1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * Copyright (c) 1994 John S. Dyson
4  * Copyright (c) 1994 David Greenman
5  * Copyright (c) 2003 Peter Wemm
6  * Copyright (c) 2005-2008 Alan L. Cox <alc@cs.rice.edu>
7  * Copyright (c) 2008, 2009 The DragonFly Project.
8  * Copyright (c) 2008, 2009 Jordan Gordeev.
9  * All rights reserved.
10  *
11  * This code is derived from software contributed to Berkeley by
12  * the Systems Programming Group of the University of Utah Computer
13  * Science Department and William Jolitz of UUNET Technologies Inc.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  * 3. All advertising materials mentioning features or use of this software
24  *    must display the following acknowledgement:
25  *	This product includes software developed by the University of
26  *	California, Berkeley and its contributors.
27  * 4. Neither the name of the University nor the names of its contributors
28  *    may be used to endorse or promote products derived from this software
29  *    without specific prior written permission.
30  *
31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41  * SUCH DAMAGE.
42  *
43  *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
44  * $FreeBSD: src/sys/i386/i386/pmap.c,v 1.250.2.18 2002/03/06 22:48:53 silby Exp $
45  */
46 
47 /*
48  * Manages physical address maps.
49  */
50 
51 #include "opt_msgbuf.h"
52 
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/kernel.h>
56 #include <sys/proc.h>
57 #include <sys/msgbuf.h>
58 #include <sys/vmmeter.h>
59 #include <sys/mman.h>
60 #include <sys/vmspace.h>
61 
62 #include <vm/vm.h>
63 #include <vm/vm_param.h>
64 #include <sys/sysctl.h>
65 #include <sys/lock.h>
66 #include <vm/vm_kern.h>
67 #include <vm/vm_page.h>
68 #include <vm/vm_map.h>
69 #include <vm/vm_object.h>
70 #include <vm/vm_extern.h>
71 #include <vm/vm_pageout.h>
72 #include <vm/vm_pager.h>
73 #include <vm/vm_zone.h>
74 
75 #include <sys/user.h>
76 #include <sys/thread2.h>
77 #include <sys/spinlock2.h>
78 #include <vm/vm_page2.h>
79 
80 #include <machine/cputypes.h>
81 #include <machine/md_var.h>
82 #include <machine/specialreg.h>
83 #include <machine/smp.h>
84 #include <machine/globaldata.h>
85 #include <machine/pmap.h>
86 #include <machine/pmap_inval.h>
87 
88 #include <ddb/ddb.h>
89 
90 #include <stdio.h>
91 #include <assert.h>
92 #include <stdlib.h>
93 #include <pthread.h>
94 
95 #define PMAP_KEEP_PDIRS
96 #ifndef PMAP_SHPGPERPROC
97 #define PMAP_SHPGPERPROC 1000
98 #endif
99 
100 #if defined(DIAGNOSTIC)
101 #define PMAP_DIAGNOSTIC
102 #endif
103 
104 #define MINPV 2048
105 
106 #if !defined(PMAP_DIAGNOSTIC)
107 #define PMAP_INLINE __inline
108 #else
109 #define PMAP_INLINE
110 #endif
111 
112 /*
113  * Get PDEs and PTEs for user/kernel address space
114  */
115 static pd_entry_t *pmap_pde(pmap_t pmap, vm_offset_t va);
116 #define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
117 
118 #define pmap_pde_v(pte)		((*(pd_entry_t *)pte & VPTE_V) != 0)
119 #define pmap_pte_w(pte)		((*(pt_entry_t *)pte & VPTE_WIRED) != 0)
120 #define pmap_pte_m(pte)		((*(pt_entry_t *)pte & VPTE_M) != 0)
121 #define pmap_pte_u(pte)		((*(pt_entry_t *)pte & VPTE_A) != 0)
122 #define pmap_pte_v(pte)		((*(pt_entry_t *)pte & VPTE_V) != 0)
123 
124 /*
125  * Given a map and a machine independent protection code,
126  * convert to a vax protection code.
127  */
128 #define pte_prot(m, p)		\
129 	(protection_codes[p & (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE)])
130 static uint64_t protection_codes[8];
131 
132 struct pmap kernel_pmap;
133 
134 static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
135 
136 static struct vm_object kptobj;
137 static int nkpt;
138 
139 static uint64_t	KPDphys;	/* phys addr of kernel level 2 */
140 uint64_t		KPDPphys;	/* phys addr of kernel level 3 */
141 uint64_t		KPML4phys;	/* phys addr of kernel level 4 */
142 
143 extern int vmm_enabled;
144 extern void *vkernel_stack;
145 
146 /*
147  * Data for the pv entry allocation mechanism
148  */
149 static vm_zone_t pvzone;
150 static struct vm_zone pvzone_store;
151 static int pv_entry_count = 0;
152 static int pv_entry_max = 0;
153 static int pv_entry_high_water = 0;
154 static int pmap_pagedaemon_waken = 0;
155 static struct pv_entry *pvinit;
156 
157 /*
158  * All those kernel PT submaps that BSD is so fond of
159  */
160 pt_entry_t *CMAP1 = NULL, *ptmmap;
161 caddr_t CADDR1 = NULL;
162 static pt_entry_t *msgbufmap;
163 
164 uint64_t KPTphys;
165 
166 static PMAP_INLINE void	free_pv_entry (pv_entry_t pv);
167 static pv_entry_t get_pv_entry (void);
168 static void	i386_protection_init (void);
169 static __inline void	pmap_clearbit (vm_page_t m, int bit);
170 
171 static void	pmap_remove_all (vm_page_t m);
172 static int pmap_remove_pte (struct pmap *pmap, pt_entry_t *ptq,
173 				pt_entry_t oldpte, vm_offset_t sva);
174 static void pmap_remove_page (struct pmap *pmap, vm_offset_t va);
175 static int pmap_remove_entry (struct pmap *pmap, vm_page_t m,
176 				vm_offset_t va);
177 static boolean_t pmap_testbit (vm_page_t m, int bit);
178 static void pmap_insert_entry (pmap_t pmap, vm_offset_t va,
179 				vm_page_t mpte, vm_page_t m, pv_entry_t);
180 
181 static vm_page_t pmap_allocpte (pmap_t pmap, vm_offset_t va);
182 
183 static int pmap_release_free_page (pmap_t pmap, vm_page_t p);
184 static vm_page_t _pmap_allocpte (pmap_t pmap, vm_pindex_t ptepindex);
185 static vm_page_t pmap_page_lookup (vm_object_t object, vm_pindex_t pindex);
186 static int pmap_unuse_pt (pmap_t, vm_offset_t, vm_page_t);
187 
188 static int
189 pv_entry_compare(pv_entry_t pv1, pv_entry_t pv2)
190 {
191 	if (pv1->pv_va < pv2->pv_va)
192 		return(-1);
193 	if (pv1->pv_va > pv2->pv_va)
194 		return(1);
195 	return(0);
196 }
197 
198 RB_GENERATE2(pv_entry_rb_tree, pv_entry, pv_entry,
199 	    pv_entry_compare, vm_offset_t, pv_va);
200 
201 static __inline vm_pindex_t
202 pmap_pt_pindex(vm_offset_t va)
203 {
204 	return va >> PDRSHIFT;
205 }
206 
207 static __inline vm_pindex_t
208 pmap_pte_index(vm_offset_t va)
209 {
210 	return ((va >> PAGE_SHIFT) & ((1ul << NPTEPGSHIFT) - 1));
211 }
212 
213 static __inline vm_pindex_t
214 pmap_pde_index(vm_offset_t va)
215 {
216 	return ((va >> PDRSHIFT) & ((1ul << NPDEPGSHIFT) - 1));
217 }
218 
219 static __inline vm_pindex_t
220 pmap_pdpe_index(vm_offset_t va)
221 {
222 	return ((va >> PDPSHIFT) & ((1ul << NPDPEPGSHIFT) - 1));
223 }
224 
225 static __inline vm_pindex_t
226 pmap_pml4e_index(vm_offset_t va)
227 {
228 	return ((va >> PML4SHIFT) & ((1ul << NPML4EPGSHIFT) - 1));
229 }
230 
231 /* Return a pointer to the PML4 slot that corresponds to a VA */
232 static __inline pml4_entry_t *
233 pmap_pml4e(pmap_t pmap, vm_offset_t va)
234 {
235 	return (&pmap->pm_pml4[pmap_pml4e_index(va)]);
236 }
237 
238 /* Return a pointer to the PDP slot that corresponds to a VA */
239 static __inline pdp_entry_t *
240 pmap_pml4e_to_pdpe(pml4_entry_t *pml4e, vm_offset_t va)
241 {
242 	pdp_entry_t *pdpe;
243 
244 	pdpe = (pdp_entry_t *)PHYS_TO_DMAP(*pml4e & VPTE_FRAME);
245 	return (&pdpe[pmap_pdpe_index(va)]);
246 }
247 
248 /* Return a pointer to the PDP slot that corresponds to a VA */
249 static __inline pdp_entry_t *
250 pmap_pdpe(pmap_t pmap, vm_offset_t va)
251 {
252 	pml4_entry_t *pml4e;
253 
254 	pml4e = pmap_pml4e(pmap, va);
255 	if ((*pml4e & VPTE_V) == 0)
256 		return NULL;
257 	return (pmap_pml4e_to_pdpe(pml4e, va));
258 }
259 
260 /* Return a pointer to the PD slot that corresponds to a VA */
261 static __inline pd_entry_t *
262 pmap_pdpe_to_pde(pdp_entry_t *pdpe, vm_offset_t va)
263 {
264 	pd_entry_t *pde;
265 
266 	pde = (pd_entry_t *)PHYS_TO_DMAP(*pdpe & VPTE_FRAME);
267 	return (&pde[pmap_pde_index(va)]);
268 }
269 
270 /* Return a pointer to the PD slot that corresponds to a VA */
271 static __inline pd_entry_t *
272 pmap_pde(pmap_t pmap, vm_offset_t va)
273 {
274 	pdp_entry_t *pdpe;
275 
276 	pdpe = pmap_pdpe(pmap, va);
277 	if (pdpe == NULL || (*pdpe & VPTE_V) == 0)
278 		 return NULL;
279 	return (pmap_pdpe_to_pde(pdpe, va));
280 }
281 
282 /* Return a pointer to the PT slot that corresponds to a VA */
283 static __inline pt_entry_t *
284 pmap_pde_to_pte(pd_entry_t *pde, vm_offset_t va)
285 {
286 	pt_entry_t *pte;
287 
288 	pte = (pt_entry_t *)PHYS_TO_DMAP(*pde & VPTE_FRAME);
289 	return (&pte[pmap_pte_index(va)]);
290 }
291 
292 /*
293  * Hold pt_m for page table scans to prevent it from getting reused out
294  * from under us across blocking conditions in the body of the loop.
295  */
296 static __inline
297 vm_page_t
298 pmap_hold_pt_page(pd_entry_t *pde, vm_offset_t va)
299 {
300 	pt_entry_t pte;
301 	vm_page_t pt_m;
302 
303 	pte = (pt_entry_t)*pde;
304 	KKASSERT(pte != 0);
305 	pt_m = PHYS_TO_VM_PAGE(pte & VPTE_FRAME);
306 	vm_page_hold(pt_m);
307 
308 	return pt_m;
309 }
310 
311 /* Return a pointer to the PT slot that corresponds to a VA */
312 static __inline pt_entry_t *
313 pmap_pte(pmap_t pmap, vm_offset_t va)
314 {
315 	pd_entry_t *pde;
316 
317 	pde = pmap_pde(pmap, va);
318 	if (pde == NULL || (*pde & VPTE_V) == 0)
319 		return NULL;
320 	if ((*pde & VPTE_PS) != 0)	/* compat with i386 pmap_pte() */
321 		return ((pt_entry_t *)pde);
322 	return (pmap_pde_to_pte(pde, va));
323 }
324 
325 static PMAP_INLINE pt_entry_t *
326 vtopte(vm_offset_t va)
327 {
328 	pt_entry_t *x;
329 	x = pmap_pte(&kernel_pmap, va);
330 	assert(x != NULL);
331 	return x;
332 }
333 
334 static __inline pd_entry_t *
335 vtopde(vm_offset_t va)
336 {
337 	pd_entry_t *x;
338 	x = pmap_pde(&kernel_pmap, va);
339 	assert(x != NULL);
340 	return x;
341 }
342 
343 static uint64_t
344 allocpages(vm_paddr_t *firstaddr, int n)
345 {
346 	uint64_t ret;
347 
348 	ret = *firstaddr;
349 	/*bzero((void *)ret, n * PAGE_SIZE); not mapped yet */
350 	*firstaddr += n * PAGE_SIZE;
351 	return (ret);
352 }
353 
354 static void
355 create_dmap_vmm(vm_paddr_t *firstaddr)
356 {
357 	void *stack_addr;
358 	int pml4_stack_index;
359 	int pdp_stack_index;
360 	int pd_stack_index;
361 	long i,j;
362 	int regs[4];
363 	int amd_feature;
364 
365 	uint64_t KPDP_DMAP_phys = allocpages(firstaddr, NDMPML4E);
366 	uint64_t KPDP_VSTACK_phys = allocpages(firstaddr, 1);
367 	uint64_t KPD_VSTACK_phys = allocpages(firstaddr, 1);
368 
369 	pml4_entry_t *KPML4virt = (pml4_entry_t *)PHYS_TO_DMAP(KPML4phys);
370 	pdp_entry_t *KPDP_DMAP_virt = (pdp_entry_t *)PHYS_TO_DMAP(KPDP_DMAP_phys);
371 	pdp_entry_t *KPDP_VSTACK_virt = (pdp_entry_t *)PHYS_TO_DMAP(KPDP_VSTACK_phys);
372 	pd_entry_t *KPD_VSTACK_virt = (pd_entry_t *)PHYS_TO_DMAP(KPD_VSTACK_phys);
373 
374 	bzero(KPDP_DMAP_virt, NDMPML4E * PAGE_SIZE);
375 	bzero(KPDP_VSTACK_virt, 1 * PAGE_SIZE);
376 	bzero(KPD_VSTACK_virt, 1 * PAGE_SIZE);
377 
378 	do_cpuid(0x80000001, regs);
379 	amd_feature = regs[3];
380 
381 	/* Build the mappings for the first 512GB */
382 	if (amd_feature & AMDID_PAGE1GB) {
383 		/* In pages of 1 GB, if supported */
384 		for (i = 0; i < NPDPEPG; i++) {
385 			KPDP_DMAP_virt[i] = ((uint64_t)i << PDPSHIFT);
386 			KPDP_DMAP_virt[i] |= VPTE_RW | VPTE_V | VPTE_PS | VPTE_U;
387 		}
388 	} else {
389 		/* In page of 2MB, otherwise */
390 		for (i = 0; i < NPDPEPG; i++) {
391 			uint64_t KPD_DMAP_phys;
392 			pd_entry_t *KPD_DMAP_virt;
393 
394 			KPD_DMAP_phys = allocpages(firstaddr, 1);
395 			KPD_DMAP_virt =
396 				(pd_entry_t *)PHYS_TO_DMAP(KPD_DMAP_phys);
397 
398 			bzero(KPD_DMAP_virt, PAGE_SIZE);
399 
400 			KPDP_DMAP_virt[i] = KPD_DMAP_phys;
401 			KPDP_DMAP_virt[i] |= VPTE_RW | VPTE_V | VPTE_U;
402 
403 			/* For each PD, we have to allocate NPTEPG PT */
404 			for (j = 0; j < NPTEPG; j++) {
405 				KPD_DMAP_virt[j] = (i << PDPSHIFT) |
406 						   (j << PDRSHIFT);
407 				KPD_DMAP_virt[j] |= VPTE_RW | VPTE_V |
408 						    VPTE_PS | VPTE_U;
409 			}
410 		}
411 	}
412 
413 	/* DMAP for the first 512G */
414 	KPML4virt[0] = KPDP_DMAP_phys;
415 	KPML4virt[0] |= VPTE_RW | VPTE_V | VPTE_U;
416 
417 	/* create a 2 MB map of the new stack */
418 	pml4_stack_index = (uint64_t)&stack_addr >> PML4SHIFT;
419 	KPML4virt[pml4_stack_index] = KPDP_VSTACK_phys;
420 	KPML4virt[pml4_stack_index] |= VPTE_RW | VPTE_V | VPTE_U;
421 
422 	pdp_stack_index = ((uint64_t)&stack_addr & PML4MASK) >> PDPSHIFT;
423 	KPDP_VSTACK_virt[pdp_stack_index] = KPD_VSTACK_phys;
424 	KPDP_VSTACK_virt[pdp_stack_index] |= VPTE_RW | VPTE_V | VPTE_U;
425 
426 	pd_stack_index = ((uint64_t)&stack_addr & PDPMASK) >> PDRSHIFT;
427 	KPD_VSTACK_virt[pd_stack_index] = (uint64_t) vkernel_stack;
428 	KPD_VSTACK_virt[pd_stack_index] |= VPTE_RW | VPTE_V | VPTE_U | VPTE_PS;
429 }
430 
431 static void
432 create_pagetables(vm_paddr_t *firstaddr, int64_t ptov_offset)
433 {
434 	int i;
435 	pml4_entry_t *KPML4virt;
436 	pdp_entry_t *KPDPvirt;
437 	pd_entry_t *KPDvirt;
438 	pt_entry_t *KPTvirt;
439 	int kpml4i = pmap_pml4e_index(ptov_offset);
440 	int kpdpi = pmap_pdpe_index(ptov_offset);
441 	int kpdi = pmap_pde_index(ptov_offset);
442 
443 	/*
444          * Calculate NKPT - number of kernel page tables.  We have to
445          * accomodoate prealloction of the vm_page_array, dump bitmap,
446          * MSGBUF_SIZE, and other stuff.  Be generous.
