1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * Copyright (c) 1994 John S. Dyson
6  * Copyright (c) 1994 David Greenman
7  * Copyright (c) 2003 Peter Wemm
8  * Copyright (c) 2005-2008 Alan L. Cox <alc@cs.rice.edu>
9  * Copyright (c) 2008, 2009 The DragonFly Project.
10  * Copyright (c) 2008, 2009 Jordan Gordeev.
11  * All rights reserved.
12  *
13  * This code is derived from software contributed to Berkeley by
14  * the Systems Programming Group of the University of Utah Computer
15  * Science Department and William Jolitz of UUNET Technologies Inc.
16  *
17  * Redistribution and use in source and binary forms, with or without
18  * modification, are permitted provided that the following conditions
19  * are met:
20  * 1. Redistributions of source code must retain the above copyright
21  *    notice, this list of conditions and the following disclaimer.
22  * 2. Redistributions in binary form must reproduce the above copyright
23  *    notice, this list of conditions and the following disclaimer in the
24  *    documentation and/or other materials provided with the distribution.
25  * 3. All advertising materials mentioning features or use of this software
26  *    must display the following acknowledgement:
27  *	This product includes software developed by the University of
28  *	California, Berkeley and its contributors.
29  * 4. Neither the name of the University nor the names of its contributors
30  *    may be used to endorse or promote products derived from this software
31  *    without specific prior written permission.
32  *
33  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
34  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
35  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
36  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
37  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
38  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
39  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
41  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
42  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
43  * SUCH DAMAGE.
44  *
45  *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
46  * $FreeBSD: src/sys/i386/i386/pmap.c,v 1.250.2.18 2002/03/06 22:48:53 silby Exp $
47  */
48 
49 /*
50  * Manages physical address maps.
51  */
52 
53 #if JG
54 #include "opt_pmap.h"
55 #endif
56 #include "opt_msgbuf.h"
57 
58 #include <sys/param.h>
59 #include <sys/systm.h>
60 #include <sys/kernel.h>
61 #include <sys/proc.h>
62 #include <sys/msgbuf.h>
63 #include <sys/vmmeter.h>
64 #include <sys/mman.h>
65 #include <sys/vmspace.h>
66 
67 #include <vm/vm.h>
68 #include <vm/vm_param.h>
69 #include <sys/sysctl.h>
70 #include <sys/lock.h>
71 #include <vm/vm_kern.h>
72 #include <vm/vm_page.h>
73 #include <vm/vm_map.h>
74 #include <vm/vm_object.h>
75 #include <vm/vm_extern.h>
76 #include <vm/vm_pageout.h>
77 #include <vm/vm_pager.h>
78 #include <vm/vm_zone.h>
79 
80 #include <sys/user.h>
81 #include <sys/thread2.h>
82 #include <sys/sysref2.h>
83 #include <sys/spinlock2.h>
84 #include <vm/vm_page2.h>
85 
86 #include <machine/cputypes.h>
87 #include <machine/md_var.h>
88 #include <machine/specialreg.h>
89 #include <machine/smp.h>
90 #include <machine/globaldata.h>
91 #include <machine/pmap.h>
92 #include <machine/pmap_inval.h>
93 
94 #include <ddb/ddb.h>
95 
96 #include <stdio.h>
97 #include <assert.h>
98 #include <stdlib.h>
99 #include <pthread.h>
100 
101 #define PMAP_KEEP_PDIRS
102 #ifndef PMAP_SHPGPERPROC
103 #define PMAP_SHPGPERPROC 1000
104 #endif
105 
106 #if defined(DIAGNOSTIC)
107 #define PMAP_DIAGNOSTIC
108 #endif
109 
110 #define MINPV 2048
111 
112 #if !defined(PMAP_DIAGNOSTIC)
113 #define PMAP_INLINE __inline
114 #else
115 #define PMAP_INLINE
116 #endif
117 
118 /*
119  * Get PDEs and PTEs for user/kernel address space
120  */
121 static pd_entry_t *pmap_pde(pmap_t pmap, vm_offset_t va);
122 #define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
123 
124 #define pmap_pde_v(pte)		((*(pd_entry_t *)pte & VPTE_V) != 0)
125 #define pmap_pte_w(pte)		((*(pt_entry_t *)pte & VPTE_WIRED) != 0)
126 #define pmap_pte_m(pte)		((*(pt_entry_t *)pte & VPTE_M) != 0)
127 #define pmap_pte_u(pte)		((*(pt_entry_t *)pte & VPTE_A) != 0)
128 #define pmap_pte_v(pte)		((*(pt_entry_t *)pte & VPTE_V) != 0)
129 
130 /*
131  * Given a map and a machine independent protection code,
132  * convert to a vax protection code.
