v_wire_count++;
1278 	m->wire_count++;
1279 
1280 	/*
1281 	 * Map the pagetable page into the process address space, if
1282 	 * it isn't already there.
1283 	 */
1284 
1285 	++pmap->pm_stats.resident_count;
1286 
1287 	if (ptepindex >= (NUPDE + NUPDPE)) {
1288 		pml4_entry_t *pml4;
1289 		vm_pindex_t pml4index;
1290 
1291 		/* Wire up a new PDP page */
1292 		pml4index = ptepindex - (NUPDE + NUPDPE);
1293 		pml4 = &pmap->pm_pml4[pml4index];
1294 		*pml4 = VM_PAGE_TO_PHYS(m) | VPTE_R | VPTE_W | VPTE_V |
1295 			VPTE_A | VPTE_M;
1296 	} else if (ptepindex >= NUPDE) {
1297 		vm_pindex_t pml4index;
1298 		vm_pindex_t pdpindex;
1299 		pml4_entry_t *pml4;
1300 		pdp_entry_t *pdp;
1301 
1302 		/* Wire up a new PD page */
1303 		pdpindex = ptepindex - NUPDE;
1304 		pml4index = pdpindex >> NPML4EPGSHIFT;
1305 
1306 		pml4 = &pmap->pm_pml4[pml4index];
1307 		if ((*pml4 & VPTE_V) == 0) {
1308 			/* Have to allocate a new PDP page, recurse */
1309 			if (_pmap_allocpte(pmap, NUPDE + NUPDPE + pml4index)
1310 			     == NULL) {
1311 				--m->wire_count;
1312 				vm_page_free(m);
1313 				return (NULL);
1314 			}
1315 		} else {
1316 			/* Add reference to the PDP page */
1317 			pdppg = PHYS_TO_VM_PAGE(*pml4 & VPTE_FRAME);
1318 			pdppg->hold_count++;
1319 		}
1320 		pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & VPTE_FRAME);
1321 
1322 		/* Now find the pdp page */
1323 		pdp = &pdp[pdpindex & ((1ul << NPDPEPGSHIFT) - 1)];
1324 		KKASSERT(*pdp == 0);	/* JG DEBUG64 */
1325 		*pdp = VM_PAGE_TO_PHYS(m) | VPTE_R | VPTE_W | VPTE_V |
1326 		       VPTE_A | VPTE_M;
1327 	} else {
1328 		vm_pindex_t pml4index;
1329 		vm_pindex_t pdpindex;
1330 		pml4_entry_t *pml4;
1331 		pdp_entry_t *pdp;
1332 		pd_entry_t *pd;
1333 
1334 		/* Wire up a new PT page */
1335 		pdpindex = ptepindex >> NPDPEPGSHIFT;
1336 		pml4index = pdpindex >> NPML4EPGSHIFT;
1337 
1338 		/* First, find the pdp and check that its valid. */
1339 		pml4 = &pmap->pm_pml4[pml4index];
1340 		if ((*pml4 & VPTE_V) == 0) {
1341 			/* We miss a PDP page. We ultimately need a PD page.
1342 			 * Recursively allocating a PD page will allocate
1343 			 * the missing PDP page and will also allocate
1344 			 * the PD page we need.
1345 			 */
1346 			/* Have to allocate a new PD page, recurse */
1347 			if (_pmap_allocpte(pmap, NUPDE + pdpindex)
1348 			     == NULL) {
1349 				--m->wire_count;
1350 				vm_page_free(m);
1351 				return (NULL);
1352 			}
1353 			pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & VPTE_FRAME);
1354 			pdp = &pdp[pdpindex & ((1ul << NPDPEPGSHIFT) - 1)];
1355 		} else {
1356 			pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & VPTE_FRAME);
1357 			pdp = &pdp[pdpindex & ((1ul << NPDPEPGSHIFT) - 1)];
1358 			if ((*pdp & VPTE_V) == 0) {
1359 				/* Have to allocate a new PD page, recurse */
1360 				if (_pmap_allocpte(pmap, NUPDE + pdpindex)
1361 				     == NULL) {
1362 					--m->wire_count;
1363 					vm_page_free(m);
1364 					return (NULL);
1365 				}
1366 			} else {
1367 				/* Add reference to the PD page */
1368 				pdpg = PHYS_TO_VM_PAGE(*pdp & VPTE_FRAME);
1369 				pdpg->hold_count++;
1370 			}
1371 		}
1372 		pd = (pd_entry_t *)PHYS_TO_DMAP(*pdp & VPTE_FRAME);
1373 
1374 		/* Now we know where the page directory page is */
1375 		pd = &pd[ptepindex & ((1ul << NPDEPGSHIFT) - 1)];
1376 		KKASSERT(*pd == 0);	/* JG DEBUG64 */
1377 		*pd = VM_PAGE_TO_PHYS(m) | VPTE_R | VPTE_W | VPTE_V |
1378 		      VPTE_A | VPTE_M;
1379 	}
1380 
1381 	/*
1382 	 * Set the page table hint
1383 	 */
1384 	pmap->pm_ptphint = m;
1385 
1386 	m->valid = VM_PAGE_BITS_ALL;
1387 	vm_page_flag_clear(m, PG_ZERO);
1388 	vm_page_flag_set(m, PG_MAPPED);
1389 	vm_page_wakeup(m);
1390 
1391 	return m;
1392 }
1393 
1394 /*
1395  * Determine the page table page required to access the VA in the pmap
1396  * and allocate it if necessary.  Return a held vm_page_t for the page.
1397  *
1398  * Only used with user pmaps.
1399  */
1400 static vm_page_t
1401 pmap_allocpte(pmap_t pmap, vm_offset_t va)
1402 {
1403 	vm_pindex_t ptepindex;
1404 	pd_entry_t *pd;
1405 	vm_page_t m;
1406 
1407 	/*
1408 	 * Calculate pagetable page index
1409 	 */
1410 	ptepindex = pmap_pde_pindex(va);
1411 
1412 	/*
1413 	 * Get the page directory entry
1414 	 */
1415 	pd = pmap_pde(pmap, va);
1416 
1417 	/*
1418 	 * This supports switching from a 2MB page to a
1419 	 * normal 4K page.
1420 	 */
1421 	if (pd != NULL && (*pd & (VPTE_PS | VPTE_V)) == (VPTE_PS | VPTE_V)) {
1422 		panic("no promotion/demotion yet");
1423 		*pd = 0;
1424 		pd = NULL;
1425 		/*cpu_invltlb();*/
1426 		/*smp_invltlb();*/
1427 	}
1428 
1429 	/*
1430 	 * If the page table page is mapped, we just increment the
1431 	 * hold count, and activate it.
1432 	 */
1433 	if (pd != NULL && (*pd & VPTE_V) != 0) {
1434 		/* YYY hint is used here on i386 */
1435 		m = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
1436 		pmap->pm_ptphint = m;
1437 		m->hold_count++;
1438 		return m;
1439 	}
1440 	/*
1441 	 * Here if the pte page isn't mapped, or if it has been deallocated.
1442 	 */
1443 	return _pmap_allocpte(pmap, ptepindex);
1444 }
1445 
1446 
1447 /***************************************************
1448  * Pmap allocation/deallocation routines.
1449  ***************************************************/
1450 
1451 /*
1452  * Release any resources held by the given physical map.
1453  * Called when a pmap initialized by pmap_pinit is being released.
1454  * Should only be called if the map contains no valid mappings.
1455  *
1456  * No requirements.
1457  */
1458 static int pmap_release_callback(struct vm_page *p, void *data);
1459 
1460 void
1461 pmap_release(struct pmap *pmap)
1462 {
1463 	vm_object_t object = pmap->pm_pteobj;
1464 	struct rb_vm_page_scan_info info;
1465 
1466 	KKASSERT(pmap != &kernel_pmap);
1467 
1468 #if defined(DIAGNOSTIC)
1469 	if (object->ref_count != 1)
1470 		panic("pmap_release: pteobj reference count != 1");
1471 #endif
1472 
1473 	info.pmap = pmap;
1474 	info.object = object;
1475 	crit_enter();
1476 	lwkt_gettoken(&vm_token);
1477 	TAILQ_REMOVE(&pmap_list, pmap, pm_pmnode);
1478 	crit_exit();
1479 
1480 	do {
1481 		crit_enter();
1482 		info.error = 0;
1483 		info.mpte = NULL;
1484 		info.limit = object->generation;
1485 
1486 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
1487 				        pmap_release_callback, &info);
1488 		if (info.error == 0 && info.mpte) {
1489 			if (!pmap_release_free_page(pmap, info.mpte))
1490 				info.error = 1;
1491 		}
1492 		crit_exit();
1493 	} while (info.error);
1494 	lwkt_reltoken(&vm_token);
1495 }
1496 
1497 static int
1498 pmap_release_callback(struct vm_page *p, void *data)
1499 {
1500 	struct rb_vm_page_scan_info *info = data;
1501 
1502 	if (p->pindex == NUPDE + NUPDPE + PML4PML4I) {
1503 		info->mpte = p;
1504 		return(0);
1505 	}
1506 	if (!pmap_release_free_page(info->pmap, p)) {
1507 		info->error = 1;
1508 		return(-1);
1509 	}
1510 	if (info->object->generation != info->limit) {
1511 		info->error = 1;
1512 		return(-1);
1513 	}
1514 	return(0);
1515 }
1516 
1517 /*
1518  * Grow the number of kernel page table entries, if needed.