447          *
448          * Maxmem is in pages.
449          */
450         nkpt = (Maxmem * (sizeof(struct vm_page) * 2) + MSGBUF_SIZE) / NBPDR;
451 	/*
452 	 * Allocate pages
453 	 */
454 	KPML4phys = allocpages(firstaddr, 1);
455 	KPDPphys = allocpages(firstaddr, NKPML4E);
456 	KPDphys = allocpages(firstaddr, NKPDPE);
457 	KPTphys = allocpages(firstaddr, nkpt);
458 
459 	KPML4virt = (pml4_entry_t *)PHYS_TO_DMAP(KPML4phys);
460 	KPDPvirt = (pdp_entry_t *)PHYS_TO_DMAP(KPDPphys);
461 	KPDvirt = (pd_entry_t *)PHYS_TO_DMAP(KPDphys);
462 	KPTvirt = (pt_entry_t *)PHYS_TO_DMAP(KPTphys);
463 
464 	bzero(KPML4virt, 1 * PAGE_SIZE);
465 	bzero(KPDPvirt, NKPML4E * PAGE_SIZE);
466 	bzero(KPDvirt, NKPDPE * PAGE_SIZE);
467 	bzero(KPTvirt, nkpt * PAGE_SIZE);
468 
469 	/* Now map the page tables at their location within PTmap */
470 	for (i = 0; i < nkpt; i++) {
471 		KPDvirt[i + kpdi] = KPTphys + (i << PAGE_SHIFT);
472 		KPDvirt[i + kpdi] |= VPTE_RW | VPTE_V | VPTE_U;
473 	}
474 
475 	/* And connect up the PD to the PDP */
476 	for (i = 0; i < NKPDPE; i++) {
477 		KPDPvirt[i + kpdpi] = KPDphys + (i << PAGE_SHIFT);
478 		KPDPvirt[i + kpdpi] |= VPTE_RW | VPTE_V | VPTE_U;
479 	}
480 
481 	/* And recursively map PML4 to itself in order to get PTmap */
482 	KPML4virt[PML4PML4I] = KPML4phys;
483 	KPML4virt[PML4PML4I] |= VPTE_RW | VPTE_V | VPTE_U;
484 
485 	/* Connect the KVA slot up to the PML4 */
486 	KPML4virt[kpml4i] = KPDPphys;
487 	KPML4virt[kpml4i] |= VPTE_RW | VPTE_V | VPTE_U;
488 }
489 
490 /*
491  * Typically used to initialize a fictitious page by vm/device_pager.c
492  */
493 void
494 pmap_page_init(struct vm_page *m)
495 {
496 	vm_page_init(m);
497 	TAILQ_INIT(&m->md.pv_list);
498 }
499 
500 /*
501  *	Bootstrap the system enough to run with virtual memory.
502  *
503  *	On the i386 this is called after mapping has already been enabled
504  *	and just syncs the pmap module with what has already been done.
505  *	[We can't call it easily with mapping off since the kernel is not
506  *	mapped with PA == VA, hence we would have to relocate every address
507  *	from the linked base (virtual) address "KERNBASE" to the actual
508  *	(physical) address starting relative to 0]
509  */
510 void
511 pmap_bootstrap(vm_paddr_t *firstaddr, int64_t ptov_offset)
512 {
513 	vm_offset_t va;
514 	pt_entry_t *pte;
515 
516 	/*
517 	 * Create an initial set of page tables to run the kernel in.
518 	 */
519 	create_pagetables(firstaddr, ptov_offset);
520 
521 	/* Create the DMAP for the VMM */
522 	if (vmm_enabled) {
523 		create_dmap_vmm(firstaddr);
524 	}
525 
526 	virtual_start = KvaStart;
527 	virtual_end = KvaEnd;
528 
529 	/*
530 	 * Initialize protection array.
531 	 */
532 	i386_protection_init();
533 
534 	/*
535 	 * The kernel's pmap is statically allocated so we don't have to use
536 	 * pmap_create, which is unlikely to work correctly at this part of
537 	 * the boot sequence (XXX and which no longer exists).
538 	 *
539 	 * The kernel_pmap's pm_pteobj is used only for locking and not
540 	 * for mmu pages.
541 	 */
542 	kernel_pmap.pm_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(KPML4phys);
543 	kernel_pmap.pm_count = 1;
544 	/* don't allow deactivation */
545 	CPUMASK_ASSALLONES(kernel_pmap.pm_active);
546 	kernel_pmap.pm_pteobj = NULL;	/* see pmap_init */
547 	RB_INIT(&kernel_pmap.pm_pvroot);
548 	spin_init(&kernel_pmap.pm_spin, "pmapbootstrap");
549 
550 	/*
551 	 * Reserve some special page table entries/VA space for temporary
552 	 * mapping of pages.
553 	 */
554 #define	SYSMAP(c, p, v, n)	\
555 	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
556 
557 	va = virtual_start;
558 	pte = pmap_pte(&kernel_pmap, va);
559 	/*
560 	 * CMAP1/CMAP2 are used for zeroing and copying pages.
561 	 */
562 	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
563 
564 #if JGV
565 	/*
566 	 * Crashdump maps.
567 	 */
568 	SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
569 #endif
570 
571 	/*
572 	 * ptvmmap is used for reading arbitrary physical pages via
573 	 * /dev/mem.
574 	 */
575 	SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
576 
577 	/*
578 	 * msgbufp is used to map the system message buffer.
579 	 * XXX msgbufmap is not used.
580 	 */
581 	SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
582 	       atop(round_page(MSGBUF_SIZE)))
583 
584 	virtual_start = va;
585 
586 	*CMAP1 = 0;
587 	/* Not ready to do an invltlb yet for VMM*/
588 	if (!vmm_enabled)
589 		cpu_invltlb();
590 
591 }
592 
593 /*
594  *	Initialize the pmap module.
595  *	Called by vm_init, to initialize any structures that the pmap
596  *	system needs to map virtual memory.
597  *	pmap_init has been enhanced to support in a fairly consistant
598  *	way, discontiguous physical memory.
599  */
600 void
601 pmap_init(void)
602 {
603 	int i;
604 	int initial_pvs;
605 
606 	/*
607 	 * object for kernel page table pages
608 	 */
609 	/* JG I think the number can be arbitrary */
610 	vm_object_init(&kptobj, 5);
611 	kernel_pmap.pm_pteobj = &kptobj;
612 
613 	/*
614 	 * Allocate memory for random pmap data structures.  Includes the
615 	 * pv_head_table.
616 	 */
617 	for(i = 0; i < vm_page_array_size; i++) {
618 		vm_page_t m;
619 
620 		m = &vm_page_array[i];
621 		TAILQ_INIT(&m->md.pv_list);
622 		m->md.pv_list_count = 0;
623 	}
624 
625 	/*
626 	 * init the pv free list
627 	 */
628 	initial_pvs = vm_page_array_size;
629 	if (initial_pvs < MINPV)
630 		initial_pvs = MINPV;
631 	pvzone = &pvzone_store;
632 	pvinit = (struct pv_entry *)
633 		kmem_alloc(&kernel_map,
634 			   initial_pvs * sizeof (struct pv_entry),
635 			   VM_SUBSYS_PVENTRY);
636 	zbootinit(pvzone, "PV ENTRY", sizeof (struct pv_entry), pvinit,
637 		initial_pvs);
638 
639 	/*
640 	 * Now it is safe to enable pv_table recording.
641 	 */
642 	pmap_initialized = TRUE;
643 }
644 
645 /*
646  * Initialize the address space (zone) for the pv_entries.  Set a
647  * high water mark so that the system can recover from excessive
648  * numbers of pv entries.
649  */
650 void
651 pmap_init2(void)
652 {
653 	int shpgperproc = PMAP_SHPGPERPROC;
654 
655 	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
656 	pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
657 	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
658 	pv_entry_high_water = 9 * (pv_entry_max / 10);
659 	zinitna(pvzone, NULL, 0, pv_entry_max, ZONE_INTERRUPT);
660 }
661 
662 
663 /***************************************************
664  * Low level helper routines.....
665  ***************************************************/
666 
667 /*
668  * The modification bit is not tracked for any pages in this range. XXX
669  * such pages in this maps should always use pmap_k*() functions and not
670  * be managed anyhow.
671  *
672  * XXX User and kernel address spaces are independant for virtual kernels,
673  * this function only applies to the kernel pmap.
674  */
675 int
676 pmap_track_modified(pmap_t pmap, vm_offset_t va)
677 {
678 	if (pmap != &kernel_pmap)
679 		return 1;
680 	if ((va < clean_sva) || (va >= clean_eva))
681 		return 1;
682 	else
683 		return 0;
684 }
685 
686 /*
687  * Extract the physical page address associated with the map/VA pair.
688  *
689  * No requirements.
690  */
691 vm_paddr_t
692 pmap_extract(pmap_t pmap, vm_offset_t va, void **handlep)
693 {
694 	vm_paddr_t rtval;
695 	pt_entry_t *pte;
696 	pd_entry_t pde, *pdep;
697 
698 	vm_object_hold(pmap->pm_pteobj);
699 	rtval = 0;
700 	pdep = pmap_pde(pmap, va);
701 	if (pdep != NULL) {
702 		pde = *pdep;
703 		if (pde) {
704 			if ((pde & VPTE_PS) != 0) {
705 				/* JGV */
706 				rtval = (pde & PG_PS_FRAME) | (va & PDRMASK);
707 			} else {
708 				pte = pmap_pde_to_pte(pdep, va);
709 				rtval = (*pte & VPTE_FRAME) | (va & PAGE_MASK);
710 			}
711 		}
712 	}
713 	if (handlep)
714 		*handlep = NULL;	/* XXX */
715 	vm_object_drop(pmap->pm_pteobj);
716 
717 	return rtval;
718 }
719 
720 void
721 pmap_extract_done(void *handle)
722 {
723 	pmap_t pmap;
724 
725 	if (handle) {
726 		pmap = handle;
727 		vm_object_drop(pmap->pm_pteobj);
728 	}
729 }
730 
731 /*
732  * Similar to extract but checks protections, SMP-friendly short-cut for
733  * vm_fault_page[_quick]().
734  *
735  * WARNING! THE RETURNED PAGE IS ONLY HELD AND NEITHER IT NOR ITS TARGET
736  *	    DATA IS SUITABLE FOR WRITING.  Writing can interfere with
737  *	    pageouts flushes, msync, etc.  The hold_count is not enough
738  *	    to avoid races against pageouts and other flush code doesn't
739  *	    care about hold_count.
740  */
741 vm_page_t
742 pmap_fault_page_quick(pmap_t pmap __unused, vm_offset_t vaddr __unused,
743 		      vm_prot_t prot __unused, int *busyp __unused)
744 {
745 	return(NULL);
746 }
747 
748 /*
749  *	Routine:	pmap_kextract
750  *	Function:
751  *		Extract the physical page address associated
752  *		kernel virtual address.
753  */
754 vm_paddr_t
755 pmap_kextract(vm_offset_t va)
756 {
757 	pd_entry_t pde;
758 	vm_paddr_t pa;
759 
760 	KKASSERT(va >= KvaStart && va < KvaEnd);
761 
762 	/*
763 	 * The DMAP region is not included in [KvaStart, KvaEnd)
764 	 */
765 #if 0
766 	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
767 		pa = DMAP_TO_PHYS(va);
768 	} else {
769 #endif
770 		pde = *vtopde(va);
771 		if (pde & VPTE_PS) {
772 			/* JGV */
773 			pa = (pde & PG_PS_FRAME) | (va & PDRMASK);
774 		} else {
775 			/*
776 			 * Beware of a concurrent promotion that changes the
777 			 * PDE at this point!  For example, vtopte() must not
778 			 * be used to access the PTE because it would use the
779 			 * new PDE.  It is, however, safe to use the old PDE
780 			 * because the page table page is preserved by the
781 			 * promotion.
782 			 */
783 			pa = *pmap_pde_to_pte(&pde, va);
784 			pa = (pa & VPTE_FRAME) | (va & PAGE_MASK);
785 		}
786 #if 0
787 	}
788 #endif
789 	return pa;
790 }
791 
792 /***************************************************
793  * Low level mapping routines.....
794  ***************************************************/
795 
796 /*
797  * Enter a mapping into kernel_pmap.  Mappings created in this fashion
798  * are not managed.  Mappings must be immediately accessible on all cpus.
799  *
800  * Call pmap_inval_pte() to invalidate the virtual pte and clean out the
801  * real pmap and handle related races before storing the new vpte.  The
802  * new semantics for kenter require use to do an UNCONDITIONAL invalidation,
803  * because the entry may have previously been cleared without an invalidation.
804  */
805 void
806 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
807 {
808 	pt_entry_t *ptep;
809 	pt_entry_t npte;
810 
811 	KKASSERT(va >= KvaStart && va < KvaEnd);
812 	npte = pa | VPTE_RW | VPTE_V | VPTE_U;
813 	ptep = vtopte(va);
814 
815 #if 1
816 	pmap_inval_pte(ptep, &kernel_pmap, va);
817 #else
818 	if (*pte & VPTE_V)
819 		pmap_inval_pte(ptep, &kernel_pmap, va);
820 #endif
821 	atomic_swap_long(ptep, npte);
822 }
823 
824 /*
825  * Enter an unmanaged KVA mapping for the private use of the current
826  * cpu only.
827  *
828  * It is illegal for the mapping to be accessed by other cpus without
829  * proper invalidation.
830  */
831 int
832 pmap_kenter_quick(vm_offset_t va, vm_paddr_t pa)
833 {
834 	pt_entry_t *ptep;
835 	pt_entry_t npte;
836 	int res;
837 
838 	KKASSERT(va >= KvaStart && va < KvaEnd);
839 
840 	npte = (vpte_t)pa | VPTE_RW | VPTE_V | VPTE_U;
841 	ptep = vtopte(va);
842 
843 #if 1
844 	pmap_inval_pte_quick(ptep, &kernel_pmap, va);
845 	res = 1;
846 #else
847 	/* FUTURE */
848 	res = (*ptep != 0);
849 	if (*pte & VPTE_V)
850 		pmap_inval_pte(pte, &kernel_pmap, va);
851 #endif
852 	atomic_swap_long(ptep, npte);
853 
854 	return res;
855 }
856 
857 /*
858  * Invalidation will occur later, ok to be lazy here.