133  */
134 #define pte_prot(m, p)		\
135 	(protection_codes[p & (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE)])
136 static int protection_codes[8];
137 
138 struct pmap kernel_pmap;
139 static TAILQ_HEAD(,pmap)	pmap_list = TAILQ_HEAD_INITIALIZER(pmap_list);
140 
141 static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
142 
143 static vm_object_t kptobj;
144 
145 static int nkpt;
146 
147 static uint64_t	KPDphys;	/* phys addr of kernel level 2 */
148 uint64_t		KPDPphys;	/* phys addr of kernel level 3 */
149 uint64_t		KPML4phys;	/* phys addr of kernel level 4 */
150 
151 extern int vmm_enabled;
152 extern void *vkernel_stack;
153 
154 /*
155  * Data for the pv entry allocation mechanism
156  */
157 static vm_zone_t pvzone;
158 static struct vm_zone pvzone_store;
159 static struct vm_object pvzone_obj;
160 static int pv_entry_count=0, pv_entry_max=0, pv_entry_high_water=0;
161 static int pmap_pagedaemon_waken = 0;
162 static struct pv_entry *pvinit;
163 
164 /*
165  * All those kernel PT submaps that BSD is so fond of
166  */
167 pt_entry_t *CMAP1 = NULL, *ptmmap;
168 caddr_t CADDR1 = NULL;
169 static pt_entry_t *msgbufmap;
170 
171 uint64_t KPTphys;
172 
173 static PMAP_INLINE void	free_pv_entry (pv_entry_t pv);
174 static pv_entry_t get_pv_entry (void);
175 static void	i386_protection_init (void);
176 static __inline void	pmap_clearbit (vm_page_t m, int bit);
177 
178 static void	pmap_remove_all (vm_page_t m);
179 static int pmap_remove_pte (struct pmap *pmap, pt_entry_t *ptq,
180 				vm_offset_t sva);
181 static void pmap_remove_page (struct pmap *pmap, vm_offset_t va);
182 static int pmap_remove_entry (struct pmap *pmap, vm_page_t m,
183 				vm_offset_t va);
184 static boolean_t pmap_testbit (vm_page_t m, int bit);
185 static void pmap_insert_entry (pmap_t pmap, vm_offset_t va,
186 		vm_page_t mpte, vm_page_t m);
187 
188 static vm_page_t pmap_allocpte (pmap_t pmap, vm_offset_t va);
189 
190 static int pmap_release_free_page (pmap_t pmap, vm_page_t p);
191 static vm_page_t _pmap_allocpte (pmap_t pmap, vm_pindex_t ptepindex);
192 #if JGPMAP32
193 static pt_entry_t * pmap_pte_quick (pmap_t pmap, vm_offset_t va);
194 #endif
195 static vm_page_t pmap_page_lookup (vm_object_t object, vm_pindex_t pindex);
196 static int pmap_unuse_pt (pmap_t, vm_offset_t, vm_page_t);
197 
198 /*
199  * pmap_pte_quick:
200  *
201  *	Super fast pmap_pte routine best used when scanning the pv lists.
202  *	This eliminates many course-grained invltlb calls.  Note that many of
203  *	the pv list scans are across different pmaps and it is very wasteful
204  *	to do an entire invltlb when checking a single mapping.
205  *
206  *	Should only be called while in a critical section.