1519  *
1520  * No requirements.
1521  */
1522 void
1523 pmap_growkernel(vm_offset_t addr)
1524 {
1525 	vm_paddr_t paddr;
1526 	vm_offset_t ptppaddr;
1527 	vm_page_t nkpg;
1528 	pd_entry_t *pde, newpdir;
1529 	pdp_entry_t newpdp;
1530 
1531 	crit_enter();
1532 	lwkt_gettoken(&vm_token);
1533 	if (kernel_vm_end == 0) {
1534 		kernel_vm_end = KvaStart;
1535 		nkpt = 0;
1536 		while ((*pmap_pde(&kernel_pmap, kernel_vm_end) & VPTE_V) != 0) {
1537 			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1538 			nkpt++;
1539 			if (kernel_vm_end - 1 >= kernel_map.max_offset) {
1540 				kernel_vm_end = kernel_map.max_offset;
1541 				break;
1542 			}
1543 		}
1544 	}
1545 	addr = roundup2(addr, PAGE_SIZE * NPTEPG);
1546 	if (addr - 1 >= kernel_map.max_offset)
1547 		addr = kernel_map.max_offset;
1548 	while (kernel_vm_end < addr) {
1549 		pde = pmap_pde(&kernel_pmap, kernel_vm_end);
1550 		if (pde == NULL) {
1551 			/* We need a new PDP entry */
1552 			nkpg = vm_page_alloc(kptobj, nkpt,
1553 			                     VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM
1554 					     | VM_ALLOC_INTERRUPT);
1555 			if (nkpg == NULL)
1556 				panic("pmap_growkernel: no memory to grow kernel");
1557 			paddr = VM_PAGE_TO_PHYS(nkpg);
1558 			if ((nkpg->flags & PG_ZERO) == 0)
1559 				pmap_zero_page(paddr);
1560 			vm_page_flag_clear(nkpg, PG_ZERO);
1561 			newpdp = (pdp_entry_t)
1562 				(paddr | VPTE_V | VPTE_R | VPTE_W | VPTE_A | VPTE_M);
1563 			*pmap_pdpe(&kernel_pmap, kernel_vm_end) = newpdp;
1564 			nkpt++;
1565 			continue; /* try again */
1566 		}
1567 		if ((*pde & VPTE_V) != 0) {
1568 			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1569 			if (kernel_vm_end - 1 >= kernel_map.max_offset) {
1570 				kernel_vm_end = kernel_map.max_offset;
1571 				break;
1572 			}
1573 			continue;
1574 		}
1575 
1576 		/*
1577 		 * This index is bogus, but out of the way
1578 		 */
1579 		nkpg = vm_page_alloc(kptobj, nkpt,
1580 			VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM | VM_ALLOC_INTERRUPT);
1581 		if (nkpg == NULL)
1582 			panic("pmap_growkernel: no memory to grow kernel");
1583 
1584 		vm_page_wire(nkpg);
1585 		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1586 		pmap_zero_page(ptppaddr);
1587 		vm_page_flag_clear(nkpg, PG_ZERO);
1588 		newpdir = (pd_entry_t) (ptppaddr | VPTE_V | VPTE_R | VPTE_W | VPTE_A | VPTE_M);
1589 		*pmap_pde(&kernel_pmap, kernel_vm_end) = newpdir;
1590 		nkpt++;
1591 
1592 		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1593 		if (kernel_vm_end - 1 >= kernel_map.max_offset) {
1594 			kernel_vm_end = kernel_map.max_offset;
1595 			break;
1596 		}
1597 	}
1598 	lwkt_reltoken(&vm_token);
1599 	crit_exit();
1600 }
1601 
1602 /*
1603  * Retire the given physical map from service.  Should only be called
1604  * if the map contains no valid mappings.
1605  *
1606  * No requirements.
1607  */
1608 void
1609 pmap_destroy(pmap_t pmap)
1610 {
1611 	if (pmap == NULL)
1612 		return;
1613 
1614 	lwkt_gettoken(&vm_token);
1615 	if (--pmap->pm_count == 0) {
1616 		pmap_release(pmap);
1617 		panic("destroying a pmap is not yet implemented");
1618 	}
1619 	lwkt_reltoken(&vm_token);
1620 }
1621 
1622 /*
1623  * Add a reference to the specified pmap.
1624  *
1625  * No requirements.
1626  */
1627 void
1628 pmap_reference(pmap_t pmap)
1629 {
1630 	if (pmap) {
1631 		lwkt_gettoken(&vm_token);
1632 		++pmap->pm_count;
1633 		lwkt_reltoken(&vm_token);
1634 	}
1635 }
1636 
1637 /************************************************************************
1638  *	   		VMSPACE MANAGEMENT				*
1639  ************************************************************************
1640  *
1641  * The VMSPACE management we do in our virtual kernel must be reflected
1642  * in the real kernel.  This is accomplished by making vmspace system
1643  * calls to the real kernel.
1644  */
1645 void
1646 cpu_vmspace_alloc(struct vmspace *vm)
1647 {
1648 	int r;
1649 	void *rp;
1650 	vpte_t vpte;
1651 
1652 #define USER_SIZE	(VM_MAX_USER_ADDRESS - VM_MIN_USER_ADDRESS)
1653 
1654 	if (vmspace_create(&vm->vm_pmap, 0, NULL) < 0)
1655 		panic("vmspace_create() failed");
1656 
1657 	rp = vmspace_mmap(&vm->vm_pmap, VM_MIN_USER_ADDRESS, USER_SIZE,
1658 			  PROT_READ|PROT_WRITE,
1659 			  MAP_FILE|MAP_SHARED|MAP_VPAGETABLE|MAP_FIXED,
1660 			  MemImageFd, 0);
1661 	if (rp == MAP_FAILED)
1662 		panic("vmspace_mmap: failed");
1663 	vmspace_mcontrol(&vm->vm_pmap, VM_MIN_USER_ADDRESS, USER_SIZE,
1664 			 MADV_NOSYNC, 0);
1665 	vpte = VM_PAGE_TO_PHYS(vmspace_pmap(vm)->pm_pdirm) | VPTE_R | VPTE_W | VPTE_V;
1666 	r = vmspace_mcontrol(&vm->vm_pmap, VM_MIN_USER_ADDRESS, USER_SIZE,
1667 			     MADV_SETMAP, vpte);
1668 	if (r < 0)
1669 		panic("vmspace_mcontrol: failed");
1670 }
1671 
1672 void
1673 cpu_vmspace_free(struct vmspace *vm)
1674 {
1675 	if (vmspace_destroy(&vm->vm_pmap) < 0)
1676 		panic("vmspace_destroy() failed");
1677 }
1678 
1679 /***************************************************
1680 * page management routines.
1681  ***************************************************/
1682 
1683 /*
1684  * free the pv_entry back to the free list.  This function may be
1685  * called from an interrupt.
1686  */
1687 static __inline void
1688 free_pv_entry(pv_entry_t pv)
1689 {
1690 	pv_entry_count--;
1691 	KKASSERT(pv_entry_count >= 0);
1692 	zfree(pvzone, pv);
1693 }
1694 
1695 /*
1696  * get a new pv_entry, allocating a block from the system
1697  * when needed.  This function may be called from an interrupt.
1698  */
1699 static pv_entry_t
1700 get_pv_entry(void)
1701 {
1702 	pv_entry_count++;
1703 	if (pv_entry_high_water &&
1704 		(pv_entry_count > pv_entry_high_water) &&
1705 		(pmap_pagedaemon_waken == 0)) {
1706 		pmap_pagedaemon_waken = 1;
1707 		wakeup(&vm_pages_needed);
1708 	}
1709 	return zalloc(pvzone);
1710 }
1711 
1712 /*
1713  * This routine is very drastic, but can save the system
1714  * in a pinch.
1715  *
1716  * No requirements.