859  */
860 int
861 pmap_kenter_noinval(vm_offset_t va, vm_paddr_t pa)
862 {
863 	pt_entry_t *ptep;
864 	pt_entry_t npte;
865 	int res;
866 
867 	KKASSERT(va >= KvaStart && va < KvaEnd);
868 
869 	npte = (vpte_t)pa | VPTE_RW | VPTE_V | VPTE_U;
870 	ptep = vtopte(va);
871 #if 1
872 	res = 1;
873 #else
874 	/* FUTURE */
875 	res = (*ptep != 0);
876 #endif
877 	atomic_swap_long(ptep, npte);
878 
879 	return res;
880 }
881 
882 /*
883  * Remove an unmanaged mapping created with pmap_kenter*().
884  */
885 void
886 pmap_kremove(vm_offset_t va)
887 {
888 	pt_entry_t *ptep;
889 
890 	KKASSERT(va >= KvaStart && va < KvaEnd);
891 
892 	ptep = vtopte(va);
893 	atomic_swap_long(ptep, 0);
894 	pmap_inval_pte(ptep, &kernel_pmap, va);
895 }
896 
897 /*
898  * Remove an unmanaged mapping created with pmap_kenter*() but synchronize
899  * only with this cpu.
900  *
901  * Unfortunately because we optimize new entries by testing VPTE_V later
902  * on, we actually still have to synchronize with all the cpus.  XXX maybe
903  * store a junk value and test against 0 in the other places instead?
904  */
905 void
906 pmap_kremove_quick(vm_offset_t va)
907 {
908 	pt_entry_t *ptep;
909 
910 	KKASSERT(va >= KvaStart && va < KvaEnd);
911 
912 	ptep = vtopte(va);
913 	atomic_swap_long(ptep, 0);
914 	pmap_inval_pte(ptep, &kernel_pmap, va); /* NOT _quick */
915 }
916 
917 /*
918  * Invalidation will occur later, ok to be lazy here.
919  */
920 void
921 pmap_kremove_noinval(vm_offset_t va)
922 {
923 	pt_entry_t *ptep;
924 
925 	KKASSERT(va >= KvaStart && va < KvaEnd);
926 
927 	ptep = vtopte(va);
928 	atomic_swap_long(ptep, 0);
929 }
930 
931 /*
932  *	Used to map a range of physical addresses into kernel
933  *	virtual address space.
934  *
935  *	For now, VM is already on, we only need to map the
936  *	specified memory.
937  */
938 vm_offset_t
939 pmap_map(vm_offset_t *virtp, vm_paddr_t start, vm_paddr_t end, int prot)
940 {
941 	return PHYS_TO_DMAP(start);
942 }
943 
944 /*
945  * Map a set of unmanaged VM pages into KVM.
946  */
947 static __inline void
948 _pmap_qenter(vm_offset_t beg_va, vm_page_t *m, int count, int doinval)
949 {
950 	vm_offset_t end_va;
951 	vm_offset_t va;
952 
953 	end_va = beg_va + count * PAGE_SIZE;
954 	KKASSERT(beg_va >= KvaStart && end_va <= KvaEnd);
955 
956 	for (va = beg_va; va < end_va; va += PAGE_SIZE) {
957 		pt_entry_t *ptep;
958 
959 		ptep = vtopte(va);
960 		atomic_swap_long(ptep, VM_PAGE_TO_PHYS(*m) |
961 				       VPTE_RW | VPTE_V | VPTE_U);
962 		++m;
963 	}
964 	if (doinval)
965 		pmap_invalidate_range(&kernel_pmap, beg_va, end_va);
966 	/* pmap_inval_pte(pte, &kernel_pmap, va); */
967 }
968 
969 void
970 pmap_qenter(vm_offset_t beg_va, vm_page_t *m, int count)
971 {
972 	_pmap_qenter(beg_va, m, count, 1);
973 }
974 
975 void
976 pmap_qenter_noinval(vm_offset_t beg_va, vm_page_t *m, int count)
977 {
978 	_pmap_qenter(beg_va, m, count, 0);
979 }
980 
981 /*
982  * Undo the effects of pmap_qenter*().
983  */
984 void
985 pmap_qremove(vm_offset_t beg_va, int count)
986 {
987 	vm_offset_t end_va;
988 	vm_offset_t va;
989 
990 	end_va = beg_va + count * PAGE_SIZE;
991 	KKASSERT(beg_va >= KvaStart && end_va < KvaEnd);
992 
993 	for (va = beg_va; va < end_va; va += PAGE_SIZE) {
994 		pt_entry_t *ptep;
995 
996 		ptep = vtopte(va);
997 		atomic_swap_long(ptep, 0);
998 	}
999 	pmap_invalidate_range(&kernel_pmap, beg_va, end_va);
1000 }
1001 
1002 /*
1003  * Unlike the real pmap code, we can't avoid calling the real-kernel.
1004  */
1005 void
1006 pmap_qremove_quick(vm_offset_t va, int count)
1007 {
1008 	pmap_qremove(va, count);
1009 }
1010 
1011 void
1012 pmap_qremove_noinval(vm_offset_t va, int count)
1013 {
1014 	pmap_qremove(va, count);
1015 }
1016 
1017 /*
1018  * This routine works like vm_page_lookup() but also blocks as long as the
1019  * page is busy.  This routine does not busy the page it returns.
1020  *
1021  * Unless the caller is managing objects whos pages are in a known state,
1022  * the call should be made with a critical section held so the page's object
1023  * association remains valid on return.
1024  */
1025 static vm_page_t
1026 pmap_page_lookup(vm_object_t object, vm_pindex_t pindex)
1027 {
1028 	vm_page_t m;
1029 
1030 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1031 	m = vm_page_lookup_busy_wait(object, pindex, TRUE, "pplookp");
1032 
1033 	return(m);
1034 }
1035 
1036 /*
1037  * Create a new thread and optionally associate it with a (new) process.
1038  * NOTE! the new thread's cpu may not equal the current cpu.
1039  */
1040 void
1041 pmap_init_thread(thread_t td)
1042 {
1043 	/* enforce pcb placement */
1044 	td->td_pcb = (struct pcb *)(td->td_kstack + td->td_kstack_size) - 1;
1045 	td->td_savefpu = &td->td_pcb->pcb_save;
1046 	td->td_sp = (char *)td->td_pcb - 16; /* JG is -16 needed on x86_64? */
1047 }
1048 
1049 /*
1050  * This routine directly affects the fork perf for a process.
1051  */
1052 void
1053 pmap_init_proc(struct proc *p)
1054 {
1055 }
1056 
1057 /*
1058  * Unwire a page table which has been removed from the pmap.  We own the
1059  * wire_count, so the page cannot go away.  The page representing the page
1060  * table is passed in unbusied and must be busied if we cannot trivially
1061  * unwire it.
1062  *
1063  * XXX NOTE!  This code is not usually run because we do not currently
1064  *	      implement dynamic page table page removal.  The page in
1065  *	      its parent assumes at least 1 wire count, so no call to this
1066  *	      function ever sees a wire count less than 2.
1067  */
1068 static int
1069 pmap_unwire_pgtable(pmap_t pmap, vm_offset_t va, vm_page_t m)
1070 {
1071 	/*
1072 	 * Try to unwire optimally.  If non-zero is returned the wire_count
1073 	 * is 1 and we must busy the page to unwire it.
1074 	 */
1075 	if (vm_page_unwire_quick(m) == 0)
1076 		return 0;
1077 
1078 	vm_page_busy_wait(m, TRUE, "pmuwpt");
1079 	KASSERT(m->queue == PQ_NONE,
1080 		("_pmap_unwire_pgtable: %p->queue != PQ_NONE", m));
1081 
1082 	if (m->wire_count == 1) {
1083 		/*
1084 		 * Unmap the page table page.
1085 		 */
1086 		/* pmap_inval_add(info, pmap, -1); */
1087 
1088 		if (m->pindex >= (NUPT_TOTAL + NUPD_TOTAL)) {
1089 			/* PDP page */
1090 			pml4_entry_t *pml4;
1091 			pml4 = pmap_pml4e(pmap, va);
1092 			*pml4 = 0;
1093 		} else if (m->pindex >= NUPT_TOTAL) {
1094 			/* PD page */
1095 			pdp_entry_t *pdp;
1096 			pdp = pmap_pdpe(pmap, va);
1097 			*pdp = 0;
1098 		} else {
1099 			/* PT page */
1100 			pd_entry_t *pd;
1101 			pd = pmap_pde(pmap, va);
1102 			*pd = 0;
1103 		}
1104 
1105 		KKASSERT(pmap->pm_stats.resident_count > 0);
1106 		atomic_add_long(&pmap->pm_stats.resident_count, -1);
1107 
1108 		if (pmap->pm_ptphint == m)
1109 			pmap->pm_ptphint = NULL;
1110 
1111 		if (m->pindex < NUPT_TOTAL) {
1112 			/* We just released a PT, unhold the matching PD */
1113 			vm_page_t pdpg;
1114 
1115 			pdpg = PHYS_TO_VM_PAGE(*pmap_pdpe(pmap, va) &
1116 					       VPTE_FRAME);
1117 			pmap_unwire_pgtable(pmap, va, pdpg);
1118 		}
1119 		if (m->pindex >= NUPT_TOTAL &&
1120 		    m->pindex < (NUPT_TOTAL + NUPD_TOTAL)) {
1121 			/* We just released a PD, unhold the matching PDP */
1122 			vm_page_t pdppg;
1123 
1124 			pdppg = PHYS_TO_VM_PAGE(*pmap_pml4e(pmap, va) &
1125 						VPTE_FRAME);
1126 			pmap_unwire_pgtable(pmap, va, pdppg);
1127 		}
1128 
1129 		/*
1130 		 * This was our last wire, the page had better be unwired
1131 		 * after we decrement wire_count.
1132 		 *
1133 		 * FUTURE NOTE: shared page directory page could result in
1134 		 * multiple wire counts.
1135 		 */
1136 		vm_page_unwire(m, 0);
1137 		KKASSERT(m->wire_count == 0);
1138 		vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
1139 		vm_page_flash(m);
1140 		vm_page_free(m);
1141 		return 1;
1142 	} else {
1143 		/* XXX SMP race to 1 if not holding vmobj */
1144 		vm_page_unwire(m, 0);
1145 		vm_page_wakeup(m);
1146 		return 0;
1147 	}
1148 }
1149 
1150 /*
1151  * After removing a page table entry, this routine is used to
1152  * conditionally free the page, and manage the hold/wire counts.
1153  *
1154  * If not NULL the caller owns a wire_count on mpte, so it can't disappear.
1155  * If NULL the caller owns a wire_count on what would be the mpte, we must
1156  * look it up.
1157  */
1158 static int
1159 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
1160 {
1161 	vm_pindex_t ptepindex;
1162 
1163 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(pmap->pm_pteobj));
1164 
1165 	if (mpte == NULL) {
1166 		/*
1167 		 * page table pages in the kernel_pmap are not managed.
1168 		 */
1169 		if (pmap == &kernel_pmap)
1170 			return(0);
1171 		ptepindex = pmap_pt_pindex(va);
1172 		if (pmap->pm_ptphint &&
1173 		    (pmap->pm_ptphint->pindex == ptepindex)) {
1174 			mpte = pmap->pm_ptphint;
1175 		} else {
1176 			mpte = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
1177 			pmap->pm_ptphint = mpte;
1178 			vm_page_wakeup(mpte);
1179 		}
1180 	}
1181 	return pmap_unwire_pgtable(pmap, va, mpte);
1182 }
1183 
1184 /*
1185  * Initialize pmap0/vmspace0 .  Since process 0 never enters user mode we
1186  * just dummy it up so it works well enough for fork().
1187  *
1188  * In DragonFly, process pmaps may only be used to manipulate user address
1189  * space, never kernel address space.
1190  */
1191 void
1192 pmap_pinit0(struct pmap *pmap)
1193 {
1194 	pmap_pinit(pmap);
1195 }
1196 
1197 /*
1198  * Initialize a preallocated and zeroed pmap structure,
1199  * such as one in a vmspace structure.
1200  */
1201 void
1202 pmap_pinit(struct pmap *pmap)
1203 {
1204 	vm_page_t ptdpg;
1205 
1206 	/*
1207 	 * No need to allocate page table space yet but we do need a valid
1208 	 * page directory table.
1209 	 */
1210 	if (pmap->pm_pml4 == NULL) {
1211 		pmap->pm_pml4 = (pml4_entry_t *)
1212 			kmem_alloc_pageable(&kernel_map, PAGE_SIZE,
1213 					    VM_SUBSYS_PML4);
1214 	}
1215 
1216 	/*
1217 	 * Allocate an object for the ptes
1218 	 */
1219 	if (pmap->pm_pteobj == NULL)
1220 		pmap->pm_pteobj = vm_object_allocate(OBJT_DEFAULT, NUPT_TOTAL + NUPD_TOTAL + NUPDP_TOTAL + 1);
1221 
1222 	/*
1223 	 * Allocate the page directory page, unless we already have
1224 	 * one cached.  If we used the cached page the wire_count will
1225 	 * already be set appropriately.
1226 	 */
1227 	if ((ptdpg = pmap->pm_pdirm) == NULL) {
1228 		ptdpg = vm_page_grab(pmap->pm_pteobj,
1229 				     NUPT_TOTAL + NUPD_TOTAL + NUPDP_TOTAL,
1230 				     VM_ALLOC_NORMAL | VM_ALLOC_RETRY |
1231 				     VM_ALLOC_ZERO);
1232 		pmap->pm_pdirm = ptdpg;
1233 		vm_page_flag_clear(ptdpg, PG_MAPPED | PG_WRITEABLE);
1234 		vm_page_wire(ptdpg);
1235 		vm_page_wakeup(ptdpg);
1236 		pmap_kenter((vm_offset_t)pmap->pm_pml4, VM_PAGE_TO_PHYS(ptdpg));
1237 	}
1238 	pmap->pm_count = 1;
1239 	CPUMASK_ASSZERO(pmap->pm_active);
1240 	pmap->pm_ptphint = NULL;
1241 	RB_INIT(&pmap->pm_pvroot);
1242 	spin_init(&pmap->pm_spin, "pmapinit");
1243 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1244 	pmap->pm_stats.resident_count = 1;
1245 	pmap->pm_stats.wired_count = 1;
1246 }
1247 
1248 /*
1249  * Clean up a pmap structure so it can be physically freed.  This routine
1250  * is called by the vmspace dtor function.  A great deal of pmap data is
1251  * left passively mapped to improve vmspace management so we have a bit
1252  * of cleanup work to do here.
1253  *
1254  * No requirements.
1255  */
1256 void
1257 pmap_puninit(pmap_t pmap)
1258 {
1259 	vm_page_t p;
1260 
1261 	KKASSERT(CPUMASK_TESTZERO(pmap->pm_active));
1262 	if ((p = pmap->pm_pdirm) != NULL) {
1263 		KKASSERT(pmap->pm_pml4 != NULL);
1264 		pmap_kremove((vm_offset_t)pmap->pm_pml4);
1265 		vm_page_busy_wait(p, TRUE, "pgpun");
1266 		vm_page_unwire(p, 0);
1267 		vm_page_flag_clear(p, PG_MAPPED | PG_WRITEABLE);
1268 		vm_page_free(p);
1269 		pmap->pm_pdirm = NULL;
1270 		atomic_add_long(&pmap->pm_stats.wired_count, -1);
1271 		KKASSERT(pmap->pm_stats.wired_count == 0);
1272 	}
1273 	if (pmap->pm_pml4) {
1274 		kmem_free(&kernel_map, (vm_offset_t)pmap->pm_pml4, PAGE_SIZE);
1275 		pmap->pm_pml4 = NULL;
1276 	}
1277 	if (pmap->pm_pteobj) {
1278 		vm_object_deallocate(pmap->pm_pteobj);
1279 		pmap->pm_pteobj = NULL;
1280 	}
1281 }
1282 
1283 /*
1284  * This function is now unused (used to add the pmap to the pmap_list)
1285  */
1286 void
1287 pmap_pinit2(struct pmap *pmap)
1288 {
1289 }
1290 
1291 /*
1292  * Attempt to release and free a vm_page in a pmap.  Returns 1 on success,
1293  * 0 on failure (if the procedure had to sleep).