207  */
208 #if JGPMAP32
209 static __inline pt_entry_t *pmap_pte(pmap_t pmap, vm_offset_t va);
210 
211 static pt_entry_t *
212 pmap_pte_quick(pmap_t pmap, vm_offset_t va)
213 {
214 	return pmap_pte(pmap, va);
215 }
216 #endif
217 
218 /* Return a non-clipped PD index for a given VA */
219 static __inline vm_pindex_t
220 pmap_pde_pindex(vm_offset_t va)
221 {
222 	return va >> PDRSHIFT;
223 }
224 
225 /* Return various clipped indexes for a given VA */
226 static __inline vm_pindex_t
227 pmap_pte_index(vm_offset_t va)
228 {
229 
230 	return ((va >> PAGE_SHIFT) & ((1ul << NPTEPGSHIFT) - 1));
231 }
232 
233 static __inline vm_pindex_t
234 pmap_pde_index(vm_offset_t va)
235 {
236 
237 	return ((va >> PDRSHIFT) & ((1ul << NPDEPGSHIFT) - 1));
238 }
239 
240 static __inline vm_pindex_t
241 pmap_pdpe_index(vm_offset_t va)
242 {
243 
244 	return ((va >> PDPSHIFT) & ((1ul << NPDPEPGSHIFT) - 1));
245 }
246 
247 static __inline vm_pindex_t
248 pmap_pml4e_index(vm_offset_t va)
249 {
250 
251 	return ((va >> PML4SHIFT) & ((1ul << NPML4EPGSHIFT) - 1));
252 }
253 
254 /* Return a pointer to the PML4 slot that corresponds to a VA */
255 static __inline pml4_entry_t *
256 pmap_pml4e(pmap_t pmap, vm_offset_t va)
257 {
258 
259 	return (&pmap->pm_pml4[pmap_pml4e_index(va)]);
260 }
261 
262 /* Return a pointer to the PDP slot that corresponds to a VA */
263 static __inline pdp_entry_t *
264 pmap_pml4e_to_pdpe(pml4_entry_t *pml4e, vm_offset_t va)
265 {
266 	pdp_entry_t *pdpe;
267 
268 	pdpe = (pdp_entry_t *)PHYS_TO_DMAP(*pml4e & VPTE_FRAME);
269 	return (&pdpe[pmap_pdpe_index(va)]);
270 }
271 
272 /* Return a pointer to the PDP slot that corresponds to a VA */
273 static __inline pdp_entry_t *
274 pmap_pdpe(pmap_t pmap, vm_offset_t va)
275 {
276 	pml4_entry_t *pml4e;
277 
278 	pml4e = pmap_pml4e(pmap, va);
279 	if ((*pml4e & VPTE_V) == 0)
280 		return NULL;
281 	return (pmap_pml4e_to_pdpe(pml4e, va));
282 }
283 
284 /* Return a pointer to the PD slot that corresponds to a VA */
285 static __inline pd_entry_t *
286 pmap_pdpe_to_pde(pdp_entry_t *pdpe, vm_offset_t va)
287 {
288 	pd_entry_t *pde;
289 
290 	pde = (pd_entry_t *)PHYS_TO_DMAP(*pdpe & VPTE_FRAME);
291 	return (&pde[pmap_pde_index(va)]);
292 }
293 
294 /* Return a pointer to the PD slot that corresponds to a VA */
295 static __inline pd_entry_t *
296 pmap_pde(pmap_t pmap, vm_offset_t va)
297 {
298 	pdp_entry_t *pdpe;
299 
300 	pdpe = pmap_pdpe(pmap, va);
301 	if (pdpe == NULL || (*pdpe & VPTE_V) == 0)
302 		 return NULL;
303 	return (pmap_pdpe_to_pde(pdpe, va));
304 }
305 
306 /* Return a pointer to the PT slot that corresponds to a VA */
307 static __inline pt_entry_t *
308 pmap_pde_to_pte(pd_entry_t *pde, vm_offset_t va)
309 {
310 	pt_entry_t *pte;
311 
312 	pte = (pt_entry_t *)PHYS_TO_DMAP(*pde & VPTE_FRAME);
313 	return (&pte[pmap_pte_index(va)]);
314 }
315 
316 /* Return a pointer to the PT slot that corresponds to a VA */
317 static __inline pt_entry_t *
318 pmap_pte(pmap_t pmap, vm_offset_t va)
319 {
320 	pd_entry_t *pde;
321 
322 	pde = pmap_pde(pmap, va);
323 	if (pde == NULL || (*pde & VPTE_V) == 0)
324 		return NULL;
325 	if ((*pde & VPTE_PS) != 0)	/* compat with i386 pmap_pte() */