1717  */
1718 void
1719 pmap_collect(void)
1720 {
1721 	int i;
1722 	vm_page_t m;
1723 	static int warningdone=0;
1724 
1725 	if (pmap_pagedaemon_waken == 0)
1726 		return;
1727 	lwkt_gettoken(&vm_token);
1728 	pmap_pagedaemon_waken = 0;
1729 
1730 	if (warningdone < 5) {
1731 		kprintf("pmap_collect: collecting pv entries -- suggest increasing PMAP_SHPGPERPROC\n");
1732 		warningdone++;
1733 	}
1734 
1735 	for(i = 0; i < vm_page_array_size; i++) {
1736 		m = &vm_page_array[i];
1737 		if (m->wire_count || m->hold_count || m->busy ||
1738 		    (m->flags & PG_BUSY))
1739 			continue;
1740 		pmap_remove_all(m);
1741 	}
1742 	lwkt_reltoken(&vm_token);
1743 }
1744 
1745 
1746 /*
1747  * If it is the first entry on the list, it is actually
1748  * in the header and we must copy the following entry up
1749  * to the header.  Otherwise we must search the list for
1750  * the entry.  In either case we free the now unused entry.
1751  */
1752 static int
1753 pmap_remove_entry(struct pmap *pmap, vm_page_t m, vm_offset_t va)
1754 {
1755 	pv_entry_t pv;
1756 	int rtval;
1757 
1758 	crit_enter();
1759 	if (m->md.pv_list_count < pmap->pm_stats.resident_count) {
1760 		TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
1761 			if (pmap == pv->pv_pmap && va == pv->pv_va)
1762 				break;
1763 		}
1764 	} else {
1765 		TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
1766 			if (va == pv->pv_va)
1767 				break;
1768 		}
1769 	}
1770 
1771 	/*
1772 	 * Note that pv_ptem is NULL if the page table page itself is not
1773 	 * managed, even if the page being removed IS managed.
1774 	 */
1775 	rtval = 0;
1776 	/* JGXXX When can 'pv' be NULL? */
1777 	if (pv) {
1778 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1779 		m->md.pv_list_count--;
1780 		KKASSERT(m->md.pv_list_count >= 0);
1781 		if (TAILQ_EMPTY(&m->md.pv_list))
1782 			vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
1783 		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1784 		++pmap->pm_generation;
1785 		rtval = pmap_unuse_pt(pmap, va, pv->pv_ptem);
1786 		free_pv_entry(pv);
1787 	}
1788 	crit_exit();
1789 	return rtval;
1790 }
1791 
1792 /*
1793  * Create a pv entry for page at pa for (pmap, va).  If the page table page
1794  * holding the VA is managed, mpte will be non-NULL.
1795  */
1796 static void
1797 pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t mpte, vm_page_t m)
1798 {
1799 	pv_entry_t pv;
1800 
1801 	crit_enter();
1802 	pv = get_pv_entry();
1803 	pv->pv_va = va;
1804 	pv->pv_pmap = pmap;
1805 	pv->pv_ptem = mpte;
1806 
1807 	TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1808 	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1809 	m->md.pv_list_count++;
1810 
1811 	crit_exit();
1812 }
1813 
1814 /*
1815  * pmap_remove_pte: do the things to unmap a page in a process
1816  */
1817 static int
1818 pmap_remove_pte(struct pmap *pmap, pt_entry_t *ptq, vm_offset_t va)
1819 {
1820 	pt_entry_t oldpte;
1821 	vm_page_t m;
1822 
1823 	oldpte = pmap_inval_loadandclear(ptq, pmap, va);
1824 	if (oldpte & VPTE_WIRED)
1825 		--pmap->pm_stats.wired_count;
1826 	KKASSERT(pmap->pm_stats.wired_count >= 0);
1827 
1828 #if 0
1829 	/*
1830 	 * Machines that don't support invlpg, also don't support
1831 	 * PG_G.  XXX PG_G is disabled for SMP so don't worry about
1832 	 * the SMP case.
1833 	 */
1834 	if (oldpte & PG_G)
1835 		cpu_invlpg((void *)va);
1836 #endif
1837 	KKASSERT(pmap->pm_stats.resident_count > 0);
1838 	--pmap->pm_stats.resident_count;
1839 	if (oldpte & VPTE_MANAGED) {
1840 		m = PHYS_TO_VM_PAGE(oldpte);
1841 		if (oldpte & VPTE_M) {
1842 #if defined(PMAP_DIAGNOSTIC)
1843 			if (pmap_nw_modified((pt_entry_t) oldpte)) {
1844 				kprintf(
1845 	"pmap_remove: modified page not writable: va: 0x%lx, pte: 0x%lx\n",
1846 				    va, oldpte);
1847 			}
1848 #endif
1849 			if (pmap_track_modified(pmap, va))
1850 				vm_page_dirty(m);
1851 		}
1852 		if (oldpte & VPTE_A)
1853 			vm_page_flag_set(m, PG_REFERENCED);
1854 		return pmap_remove_entry(pmap, m, va);
1855 	} else {
1856 		return pmap_unuse_pt(pmap, va, NULL);
1857 	}
1858 
1859 	return 0;
1860 }
1861 
1862 /*
1863  * pmap_remove_page:
1864  *
1865  *	Remove a single page from a process address space.
1866  *
1867  *	This function may not be called from an interrupt if the pmap is
1868  *	not kernel_pmap.
1869  */
1870 static void
1871 pmap_remove_page(struct pmap *pmap, vm_offset_t va)
1872 {
1873 	pt_entry_t *pte;
1874 
1875 	pte = pmap_pte(pmap, va);
1876 	if (pte == NULL)
1877 		return;
1878 	if ((*pte & VPTE_V) == 0)
1879 		return;
1880 	pmap_remove_pte(pmap, pte, va);
1881 }
1882 
1883 /*
1884  * Remove the given range of addresses from the specified map.
1885  *
1886  * It is assumed that the start and end are properly rounded to
1887  * the page size.
1888  *
1889  * This function may not be called from an interrupt if the pmap is
1890  * not kernel_pmap.
1891  *
1892  * No requirements.
1893  */
1894 void
1895 pmap_remove(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
1896 {
1897 	vm_offset_t va_next;
1898 	pml4_entry_t *pml4e;
1899 	pdp_entry_t *pdpe;
1900 	pd_entry_t ptpaddr, *pde;
1901 	pt_entry_t *pte;
1902 
1903 	if (pmap == NULL)
1904 		return;
1905 
1906 	lwkt_gettoken(&vm_token);
1907 	KKASSERT(pmap->pm_stats.resident_count >= 0);
1908 	if (pmap->pm_stats.resident_count == 0) {
1909 		lwkt_reltoken(&vm_token);
1910 		return;
1911 	}
1912 
1913 	/*
1914 	 * special handling of removing one page.  a very
1915 	 * common operation and easy to short circuit some
1916 	 * code.
1917 	 */
1918 	if (sva + PAGE_SIZE == eva) {
1919 		pde = pmap_pde(pmap, sva);
1920 		if (pde && (*pde & VPTE_PS) == 0) {
1921 			pmap_remove_page(pmap, sva);
1922 			lwkt_reltoken(&vm_token);
1923 			return;
1924 		}
1925 	}
1926 
1927 	for (; sva < eva; sva = va_next) {
1928 		pml4e = pmap_pml4e(pmap, sva);
1929 		if ((*pml4e & VPTE_V) == 0) {
1930 			va_next = (sva + NBPML4) & ~PML4MASK;
1931 			if (va_next < sva)
1932 				va_next = eva;
1933 			continue;
1934 		}
1935 
1936 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
1937 		if ((*pdpe & VPTE_V) == 0) {
1938 			va_next = (sva + NBPDP) & ~PDPMASK;
1939 			if (va_next < sva)
1940 				va_next = eva;
1941 			continue;
1942 		}
1943 
1944 		/*
1945 		 * Calculate index for next page table.
1946 		 */
1947 		va_next = (sva + NBPDR) & ~PDRMASK;
1948 		if (va_next < sva)
1949 			va_next = eva;
1950 
1951 		pde = pmap_pdpe_to_pde(pdpe, sva);
1952 		ptpaddr = *pde;
1953 
1954 		/*
1955 		 * Weed out invalid mappings.
1956 		 */
1957 		if (ptpaddr == 0)
1958 			continue;
1959 
1960 		/*
1961 		 * Check for large page.
1962 		 */
1963 		if ((ptpaddr & VPTE_PS) != 0) {
1964 			/* JG FreeBSD has more complex treatment here */
1965 			KKASSERT(*pde != 0);
1966 			pmap_inval_pde(pde, pmap, sva);
1967 			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1968 			continue;
1969 		}
1970 
1971 		/*
1972 		 * Limit our scan to either the end of the va represented
1973 		 * by the current page table page, or to the end of the
1974 		 * range being removed.
1975 		 */
1976 		if (va_next > eva)
1977 			va_next = eva;
1978 
1979 		/*
1980 		 * NOTE: pmap_remove_pte() can block.