1294  *
1295  * When asked to remove the page directory page itself, we actually just
1296  * leave it cached so we do not have to incur the SMP inval overhead of
1297  * removing the kernel mapping.  pmap_puninit() will take care of it.
1298  */
1299 static int
1300 pmap_release_free_page(struct pmap *pmap, vm_page_t p)
1301 {
1302 	/*
1303 	 * This code optimizes the case of freeing non-busy
1304 	 * page-table pages.  Those pages are zero now, and
1305 	 * might as well be placed directly into the zero queue.
1306 	 */
1307 	if (vm_page_busy_try(p, TRUE)) {
1308 		vm_page_sleep_busy(p, TRUE, "pmaprl");
1309 		return 1;
1310 	}
1311 
1312 	/*
1313 	 * Remove the page table page from the processes address space.
1314 	 */
1315 	if (p->pindex == NUPT_TOTAL + NUPD_TOTAL + NUPDP_TOTAL) {
1316 		/*
1317 		 * We are the pml4 table itself.
1318 		 */
1319 		/* XXX anything to do here? */
1320 	} else if (p->pindex >= (NUPT_TOTAL + NUPD_TOTAL)) {
1321 		/*
1322 		 * We are a PDP page.
1323 		 * We look for the PML4 entry that points to us.
1324 		 */
1325 		vm_page_t m4;
1326 		pml4_entry_t *pml4;
1327 		int idx;
1328 
1329 		m4 = vm_page_lookup(pmap->pm_pteobj,
1330 				    NUPT_TOTAL + NUPD_TOTAL + NUPDP_TOTAL);
1331 		KKASSERT(m4 != NULL);
1332 		pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m4));
1333 		idx = (p->pindex - (NUPT_TOTAL + NUPD_TOTAL)) % NPML4EPG;
1334 		KKASSERT(pml4[idx] != 0);
1335 		if (pml4[idx] == 0)
1336 			kprintf("pmap_release: Unmapped PML4\n");
1337 		pml4[idx] = 0;
1338 		vm_page_unwire_quick(m4);
1339 	} else if (p->pindex >= NUPT_TOTAL) {
1340 		/*
1341 		 * We are a PD page.
1342 		 * We look for the PDP entry that points to us.
1343 		 */
1344 		vm_page_t m3;
1345 		pdp_entry_t *pdp;
1346 		int idx;
1347 
1348 		m3 = vm_page_lookup(pmap->pm_pteobj,
1349 				    NUPT_TOTAL + NUPD_TOTAL +
1350 				     (p->pindex - NUPT_TOTAL) / NPDPEPG);
1351 		KKASSERT(m3 != NULL);
1352 		pdp = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m3));
1353 		idx = (p->pindex - NUPT_TOTAL) % NPDPEPG;
1354 		KKASSERT(pdp[idx] != 0);
1355 		if (pdp[idx] == 0)
1356 			kprintf("pmap_release: Unmapped PDP %d\n", idx);
1357 		pdp[idx] = 0;
1358 		vm_page_unwire_quick(m3);
1359 	} else {
1360 		/* We are a PT page.
1361 		 * We look for the PD entry that points to us.
1362 		 */
1363 		vm_page_t m2;
1364 		pd_entry_t *pd;
1365 		int idx;
1366 
1367 		m2 = vm_page_lookup(pmap->pm_pteobj,
1368 				    NUPT_TOTAL + p->pindex / NPDEPG);
1369 		KKASSERT(m2 != NULL);
1370 		pd = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m2));
1371 		idx = p->pindex % NPDEPG;
1372 		if (pd[idx] == 0)
1373 			kprintf("pmap_release: Unmapped PD %d\n", idx);
1374 		pd[idx] = 0;
1375 		vm_page_unwire_quick(m2);
1376 	}
1377 	KKASSERT(pmap->pm_stats.resident_count > 0);
1378 	atomic_add_long(&pmap->pm_stats.resident_count, -1);
1379 
1380 	if (p->wire_count > 1)  {
1381 		panic("pmap_release: freeing held pt page "
1382 		      "pmap=%p pg=%p dmap=%p pi=%ld {%ld,%ld,%ld}",
1383 		      pmap, p, (void *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(p)),
1384 		      p->pindex, NUPT_TOTAL, NUPD_TOTAL, NUPDP_TOTAL);
1385 	}
1386 
1387 	if (pmap->pm_ptphint == p)
1388 		pmap->pm_ptphint = NULL;
1389 
1390 	/*
1391 	 * We leave the top-level page table page cached, wired, and mapped in
1392 	 * the pmap until the dtor function (pmap_puninit()) gets called.
1393 	 * However, still clean it up.
1394 	 */
1395 	if (p->pindex == NUPT_TOTAL + NUPD_TOTAL + NUPDP_TOTAL) {
1396 		bzero(pmap->pm_pml4, PAGE_SIZE);
1397 		vm_page_wakeup(p);
1398 	} else {
1399 		vm_page_unwire(p, 0);
1400 		vm_page_flag_clear(p, PG_MAPPED | PG_WRITEABLE);
1401 		vm_page_free(p);
1402 		atomic_add_long(&pmap->pm_stats.wired_count, -1);
1403 	}
1404 	return 0;
1405 }
1406 
1407 /*
1408  * Locate the requested PT, PD, or PDP page table page.
1409  *
1410  * Returns a busied page, caller must vm_page_wakeup() when done.
1411  */
1412 static vm_page_t
1413 _pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex)
1414 {
1415 	vm_page_t m;
1416 	vm_page_t pm;
1417 	vm_pindex_t pindex;
1418 	pt_entry_t *ptep;
1419 	pt_entry_t data;
1420 
1421 	/*
1422 	 * Find or fabricate a new pagetable page.  A non-zero wire_count
1423 	 * indicates that the page has already been mapped into its parent.
1424 	 */
1425 	m = vm_page_grab(pmap->pm_pteobj, ptepindex,
1426 			 VM_ALLOC_NORMAL | VM_ALLOC_ZERO | VM_ALLOC_RETRY);
1427 	if (m->wire_count != 0)
1428 		return m;
1429 
1430 	/*
1431 	 * Map the page table page into its parent, giving it 1 wire count.
1432 	 */
1433 	vm_page_wire(m);
1434 	vm_page_unmanage(m);
1435 	atomic_add_long(&pmap->pm_stats.resident_count, 1);
1436 	vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
1437 
1438 	data = VM_PAGE_TO_PHYS(m) |
1439 	       VPTE_RW | VPTE_V | VPTE_U | VPTE_A | VPTE_M | VPTE_WIRED;
1440 	atomic_add_long(&pmap->pm_stats.wired_count, 1);
1441 
1442 	if (ptepindex >= (NUPT_TOTAL + NUPD_TOTAL)) {
1443 		/*
1444 		 * Map PDP into the PML4
1445 		 */
1446 		pindex = ptepindex - (NUPT_TOTAL + NUPD_TOTAL);
1447 		pindex &= (NUPDP_TOTAL - 1);
1448 		ptep = (pt_entry_t *)pmap->pm_pml4;
1449 		pm = NULL;
1450 	} else if (ptepindex >= NUPT_TOTAL) {
1451 		/*
1452 		 * Map PD into its PDP
1453 		 */
1454 		pindex = (ptepindex - NUPT_TOTAL) >> NPDPEPGSHIFT;
1455 		pindex += NUPT_TOTAL + NUPD_TOTAL;
1456 		pm = _pmap_allocpte(pmap, pindex);
1457 		pindex = (ptepindex - NUPT_TOTAL) & (NPDPEPG - 1);
1458 		ptep = (void *)PHYS_TO_DMAP(pm->phys_addr);
1459 	} else {
1460 		/*
1461 		 * Map PT into its PD
1462 		 */
1463 		pindex = ptepindex >> NPDPEPGSHIFT;
1464 		pindex += NUPT_TOTAL;
1465 		pm = _pmap_allocpte(pmap, pindex);
1466 		pindex = ptepindex & (NPTEPG - 1);
1467 		ptep = (void *)PHYS_TO_DMAP(pm->phys_addr);
1468 	}
1469 
1470 	/*
1471 	 * Install the pte in (pm).  (m) prevents races.
1472 	 */
1473 	ptep += pindex;
1474 	data = atomic_swap_long(ptep, data);
1475 	if (pm) {
1476 		vm_page_wire_quick(pm);
1477 		vm_page_wakeup(pm);
1478 	}
1479 	pmap->pm_ptphint = pm;
1480 
1481 	return m;
1482 }
1483 
1484 /*
1485  * Determine the page table page required to access the VA in the pmap
1486  * and allocate it if necessary.  Return a held vm_page_t for the page.
1487  *
1488  * Only used with user pmaps.
1489  */
1490 static vm_page_t
1491 pmap_allocpte(pmap_t pmap, vm_offset_t va)
1492 {
1493 	vm_pindex_t ptepindex;
1494 	vm_page_t m;
1495 
1496 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(pmap->pm_pteobj));
1497 
1498 	/*
1499 	 * Calculate pagetable page index, and return the PT page to
1500 	 * the caller.
1501 	 */
1502 	ptepindex = pmap_pt_pindex(va);
1503 	m = _pmap_allocpte(pmap, ptepindex);
1504 
1505 	return m;
1506 }
1507 
1508 /***************************************************
1509  * Pmap allocation/deallocation routines.
1510  ***************************************************/
1511 
1512 /*
1513  * Release any resources held by the given physical map.
1514  * Called when a pmap initialized by pmap_pinit is being released.
1515  * Should only be called if the map contains no valid mappings.
1516  */
1517 static int pmap_release_callback(struct vm_page *p, void *data);
1518 
1519 void
1520 pmap_release(struct pmap *pmap)
1521 {
1522 	vm_object_t object = pmap->pm_pteobj;
1523 	struct rb_vm_page_scan_info info;
1524 
1525 	KKASSERT(pmap != &kernel_pmap);
1526 
1527 #if defined(DIAGNOSTIC)
1528 	if (object->ref_count != 1)
1529 		panic("pmap_release: pteobj reference count != 1");
1530 #endif
1531 
1532 	info.pmap = pmap;
1533 	info.object = object;
1534 
1535 	KASSERT(CPUMASK_TESTZERO(pmap->pm_active),
1536 		("pmap %p still active! %016jx",
1537 		pmap,
1538 		(uintmax_t)CPUMASK_LOWMASK(pmap->pm_active)));
1539 
1540 	vm_object_hold(object);
1541 	do {
1542 		info.error = 0;
1543 		info.mpte = NULL;
1544 		info.limit = object->generation;
1545 
1546 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
1547 				        pmap_release_callback, &info);
1548 		if (info.error == 0 && info.mpte) {
1549 			if (pmap_release_free_page(pmap, info.mpte))
1550 				info.error = 1;
1551 		}
1552 	} while (info.error);
1553 
1554 	pmap->pm_ptphint = NULL;
1555 
1556 	KASSERT((pmap->pm_stats.wired_count == (pmap->pm_pdirm != NULL)),
1557 		("pmap_release: dangling count %p %ld",
1558 		pmap, pmap->pm_stats.wired_count));
1559 
1560 	vm_object_drop(object);
1561 }
1562 
1563 static int
1564 pmap_release_callback(struct vm_page *p, void *data)
1565 {
1566 	struct rb_vm_page_scan_info *info = data;
1567 
1568 	if (p->pindex == NUPT_TOTAL + NUPD_TOTAL + NUPDP_TOTAL) {
1569 		info->mpte = p;
1570 		return(0);
1571 	}
1572 	if (pmap_release_free_page(info->pmap, p)) {
1573 		info->error = 1;
1574 		return(-1);
1575 	}
1576 	if (info->object->generation != info->limit) {
1577 		info->error = 1;
1578 		return(-1);
1579 	}
1580 	return(0);
1581 }
1582 
1583 /*
1584  * Grow the number of kernel page table entries, if needed.
1585  *
1586  * kernel_map must be locked exclusively by the caller.
1587  */
1588 void
1589 pmap_growkernel(vm_offset_t kstart, vm_offset_t kend)
1590 {
1591 	vm_offset_t addr;
1592 	vm_paddr_t paddr;
1593 	vm_offset_t ptppaddr;
1594 	vm_page_t nkpg;
1595 	pd_entry_t *pde, newpdir;
1596 	pdp_entry_t newpdp;
1597 
1598 	addr = kend;
1599 
1600 	vm_object_hold(&kptobj);
1601 	if (kernel_vm_end == 0) {
1602 		kernel_vm_end = KvaStart;
1603 		nkpt = 0;
1604 		while ((*pmap_pde(&kernel_pmap, kernel_vm_end) & VPTE_V) != 0) {
1605 			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1606 			nkpt++;
1607 			if (kernel_vm_end - 1 >= kernel_map.max_offset) {
1608 				kernel_vm_end = kernel_map.max_offset;
1609 				break;
1610 			}
1611 		}
1612 	}
1613 	addr = roundup2(addr, PAGE_SIZE * NPTEPG);
1614 	if (addr - 1 >= kernel_map.max_offset)
1615 		addr = kernel_map.max_offset;
1616 	while (kernel_vm_end < addr) {
1617 		pde = pmap_pde(&kernel_pmap, kernel_vm_end);
1618 		if (pde == NULL) {
1619 			/* We need a new PDP entry */
1620 			nkpg = vm_page_alloc(&kptobj, nkpt,
1621 			                     VM_ALLOC_NORMAL |
1622 					     VM_ALLOC_SYSTEM |
1623 					     VM_ALLOC_INTERRUPT);
1624 			if (nkpg == NULL) {
1625 				panic("pmap_growkernel: no memory to "
1626 				      "grow kernel");
1627 			}
1628 			paddr = VM_PAGE_TO_PHYS(nkpg);
1629 			pmap_zero_page(paddr);
1630 			newpdp = (pdp_entry_t)(paddr |
1631 					       VPTE_V | VPTE_RW | VPTE_U |
1632 					       VPTE_A | VPTE_M | VPTE_WIRED);
1633 			*pmap_pdpe(&kernel_pmap, kernel_vm_end) = newpdp;
1634 			atomic_add_long(&kernel_pmap.pm_stats.wired_count, 1);
1635 			nkpt++;
1636 			continue; /* try again */
1637 		}
1638 		if ((*pde & VPTE_V) != 0) {
1639 			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) &
1640 					~(PAGE_SIZE * NPTEPG - 1);
1641 			if (kernel_vm_end - 1 >= kernel_map.max_offset) {
1642 				kernel_vm_end = kernel_map.max_offset;
1643 				break;
1644 			}
1645 			continue;
1646 		}
1647 
1648 		/*
1649 		 * This index is bogus, but out of the way
1650 		 */
1651 		nkpg = vm_page_alloc(&kptobj, nkpt,
1652 				     VM_ALLOC_NORMAL |
1653 				     VM_ALLOC_SYSTEM |
1654 				     VM_ALLOC_INTERRUPT);
1655 		if (nkpg == NULL)
1656 			panic("pmap_growkernel: no memory to grow kernel");
1657 
1658 		vm_page_wire(nkpg);
1659 		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1660 		pmap_zero_page(ptppaddr);
1661 		newpdir = (pd_entry_t)(ptppaddr |
1662 				       VPTE_V | VPTE_RW | VPTE_U |
1663 				       VPTE_A | VPTE_M | VPTE_WIRED);
1664 		*pmap_pde(&kernel_pmap, kernel_vm_end) = newpdir;
1665 		atomic_add_long(&kernel_pmap.pm_stats.wired_count, 1);
1666 		nkpt++;
1667 
1668 		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) &
1669 				~(PAGE_SIZE * NPTEPG - 1);
1670 		if (kernel_vm_end - 1 >= kernel_map.max_offset) {
1671 			kernel_vm_end = kernel_map.max_offset;
1672 			break;
1673 		}
1674 	}
1675 	vm_object_drop(&kptobj);
1676 }
1677 
1678 /*
1679  * Add a reference to the specified pmap.