326 		return ((pt_entry_t *)pde);
327 	return (pmap_pde_to_pte(pde, va));
328 }
329 
330 
331 #if JGV
332 PMAP_INLINE pt_entry_t *
333 vtopte(vm_offset_t va)
334 {
335 	uint64_t mask = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT +
336 				  NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1);
337 
338 	return (PTmap + ((va >> PAGE_SHIFT) & mask));
339 }
340 
341 static __inline pd_entry_t *
342 vtopde(vm_offset_t va)
343 {
344 	uint64_t mask = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT +
345 				  NPML4EPGSHIFT)) - 1);
346 
347 	return (PDmap + ((va >> PDRSHIFT) & mask));
348 }
349 #else
350 static PMAP_INLINE pt_entry_t *
351 vtopte(vm_offset_t va)
352 {
353 	pt_entry_t *x;
354 	x = pmap_pte(&kernel_pmap, va);
355 	assert(x != NULL);
356 	return x;
357 }
358 
359 static __inline pd_entry_t *
360 vtopde(vm_offset_t va)
361 {
362 	pd_entry_t *x;
363 	x = pmap_pde(&kernel_pmap, va);
364 	assert(x != NULL);
365 	return x;
366 }
367 #endif
368 
369 static uint64_t
370 allocpages(vm_paddr_t *firstaddr, int n)
371 {
372 	uint64_t ret;
373 
374 	ret = *firstaddr;
375 #if JGV
376 	bzero((void *)ret, n * PAGE_SIZE);
377 #endif
378 	*firstaddr += n * PAGE_SIZE;
379 	return (ret);
380 }
381 
382 static void
383 create_dmap_vmm(vm_paddr_t *firstaddr)
384 {
385 	void *stack_addr;
386 	int pml4_stack_index;
387 	int pdp_stack_index;
388 	int pd_stack_index;
389 	long i,j;
390 	int regs[4];
391 	int amd_feature;
392 
393 	uint64_t KPDP_DMAP_phys = allocpages(firstaddr, NDMPML4E);
394 	uint64_t KPDP_VSTACK_phys = allocpages(firstaddr, 1);
395 	uint64_t KPD_VSTACK_phys = allocpages(firstaddr, 1);
396 
397 	pml4_entry_t *KPML4virt = (pml4_entry_t *)PHYS_TO_DMAP(KPML4phys);
398 	pdp_entry_t *KPDP_DMAP_virt = (pdp_entry_t *)PHYS_TO_DMAP(KPDP_DMAP_phys);
399 	pdp_entry_t *KPDP_VSTACK_virt = (pdp_entry_t *)PHYS_TO_DMAP(KPDP_VSTACK_phys);
400 	pd_entry_t *KPD_VSTACK_virt = (pd_entry_t *)PHYS_TO_DMAP(KPD_VSTACK_phys);
401 
402 	bzero(KPDP_DMAP_virt, NDMPML4E * PAGE_SIZE);
403 	bzero(KPDP_VSTACK_virt, 1 * PAGE_SIZE);
404 	bzero(KPD_VSTACK_virt, 1 * PAGE_SIZE);
405 
406 	do_cpuid(0x80000001, regs);
407 	amd_feature = regs[3];
408 
409 	/* Build the mappings for the first 512GB */
410 	if (amd_feature & AMDID_PAGE1GB) {
411 		/* In pages of 1 GB, if supported */
412 		for (i = 0; i < NPDPEPG; i++) {
413 			KPDP_DMAP_virt[i] = ((uint64_t)i << PDPSHIFT);
414 			KPDP_DMAP_virt[i] |= VPTE_RW | VPTE_V | VPTE_PS | VPTE_U;
415 		}
416 	} else {
417 		/* In page of 2MB, otherwise */
418 		for (i = 0; i < NPDPEPG; i++) {
419 			uint64_t KPD_DMAP_phys = allocpages(firstaddr, 1);
420 			pd_entry_t *KPD_DMAP_virt = (pd_entry_t *)PHYS_TO_DMAP(KPD_DMAP_phys);
421 
422 			bzero(KPD_DMAP_virt, PAGE_SIZE);
423 
424 			KPDP_DMAP_virt[i] = KPD_DMAP_phys;
425 			KPDP_DMAP_virt[i] |= VPTE_RW | VPTE_V | VPTE_U;
426 
427 			/* For each PD, we have to allocate NPTEPG PT */
428 			for (j = 0; j < NPTEPG; j++) {
429 				KPD_DMAP_virt[j] = (i << PDPSHIFT) | (j << PDRSHIFT);
430 				KPD_DMAP_virt[j] |= VPTE_RW | VPTE_V | VPTE_PS | VPTE_U;
431 			}
432 		}
433 	}
434 
435 	/* DMAP for the first 512G */
436 	KPML4virt[0] = KPDP_DMAP_phys;