1981 		 */
1982 		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
1983 		    sva += PAGE_SIZE) {
1984 			if (*pte == 0)
1985 				continue;
1986 			if (pmap_remove_pte(pmap, pte, sva))
1987 				break;
1988 		}
1989 	}
1990 	lwkt_reltoken(&vm_token);
1991 }
1992 
1993 /*
1994  * Removes this physical page from all physical maps in which it resides.
1995  * Reflects back modify bits to the pager.
1996  *
1997  * This routine may not be called from an interrupt.
1998  *
1999  * No requirements.
2000  */
2001 
2002 static void
2003 pmap_remove_all(vm_page_t m)
2004 {
2005 	pt_entry_t *pte, tpte;
2006 	pv_entry_t pv;
2007 
2008 #if defined(PMAP_DIAGNOSTIC)
2009 	/*
2010 	 * XXX this makes pmap_page_protect(NONE) illegal for non-managed
2011 	 * pages!
2012 	 */
2013 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
2014 		panic("pmap_page_protect: illegal for unmanaged page, va: 0x%08llx", (long long)VM_PAGE_TO_PHYS(m));
2015 	}
2016 #endif
2017 
2018 	crit_enter();
2019 	lwkt_gettoken(&vm_token);
2020 	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2021 		KKASSERT(pv->pv_pmap->pm_stats.resident_count > 0);
2022 		--pv->pv_pmap->pm_stats.resident_count;
2023 
2024 		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2025 		KKASSERT(pte != NULL);
2026 
2027 		tpte = pmap_inval_loadandclear(pte, pv->pv_pmap, pv->pv_va);
2028 		if (tpte & VPTE_WIRED)
2029 			pv->pv_pmap->pm_stats.wired_count--;
2030 		KKASSERT(pv->pv_pmap->pm_stats.wired_count >= 0);
2031 
2032 		if (tpte & VPTE_A)
2033 			vm_page_flag_set(m, PG_REFERENCED);
2034 
2035 		/*
2036 		 * Update the vm_page_t clean and reference bits.
2037 		 */
2038 		if (tpte & VPTE_M) {
2039 #if defined(PMAP_DIAGNOSTIC)
2040 			if (pmap_nw_modified(tpte)) {
2041 				kprintf(
2042 	"pmap_remove_all: modified page not writable: va: 0x%lx, pte: 0x%lx\n",
2043 				    pv->pv_va, tpte);
2044 			}
2045 #endif
2046 			if (pmap_track_modified(pv->pv_pmap, pv->pv_va))
2047 				vm_page_dirty(m);
2048 		}
2049 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2050 		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
2051 		++pv->pv_pmap->pm_generation;
2052 		m->md.pv_list_count--;
2053 		KKASSERT(m->md.pv_list_count >= 0);
2054 		if (TAILQ_EMPTY(&m->md.pv_list))
2055 			vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
2056 		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
2057 		free_pv_entry(pv);
2058 	}
2059 	KKASSERT((m->flags & (PG_MAPPED|PG_WRITEABLE)) == 0);
2060 	lwkt_reltoken(&vm_token);
2061 	crit_exit();
2062 }
2063 
2064 /*
2065  * Set the physical protection on the specified range of this map
2066  * as requested.
2067  *
2068  * This function may not be called from an interrupt if the map is
2069  * not the kernel_pmap.
2070  *
2071  * No requirements.
2072  */
2073 void
2074 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2075 {
2076 	vm_offset_t va_next;
2077 	pml4_entry_t *pml4e;
2078 	pdp_entry_t *pdpe;
2079 	pd_entry_t ptpaddr, *pde;
2080 	pt_entry_t *pte;
2081 
2082 	/* JG review for NX */
2083 
2084 	if (pmap == NULL)
2085 		return;
2086 
2087 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2088 		pmap_remove(pmap, sva, eva);
2089 		return;
2090 	}
2091 
2092 	if (prot & VM_PROT_WRITE)
2093 		return;
2094 
2095 	lwkt_gettoken(&vm_token);
2096 
2097 	for (; sva < eva; sva = va_next) {
2098 
2099 		pml4e = pmap_pml4e(pmap, sva);
2100 		if ((*pml4e & VPTE_V) == 0) {
2101 			va_next = (sva + NBPML4) & ~PML4MASK;
2102 			if (va_next < sva)
2103 				va_next = eva;
2104 			continue;
2105 		}
2106 
2107 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
2108 		if ((*pdpe & VPTE_V) == 0) {
2109 			va_next = (sva + NBPDP) & ~PDPMASK;
2110 			if (va_next < sva)
2111 				va_next = eva;
2112 			continue;
2113 		}
2114 
2115 		va_next = (sva + NBPDR) & ~PDRMASK;
2116 		if (va_next < sva)
2117 			va_next = eva;
2118 
2119 		pde = pmap_pdpe_to_pde(pdpe, sva);
2120 		ptpaddr = *pde;
2121 
2122 		/*
2123 		 * Check for large page.
2124 		 */
2125 		if ((ptpaddr & VPTE_PS) != 0) {
2126 			/* JG correct? */
2127 			pmap_clean_pde(pde, pmap, sva);
2128 			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2129 			continue;
2130 		}
2131 
2132 		/*
2133 		 * Weed out invalid mappings. Note: we assume that the page
2134 		 * directory table is always allocated, and in kernel virtual.
2135 		 */
2136 		if (ptpaddr == 0)
2137 			continue;
2138 
2139 		if (va_next > eva)
2140 			va_next = eva;
2141 
2142 		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
2143 		    sva += PAGE_SIZE) {
2144 			pt_entry_t pbits;
2145 			vm_page_t m;
2146 
2147 			/*
2148 			 * Clean managed pages and also check the accessed
2149 			 * bit.  Just remove write perms for unmanaged
2150 			 * pages.  Be careful of races, turning off write
2151 			 * access will force a fault rather then setting
2152 			 * the modified bit at an unexpected time.
2153 			 */
2154 			if (*pte & VPTE_MANAGED) {
2155 				pbits = pmap_clean_pte(pte, pmap, sva);
2156 				m = NULL;
2157 				if (pbits & VPTE_A) {
2158 					m = PHYS_TO_VM_PAGE(pbits & VPTE_FRAME);
2159 					vm_page_flag_set(m, PG_REFERENCED);
2160 					atomic_clear_long(pte, VPTE_A);
2161 				}
2162 				if (pbits & VPTE_M) {
2163 					if (pmap_track_modified(pmap, sva)) {
2164 						if (m == NULL)
2165 							m = PHYS_TO_VM_PAGE(pbits & VPTE_FRAME);
2166 						vm_page_dirty(m);
2167 					}
2168 				}
2169 			} else {
2170 				pbits = pmap_setro_pte(pte, pmap, sva);
2171 			}
2172 		}
2173 	}
2174 	lwkt_reltoken(&vm_token);
2175 }
2176 
2177 /*
2178  * Enter a managed page into a pmap.  If the page is not wired related pmap
2179  * data can be destroyed at any time for later demand-operation.
2180  *
2181  * Insert the vm_page (m) at virtual address (v) in (pmap), with the
2182  * specified protection, and wire the mapping if requested.
2183  *
2184  * NOTE: This routine may not lazy-evaluate or lose information.  The
2185  * page must actually be inserted into the given map NOW.
2186  *
2187  * NOTE: When entering a page at a KVA address, the pmap must be the
2188  * kernel_pmap.
2189  *
2190  * No requirements.
2191  */
2192 void
2193 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
2194 	   boolean_t wired)
2195 {
2196 	vm_paddr_t pa;
2197 	pd_entry_t *pde;
2198 	pt_entry_t *pte;
2199 	vm_paddr_t opa;
2200 	pt_entry_t origpte, newpte;
2201 	vm_page_t mpte;
2202 
2203 	if (pmap == NULL)
2204 		return;
2205 
2206 	va = trunc_page(va);
2207 
2208 	lwkt_gettoken(&vm_token);
2209 
2210 	/*
2211 	 * Get the page table page.   The kernel_pmap's page table pages
2212 	 * are preallocated and have no associated vm_page_t.
2213 	 */
2214 	if (pmap == &kernel_pmap)
2215 		mpte = NULL;
2216 	else
2217 		mpte = pmap_allocpte(pmap, va);
2218 
2219 	pde = pmap_pde(pmap, va);
2220 	if (pde != NULL && (*pde & VPTE_V) != 0) {
2221 		if ((*pde & VPTE_PS) != 0)
2222 			panic("pmap_enter: attempted pmap_enter on 2MB page");
2223 		pte = pmap_pde_to_pte(pde, va);
2224 	} else {
2225 		panic("pmap_enter: invalid page directory va=%#lx", va);
2226 	}
2227 
2228 	KKASSERT(pte != NULL);
2229 	/*
2230 	 * Deal with races on the original mapping (though don't worry
2231 	 * about VPTE_A races) by cleaning it.  This will force a fault
2232 	 * if an attempt is made to write to the page.