1680  *
1681  * No requirements.
1682  */
1683 void
1684 pmap_reference(pmap_t pmap)
1685 {
1686 	if (pmap)
1687 		atomic_add_int(&pmap->pm_count, 1);
1688 }
1689 
1690 /************************************************************************
1691  *	   		VMSPACE MANAGEMENT				*
1692  ************************************************************************
1693  *
1694  * The VMSPACE management we do in our virtual kernel must be reflected
1695  * in the real kernel.  This is accomplished by making vmspace system
1696  * calls to the real kernel.
1697  */
1698 void
1699 cpu_vmspace_alloc(struct vmspace *vm)
1700 {
1701 	int r;
1702 	void *rp;
1703 	vpte_t vpte;
1704 
1705 	/*
1706 	 * If VMM enable, don't do nothing, we
1707 	 * are able to use real page tables
1708 	 */
1709 	if (vmm_enabled)
1710 		return;
1711 
1712 #define USER_SIZE	(VM_MAX_USER_ADDRESS - VM_MIN_USER_ADDRESS)
1713 
1714 	if (vmspace_create(&vm->vm_pmap, 0, NULL) < 0)
1715 		panic("vmspace_create() failed");
1716 
1717 	rp = vmspace_mmap(&vm->vm_pmap, VM_MIN_USER_ADDRESS, USER_SIZE,
1718 			  PROT_READ|PROT_WRITE|PROT_EXEC,
1719 			  MAP_FILE|MAP_SHARED|MAP_VPAGETABLE|MAP_FIXED,
1720 			  MemImageFd, 0);
1721 	if (rp == MAP_FAILED)
1722 		panic("vmspace_mmap: failed");
1723 	vmspace_mcontrol(&vm->vm_pmap, VM_MIN_USER_ADDRESS, USER_SIZE,
1724 			 MADV_NOSYNC, 0);
1725 	vpte = VM_PAGE_TO_PHYS(vmspace_pmap(vm)->pm_pdirm) |
1726 			       VPTE_RW | VPTE_V | VPTE_U;
1727 	r = vmspace_mcontrol(&vm->vm_pmap, VM_MIN_USER_ADDRESS, USER_SIZE,
1728 			     MADV_SETMAP, vpte);
1729 	if (r < 0)
1730 		panic("vmspace_mcontrol: failed");
1731 }
1732 
1733 void
1734 cpu_vmspace_free(struct vmspace *vm)
1735 {
1736 	/*
1737 	 * If VMM enable, don't do nothing, we
1738 	 * are able to use real page tables
1739 	 */
1740 	if (vmm_enabled)
1741 		return;
1742 
1743 	if (vmspace_destroy(&vm->vm_pmap) < 0)
1744 		panic("vmspace_destroy() failed");
1745 }
1746 
1747 /***************************************************
1748 * page management routines.
1749  ***************************************************/
1750 
1751 /*
1752  * free the pv_entry back to the free list.  This function may be
1753  * called from an interrupt.
1754  */
1755 static __inline void
1756 free_pv_entry(pv_entry_t pv)
1757 {
1758 	atomic_add_int(&pv_entry_count, -1);
1759 	KKASSERT(pv_entry_count >= 0);
1760 	zfree(pvzone, pv);
1761 }
1762 
1763 /*
1764  * get a new pv_entry, allocating a block from the system
1765  * when needed.  This function may be called from an interrupt.
1766  */
1767 static pv_entry_t
1768 get_pv_entry(void)
1769 {
1770 	atomic_add_int(&pv_entry_count, 1);
1771 	if (pv_entry_high_water &&
1772 	    (pv_entry_count > pv_entry_high_water) &&
1773 	    atomic_swap_int(&pmap_pagedaemon_waken, 1) == 0) {
1774 		wakeup(&vm_pages_needed);
1775 	}
1776 	return zalloc(pvzone);
1777 }
1778 
1779 /*
1780  * This routine is very drastic, but can save the system
1781  * in a pinch.
1782  *
1783  * No requirements.
1784  */
1785 void
1786 pmap_collect(void)
1787 {
1788 	int i;
1789 	vm_page_t m;
1790 	static int warningdone=0;
1791 
1792 	if (pmap_pagedaemon_waken == 0)
1793 		return;
1794 	pmap_pagedaemon_waken = 0;
1795 
1796 	if (warningdone < 5) {
1797 		kprintf("pmap_collect: collecting pv entries -- "
1798 			"suggest increasing PMAP_SHPGPERPROC\n");
1799 		warningdone++;
1800 	}
1801 
1802 	for (i = 0; i < vm_page_array_size; i++) {
1803 		m = &vm_page_array[i];
1804 		if (m->wire_count || m->hold_count)
1805 			continue;
1806 		if (vm_page_busy_try(m, TRUE) == 0) {
1807 			if (m->wire_count == 0 && m->hold_count == 0) {
1808 				pmap_remove_all(m);
1809 			}
1810 			vm_page_wakeup(m);
1811 		}
1812 	}
1813 }
1814 
1815 
1816 /*
1817  * If it is the first entry on the list, it is actually
1818  * in the header and we must copy the following entry up
1819  * to the header.  Otherwise we must search the list for
1820  * the entry.  In either case we free the now unused entry.
1821  *
1822  * pmap->pm_pteobj must be held and (m) must be spin-locked by the caller.
1823  */
1824 static int
1825 pmap_remove_entry(struct pmap *pmap, vm_page_t m, vm_offset_t va)
1826 {
1827 	pv_entry_t pv;
1828 	int rtval;
1829 
1830 	vm_page_spin_lock(m);
1831 	pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot, va);
1832 
1833 	/*
1834 	 * Note that pv_ptem is NULL if the page table page itself is not
1835 	 * managed, even if the page being removed IS managed.
1836 	 */
1837 	rtval = 0;
1838 	if (pv) {
1839 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1840 		if (TAILQ_EMPTY(&m->md.pv_list))
1841 			vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
1842 		m->md.pv_list_count--;
1843 		KKASSERT(m->md.pv_list_count >= 0);
1844 		pv_entry_rb_tree_RB_REMOVE(&pmap->pm_pvroot, pv);
1845 		atomic_add_int(&pmap->pm_generation, 1);
1846 		vm_page_spin_unlock(m);
1847 		rtval = pmap_unuse_pt(pmap, va, pv->pv_ptem);
1848 		free_pv_entry(pv);
1849 	} else {
1850 		vm_page_spin_unlock(m);
1851 		kprintf("pmap_remove_entry: could not find "
1852 			"pmap=%p m=%p va=%016jx\n",
1853 			pmap, m, va);
1854 	}
1855 	return rtval;
1856 }
1857 
1858 /*
1859  * Create a pv entry for page at pa for (pmap, va).  If the page table page
1860  * holding the VA is managed, mpte will be non-NULL.
1861  *
1862  * pmap->pm_pteobj must be held and (m) must be spin-locked by the caller.
1863  */
1864 static void
1865 pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t mpte, vm_page_t m,
1866 		  pv_entry_t pv)
1867 {
1868 	pv->pv_va = va;
1869 	pv->pv_pmap = pmap;
1870 	pv->pv_ptem = mpte;
1871 
1872 	m->md.pv_list_count++;
1873 	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1874 	pv = pv_entry_rb_tree_RB_INSERT(&pmap->pm_pvroot, pv);
1875 	vm_page_flag_set(m, PG_MAPPED);
1876 	KKASSERT(pv == NULL);
1877 }
1878 
1879 /*
1880  * pmap_remove_pte: do the things to unmap a page in a process
1881  *
1882  * Caller holds pmap->pm_pteobj and holds the associated page table
1883  * page busy to prevent races.
1884  */
1885 static int
1886 pmap_remove_pte(struct pmap *pmap, pt_entry_t *ptq, pt_entry_t oldpte,
1887 		vm_offset_t va)
1888 {
1889 	vm_page_t m;
1890 	int error;
1891 
1892 	if (ptq)
1893 		oldpte = pmap_inval_loadandclear(ptq, pmap, va);
1894 
1895 	if (oldpte & VPTE_WIRED)
1896 		atomic_add_long(&pmap->pm_stats.wired_count, -1);
1897 	KKASSERT(pmap->pm_stats.wired_count >= 0);
1898 
1899 #if 0
1900 	/*
1901 	 * Machines that don't support invlpg, also don't support
1902 	 * PG_G.  XXX PG_G is disabled for SMP so don't worry about
1903 	 * the SMP case.
1904 	 */
1905 	if (oldpte & PG_G)
1906 		cpu_invlpg((void *)va);
1907 #endif
1908 	KKASSERT(pmap->pm_stats.resident_count > 0);
1909 	atomic_add_long(&pmap->pm_stats.resident_count, -1);
1910 	if (oldpte & VPTE_MANAGED) {
1911 		m = PHYS_TO_VM_PAGE(oldpte);
1912 
1913 		/*
1914 		 * NOTE: pmap_remove_entry() will spin-lock the page
1915 		 */
1916 		if (oldpte & VPTE_M) {
1917 #if defined(PMAP_DIAGNOSTIC)
1918 			if (pmap_nw_modified(oldpte)) {
1919 				kprintf("pmap_remove: modified page not "
1920 					"writable: va: 0x%lx, pte: 0x%lx\n",
1921 					va, oldpte);
1922 			}
1923 #endif
1924 			if (pmap_track_modified(pmap, va))
1925 				vm_page_dirty(m);
1926 		}
1927 		if (oldpte & VPTE_A)
1928 			vm_page_flag_set(m, PG_REFERENCED);
1929 		error = pmap_remove_entry(pmap, m, va);
1930 	} else {
1931 		error = pmap_unuse_pt(pmap, va, NULL);
1932 	}
1933 	return error;
1934 }
1935 
1936 /*
1937  * pmap_remove_page:
1938  *
1939  * Remove a single page from a process address space.
1940  *
1941  * This function may not be called from an interrupt if the pmap is
1942  * not kernel_pmap.
1943  *
1944  * Caller holds pmap->pm_pteobj
1945  */
1946 static void
1947 pmap_remove_page(struct pmap *pmap, vm_offset_t va)
1948 {
1949 	pt_entry_t *pte;
1950 
1951 	pte = pmap_pte(pmap, va);
1952 	if (pte == NULL)
1953 		return;
1954 	if ((*pte & VPTE_V) == 0)
1955 		return;
1956 	pmap_remove_pte(pmap, pte, 0, va);
1957 }
1958 
1959 /*
1960  * Remove the given range of addresses from the specified map.
1961  *
1962  * It is assumed that the start and end are properly rounded to
1963  * the page size.
1964  *
1965  * This function may not be called from an interrupt if the pmap is
1966  * not kernel_pmap.
1967  *
1968  * No requirements.
1969  */
1970 void
1971 pmap_remove(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
1972 {
1973 	vm_offset_t va_next;
1974 	pml4_entry_t *pml4e;
1975 	pdp_entry_t *pdpe;
1976 	pd_entry_t ptpaddr, *pde;
1977 	pt_entry_t *pte;
1978 	vm_page_t pt_m;
1979 
1980 	if (pmap == NULL)
1981 		return;
1982 
1983 	vm_object_hold(pmap->pm_pteobj);
1984 	KKASSERT(pmap->pm_stats.resident_count >= 0);
1985 	if (pmap->pm_stats.resident_count == 0) {
1986 		vm_object_drop(pmap->pm_pteobj);
1987 		return;
1988 	}
1989 
1990 	/*
1991 	 * special handling of removing one page.  a very
1992 	 * common operation and easy to short circuit some
1993 	 * code.
1994 	 */
1995 	if (sva + PAGE_SIZE == eva) {
1996 		pde = pmap_pde(pmap, sva);
1997 		if (pde && (*pde & VPTE_PS) == 0) {
1998 			pmap_remove_page(pmap, sva);
1999 			vm_object_drop(pmap->pm_pteobj);
2000 			return;
2001 		}
2002 	}
2003 
2004 	for (; sva < eva; sva = va_next) {
2005 		pml4e = pmap_pml4e(pmap, sva);
2006 		if ((*pml4e & VPTE_V) == 0) {
2007 			va_next = (sva + NBPML4) & ~PML4MASK;
2008 			if (va_next < sva)
2009 				va_next = eva;
2010 			continue;
2011 		}
2012 
2013 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
2014 		if ((*pdpe & VPTE_V) == 0) {
2015 			va_next = (sva + NBPDP) & ~PDPMASK;
2016 			if (va_next < sva)
2017 				va_next = eva;
2018 			continue;
2019 		}
2020 
2021 		/*
2022 		 * Calculate index for next page table.
2023 		 */
2024 		va_next = (sva + NBPDR) & ~PDRMASK;
2025 		if (va_next < sva)
2026 			va_next = eva;
2027 
2028 		pde = pmap_pdpe_to_pde(pdpe, sva);
2029 		ptpaddr = *pde;
2030 
2031 		/*
2032 		 * Weed out invalid mappings.
2033 		 */
2034 		if (ptpaddr == 0)
2035 			continue;
2036 
2037 		/*
2038 		 * Check for large page.
2039 		 */
2040 		if ((ptpaddr & VPTE_PS) != 0) {
2041 			/* JG FreeBSD has more complex treatment here */
2042 			KKASSERT(*pde != 0);
2043 			pmap_inval_pde(pde, pmap, sva);
2044 			atomic_add_long(&pmap->pm_stats.resident_count,
2045 				       -NBPDR / PAGE_SIZE);
2046 			continue;
2047 		}
2048 
2049 		/*
2050 		 * Limit our scan to either the end of the va represented
2051 		 * by the current page table page, or to the end of the
2052 		 * range being removed.
2053 		 */
2054 		if (va_next > eva)
2055 			va_next = eva;
2056 
2057 		/*
2058 		 * NOTE: pmap_remove_pte() can block.
2059 		 */
2060 		pt_m = pmap_hold_pt_page(pde, sva);
2061 		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
2062 		     sva += PAGE_SIZE) {
2063 			if (*pte) {
2064 				if (pmap_remove_pte(pmap, pte, 0, sva))
2065 					break;
2066 			}
2067 		}
2068 		vm_page_unhold(pt_m);
2069 	}
2070 	vm_object_drop(pmap->pm_pteobj);
2071 }
2072 
2073 /*
2074  * Removes this physical page from all physical maps in which it resides.
2075  * Reflects back modify bits to the pager.
2076  *
2077  * This routine may not be called from an interrupt.
2078  *
2079  * No requirements.
2080  */
2081 static void
2082 pmap_remove_all(vm_page_t m)
2083 {
2084 	pt_entry_t *pte, tpte;
2085 	pv_entry_t pv;
2086 	vm_object_t pmobj;
2087 	pmap_t pmap;
2088 
2089 #if defined(PMAP_DIAGNOSTIC)
2090 	/*
2091 	 * XXX this makes pmap_page_protect(NONE) illegal for non-managed
2092 	 * pages!