437 	KPML4virt[0] |= VPTE_RW | VPTE_V | VPTE_U;
438 
439 	/* create a 2 MB map of the new stack */
440 	pml4_stack_index = (uint64_t)&stack_addr >> PML4SHIFT;
441 	KPML4virt[pml4_stack_index] = KPDP_VSTACK_phys;
442 	KPML4virt[pml4_stack_index] |= VPTE_RW | VPTE_V | VPTE_U;
443 
444 	pdp_stack_index = ((uint64_t)&stack_addr & PML4MASK) >> PDPSHIFT;
445 	KPDP_VSTACK_virt[pdp_stack_index] = KPD_VSTACK_phys;
446 	KPDP_VSTACK_virt[pdp_stack_index] |= VPTE_RW | VPTE_V | VPTE_U;
447 
448 	pd_stack_index = ((uint64_t)&stack_addr & PDPMASK) >> PDRSHIFT;
449 	KPD_VSTACK_virt[pd_stack_index] = (uint64_t) vkernel_stack;
450 	KPD_VSTACK_virt[pd_stack_index] |= VPTE_RW | VPTE_V | VPTE_U | VPTE_PS;
451 }
452 
453 static void
454 create_pagetables(vm_paddr_t *firstaddr, int64_t ptov_offset)
455 {
456 	int i;
457 	pml4_entry_t *KPML4virt;
458 	pdp_entry_t *KPDPvirt;
459 	pd_entry_t *KPDvirt;
460 	pt_entry_t *KPTvirt;
461 	int kpml4i = pmap_pml4e_index(ptov_offset);
462 	int kpdpi = pmap_pdpe_index(ptov_offset);
463 	int kpdi = pmap_pde_index(ptov_offset);
464 
465 	/*
466          * Calculate NKPT - number of kernel page tables.  We have to
467          * accomodoate prealloction of the vm_page_array, dump bitmap,
468          * MSGBUF_SIZE, and other stuff.  Be generous.
469          *
470          * Maxmem is in pages.
471          */
472         nkpt = (Maxmem * (sizeof(struct vm_page) * 2) + MSGBUF_SIZE) / NBPDR;
473 	/*
474 	 * Allocate pages
475 	 */
476 	KPML4phys = allocpages(firstaddr, 1);
477 	KPDPphys = allocpages(firstaddr, NKPML4E);
478 	KPDphys = allocpages(firstaddr, NKPDPE);
479 	KPTphys = allocpages(firstaddr, nkpt);
480 
481 	KPML4virt = (pml4_entry_t *)PHYS_TO_DMAP(KPML4phys);
482 	KPDPvirt = (pdp_entry_t *)PHYS_TO_DMAP(KPDPphys);
483 	KPDvirt = (pd_entry_t *)PHYS_TO_DMAP(KPDphys);
484 	KPTvirt = (pt_entry_t *)PHYS_TO_DMAP(KPTphys);
485 
486 	bzero(KPML4virt, 1 * PAGE_SIZE);
487 	bzero(KPDPvirt, NKPML4E * PAGE_SIZE);
488 	bzero(KPDvirt, NKPDPE * PAGE_SIZE);
489 	bzero(KPTvirt, nkpt * PAGE_SIZE);
490 
491 	/* Now map the page tables at their location within PTmap */
492 	for (i = 0; i < nkpt; i++) {
493 		KPDvirt[i + kpdi] = KPTphys + (i << PAGE_SHIFT);
494 		KPDvirt[i + kpdi] |= VPTE_RW | VPTE_V | VPTE_U;
495 	}
496 
497 	/* And connect up the PD to the PDP */
498 	for (i = 0; i < NKPDPE; i++) {
499 		KPDPvirt[i + kpdpi] = KPDphys + (i << PAGE_SHIFT);
500 		KPDPvirt[i + kpdpi] |= VPTE_RW | VPTE_V | VPTE_U;
501 	}
502 
503 	/* And recursively map PML4 to itself in order to get PTmap */
504 	KPML4virt[PML4PML4I] = KPML4phys;
505 	KPML4virt[PML4PML4I] |= VPTE_RW | VPTE_V | VPTE_U;
506 
507 	/* Connect the KVA slot up to the PML4 */
508 	KPML4virt[kpml4i] = KPDPphys;
509 	KPML4virt[kpml4i] |= VPTE_RW | VPTE_V | VPTE_U;
510 }
511 
512 /*
513  * Typically used to initialize a fictitious page by vm/device_pager.c
514  */
515 void
516 pmap_page_init(struct vm_page *m)
517 {
518 	vm_page_init(m);
519 	TAILQ_INIT(&m->md.pv_list);
520 }
521 
522 /*
523  *	Bootstrap the system enough to run with virtual memory.
524  *
525  *	On the i386 this is called after mapping has already been enabled
526  *	and just syncs the pmap module with what has already been done.