2233 	 */
2234 	pa = VM_PAGE_TO_PHYS(m);
2235 	origpte = pmap_clean_pte(pte, pmap, va);
2236 	opa = origpte & VPTE_FRAME;
2237 
2238 	if (origpte & VPTE_PS)
2239 		panic("pmap_enter: attempted pmap_enter on 2MB page");
2240 
2241 	/*
2242 	 * Mapping has not changed, must be protection or wiring change.
2243 	 */
2244 	if (origpte && (opa == pa)) {
2245 		/*
2246 		 * Wiring change, just update stats. We don't worry about
2247 		 * wiring PT pages as they remain resident as long as there
2248 		 * are valid mappings in them. Hence, if a user page is wired,
2249 		 * the PT page will be also.
2250 		 */
2251 		if (wired && ((origpte & VPTE_WIRED) == 0))
2252 			++pmap->pm_stats.wired_count;
2253 		else if (!wired && (origpte & VPTE_WIRED))
2254 			--pmap->pm_stats.wired_count;
2255 
2256 		/*
2257 		 * Remove the extra pte reference.  Note that we cannot
2258 		 * optimize the RO->RW case because we have adjusted the
2259 		 * wiring count above and may need to adjust the wiring
2260 		 * bits below.
2261 		 */
2262 		if (mpte)
2263 			mpte->hold_count--;
2264 
2265 		/*
2266 		 * We might be turning off write access to the page,
2267 		 * so we go ahead and sense modify status.
2268 		 */
2269 		if (origpte & VPTE_MANAGED) {
2270 			if ((origpte & VPTE_M) &&
2271 			    pmap_track_modified(pmap, va)) {
2272 				vm_page_t om;
2273 				om = PHYS_TO_VM_PAGE(opa);
2274 				vm_page_dirty(om);
2275 			}
2276 			pa |= VPTE_MANAGED;
2277 			KKASSERT(m->flags & PG_MAPPED);
2278 		}
2279 		goto validate;
2280 	}
2281 	/*
2282 	 * Mapping has changed, invalidate old range and fall through to
2283 	 * handle validating new mapping.
2284 	 */
2285 	if (opa) {
2286 		int err;
2287 		err = pmap_remove_pte(pmap, pte, va);
2288 		if (err)
2289 			panic("pmap_enter: pte vanished, va: 0x%lx", va);
2290 	}
2291 
2292 	/*
2293 	 * Enter on the PV list if part of our managed memory. Note that we
2294 	 * raise IPL while manipulating pv_table since pmap_enter can be
2295 	 * called at interrupt time.
2296 	 */
2297 	if (pmap_initialized &&
2298 	    (m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
2299 		pmap_insert_entry(pmap, va, mpte, m);
2300 		pa |= VPTE_MANAGED;
2301 		vm_page_flag_set(m, PG_MAPPED);
2302 	}
2303 
2304 	/*
2305 	 * Increment counters
2306 	 */
2307 	++pmap->pm_stats.resident_count;
2308 	if (wired)
2309 		pmap->pm_stats.wired_count++;
2310 
2311 validate:
2312 	/*
2313 	 * Now validate mapping with desired protection/wiring.
2314 	 */
2315 	newpte = (pt_entry_t) (pa | pte_prot(pmap, prot) | VPTE_V);
2316 
2317 	if (wired)
2318 		newpte |= VPTE_WIRED;
2319 	if (pmap != &kernel_pmap)
2320 		newpte |= VPTE_U;
2321 
2322 	/*
2323 	 * If the mapping or permission bits are different from the
2324 	 * (now cleaned) original pte, an update is needed.  We've
2325 	 * already downgraded or invalidated the page so all we have
2326 	 * to do now is update the bits.
2327 	 *
2328 	 * XXX should we synchronize RO->RW changes to avoid another
2329 	 * fault?
2330 	 */
2331 	if ((origpte & ~(VPTE_W|VPTE_M|VPTE_A)) != newpte) {
2332 		*pte = newpte | VPTE_A;
2333 		if (newpte & VPTE_W)
2334 			vm_page_flag_set(m, PG_WRITEABLE);
2335 	}
2336 	KKASSERT((newpte & VPTE_MANAGED) == 0 || (m->flags & PG_MAPPED));
2337 	lwkt_reltoken(&vm_token);
2338 }
2339 
2340 /*
2341  * This code works like pmap_enter() but assumes VM_PROT_READ and not-wired.
2342  *
2343  * Currently this routine may only be used on user pmaps, not kernel_pmap.
2344  *
2345  * No requirements.
2346  */
2347 void
2348 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m)
2349 {
2350 	pt_entry_t *pte;
2351 	vm_paddr_t pa;
2352 	vm_page_t mpte;
2353 	vm_pindex_t ptepindex;
2354 	pd_entry_t *ptepa;
2355 
2356 	KKASSERT(pmap != &kernel_pmap);
2357 
2358 	KKASSERT(va >= VM_MIN_USER_ADDRESS && va < VM_MAX_USER_ADDRESS);
2359 
2360 	/*
2361 	 * Calculate pagetable page index
2362 	 */
2363 	ptepindex = pmap_pde_pindex(va);
2364 
2365 	lwkt_gettoken(&vm_token);
2366 
2367 	do {
2368 		/*
2369 		 * Get the page directory entry
2370 		 */
2371 		ptepa = pmap_pde(pmap, va);
2372 
2373 		/*
2374 		 * If the page table page is mapped, we just increment
2375 		 * the hold count, and activate it.
2376 		 */
2377 		if (ptepa && (*ptepa & VPTE_V) != 0) {
2378 			if (*ptepa & VPTE_PS)
2379 				panic("pmap_enter_quick: unexpected mapping into 2MB page");
2380 			if (pmap->pm_ptphint &&
2381 			    (pmap->pm_ptphint->pindex == ptepindex)) {
2382 				mpte = pmap->pm_ptphint;
2383 			} else {
2384 				mpte = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
2385 				pmap->pm_ptphint = mpte;
2386 			}
2387 			if (mpte)
2388 				mpte->hold_count++;
2389 		} else {
2390 			mpte = _pmap_allocpte(pmap, ptepindex);
2391 		}
2392 	} while (mpte == NULL);
2393 
2394 	/*
2395 	 * Ok, now that the page table page has been validated, get the pte.
2396 	 * If the pte is already mapped undo mpte's hold_count and
2397 	 * just return.
2398 	 */
2399 	pte = pmap_pte(pmap, va);
2400 	if (*pte & VPTE_V) {
2401 		KKASSERT(mpte != NULL);
2402 		pmap_unwire_pte_hold(pmap, va, mpte);
2403 		pa = VM_PAGE_TO_PHYS(m);
2404 		KKASSERT(((*pte ^ pa) & VPTE_FRAME) == 0);
2405 		lwkt_reltoken(&vm_token);
2406 		return;
2407 	}
2408 
2409 	/*
2410 	 * Enter on the PV list if part of our managed memory
2411 	 */
2412 	if ((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
2413 		pmap_insert_entry(pmap, va, mpte, m);
2414 		vm_page_flag_set(m, PG_MAPPED);
2415 	}
2416 
2417 	/*
2418 	 * Increment counters
2419 	 */
2420 	++pmap->pm_stats.resident_count;
2421 
2422 	pa = VM_PAGE_TO_PHYS(m);
2423 
2424 	/*
2425 	 * Now validate mapping with RO protection
2426 	 */
2427 	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
2428 		*pte = (vpte_t)pa | VPTE_V | VPTE_U;
2429 	else
2430 		*pte = (vpte_t)pa | VPTE_V | VPTE_U | VPTE_MANAGED;
2431 	/*pmap_inval_add(&info, pmap, va); shouldn't be needed 0->valid */
2432 	/*pmap_inval_flush(&info); don't need for vkernel */
2433 	lwkt_reltoken(&vm_token);
2434 }
2435 
2436 /*
2437  * Make a temporary mapping for a physical address.  This is only intended
2438  * to be used for panic dumps.
2439  */
2440 void *
2441 pmap_kenter_temporary(vm_paddr_t pa, int i)
2442 {
2443 	pmap_kenter(crashdumpmap + (i * PAGE_SIZE), pa);
2444 	return ((void *)crashdumpmap);
2445 }
2446 
2447 #define MAX_INIT_PT (96)
2448 
2449 /*
2450  * This routine preloads the ptes for a given object into the specified pmap.
2451  * This eliminates the blast of soft faults on process startup and
2452  * immediately after an mmap.
2453  *
2454  * No requirements.