2093 	 */
2094 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
2095 		panic("pmap_page_protect: illegal for unmanaged page, va: 0x%08llx", (long long)VM_PAGE_TO_PHYS(m));
2096 	}
2097 #endif
2098 
2099 restart:
2100 	vm_page_spin_lock(m);
2101 	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2102 		pmap = pv->pv_pmap;
2103 		pmobj = pmap->pm_pteobj;
2104 
2105 		/*
2106 		 * Handle reversed lock ordering
2107 		 */
2108 		if (vm_object_hold_try(pmobj) == 0) {
2109 			refcount_acquire(&pmobj->hold_count);
2110 			vm_page_spin_unlock(m);
2111 			vm_object_lock(pmobj);
2112 			vm_page_spin_lock(m);
2113 			if (pv != TAILQ_FIRST(&m->md.pv_list) ||
2114 			    pmap != pv->pv_pmap ||
2115 			    pmobj != pmap->pm_pteobj) {
2116 				vm_page_spin_unlock(m);
2117 				vm_object_drop(pmobj);
2118 				goto restart;
2119 			}
2120 		}
2121 
2122 		KKASSERT(pmap->pm_stats.resident_count > 0);
2123 		atomic_add_long(&pmap->pm_stats.resident_count, -1);
2124 
2125 		pte = pmap_pte(pmap, pv->pv_va);
2126 		KKASSERT(pte != NULL);
2127 
2128 		tpte = pmap_inval_loadandclear(pte, pmap, pv->pv_va);
2129 		if (tpte & VPTE_WIRED)
2130 			atomic_add_long(&pmap->pm_stats.wired_count, -1);
2131 		KKASSERT(pmap->pm_stats.wired_count >= 0);
2132 
2133 		if (tpte & VPTE_A)
2134 			vm_page_flag_set(m, PG_REFERENCED);
2135 
2136 		/*
2137 		 * Update the vm_page_t clean and reference bits.
2138 		 */
2139 		if (tpte & VPTE_M) {
2140 #if defined(PMAP_DIAGNOSTIC)
2141 			if (pmap_nw_modified(tpte)) {
2142 				kprintf(
2143 	"pmap_remove_all: modified page not writable: va: 0x%lx, pte: 0x%lx\n",
2144 				    pv->pv_va, tpte);
2145 			}
2146 #endif
2147 			if (pmap_track_modified(pmap, pv->pv_va))
2148 				vm_page_dirty(m);
2149 		}
2150 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2151 		if (TAILQ_EMPTY(&m->md.pv_list))
2152 			vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
2153 		m->md.pv_list_count--;
2154 		KKASSERT(m->md.pv_list_count >= 0);
2155 		pv_entry_rb_tree_RB_REMOVE(&pmap->pm_pvroot, pv);
2156 		atomic_add_int(&pmap->pm_generation, 1);
2157 		vm_page_spin_unlock(m);
2158 		pmap_unuse_pt(pmap, pv->pv_va, pv->pv_ptem);
2159 		free_pv_entry(pv);
2160 
2161 		vm_object_drop(pmobj);
2162 		vm_page_spin_lock(m);
2163 	}
2164 	KKASSERT((m->flags & (PG_MAPPED|PG_WRITEABLE)) == 0);
2165 	vm_page_spin_unlock(m);
2166 }
2167 
2168 /*
2169  * Removes the page from a particular pmap
2170  */
2171 void
2172 pmap_remove_specific(pmap_t pmap, vm_page_t m)
2173 {
2174 	pt_entry_t *pte, tpte;
2175 	pv_entry_t pv;
2176 
2177 	vm_object_hold(pmap->pm_pteobj);
2178 again:
2179 	vm_page_spin_lock(m);
2180 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2181 		if (pv->pv_pmap != pmap)
2182 			continue;
2183 
2184 		KKASSERT(pmap->pm_stats.resident_count > 0);
2185 		atomic_add_long(&pmap->pm_stats.resident_count, -1);
2186 
2187 		pte = pmap_pte(pmap, pv->pv_va);
2188 		KKASSERT(pte != NULL);
2189 
2190 		tpte = pmap_inval_loadandclear(pte, pmap, pv->pv_va);
2191 		if (tpte & VPTE_WIRED)
2192 			atomic_add_long(&pmap->pm_stats.wired_count, -1);
2193 		KKASSERT(pmap->pm_stats.wired_count >= 0);
2194 
2195 		if (tpte & VPTE_A)
2196 			vm_page_flag_set(m, PG_REFERENCED);
2197 
2198 		/*
2199 		 * Update the vm_page_t clean and reference bits.
2200 		 */
2201 		if (tpte & VPTE_M) {
2202 			if (pmap_track_modified(pmap, pv->pv_va))
2203 				vm_page_dirty(m);
2204 		}
2205 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2206 		pv_entry_rb_tree_RB_REMOVE(&pmap->pm_pvroot, pv);
2207 		atomic_add_int(&pmap->pm_generation, 1);
2208 		m->md.pv_list_count--;
2209 		KKASSERT(m->md.pv_list_count >= 0);
2210 		if (TAILQ_EMPTY(&m->md.pv_list))
2211 			vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
2212 		pmap_unuse_pt(pmap, pv->pv_va, pv->pv_ptem);
2213 		vm_page_spin_unlock(m);
2214 		free_pv_entry(pv);
2215 		goto again;
2216 	}
2217 	vm_page_spin_unlock(m);
2218 	vm_object_drop(pmap->pm_pteobj);
2219 }
2220 
2221 /*
2222  * Set the physical protection on the specified range of this map
2223  * as requested.
2224  *
2225  * This function may not be called from an interrupt if the map is
2226  * not the kernel_pmap.
2227  *
2228  * No requirements.
2229  */
2230 void
2231 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2232 {
2233 	vm_offset_t va_next;
2234 	pml4_entry_t *pml4e;
2235 	pdp_entry_t *pdpe;
2236 	pd_entry_t ptpaddr, *pde;
2237 	pt_entry_t *pte;
2238 	vm_page_t pt_m;
2239 
2240 	if (pmap == NULL)
2241 		return;
2242 
2243 	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == VM_PROT_NONE) {
2244 		pmap_remove(pmap, sva, eva);
2245 		return;
2246 	}
2247 
2248 	if (prot & VM_PROT_WRITE)
2249 		return;
2250 
2251 	vm_object_hold(pmap->pm_pteobj);
2252 
2253 	for (; sva < eva; sva = va_next) {
2254 		pml4e = pmap_pml4e(pmap, sva);
2255 		if ((*pml4e & VPTE_V) == 0) {
2256 			va_next = (sva + NBPML4) & ~PML4MASK;
2257 			if (va_next < sva)
2258 				va_next = eva;
2259 			continue;
2260 		}
2261 
2262 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
2263 		if ((*pdpe & VPTE_V) == 0) {
2264 			va_next = (sva + NBPDP) & ~PDPMASK;
2265 			if (va_next < sva)
2266 				va_next = eva;
2267 			continue;
2268 		}
2269 
2270 		va_next = (sva + NBPDR) & ~PDRMASK;
2271 		if (va_next < sva)
2272 			va_next = eva;
2273 
2274 		pde = pmap_pdpe_to_pde(pdpe, sva);
2275 		ptpaddr = *pde;
2276 
2277 #if 0
2278 		/*
2279 		 * Check for large page.
2280 		 */
2281 		if ((ptpaddr & VPTE_PS) != 0) {
2282 			/* JG correct? */
2283 			pmap_clean_pde(pde, pmap, sva);
2284 			atomic_add_long(&pmap->pm_stats.resident_count,
2285 					-NBPDR / PAGE_SIZE);
2286 			continue;
2287 		}
2288 #endif
2289 
2290 		/*
2291 		 * Weed out invalid mappings. Note: we assume that the page
2292 		 * directory table is always allocated, and in kernel virtual.
2293 		 */
2294 		if (ptpaddr == 0)
2295 			continue;
2296 
2297 		if (va_next > eva)
2298 			va_next = eva;
2299 
2300 		pt_m = pmap_hold_pt_page(pde, sva);
2301 		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
2302 		    sva += PAGE_SIZE) {
2303 			/*
2304 			 * Clean managed pages and also check the accessed
2305 			 * bit.  Just remove write perms for unmanaged
2306 			 * pages.  Be careful of races, turning off write
2307 			 * access will force a fault rather then setting
2308 			 * the modified bit at an unexpected time.
2309 			 */
2310 			pmap_clean_pte(pte, pmap, sva, NULL);
2311 		}
2312 		vm_page_unhold(pt_m);
2313 	}
2314 	vm_object_drop(pmap->pm_pteobj);
2315 }
2316 
2317 /*
2318  * Enter a managed page into a pmap.  If the page is not wired related pmap
2319  * data can be destroyed at any time for later demand-operation.
2320  *
2321  * Insert the vm_page (m) at virtual address (v) in (pmap), with the
2322  * specified protection, and wire the mapping if requested.
2323  *
2324  * NOTE: This routine may not lazy-evaluate or lose information.  The
2325  *	 page must actually be inserted into the given map NOW.
2326  *
2327  * NOTE: When entering a page at a KVA address, the pmap must be the
2328  *	 kernel_pmap.
2329  *
2330  * No requirements.
2331  */
2332 void
2333 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
2334 	   boolean_t wired, vm_map_entry_t entry __unused)
2335 {
2336 	vm_paddr_t pa;
2337 	pv_entry_t pv;
2338 	pt_entry_t *pte;
2339 	pt_entry_t origpte, newpte;
2340 	vm_paddr_t opa;
2341 	vm_page_t mpte;
2342 
2343 	if (pmap == NULL)
2344 		return;
2345 
2346 	va = trunc_page(va);
2347 
2348 	vm_object_hold(pmap->pm_pteobj);
2349 
2350 	/*
2351 	 * Get the page table page.   The kernel_pmap's page table pages
2352 	 * are preallocated and have no associated vm_page_t.
2353 	 *
2354 	 * If not NULL, mpte will be busied and we must vm_page_wakeup()
2355 	 * to cleanup.  There will already be at least one wire count from
2356 	 * it being mapped into its parent.
2357 	 */
2358 	if (pmap == &kernel_pmap) {
2359 		mpte = NULL;
2360 		pte = vtopte(va);
2361 	} else {
2362 		mpte = pmap_allocpte(pmap, va);
2363 		pte = (void *)PHYS_TO_DMAP(mpte->phys_addr);
2364 		pte += pmap_pte_index(va);
2365 	}
2366 
2367 	/*
2368 	 * Deal with races against the kernel's real MMU by cleaning the
2369 	 * page, even if we are re-entering the same page.
2370 	 */
2371 	pa = VM_PAGE_TO_PHYS(m);
2372 	origpte = pmap_inval_loadandclear(pte, pmap, va);
2373 	/*origpte = pmap_clean_pte(pte, pmap, va, NULL);*/
2374 	opa = origpte & VPTE_FRAME;
2375 
2376 	if (origpte & VPTE_PS)
2377 		panic("pmap_enter: attempted pmap_enter on 2MB page");
2378 
2379 	if ((origpte & (VPTE_MANAGED|VPTE_M)) == (VPTE_MANAGED|VPTE_M)) {
2380 		if (pmap_track_modified(pmap, va)) {
2381 			vm_page_t om = PHYS_TO_VM_PAGE(opa);
2382 			vm_page_dirty(om);
2383 		}
2384 	}
2385 
2386 	/*
2387 	 * Mapping has not changed, must be protection or wiring change.
2388 	 */
2389 	if (origpte && (opa == pa)) {
2390 		/*
2391 		 * Wiring change, just update stats. We don't worry about
2392 		 * wiring PT pages as they remain resident as long as there
2393 		 * are valid mappings in them. Hence, if a user page is wired,
2394 		 * the PT page will be also.
2395 		 */
2396 		if (wired && ((origpte & VPTE_WIRED) == 0))
2397 			atomic_add_long(&pmap->pm_stats.wired_count, 1);
2398 		else if (!wired && (origpte & VPTE_WIRED))
2399 			atomic_add_long(&pmap->pm_stats.wired_count, -1);
2400 
2401 		if (origpte & VPTE_MANAGED) {
2402 			pa |= VPTE_MANAGED;
2403 			KKASSERT(m->flags & PG_MAPPED);
2404 			KKASSERT(!(m->flags & (PG_FICTITIOUS|PG_UNMANAGED)));
2405 		} else {
2406 			KKASSERT((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)));
2407 		}
2408 		vm_page_spin_lock(m);
2409 		goto validate;
2410 	}
2411 
2412 	/*
2413 	 * Bump the wire_count for the page table page.
2414 	 */
2415 	if (mpte)
2416 		vm_page_wire_quick(mpte);
2417 
2418 	/*
2419 	 * Mapping has changed, invalidate old range and fall through to
2420 	 * handle validating new mapping.  Don't inherit anything from
2421 	 * oldpte.
2422 	 */
2423 	if (opa) {
2424 		int err;
2425 		err = pmap_remove_pte(pmap, NULL, origpte, va);
2426 		origpte = 0;
2427 		if (err)
2428 			panic("pmap_enter: pte vanished, va: 0x%lx", va);
2429 	}
2430 
2431 	/*
2432 	 * Enter on the PV list if part of our managed memory. Note that we
2433 	 * raise IPL while manipulating pv_table since pmap_enter can be
2434 	 * called at interrupt time.
2435 	 */
2436 	if (pmap_initialized) {
2437 		if ((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
2438 			/*
2439 			 * WARNING!  We are using m's spin-lock as a
2440 			 *	     man's pte lock to interlock against
2441 			 *	     pmap_page_protect() operations.
2442 			 *
2443 			 *	     This is a bad hack (obviously).
2444 			 */
2445 			pv = get_pv_entry();
2446 			vm_page_spin_lock(m);
2447 			pmap_insert_entry(pmap, va, mpte, m, pv);
2448 			pa |= VPTE_MANAGED;
2449 			/* vm_page_spin_unlock(m); */
2450 		} else {
2451 			vm_page_spin_lock(m);
2452 		}
2453 	} else {
2454 		vm_page_spin_lock(m);
2455 	}
2456 
2457 	/*
2458 	 * Increment counters
2459 	 */
2460 	atomic_add_long(&pmap->pm_stats.resident_count, 1);
2461 	if (wired)
2462 		atomic_add_long(&pmap->pm_stats.wired_count, 1);
2463 
2464 validate:
2465 	/*
2466 	 * Now validate mapping with desired protection/wiring.
2467 	 */
2468 	newpte = (pt_entry_t)(pa | pte_prot(pmap, prot) | VPTE_V | VPTE_U);
2469 	newpte |= VPTE_A;
2470 
2471 	if (wired)
2472 		newpte |= VPTE_WIRED;
2473 //	if (pmap != &kernel_pmap)
2474 		newpte |= VPTE_U;
2475 	if (newpte & VPTE_RW)
2476 		vm_page_flag_set(m, PG_WRITEABLE);
2477 	KKASSERT((newpte & VPTE_MANAGED) == 0 || (m->flags & PG_MAPPED));
2478 
2479 	origpte = atomic_swap_long(pte, newpte);
2480 	if (origpte & VPTE_M) {
2481 		kprintf("pmap [M] race @ %016jx\n", va);
2482 		atomic_set_long(pte, VPTE_M);
2483 	}
2484 	vm_page_spin_unlock(m);
2485 
2486 	if (mpte)
2487 		vm_page_wakeup(mpte);
2488 	vm_object_drop(pmap->pm_pteobj);
2489 }
2490 
2491 /*
2492  * This code works like pmap_enter() but assumes VM_PROT_READ and not-wired.
2493  *
2494  * Currently this routine may only be used on user pmaps, not kernel_pmap.
2495  *
2496  * No requirements.
2497  */
2498 void
2499 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m)
2500 {
2501 	pmap_enter(pmap, va, m, VM_PROT_READ, 0, NULL);
2502 }
2503 
2504 /*
2505  * Make a temporary mapping for a physical address.  This is only intended
2506  * to be used for panic dumps.
2507  *
2508  * The caller is responsible for calling smp_invltlb().
2509  */
2510 void *
2511 pmap_kenter_temporary(vm_paddr_t pa, long i)
2512 {
2513 	pmap_kenter_quick(crashdumpmap + (i * PAGE_SIZE), pa);
2514 	return ((void *)crashdumpmap);
2515 }
2516 
2517 #define MAX_INIT_PT (96)
2518 
2519 /*
2520  * This routine preloads the ptes for a given object into the specified pmap.
2521  * This eliminates the blast of soft faults on process startup and
2522  * immediately after an mmap.
2523  *
2524  * No requirements.