527  *	[We can't call it easily with mapping off since the kernel is not
528  *	mapped with PA == VA, hence we would have to relocate every address
529  *	from the linked base (virtual) address "KERNBASE" to the actual
530  *	(physical) address starting relative to 0]
531  */
532 void
533 pmap_bootstrap(vm_paddr_t *firstaddr, int64_t ptov_offset)
534 {
535 	vm_offset_t va;
536 	pt_entry_t *pte;
537 
538 	/*
539 	 * Create an initial set of page tables to run the kernel in.
540 	 */
541 	create_pagetables(firstaddr, ptov_offset);
542 
543 	/* Create the DMAP for the VMM */
544 	if(vmm_enabled) {
545 		create_dmap_vmm(firstaddr);
546 	}
547 
548 	virtual_start = KvaStart;
549 	virtual_end = KvaEnd;
550 
551 	/*
552 	 * Initialize protection array.
553 	 */
554 	i386_protection_init();
555 
556 	/*
557 	 * The kernel's pmap is statically allocated so we don't have to use
558 	 * pmap_create, which is unlikely to work correctly at this part of
559 	 * the boot sequence (XXX and which no longer exists).
560 	 *
561 	 * The kernel_pmap's pm_pteobj is used only for locking and not
562 	 * for mmu pages.
563 	 */
564 	kernel_pmap.pm_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(KPML4phys);
565 	kernel_pmap.pm_count = 1;
566 	/* don't allow deactivation */
567 	kernel_pmap.pm_active = (cpumask_t)-1 & ~CPUMASK_LOCK;
568 	kernel_pmap.pm_pteobj = NULL;	/* see pmap_init */
569 	TAILQ_INIT(&kernel_pmap.pm_pvlist);
570 	TAILQ_INIT(&kernel_pmap.pm_pvlist_free);
571 	lwkt_token_init(&kernel_pmap.pm_token, "kpmap_tok");
572 	spin_init(&kernel_pmap.pm_spin);
573 
574 	/*
575 	 * Reserve some special page table entries/VA space for temporary
576 	 * mapping of pages.
577 	 */
578 #define	SYSMAP(c, p, v, n)	\
579 	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
580 
581 	va = virtual_start;
582 	pte = pmap_pte(&kernel_pmap, va);
583 	/*
584 	 * CMAP1/CMAP2 are used for zeroing and copying pages.
585 	 */
586 	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
587 
588 #if JGV
589 	/*
590 	 * Crashdump maps.
591 	 */
592 	SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
593 #endif
594 
595 	/*
596 	 * ptvmmap is used for reading arbitrary physical pages via
597 	 * /dev/mem.
598 	 */
599 	SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
600 
601 	/*
602 	 * msgbufp is used to map the system message buffer.
603 	 * XXX msgbufmap is not used.
604 	 */
605 	SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
606 	       atop(round_page(MSGBUF_SIZE)))
607 
608 	virtual_start = va;
609 
610 	*CMAP1 = 0;
611 	/* Not ready to do an invltlb yet for VMM*/
612 	if (!vmm_enabled)
613 		cpu_invltlb();
614 
615 }
616 
617 /*
618  *	Initialize the pmap module.
619  *	Called by vm_init, to initialize any structures that the pmap
620  *	system needs to map virtual memory.
621  *	pmap_init has been enhanced to support in a fairly consistant
622  *	way, discontiguous physical memory.
623  */
624 void
625 pmap_init(void)
626 {
627 	int i;
628 	int initial_pvs;
629 
630 	/*
631 	 * object for kernel page table pages
632 	 */
633 	/* JG I think the number can be arbitrary */
634 	kptobj = vm_object_allocate(OBJT_DEFAULT, 5);
635 	kernel_pmap.pm_pteobj = kptobj;
636 
637 	/*
638 	 * Allocate memory for random pmap data structures.  Includes the
639 	 * pv_head_table.
640 	 */
641 	for(i = 0; i < vm_page_array_size; i++) {
642 		vm_page_t m;
643 
644 		m = &vm_page_array[i];
645 		TAILQ_INIT(&m->md.pv_list);
646 		m->md.pv_list_count = 0;
647 	}
648 
649 	/*
650 	 * init the pv free list
651 	 */
652 	initial_pvs = vm_page_array_size;
653 	if (initial_pvs < MINPV)
654 		initial_pvs = MINPV;
655 	pvzone = &pvzone_store;
656 	pvinit = (struct pv_entry *) kmem_alloc(&kernel_map,
657 		initial_pvs * sizeof (struct pv_entry));
658 	zbootinit(pvzone, "PV ENTRY", sizeof (struct pv_entry), pvinit,
659 		initial_pvs);
660 
661 	/*
662 	 * Now it is safe to enable pv_table recording.