2455  */
2456 static int pmap_object_init_pt_callback(vm_page_t p, void *data);
2457 
2458 void
2459 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_prot_t prot,
2460 		    vm_object_t object, vm_pindex_t pindex,
2461 		    vm_size_t size, int limit)
2462 {
2463 	struct rb_vm_page_scan_info info;
2464 	struct lwp *lp;
2465 	vm_size_t psize;
2466 
2467 	/*
2468 	 * We can't preinit if read access isn't set or there is no pmap
2469 	 * or object.
2470 	 */
2471 	if ((prot & VM_PROT_READ) == 0 || pmap == NULL || object == NULL)
2472 		return;
2473 
2474 	/*
2475 	 * We can't preinit if the pmap is not the current pmap
2476 	 */
2477 	lp = curthread->td_lwp;
2478 	if (lp == NULL || pmap != vmspace_pmap(lp->lwp_vmspace))
2479 		return;
2480 
2481 	psize = x86_64_btop(size);
2482 
2483 	if ((object->type != OBJT_VNODE) ||
2484 		((limit & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
2485 			(object->resident_page_count > MAX_INIT_PT))) {
2486 		return;
2487 	}
2488 
2489 	if (psize + pindex > object->size) {
2490 		if (object->size < pindex)
2491 			return;
2492 		psize = object->size - pindex;
2493 	}
2494 
2495 	if (psize == 0)
2496 		return;
2497 
2498 	/*
2499 	 * Use a red-black scan to traverse the requested range and load
2500 	 * any valid pages found into the pmap.
2501 	 *
2502 	 * We cannot safely scan the object's memq unless we are in a
2503 	 * critical section since interrupts can remove pages from objects.
2504 	 */
2505 	info.start_pindex = pindex;
2506 	info.end_pindex = pindex + psize - 1;
2507 	info.limit = limit;
2508 	info.mpte = NULL;
2509 	info.addr = addr;
2510 	info.pmap = pmap;
2511 
2512 	crit_enter();
2513 	lwkt_gettoken(&vm_token);
2514 	vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
2515 				pmap_object_init_pt_callback, &info);
2516 	lwkt_reltoken(&vm_token);
2517 	crit_exit();
2518 }
2519 
2520 static
2521 int
2522 pmap_object_init_pt_callback(vm_page_t p, void *data)
2523 {
2524 	struct rb_vm_page_scan_info *info = data;
2525 	vm_pindex_t rel_index;
2526 	/*
2527 	 * don't allow an madvise to blow away our really
2528 	 * free pages allocating pv entries.
2529 	 */
2530 	if ((info->limit & MAP_PREFAULT_MADVISE) &&
2531 		vmstats.v_free_count < vmstats.v_free_reserved) {
2532 		    return(-1);
2533 	}
2534 	if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2535 	    (p->busy == 0) && (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2536 		if ((p->queue - p->pc) == PQ_CACHE)
2537 			vm_page_deactivate(p);
2538 		vm_page_busy(p);
2539 		rel_index = p->pindex - info->start_pindex;
2540 		pmap_enter_quick(info->pmap,
2541 				 info->addr + x86_64_ptob(rel_index), p);
2542 		vm_page_wakeup(p);
2543 	}
2544 	return(0);
2545 }
2546 
2547 /*
2548  * Return TRUE if the pmap is in shape to trivially
2549  * pre-fault the specified address.
2550  *
2551  * Returns FALSE if it would be non-trivial or if a
2552  * pte is already loaded into the slot.
2553  *
2554  * No requirements.
2555  */
2556 int
2557 pmap_prefault_ok(pmap_t pmap, vm_offset_t addr)
2558 {
2559 	pt_entry_t *pte;
2560 	pd_entry_t *pde;
2561 	int ret;
2562 
2563 	lwkt_gettoken(&vm_token);
2564 	pde = pmap_pde(pmap, addr);
2565 	if (pde == NULL || *pde == 0) {
2566 		ret = 0;
2567 	} else {
2568 		pte = pmap_pde_to_pte(pde, addr);
2569 		ret = (*pte) ? 0 : 1;
2570 	}
2571 	lwkt_reltoken(&vm_token);
2572 	return (ret);
2573 }
2574 
2575 /*
2576  * Change the wiring attribute for a map/virtual-address pair.
2577  *
2578  * The mapping must already exist in the pmap.
2579  * No other requirements.
2580  */
2581 void
2582 pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
2583 {
2584 	pt_entry_t *pte;
2585 
2586 	if (pmap == NULL)
2587 		return;
2588 
2589 	lwkt_gettoken(&vm_token);
2590 	pte = pmap_pte(pmap, va);
2591 
2592 	if (wired && !pmap_pte_w(pte))
2593 		pmap->pm_stats.wired_count++;
2594 	else if (!wired && pmap_pte_w(pte))
2595 		pmap->pm_stats.wired_count--;
2596 
2597 	/*
2598 	 * Wiring is not a hardware characteristic so there is no need to
2599 	 * invalidate TLB.  However, in an SMP environment we must use
2600 	 * a locked bus cycle to update the pte (if we are not using
2601 	 * the pmap_inval_*() API that is)... it's ok to do this for simple
2602 	 * wiring changes.
2603 	 */
2604 	if (wired)
2605 		atomic_set_long(pte, VPTE_WIRED);
2606 	else
2607 		atomic_clear_long(pte, VPTE_WIRED);
2608 	lwkt_reltoken(&vm_token);
2609 }
2610 
2611 /*
2612  *	Copy the range specified by src_addr/len
2613  *	from the source map to the range dst_addr/len
2614  *	in the destination map.
2615  *
2616  *	This routine is only advisory and need not do anything.
2617  */
2618 void
2619 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
2620 	vm_size_t len, vm_offset_t src_addr)
2621 {
2622 	/*
2623 	 * XXX BUGGY.  Amoung other things srcmpte is assumed to remain
2624 	 * valid through blocking calls, and that's just not going to
2625 	 * be the case.
2626 	 *
2627 	 * FIXME!
2628 	 */
2629 	return;
2630 }
2631 
2632 /*
2633  * pmap_zero_page:
2634  *
2635  *	Zero the specified physical page.
2636  *
2637  *	This function may be called from an interrupt and no locking is
2638  *	required.
2639  */
2640 void
2641 pmap_zero_page(vm_paddr_t phys)
2642 {
2643 	vm_offset_t va = PHYS_TO_DMAP(phys);
2644 
2645 	bzero((void *)va, PAGE_SIZE);
2646 }
2647 
2648 /*
2649  * pmap_page_assertzero:
2650  *
2651  *	Assert that a page is empty, panic if it isn't.
2652  */
2653 void
2654 pmap_page_assertzero(vm_paddr_t phys)
2655 {
2656 	int i;
2657 
2658 	crit_enter();
2659 	vm_offset_t virt = PHYS_TO_DMAP(phys);
2660 
2661 	for (i = 0; i < PAGE_SIZE; i += sizeof(int)) {
2662 	    if (*(int *)((char *)virt + i) != 0) {
2663 		panic("pmap_page_assertzero() @ %p not zero!\n",
2664 		    (void *)virt);
2665 	    }
2666 	}
2667 	crit_exit();
2668 }
2669 
2670 /*
2671  * pmap_zero_page:
2672  *
2673  *	Zero part of a physical page by mapping it into memory and clearing
2674  *	its contents with bzero.
2675  *
2676  *	off and size may not cover an area beyond a single hardware page.
2677  */
2678 void
2679 pmap_zero_page_area(vm_paddr_t phys, int off, int size)
2680 {
2681 	crit_enter();
2682 	vm_offset_t virt = PHYS_TO_DMAP(phys);
2683 	bzero((char *)virt + off, size);
2684 	crit_exit();
2685 }
2686 
2687 /*
2688  * pmap_copy_page:
2689  *
2690  *	Copy the physical page from the source PA to the target PA.
2691  *	This function may be called from an interrupt.  No locking
2692  *	is required.
2693  */
2694 void
2695 pmap_copy_page(vm_paddr_t src, vm_paddr_t dst)
2696 {
2697 	vm_offset_t src_virt, dst_virt;
2698 
2699 	crit_enter();
2700 	src_virt = PHYS_TO_DMAP(src);
2701 	dst_virt = PHYS_TO_DMAP(dst);
2702 	bcopy((void *)src_virt, (void *)dst_virt, PAGE_SIZE);
2703 	crit_exit();
2704 }
2705 
2706 /*
2707  * pmap_copy_page_frag:
2708  *
2709  *	Copy the physical page from the source PA to the target PA.
2710  *	This function may be called from an interrupt.  No locking
2711  *	is required.