2525  */
2526 static int pmap_object_init_pt_callback(vm_page_t p, void *data);
2527 
2528 void
2529 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_prot_t prot,
2530 		    vm_object_t object, vm_pindex_t pindex,
2531 		    vm_size_t size, int limit)
2532 {
2533 	struct rb_vm_page_scan_info info;
2534 	struct lwp *lp;
2535 	vm_size_t psize;
2536 
2537 	/*
2538 	 * We can't preinit if read access isn't set or there is no pmap
2539 	 * or object.
2540 	 */
2541 	if ((prot & VM_PROT_READ) == 0 || pmap == NULL || object == NULL)
2542 		return;
2543 
2544 	/*
2545 	 * We can't preinit if the pmap is not the current pmap
2546 	 */
2547 	lp = curthread->td_lwp;
2548 	if (lp == NULL || pmap != vmspace_pmap(lp->lwp_vmspace))
2549 		return;
2550 
2551 	/*
2552 	 * Misc additional checks
2553 	 */
2554 	psize = x86_64_btop(size);
2555 
2556 	if ((object->type != OBJT_VNODE) ||
2557 		((limit & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
2558 			(object->resident_page_count > MAX_INIT_PT))) {
2559 		return;
2560 	}
2561 
2562 	if (psize + pindex > object->size) {
2563 		if (object->size < pindex)
2564 			return;
2565 		psize = object->size - pindex;
2566 	}
2567 
2568 	if (psize == 0)
2569 		return;
2570 
2571 	/*
2572 	 * Use a red-black scan to traverse the requested range and load
2573 	 * any valid pages found into the pmap.
2574 	 *
2575 	 * We cannot safely scan the object's memq unless we are in a
2576 	 * critical section since interrupts can remove pages from objects.
2577 	 */
2578 	info.start_pindex = pindex;
2579 	info.end_pindex = pindex + psize - 1;
2580 	info.limit = limit;
2581 	info.mpte = NULL;
2582 	info.addr = addr;
2583 	info.pmap = pmap;
2584 
2585 	vm_object_hold_shared(object);
2586 	vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
2587 				pmap_object_init_pt_callback, &info);
2588 	vm_object_drop(object);
2589 }
2590 
2591 static
2592 int
2593 pmap_object_init_pt_callback(vm_page_t p, void *data)
2594 {
2595 	struct rb_vm_page_scan_info *info = data;
2596 	vm_pindex_t rel_index;
2597 	/*
2598 	 * don't allow an madvise to blow away our really
2599 	 * free pages allocating pv entries.
2600 	 */
2601 	if ((info->limit & MAP_PREFAULT_MADVISE) &&
2602 		vmstats.v_free_count < vmstats.v_free_reserved) {
2603 		    return(-1);
2604 	}
2605 
2606 	/*
2607 	 * Ignore list markers and ignore pages we cannot instantly
2608 	 * busy (while holding the object token).
2609 	 */
2610 	if (p->flags & PG_MARKER)
2611 		return 0;
2612 	if (vm_page_busy_try(p, TRUE))
2613 		return 0;
2614 	if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2615 	    (p->flags & PG_FICTITIOUS) == 0) {
2616 		if ((p->queue - p->pc) == PQ_CACHE)
2617 			vm_page_deactivate(p);
2618 		rel_index = p->pindex - info->start_pindex;
2619 		pmap_enter_quick(info->pmap,
2620 				 info->addr + x86_64_ptob(rel_index), p);
2621 	}
2622 	vm_page_wakeup(p);
2623 	return(0);
2624 }
2625 
2626 /*
2627  * Return TRUE if the pmap is in shape to trivially
2628  * pre-fault the specified address.
2629  *
2630  * Returns FALSE if it would be non-trivial or if a
2631  * pte is already loaded into the slot.
2632  *
2633  * No requirements.
2634  */
2635 int
2636 pmap_prefault_ok(pmap_t pmap, vm_offset_t addr)
2637 {
2638 	pt_entry_t *pte;
2639 	pd_entry_t *pde;
2640 	int ret;
2641 
2642 	vm_object_hold(pmap->pm_pteobj);
2643 	pde = pmap_pde(pmap, addr);
2644 	if (pde == NULL || *pde == 0) {
2645 		ret = 0;
2646 	} else {
2647 		pte = pmap_pde_to_pte(pde, addr);
2648 		ret = (*pte) ? 0 : 1;
2649 	}
2650 	vm_object_drop(pmap->pm_pteobj);
2651 
2652 	return (ret);
2653 }
2654 
2655 /*
2656  * Change the wiring attribute for a map/virtual-address pair.
2657  *
2658  * The mapping must already exist in the pmap.
2659  * No other requirements.
2660  */
2661 vm_page_t
2662 pmap_unwire(pmap_t pmap, vm_offset_t va)
2663 {
2664 	pt_entry_t *pte;
2665 	vm_paddr_t pa;
2666 	vm_page_t m;
2667 
2668 	if (pmap == NULL)
2669 		return NULL;
2670 
2671 	vm_object_hold(pmap->pm_pteobj);
2672 	pte = pmap_pte(pmap, va);
2673 
2674 	if (pte == NULL || (*pte & VPTE_V) == 0) {
2675 		vm_object_drop(pmap->pm_pteobj);
2676 		return NULL;
2677 	}
2678 
2679 	/*
2680 	 * Wiring is not a hardware characteristic so there is no need to
2681 	 * invalidate TLB.  However, in an SMP environment we must use
2682 	 * a locked bus cycle to update the pte (if we are not using
2683 	 * the pmap_inval_*() API that is)... it's ok to do this for simple
2684 	 * wiring changes.
2685 	 */
2686 	if (pmap_pte_w(pte))
2687 		atomic_add_long(&pmap->pm_stats.wired_count, -1);
2688 	/* XXX else return NULL so caller doesn't unwire m ? */
2689 	atomic_clear_long(pte, VPTE_WIRED);
2690 
2691 	pa = *pte & VPTE_FRAME;
2692 	m = PHYS_TO_VM_PAGE(pa);	/* held by wired count */
2693 
2694 	vm_object_drop(pmap->pm_pteobj);
2695 
2696 	return m;
2697 }
2698 
2699 /*
2700  *	Copy the range specified by src_addr/len
2701  *	from the source map to the range dst_addr/len
2702  *	in the destination map.
2703  *
2704  *	This routine is only advisory and need not do anything.
2705  */
2706 void
2707 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
2708 	vm_size_t len, vm_offset_t src_addr)
2709 {
2710 	/*
2711 	 * XXX BUGGY.  Amoung other things srcmpte is assumed to remain
2712 	 * valid through blocking calls, and that's just not going to
2713 	 * be the case.
2714 	 *
2715 	 * FIXME!
2716 	 */
2717 	return;
2718 }
2719 
2720 /*
2721  * pmap_zero_page:
2722  *
2723  *	Zero the specified physical page.
2724  *
2725  *	This function may be called from an interrupt and no locking is
2726  *	required.
2727  */
2728 void
2729 pmap_zero_page(vm_paddr_t phys)
2730 {
2731 	vm_offset_t va = PHYS_TO_DMAP(phys);
2732 
2733 	bzero((void *)va, PAGE_SIZE);
2734 }
2735 
2736 /*
2737  * pmap_zero_page:
2738  *
2739  *	Zero part of a physical page by mapping it into memory and clearing
2740  *	its contents with bzero.
2741  *
2742  *	off and size may not cover an area beyond a single hardware page.
2743  */
2744 void
2745 pmap_zero_page_area(vm_paddr_t phys, int off, int size)
2746 {
2747 	vm_offset_t virt = PHYS_TO_DMAP(phys);
2748 
2749 	bzero((char *)virt + off, size);
2750 }
2751 
2752 /*
2753  * pmap_copy_page:
2754  *
2755  *	Copy the physical page from the source PA to the target PA.
2756  *	This function may be called from an interrupt.  No locking
2757  *	is required.
2758  */
2759 void
2760 pmap_copy_page(vm_paddr_t src, vm_paddr_t dst)
2761 {
2762 	vm_offset_t src_virt, dst_virt;
2763 
2764 	src_virt = PHYS_TO_DMAP(src);
2765 	dst_virt = PHYS_TO_DMAP(dst);
2766 	bcopy((void *)src_virt, (void *)dst_virt, PAGE_SIZE);
2767 }
2768 
2769 /*
2770  * pmap_copy_page_frag:
2771  *
2772  *	Copy the physical page from the source PA to the target PA.
2773  *	This function may be called from an interrupt.  No locking
2774  *	is required.
2775  */
2776 void
2777 pmap_copy_page_frag(vm_paddr_t src, vm_paddr_t dst, size_t bytes)
2778 {
2779 	vm_offset_t src_virt, dst_virt;
2780 
2781 	src_virt = PHYS_TO_DMAP(src);
2782 	dst_virt = PHYS_TO_DMAP(dst);
2783 	bcopy((char *)src_virt + (src & PAGE_MASK),
2784 	      (char *)dst_virt + (dst & PAGE_MASK),
2785 	      bytes);
2786 }
2787 
2788 /*
2789  * Returns true if the pmap's pv is one of the first 16 pvs linked to
2790  * from this page.  This count may be changed upwards or downwards
2791  * in the future; it is only necessary that true be returned for a small
2792  * subset of pmaps for proper page aging.
2793  *
2794  * No other requirements.
2795  */
2796 boolean_t
2797 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
2798 {
2799 	pv_entry_t pv;
2800 	int loops = 0;
2801 
2802 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2803 		return FALSE;
2804 
2805 	vm_page_spin_lock(m);
2806 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2807 		if (pv->pv_pmap == pmap) {
2808 			vm_page_spin_unlock(m);
2809 			return TRUE;
2810 		}
2811 		loops++;
2812 		if (loops >= 16)
2813 			break;
2814 	}
2815 	vm_page_spin_unlock(m);
2816 
2817 	return (FALSE);
2818 }
2819 
2820 /*
2821  * Remove all pages from specified address space this aids process
2822  * exit speeds.  Also, this code is special cased for current
2823  * process only, but can have the more generic (and slightly slower)
2824  * mode enabled.  This is much faster than pmap_remove in the case
2825  * of running down an entire address space.
2826  *
2827  * No other requirements.
2828  */
2829 void
2830 pmap_remove_pages(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2831 {
2832 	pmap_remove(pmap, sva, eva);
2833 #if 0
2834 	pt_entry_t *pte, tpte;
2835 	pv_entry_t pv, npv;
2836 	vm_page_t m;
2837 	int save_generation;
2838 
2839 	if (pmap->pm_pteobj)
2840 		vm_object_hold(pmap->pm_pteobj);
2841 
2842 	pmap_invalidate_range(pmap, sva, eva);
2843 
2844 	for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
2845 		if (pv->pv_va >= eva || pv->pv_va < sva) {
2846 			npv = TAILQ_NEXT(pv, pv_plist);
2847 			continue;
2848 		}
2849 
2850 		KKASSERT(pmap == pv->pv_pmap);
2851 
2852 		pte = pmap_pte(pmap, pv->pv_va);
2853 
2854 		/*
2855 		 * We cannot remove wired pages from a process' mapping
2856 		 * at this time
2857 		 */
2858 		if (*pte & VPTE_WIRED) {
2859 			npv = TAILQ_NEXT(pv, pv_plist);
2860 			continue;
2861 		}
2862 		tpte = pmap_inval_loadandclear(pte, pmap, pv->pv_va);
2863 
2864 		m = PHYS_TO_VM_PAGE(tpte & VPTE_FRAME);
2865 		vm_page_spin_lock(m);
2866 
2867 		KASSERT(m < &vm_page_array[vm_page_array_size],
2868 			("pmap_remove_pages: bad tpte %lx", tpte));
2869 
2870 		KKASSERT(pmap->pm_stats.resident_count > 0);
2871 		atomic_add_long(&pmap->pm_stats.resident_count, -1);
2872 
2873 		/*
2874 		 * Update the vm_page_t clean and reference bits.
2875 		 */
2876 		if (tpte & VPTE_M) {
2877 			vm_page_dirty(m);
2878 		}
2879 
2880 		npv = TAILQ_NEXT(pv, pv_plist);
2881 		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
2882 		atomic_add_int(&pmap->pm_generation, 1);
2883 		save_generation = pmap->pm_generation;
2884 		m->md.pv_list_count--;
2885 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2886 		if (TAILQ_EMPTY(&m->md.pv_list))
2887 			vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
2888 		vm_page_spin_unlock(m);
2889 
2890 		pmap_unuse_pt(pmap, pv->pv_va, pv->pv_ptem);
2891 		free_pv_entry(pv);
2892 
2893 		/*
2894 		 * Restart the scan if we blocked during the unuse or free
2895 		 * calls and other removals were made.
2896 		 */
2897 		if (save_generation != pmap->pm_generation) {
2898 			kprintf("Warning: pmap_remove_pages race-A avoided\n");
2899 			npv = TAILQ_FIRST(&pmap->pm_pvlist);
2900 		}
2901 	}
2902 	if (pmap->pm_pteobj)
2903 		vm_object_drop(pmap->pm_pteobj);
2904 	pmap_remove(pmap, sva, eva);
2905 #endif
2906 }
2907 
2908 /*
2909  * pmap_testbit tests bits in active mappings of a VM page.
2910  */
2911 static boolean_t
2912 pmap_testbit(vm_page_t m, int bit)
2913 {
2914 	pv_entry_t pv;
2915 	pt_entry_t *pte;
2916 
2917 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2918 		return FALSE;
2919 
2920 	if (TAILQ_FIRST(&m->md.pv_list) == NULL)
2921 		return FALSE;
2922 
2923 	vm_page_spin_lock(m);
2924 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2925 		/*
2926 		 * if the bit being tested is the modified bit, then
2927 		 * mark clean_map and ptes as never
2928 		 * modified.
2929 		 */
2930 		if (bit & (VPTE_A|VPTE_M)) {
2931 			if (!pmap_track_modified(pv->pv_pmap, pv->pv_va))
2932 				continue;
2933 		}
2934 
2935 #if defined(PMAP_DIAGNOSTIC)
2936 		if (pv->pv_pmap == NULL) {
2937 			kprintf("Null pmap (tb) at va: 0x%lx\n", pv->pv_va);
2938 			continue;
2939 		}
2940 #endif
2941 		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2942 		if (*pte & bit) {
2943 			vm_page_spin_unlock(m);
2944 			return TRUE;
2945 		}
2946 	}
2947 	vm_page_spin_unlock(m);
2948 	return (FALSE);
2949 }
2950 
2951 /*
2952  * This routine is used to clear bits in ptes.  Certain bits require special
2953  * handling, in particular (on virtual kernels) the VPTE_M (modify) bit.
2954  *
2955  * This routine is only called with certain VPTE_* bit combinations.
2956  */
2957 static __inline void
2958 pmap_clearbit(vm_page_t m, int bit)
2959 {
2960 	pv_entry_t pv;
2961 	pt_entry_t *pte;
2962 	pt_entry_t pbits;
2963 	vm_object_t pmobj;
2964 	pmap_t pmap;
2965 
2966 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
2967 		if (bit == VPTE_RW)
2968 			vm_page_flag_clear(m, PG_WRITEABLE);
2969 		return;
2970 	}
2971 
2972 	/*
2973 	 * Loop over all current mappings setting/clearing as appropos If
2974 	 * setting RO do we need to clear the VAC?
2975 	 */
2976 restart:
2977 	vm_page_spin_lock(m);
2978 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2979 		/*
2980 		 * Need the pmap object lock(?)
2981 		 */
2982 		pmap = pv->pv_pmap;
2983 		pmobj = pmap->pm_pteobj;
2984 
2985 		if (vm_object_hold_try(pmobj) == 0) {
2986 			refcount_acquire(&pmobj->hold_count);
2987 			vm_page_spin_unlock(m);
2988 			vm_object_lock(pmobj);
2989 			vm_object_drop(pmobj);
2990 			goto restart;
2991 		}
2992 
2993 		/*
2994 		 * don't write protect pager mappings
2995 		 */
2996 		if (bit == VPTE_RW) {
2997 			if (!pmap_track_modified(pv->pv_pmap, pv->pv_va)) {
2998 				vm_object_drop(pmobj);
2999 				continue;
3000 			}
3001 		}
3002 
3003 #if defined(PMAP_DIAGNOSTIC)
3004 		if (pv->pv_pmap == NULL) {
3005 			kprintf("Null pmap (cb) at va: 0x%lx\n", pv->pv_va);
3006 			vm_object_drop(pmobj);
3007 			continue;
3008 		}
3009 #endif
3010 
3011 		/*
3012 		 * Careful here.  We can use a locked bus instruction to
3013 		 * clear VPTE_A or VPTE_M safely but we need to synchronize
3014 		 * with the target cpus when we mess with VPTE_RW.