663 	 */
664 	pmap_initialized = TRUE;
665 }
666 
667 /*
668  * Initialize the address space (zone) for the pv_entries.  Set a
669  * high water mark so that the system can recover from excessive
670  * numbers of pv entries.
671  */
672 void
673 pmap_init2(void)
674 {
675 	int shpgperproc = PMAP_SHPGPERPROC;
676 
677 	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
678 	pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
679 	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
680 	pv_entry_high_water = 9 * (pv_entry_max / 10);
681 	zinitna(pvzone, &pvzone_obj, NULL, 0, pv_entry_max, ZONE_INTERRUPT, 1);
682 }
683 
684 
685 /***************************************************
686  * Low level helper routines.....
687  ***************************************************/
688 
689 /*
690  * The modification bit is not tracked for any pages in this range. XXX
691  * such pages in this maps should always use pmap_k*() functions and not
692  * be managed anyhow.
693  *
694  * XXX User and kernel address spaces are independant for virtual kernels,
695  * this function only applies to the kernel pmap.
696  */
697 static int
698 pmap_track_modified(pmap_t pmap, vm_offset_t va)
699 {
700 	if (pmap != &kernel_pmap)
701 		return 1;
702 	if ((va < clean_sva) || (va >= clean_eva))
703 		return 1;
704 	else
705 		return 0;
706 }
707 
708 /*
709  * Extract the physical page address associated with the map/VA pair.
710  *
711  * No requirements.
712  */
713 vm_paddr_t
714 pmap_extract(pmap_t pmap, vm_offset_t va)
715 {
716 	vm_paddr_t rtval;
717 	pt_entry_t *pte;
718 	pd_entry_t pde, *pdep;
719 
720 	lwkt_gettoken(&vm_token);
721 	rtval = 0;
722 	pdep = pmap_pde(pmap, va);
723 	if (pdep != NULL) {
724 		pde = *pdep;
725 		if (pde) {
726 			if ((pde & VPTE_PS) != 0) {
727 				/* JGV */
728 				rtval = (pde & PG_PS_FRAME) | (va & PDRMASK);
729 			} else {
730 				pte = pmap_pde_to_pte(pdep, va);
731 				rtval = (*pte & VPTE_FRAME) | (va & PAGE_MASK);
732 			}
733 		}
734 	}
735 	lwkt_reltoken(&vm_token);
736 	return rtval;
737 }
738 
739 /*
740  * Similar to extract but checks protections, SMP-friendly short-cut for
741  * vm_fault_page[_quick]().
742  */
743 vm_page_t
744 pmap_fault_page_quick(pmap_t pmap __unused, vm_offset_t vaddr __unused,
745 		      vm_prot_t prot __unused)
746 {
747 	return(NULL);
748 }
749 
750 /*
751  *	Routine:	pmap_kextract
752  *	Function:
753  *		Extract the physical page address associated
754  *		kernel virtual address.
755  */
756 vm_paddr_t
757 pmap_kextract(vm_offset_t va)
758 {
759 	pd_entry_t pde;
760 	vm_paddr_t pa;
761 
762 	KKASSERT(va >= KvaStart && va < KvaEnd);
763 
764 	/*
765 	 * The DMAP region is not included in [KvaStart, KvaEnd)
766 	 */
767 #if 0
768 	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
769 		pa = DMAP_TO_PHYS(va);
770 	} else {
771 #endif
772 		pde = *vtopde(va);
773 		if (pde & VPTE_PS) {
774 			/* JGV */
775 			pa = (pde & PG_PS_FRAME) | (va & PDRMASK);
776 		} else {
777 			/*
778 			 * Beware of a concurrent promotion that changes the
779 			 * PDE at this point!  For example, vtopte() must not
780 			 * be used to access the PTE because it would use the
781 			 * new PDE.  It is, however, safe to use the old PDE
782 			 * because the page table page is preserved by the
783 			 * promotion.
784 			 */
785 			pa = *pmap_pde_to_pte(&pde, va);
786 			pa = (pa & VPTE_FRAME) | (va & PAGE_MASK);
787 		}
788 #if 0
789 	}
790 #endif
791 	return pa;
792 }
793 
794 /***************************************************
795  * Low level mapping routines.....
796  ***************************************************/
797 
798 /*
799  * Enter a mapping into kernel_pmap.  Mappings created in this fashion
800  * are not managed.  Mappings must be immediately accessible on all cpus.