2712  */
2713 void
2714 pmap_copy_page_frag(vm_paddr_t src, vm_paddr_t dst, size_t bytes)
2715 {
2716 	vm_offset_t src_virt, dst_virt;
2717 
2718 	crit_enter();
2719 	src_virt = PHYS_TO_DMAP(src);
2720 	dst_virt = PHYS_TO_DMAP(dst);
2721 	bcopy((char *)src_virt + (src & PAGE_MASK),
2722 	      (char *)dst_virt + (dst & PAGE_MASK),
2723 	      bytes);
2724 	crit_exit();
2725 }
2726 
2727 /*
2728  * Returns true if the pmap's pv is one of the first 16 pvs linked to
2729  * from this page.  This count may be changed upwards or downwards
2730  * in the future; it is only necessary that true be returned for a small
2731  * subset of pmaps for proper page aging.
2732  *
2733  * No other requirements.
2734  */
2735 boolean_t
2736 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
2737 {
2738 	pv_entry_t pv;
2739 	int loops = 0;
2740 
2741 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2742 		return FALSE;
2743 
2744 	crit_enter();
2745 	lwkt_gettoken(&vm_token);
2746 
2747 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2748 		if (pv->pv_pmap == pmap) {
2749 			lwkt_reltoken(&vm_token);
2750 			crit_exit();
2751 			return TRUE;
2752 		}
2753 		loops++;
2754 		if (loops >= 16)
2755 			break;
2756 	}
2757 	lwkt_reltoken(&vm_token);
2758 	crit_exit();
2759 	return (FALSE);
2760 }
2761 
2762 /*
2763  * Remove all pages from specified address space this aids process
2764  * exit speeds.  Also, this code is special cased for current
2765  * process only, but can have the more generic (and slightly slower)
2766  * mode enabled.  This is much faster than pmap_remove in the case
2767  * of running down an entire address space.
2768  *
2769  * No other requirements.
2770  */
2771 void
2772 pmap_remove_pages(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2773 {
2774 	pt_entry_t *pte, tpte;
2775 	pv_entry_t pv, npv;
2776 	vm_page_t m;
2777 	int save_generation;
2778 
2779 	crit_enter();
2780 	lwkt_gettoken(&vm_token);
2781 	for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
2782 		if (pv->pv_va >= eva || pv->pv_va < sva) {
2783 			npv = TAILQ_NEXT(pv, pv_plist);
2784 			continue;
2785 		}
2786 
2787 		KKASSERT(pmap == pv->pv_pmap);
2788 
2789 		pte = pmap_pte(pmap, pv->pv_va);
2790 
2791 		/*
2792 		 * We cannot remove wired pages from a process' mapping
2793 		 * at this time
2794 		 */
2795 		if (*pte & VPTE_WIRED) {
2796 			npv = TAILQ_NEXT(pv, pv_plist);
2797 			continue;
2798 		}
2799 		tpte = pmap_inval_loadandclear(pte, pmap, pv->pv_va);
2800 
2801 		m = PHYS_TO_VM_PAGE(tpte & VPTE_FRAME);
2802 
2803 		KASSERT(m < &vm_page_array[vm_page_array_size],
2804 			("pmap_remove_pages: bad tpte %lx", tpte));
2805 
2806 		KKASSERT(pmap->pm_stats.resident_count > 0);
2807 		--pmap->pm_stats.resident_count;
2808 
2809 		/*
2810 		 * Update the vm_page_t clean and reference bits.
2811 		 */
2812 		if (tpte & VPTE_M) {
2813 			vm_page_dirty(m);
2814 		}
2815 
2816 		npv = TAILQ_NEXT(pv, pv_plist);
2817 		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
2818 		save_generation = ++pmap->pm_generation;
2819 
2820 		m->md.pv_list_count--;
2821 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2822 		if (TAILQ_EMPTY(&m->md.pv_list))
2823 			vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
2824 
2825 		pmap_unuse_pt(pmap, pv->pv_va, pv->pv_ptem);
2826 		free_pv_entry(pv);
2827 
2828 		/*
2829 		 * Restart the scan if we blocked during the unuse or free
2830 		 * calls and other removals were made.
2831 		 */
2832 		if (save_generation != pmap->pm_generation) {
2833 			kprintf("Warning: pmap_remove_pages race-A avoided\n");
2834 			npv = TAILQ_FIRST(&pmap->pm_pvlist);
2835 		}
2836 	}
2837 	lwkt_reltoken(&vm_token);
2838 	crit_exit();
2839 }
2840 
2841 /*
2842  * pmap_testbit tests bits in active mappings of a VM page.
2843  */
2844 static boolean_t
2845 pmap_testbit(vm_page_t m, int bit)
2846 {
2847 	pv_entry_t pv;
2848 	pt_entry_t *pte;
2849 
2850 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2851 		return FALSE;
2852 
2853 	if (TAILQ_FIRST(&m->md.pv_list) == NULL)
2854 		return FALSE;
2855 
2856 	crit_enter();
2857 
2858 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2859 		/*
2860 		 * if the bit being tested is the modified bit, then
2861 		 * mark clean_map and ptes as never
2862 		 * modified.
2863 		 */
2864 		if (bit & (VPTE_A|VPTE_M)) {
2865 			if (!pmap_track_modified(pv->pv_pmap, pv->pv_va))
2866 				continue;
2867 		}
2868 
2869 #if defined(PMAP_DIAGNOSTIC)
2870 		if (pv->pv_pmap == NULL) {
2871 			kprintf("Null pmap (tb) at va: 0x%lx\n", pv->pv_va);
2872 			continue;
2873 		}
2874 #endif
2875 		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2876 		if (*pte & bit) {
2877 			crit_exit();
2878 			return TRUE;
2879 		}
2880 	}
2881 	crit_exit();
2882 	return (FALSE);
2883 }
2884 
2885 /*
2886  * This routine is used to clear bits in ptes.  Certain bits require special
2887  * handling, in particular (on virtual kernels) the VPTE_M (modify) bit.
2888  *
2889  * This routine is only called with certain VPTE_* bit combinations.
2890  */
2891 static __inline void
2892 pmap_clearbit(vm_page_t m, int bit)
2893 {
2894 	pv_entry_t pv;
2895 	pt_entry_t *pte;
2896 	pt_entry_t pbits;
2897 
2898 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2899 		return;
2900 
2901 	crit_enter();
2902 
2903 	/*
2904 	 * Loop over all current mappings setting/clearing as appropos If
2905 	 * setting RO do we need to clear the VAC?
2906 	 */
2907 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2908 		/*
2909 		 * don't write protect pager mappings
2910 		 */
2911 		if (bit == VPTE_W) {
2912 			if (!pmap_track_modified(pv->pv_pmap, pv->pv_va))
2913 				continue;
2914 		}
2915 
2916 #if defined(PMAP_DIAGNOSTIC)
2917 		if (pv->pv_pmap == NULL) {
2918 			kprintf("Null pmap (cb) at va: 0x%lx\n", pv->pv_va);
2919 			continue;
2920 		}
2921 #endif
2922 
2923 		/*
2924 		 * Careful here.  We can use a locked bus instruction to
2925 		 * clear VPTE_A or VPTE_M safely but we need to synchronize
2926 		 * with the target cpus when we mess with VPTE_W.
2927 		 *
2928 		 * On virtual kernels we must force a new fault-on-write
2929 		 * in the real kernel if we clear the Modify bit ourselves,
2930 		 * otherwise the real kernel will not get a new fault and
2931 		 * will never set our Modify bit again.
2932 		 */
2933 		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2934 		if (*pte & bit) {
2935 			if (bit == VPTE_W) {
2936 				/*
2937 				 * We must also clear VPTE_M when clearing
2938 				 * VPTE_W
2939 				 */
2940 				pbits = pmap_clean_pte(pte, pv->pv_pmap,
2941 						       pv->pv_va);
2942 				if (pbits & VPTE_M)
2943 					vm_page_dirty(m);
2944 			} else if (bit == VPTE_M) {
2945 				/*
2946 				 * We do not have to make the page read-only
2947 				 * when clearing the Modify bit.  The real
2948 				 * kernel will make the real PTE read-only
2949 				 * or otherwise detect the write and set
2950 				 * our VPTE_M again simply by us invalidating
2951 				 * the real kernel VA for the pmap (as we did
2952 				 * above).  This allows the real kernel to
2953 				 * handle the write fault without forwarding
2954 				 * the fault to us.
2955 				 */
2956 				atomic_clear_long(pte, VPTE_M);
2957 			} else if ((bit & (VPTE_W|VPTE_M)) == (VPTE_W|VPTE_M)) {
2958 				/*
2959 				 * We've been asked to clear W & M, I guess
2960 				 * the caller doesn't want us to update
2961 				 * the dirty status of the VM page.
2962 				 */
2963 				pmap_clean_pte(pte, pv->pv_pmap, pv->pv_va);
2964 			} else {
2965 				/*
2966 				 * We've been asked to clear bits that do
2967 				 * not interact with hardware.
2968 				 */
2969 				atomic_clear_long(pte, bit);
2970 			}
2971 		}
2972 	}
2973 	crit_exit();
2974 }
2975 
2976 /*
2977  * Lower the permission for all mappings to a given page.