3015 		 *
3016 		 * On virtual kernels we must force a new fault-on-write
3017 		 * in the real kernel if we clear the Modify bit ourselves,
3018 		 * otherwise the real kernel will not get a new fault and
3019 		 * will never set our Modify bit again.
3020 		 */
3021 		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
3022 		if (*pte & bit) {
3023 			if (bit == VPTE_RW) {
3024 				/*
3025 				 * We must also clear VPTE_M when clearing
3026 				 * VPTE_RW and synchronize its state to
3027 				 * the page.
3028 				 */
3029 				pbits = pmap_clean_pte(pte, pv->pv_pmap,
3030 						       pv->pv_va, m);
3031 			} else if (bit == VPTE_M) {
3032 				/*
3033 				 * We must invalidate the real-kernel pte
3034 				 * when clearing VPTE_M bit to force the
3035 				 * real-kernel to take a new fault to re-set
3036 				 * VPTE_M.
3037 				 */
3038 				atomic_clear_long(pte, VPTE_M);
3039 				if (*pte & VPTE_RW) {
3040 					pmap_invalidate_range(pv->pv_pmap,
3041 						      pv->pv_va,
3042 						      pv->pv_va + PAGE_SIZE);
3043 				}
3044 			} else if ((bit & (VPTE_RW|VPTE_M)) ==
3045 				   (VPTE_RW|VPTE_M)) {
3046 				/*
3047 				 * We've been asked to clear W & M, I guess
3048 				 * the caller doesn't want us to update
3049 				 * the dirty status of the VM page.
3050 				 */
3051 				pmap_clean_pte(pte, pv->pv_pmap, pv->pv_va, m);
3052 				panic("shouldn't be called");
3053 			} else {
3054 				/*
3055 				 * We've been asked to clear bits that do
3056 				 * not interact with hardware.
3057 				 */
3058 				atomic_clear_long(pte, bit);
3059 			}
3060 		}
3061 		vm_object_drop(pmobj);
3062 	}
3063 	if (bit == VPTE_RW)
3064 		vm_page_flag_clear(m, PG_WRITEABLE);
3065 	vm_page_spin_unlock(m);
3066 }
3067 
3068 /*
3069  * Lower the permission for all mappings to a given page.
3070  *
3071  * No other requirements.
3072  */
3073 void
3074 pmap_page_protect(vm_page_t m, vm_prot_t prot)
3075 {
3076 	if ((prot & VM_PROT_WRITE) == 0) {
3077 		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
3078 			pmap_clearbit(m, VPTE_RW);
3079 		} else {
3080 			pmap_remove_all(m);
3081 		}
3082 	}
3083 }
3084 
3085 vm_paddr_t
3086 pmap_phys_address(vm_pindex_t ppn)
3087 {
3088 	return (x86_64_ptob(ppn));
3089 }
3090 
3091 /*
3092  * Return a count of reference bits for a page, clearing those bits.
3093  * It is not necessary for every reference bit to be cleared, but it
3094  * is necessary that 0 only be returned when there are truly no
3095  * reference bits set.
3096  *
3097  * XXX: The exact number of bits to check and clear is a matter that
3098  * should be tested and standardized at some point in the future for
3099  * optimal aging of shared pages.
3100  *
3101  * No other requirements.
3102  */
3103 int
3104 pmap_ts_referenced(vm_page_t m)
3105 {
3106 	pv_entry_t pv, pvf, pvn;
3107 	pt_entry_t *pte;
3108 	int rtval = 0;
3109 
3110 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3111 		return (rtval);
3112 
3113 	vm_page_spin_lock(m);
3114 	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3115 		pvf = pv;
3116 		do {
3117 			pvn = TAILQ_NEXT(pv, pv_list);
3118 			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3119 			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
3120 
3121 			if (!pmap_track_modified(pv->pv_pmap, pv->pv_va))
3122 				continue;
3123 
3124 			pte = pmap_pte(pv->pv_pmap, pv->pv_va);
3125 
3126 			if (pte && (*pte & VPTE_A)) {
3127 				atomic_clear_long(pte, VPTE_A);
3128 				rtval++;
3129 				if (rtval > 4) {
3130 					break;
3131 				}
3132 			}
3133 		} while ((pv = pvn) != NULL && pv != pvf);
3134 	}
3135 	vm_page_spin_unlock(m);
3136 
3137 	return (rtval);
3138 }
3139 
3140 /*
3141  * Return whether or not the specified physical page was modified
3142  * in any physical maps.
3143  *
3144  * No other requirements.
3145  */
3146 boolean_t
3147 pmap_is_modified(vm_page_t m)
3148 {
3149 	boolean_t res;
3150 
3151 	res = pmap_testbit(m, VPTE_M);
3152 
3153 	return (res);
3154 }
3155 
3156 /*
3157  * Clear the modify bits on the specified physical page.  For the vkernel
3158  * we really need to clean the page, which clears VPTE_RW and VPTE_M, in
3159  * order to ensure that we take a fault on the next write to the page.
3160  * Otherwise the page may become dirty without us knowing it.
3161  *
3162  * No other requirements.
3163  */
3164 void
3165 pmap_clear_modify(vm_page_t m)
3166 {
3167 	pmap_clearbit(m, VPTE_RW);
3168 }
3169 
3170 /*
3171  * Clear the reference bit on the specified physical page.
3172  *
3173  * No other requirements.
3174  */
3175 void
3176 pmap_clear_reference(vm_page_t m)
3177 {
3178 	pmap_clearbit(m, VPTE_A);
3179 }
3180 
3181 /*
3182  * Miscellaneous support routines follow
3183  */
3184 static void
3185 i386_protection_init(void)
3186 {
3187 	uint64_t *kp;
3188 	int prot;
3189 
3190 	kp = protection_codes;
3191 	for (prot = 0; prot < 8; prot++) {
3192 		if (prot & VM_PROT_READ)
3193 			*kp |= 0;			/* R */
3194 		if (prot & VM_PROT_WRITE)
3195 			*kp |= VPTE_RW;			/* R+W */
3196 		if (prot && (prot & VM_PROT_EXECUTE) == 0)
3197 			*kp |= VPTE_NX;			/* NX - !executable */
3198 		++kp;
3199 	}
3200 }
3201 
3202 /*
3203  * Sets the memory attribute for the specified page.
3204  */
3205 void
3206 pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
3207 {
3208 	/* This is a vkernel, do nothing */
3209 }
3210 
3211 /*
3212  * Change the PAT attribute on an existing kernel memory map.  Caller
3213  * must ensure that the virtual memory in question is not accessed
3214  * during the adjustment.
3215  */
3216 void
3217 pmap_change_attr(vm_offset_t va, vm_size_t count, int mode)
3218 {
3219 	/* This is a vkernel, do nothing */
3220 }
3221 
3222 /*
3223  * Perform the pmap work for mincore
3224  *
3225  * No other requirements.
3226  */
3227 int
3228 pmap_mincore(pmap_t pmap, vm_offset_t addr)
3229 {
3230 	pt_entry_t *ptep, pte;
3231 	vm_page_t m;
3232 	int val = 0;
3233 
3234 	vm_object_hold(pmap->pm_pteobj);
3235 	ptep = pmap_pte(pmap, addr);
3236 
3237 	if (ptep && (pte = *ptep) != 0) {
3238 		vm_paddr_t pa;
3239 
3240 		val = MINCORE_INCORE;
3241 		if ((pte & VPTE_MANAGED) == 0)
3242 			goto done;
3243 
3244 		pa = pte & VPTE_FRAME;
3245 
3246 		m = PHYS_TO_VM_PAGE(pa);
3247 
3248 		/*
3249 		 * Modified by us
3250 		 */
3251 		if (pte & VPTE_M)
3252 			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
3253 		/*
3254 		 * Modified by someone
3255 		 */
3256 		else if (m->dirty || pmap_is_modified(m))
3257 			val |= MINCORE_MODIFIED_OTHER;
3258 		/*
3259 		 * Referenced by us
3260 		 */
3261 		if (pte & VPTE_A)
3262 			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
3263 
3264 		/*
3265 		 * Referenced by someone
3266 		 */
3267 		else if ((m->flags & PG_REFERENCED) || pmap_ts_referenced(m)) {
3268 			val |= MINCORE_REFERENCED_OTHER;
3269 			vm_page_flag_set(m, PG_REFERENCED);
3270 		}
3271 	}
3272 done:
3273 	vm_object_drop(pmap->pm_pteobj);
3274 
3275 	return val;
3276 }
3277 
3278 /*
3279  * Replace p->p_vmspace with a new one.  If adjrefs is non-zero the new
3280  * vmspace will be ref'd and the old one will be deref'd.
3281  *
3282  * Caller must hold vmspace->vm_map.token for oldvm and newvm
3283  */
3284 void
3285 pmap_replacevm(struct proc *p, struct vmspace *newvm, int adjrefs)
3286 {
3287 	struct vmspace *oldvm;
3288 	struct lwp *lp;
3289 
3290 	oldvm = p->p_vmspace;
3291 	if (oldvm != newvm) {
3292 		if (adjrefs)
3293 			vmspace_ref(newvm);
3294 		KKASSERT((newvm->vm_refcnt & VM_REF_DELETED) == 0);
3295 		p->p_vmspace = newvm;
3296 		KKASSERT(p->p_nthreads == 1);
3297 		lp = RB_ROOT(&p->p_lwp_tree);
3298 		pmap_setlwpvm(lp, newvm);
3299 		if (adjrefs)
3300 			vmspace_rel(oldvm);
3301 	}
3302 }
3303 
3304 /*
3305  * Set the vmspace for a LWP.  The vmspace is almost universally set the
3306  * same as the process vmspace, but virtual kernels need to swap out contexts
3307  * on a per-lwp basis.
3308  */
3309 void
3310 pmap_setlwpvm(struct lwp *lp, struct vmspace *newvm)
3311 {
3312 	struct vmspace *oldvm;
3313 	struct pmap *pmap;
3314 
3315 	oldvm = lp->lwp_vmspace;
3316 	if (oldvm != newvm) {
3317 		crit_enter();
3318 		KKASSERT((newvm->vm_refcnt & VM_REF_DELETED) == 0);
3319 		lp->lwp_vmspace = newvm;
3320 		if (curthread->td_lwp == lp) {
3321 			pmap = vmspace_pmap(newvm);
3322 			ATOMIC_CPUMASK_ORBIT(pmap->pm_active, mycpu->gd_cpuid);
3323 			if (pmap->pm_active_lock & CPULOCK_EXCL)
3324 				pmap_interlock_wait(newvm);
3325 #if defined(SWTCH_OPTIM_STATS)
3326 			tlb_flush_count++;
3327 #endif
3328 			pmap = vmspace_pmap(oldvm);
3329 			ATOMIC_CPUMASK_NANDBIT(pmap->pm_active,
3330 					       mycpu->gd_cpuid);
3331 		}
3332 		crit_exit();
3333 	}
3334 }
3335 
3336 /*
3337  * The swtch code tried to switch in a heavy weight process whos pmap
3338  * is locked by another cpu.  We have to wait for the lock to clear before
3339  * the pmap can be used.
3340  */
3341 void
3342 pmap_interlock_wait (struct vmspace *vm)
3343 {
3344 	pmap_t pmap = vmspace_pmap(vm);
3345 
3346 	if (pmap->pm_active_lock & CPULOCK_EXCL) {
3347 		crit_enter();
3348 		while (pmap->pm_active_lock & CPULOCK_EXCL) {
3349 			cpu_ccfence();
3350 			pthread_yield();
3351 		}
3352 		crit_exit();
3353 	}
3354 }
3355 
3356 vm_offset_t
3357 pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
3358 {
3359 
3360 	if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
3361 		return addr;
3362 	}
3363 
3364 	addr = roundup2(addr, NBPDR);
3365 	return addr;
3366 }
3367 
3368 /*
3369  * Used by kmalloc/kfree, page already exists at va
3370  */
3371 vm_page_t
3372 pmap_kvtom(vm_offset_t va)
3373 {
3374 	vpte_t *ptep;
3375 
3376 	KKASSERT(va >= KvaStart && va < KvaEnd);
3377 	ptep = vtopte(va);
3378 	return(PHYS_TO_VM_PAGE(*ptep & PG_FRAME));
3379 }
3380 
3381 void
3382 pmap_object_init(vm_object_t object)
3383 {
3384 	/* empty */
3385 }
3386 
3387 void
3388 pmap_object_free(vm_object_t object)
3389 {
3390 	/* empty */
3391 }
3392 
3393 void
3394 pmap_pgscan(struct pmap_pgscan_info *pginfo)
3395 {
3396 	pmap_t pmap = pginfo->pmap;
3397 	vm_offset_t sva = pginfo->beg_addr;
3398 	vm_offset_t eva = pginfo->end_addr;
3399 	vm_offset_t va_next;
3400 	pml4_entry_t *pml4e;
3401 	pdp_entry_t *pdpe;
3402 	pd_entry_t ptpaddr, *pde;
3403 	pt_entry_t *pte;
3404 	vm_page_t pt_m;
3405 	int stop = 0;
3406 
3407 	vm_object_hold(pmap->pm_pteobj);
3408 
3409 	for (; sva < eva; sva = va_next) {
3410 		if (stop)
3411 			break;
3412 
3413 		pml4e = pmap_pml4e(pmap, sva);
3414 		if ((*pml4e & VPTE_V) == 0) {
3415 			va_next = (sva + NBPML4) & ~PML4MASK;
3416 			if (va_next < sva)
3417 				va_next = eva;
3418 			continue;
3419 		}
3420 
3421 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
3422 		if ((*pdpe & VPTE_V) == 0) {
3423 			va_next = (sva + NBPDP) & ~PDPMASK;
3424 			if (va_next < sva)
3425 				va_next = eva;
3426 			continue;
3427 		}
3428 
3429 		va_next = (sva + NBPDR) & ~PDRMASK;
3430 		if (va_next < sva)
3431 			va_next = eva;
3432 
3433 		pde = pmap_pdpe_to_pde(pdpe, sva);
3434 		ptpaddr = *pde;
3435 
3436 #if 0
3437 		/*
3438 		 * Check for large page (ignore).
3439 		 */
3440 		if ((ptpaddr & VPTE_PS) != 0) {
3441 #if 0
3442 			pmap_clean_pde(pde, pmap, sva);
3443 			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
3444 #endif
3445 			continue;
3446 		}
3447 #endif
3448 
3449 		/*
3450 		 * Weed out invalid mappings. Note: we assume that the page
3451 		 * directory table is always allocated, and in kernel virtual.
3452 		 */
3453 		if (ptpaddr == 0)
3454 			continue;
3455 
3456 		if (va_next > eva)
3457 			va_next = eva;
3458 
3459 		pt_m = pmap_hold_pt_page(pde, sva);
3460 		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
3461 		    sva += PAGE_SIZE) {
3462 			vm_page_t m;
3463 
3464 			if (stop)
3465 				break;
3466 			if ((*pte & VPTE_MANAGED) == 0)
3467 				continue;
3468 
3469 			m = PHYS_TO_VM_PAGE(*pte & VPTE_FRAME);
3470 			if (vm_page_busy_try(m, TRUE) == 0) {
3471 				if (pginfo->callback(pginfo, sva, m) < 0)
3472 					stop = 1;
3473 			}
3474 		}
3475 		vm_page_unhold(pt_m);
3476 	}
3477 	vm_object_drop(pmap->pm_pteobj);
3478 }
3479