2978  *
2979  * No other requirements.
2980  */
2981 void
2982 pmap_page_protect(vm_page_t m, vm_prot_t prot)
2983 {
2984 	/* JG NX support? */
2985 	if ((prot & VM_PROT_WRITE) == 0) {
2986 		lwkt_gettoken(&vm_token);
2987 		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
2988 			pmap_clearbit(m, VPTE_W);
2989 			vm_page_flag_clear(m, PG_WRITEABLE);
2990 		} else {
2991 			pmap_remove_all(m);
2992 		}
2993 		lwkt_reltoken(&vm_token);
2994 	}
2995 }
2996 
2997 vm_paddr_t
2998 pmap_phys_address(vm_pindex_t ppn)
2999 {
3000 	return (x86_64_ptob(ppn));
3001 }
3002 
3003 /*
3004  * Return a count of reference bits for a page, clearing those bits.
3005  * It is not necessary for every reference bit to be cleared, but it
3006  * is necessary that 0 only be returned when there are truly no
3007  * reference bits set.
3008  *
3009  * XXX: The exact number of bits to check and clear is a matter that
3010  * should be tested and standardized at some point in the future for
3011  * optimal aging of shared pages.
3012  *
3013  * No other requirements.
3014  */
3015 int
3016 pmap_ts_referenced(vm_page_t m)
3017 {
3018 	pv_entry_t pv, pvf, pvn;
3019 	pt_entry_t *pte;
3020 	int rtval = 0;
3021 
3022 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3023 		return (rtval);
3024 
3025 	crit_enter();
3026 	lwkt_gettoken(&vm_token);
3027 
3028 	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3029 
3030 		pvf = pv;
3031 
3032 		do {
3033 			pvn = TAILQ_NEXT(pv, pv_list);
3034 
3035 			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3036 
3037 			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
3038 
3039 			if (!pmap_track_modified(pv->pv_pmap, pv->pv_va))
3040 				continue;
3041 
3042 			pte = pmap_pte(pv->pv_pmap, pv->pv_va);
3043 
3044 			if (pte && (*pte & VPTE_A)) {
3045 #ifdef SMP
3046 				atomic_clear_long(pte, VPTE_A);
3047 #else
3048 				atomic_clear_long_nonlocked(pte, VPTE_A);
3049 #endif
3050 				rtval++;
3051 				if (rtval > 4) {
3052 					break;
3053 				}
3054 			}
3055 		} while ((pv = pvn) != NULL && pv != pvf);
3056 	}
3057 	lwkt_reltoken(&vm_token);
3058 	crit_exit();
3059 
3060 	return (rtval);
3061 }
3062 
3063 /*
3064  * Return whether or not the specified physical page was modified
3065  * in any physical maps.
3066  *
3067  * No other requirements.
3068  */
3069 boolean_t
3070 pmap_is_modified(vm_page_t m)
3071 {
3072 	boolean_t res;
3073 
3074 	lwkt_gettoken(&vm_token);
3075 	res = pmap_testbit(m, VPTE_M);
3076 	lwkt_reltoken(&vm_token);
3077 	return (res);
3078 }
3079 
3080 /*
3081  * Clear the modify bits on the specified physical page.
3082  *
3083  * No other requirements.
3084  */
3085 void
3086 pmap_clear_modify(vm_page_t m)
3087 {
3088 	lwkt_gettoken(&vm_token);
3089 	pmap_clearbit(m, VPTE_M);
3090 	lwkt_reltoken(&vm_token);
3091 }
3092 
3093 /*
3094  * Clear the reference bit on the specified physical page.
3095  *
3096  * No other requirements.
3097  */
3098 void
3099 pmap_clear_reference(vm_page_t m)
3100 {
3101 	lwkt_gettoken(&vm_token);
3102 	pmap_clearbit(m, VPTE_A);
3103 	lwkt_reltoken(&vm_token);
3104 }
3105 
3106 /*
3107  * Miscellaneous support routines follow
3108  */
3109 
3110 static void
3111 i386_protection_init(void)
3112 {
3113 	int *kp, prot;
3114 
3115 	kp = protection_codes;
3116 	for (prot = 0; prot < 8; prot++) {
3117 		if (prot & VM_PROT_READ)
3118 			*kp |= VPTE_R;
3119 		if (prot & VM_PROT_WRITE)
3120 			*kp |= VPTE_W;
3121 		if (prot & VM_PROT_EXECUTE)
3122 			*kp |= VPTE_X;
3123 		++kp;
3124 	}
3125 }
3126 
3127 /*
3128  * Perform the pmap work for mincore
3129  *
3130  * No other requirements.
3131  */
3132 int
3133 pmap_mincore(pmap_t pmap, vm_offset_t addr)
3134 {
3135 	pt_entry_t *ptep, pte;
3136 	vm_page_t m;
3137 	int val = 0;
3138 
3139 	lwkt_gettoken(&vm_token);
3140 	ptep = pmap_pte(pmap, addr);
3141 
3142 	if (ptep && (pte = *ptep) != 0) {
3143 		vm_paddr_t pa;
3144 
3145 		val = MINCORE_INCORE;
3146 		if ((pte & VPTE_MANAGED) == 0)
3147 			goto done;
3148 
3149 		pa = pte & VPTE_FRAME;
3150 
3151 		m = PHYS_TO_VM_PAGE(pa);
3152 
3153 		/*
3154 		 * Modified by us
3155 		 */
3156 		if (pte & VPTE_M)
3157 			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
3158 		/*
3159 		 * Modified by someone
3160 		 */
3161 		else if (m->dirty || pmap_is_modified(m))
3162 			val |= MINCORE_MODIFIED_OTHER;
3163 		/*
3164 		 * Referenced by us
3165 		 */
3166 		if (pte & VPTE_A)
3167 			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
3168 
3169 		/*
3170 		 * Referenced by someone
3171 		 */
3172 		else if ((m->flags & PG_REFERENCED) || pmap_ts_referenced(m)) {
3173 			val |= MINCORE_REFERENCED_OTHER;
3174 			vm_page_flag_set(m, PG_REFERENCED);
3175 		}
3176 	}
3177 done:
3178 	lwkt_reltoken(&vm_token);
3179 	return val;
3180 }
3181 
3182 /*
3183  * Replace p->p_vmspace with a new one.  If adjrefs is non-zero the new
3184  * vmspace will be ref'd and the old one will be deref'd.
3185  */
3186 void
3187 pmap_replacevm(struct proc *p, struct vmspace *newvm, int adjrefs)
3188 {
3189 	struct vmspace *oldvm;
3190 	struct lwp *lp;
3191 
3192 	crit_enter();
3193 	oldvm = p->p_vmspace;
3194 	if (oldvm != newvm) {
3195 		p->p_vmspace = newvm;
3196 		KKASSERT(p->p_nthreads == 1);
3197 		lp = RB_ROOT(&p->p_lwp_tree);
3198 		pmap_setlwpvm(lp, newvm);
3199 		if (adjrefs) {
3200 			sysref_get(&newvm->vm_sysref);
3201 			sysref_put(&oldvm->vm_sysref);
3202 		}
3203 	}
3204 	crit_exit();
3205 }
3206 
3207 /*
3208  * Set the vmspace for a LWP.  The vmspace is almost universally set the
3209  * same as the process vmspace, but virtual kernels need to swap out contexts
3210  * on a per-lwp basis.
3211  */
3212 void
3213 pmap_setlwpvm(struct lwp *lp, struct vmspace *newvm)
3214 {
3215 	struct vmspace *oldvm;
3216 	struct pmap *pmap;
3217 
3218 	crit_enter();
3219 	oldvm = lp->lwp_vmspace;
3220 
3221 	if (oldvm != newvm) {
3222 		lp->lwp_vmspace = newvm;
3223 		if (curthread->td_lwp == lp) {
3224 			pmap = vmspace_pmap(newvm);
3225 #if defined(SMP)
3226 			atomic_set_int(&pmap->pm_active, 1 << mycpu->gd_cpuid);
3227 #else
3228 			pmap->pm_active |= 1;
3229 #endif
3230 #if defined(SWTCH_OPTIM_STATS)
3231 			tlb_flush_count++;
3232 #endif
3233 			pmap = vmspace_pmap(oldvm);
3234 #if defined(SMP)
3235 			atomic_clear_int(&pmap->pm_active,
3236 					  1 << mycpu->gd_cpuid);
3237 #else
3238 			pmap->pm_active &= ~1;
3239 #endif
3240 		}
3241 	}
3242 	crit_exit();
3243 }
3244 
3245 vm_offset_t
3246 pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
3247 {
3248 
3249 	if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
3250 		return addr;
3251 	}
3252 
3253 	addr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
3254 	return addr;
3255 }
3256