801  *
802  * Call pmap_inval_pte() to invalidate the virtual pte and clean out the
803  * real pmap and handle related races before storing the new vpte.
804  */
805 void
806 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
807 {
808 	pt_entry_t *pte;
809 	pt_entry_t npte;
810 
811 	KKASSERT(va >= KvaStart && va < KvaEnd);
812 	npte = pa | VPTE_RW | VPTE_V | VPTE_U;
813 	pte = vtopte(va);
814 	if (*pte & VPTE_V)
815 		pmap_inval_pte(pte, &kernel_pmap, va);
816 	*pte = npte;
817 }
818 
819 /*
820  * Enter an unmanaged KVA mapping for the private use of the current
821  * cpu only.  pmap_kenter_sync() may be called to make the mapping usable
822  * by other cpus.
823  *
824  * It is illegal for the mapping to be accessed by other cpus unleess
825  * pmap_kenter_sync*() is called.
826  */
827 void
828 pmap_kenter_quick(vm_offset_t va, vm_paddr_t pa)
829 {
830 	pt_entry_t *pte;
831 	pt_entry_t npte;
832 
833 	KKASSERT(va >= KvaStart && va < KvaEnd);
834 
835 	npte = (vpte_t)pa | VPTE_RW | VPTE_V | VPTE_U;
836 	pte = vtopte(va);
837 
838 	if (*pte & VPTE_V)
839 		pmap_inval_pte_quick(pte, &kernel_pmap, va);
840 	*pte = npte;
841 }
842 
843 /*
844  * Synchronize a kvm mapping originally made for the private use on
845  * some other cpu so it can be used on our cpu.  Turns out to be the
846  * same madvise() call, because we have to sync the real pmaps anyway.
847  *
848  * XXX add MADV_RESYNC to improve performance.
849  */
850 void
851 pmap_kenter_sync_quick(vm_offset_t va)
852 {
853 	cpu_invlpg((void *)va);
854 }
855 
856 /*
857  * Remove an unmanaged mapping created with pmap_kenter*().
858  */
859 void
860 pmap_kremove(vm_offset_t va)
861 {
862 	pt_entry_t *pte;
863 
864 	KKASSERT(va >= KvaStart && va < KvaEnd);
865 
866 	pte = vtopte(va);
867 	if (*pte & VPTE_V)
868 		pmap_inval_pte(pte, &kernel_pmap, va);
869 	*pte = 0;
870 }
871 
872 /*
873  * Remove an unmanaged mapping created with pmap_kenter*() but synchronize
874  * only with this cpu.
875  *
876  * Unfortunately because we optimize new entries by testing VPTE_V later
877  * on, we actually still have to synchronize with all the cpus.  XXX maybe
878  * store a junk value and test against 0 in the other places instead?
879  */
880 void
881 pmap_kremove_quick(vm_offset_t va)
882 {
883 	pt_entry_t *pte;
884 
885 	KKASSERT(va >= KvaStart && va < KvaEnd);
886 
887 	pte = vtopte(va);
888 	if (*pte & VPTE_V)
889 		pmap_inval_pte(pte, &kernel_pmap, va); /* NOT _quick */
890 	*pte = 0;
891 }
892 
893 /*
894  *	Used to map a range of physical addresses into kernel
895  *	virtual address space.
896  *
897  *	For now, VM is already on, we only need to map the
898  *	specified memory.
899  */
900 vm_offset_t
901 pmap_map(vm_offset_t *virtp, vm_paddr_t start, vm_paddr_t end, int prot)
902 {
903 	return PHYS_TO_DMAP(start);
904 }
905 
906 
907 /*
908  * Map a set of unmanaged VM pages into KVM.
909  */
910 void
911 pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
912 {
913 	vm_offset_t end_va;
914 
915 	end_va = va + count * PAGE_SIZE;
916 	KKASSERT(va >= KvaStart && end_va < KvaEnd);
917 
918 	while (va < end_va) {
919 		pt_entry_t *pte;
920 
921 		pte = vtopte(va);
922 		if (*pte & VPTE_V)
923 			pmap_inval_pte(pte, &kernel_pmap, va);
924 		*pte = VM_PAGE_TO_PHYS(*m) | VPTE_RW | VPTE_V | VPTE_U;
925 		va += PAGE_SIZE;
926 		m++;
927 	}
928 }
929 
930 /*
931  * Undo the effects of pmap_qenter*().
932  */
933 void
934 pmap_qremove(vm_offset_t va, int count)
935 {
936 	vm_offset_t end_va;
937 
938 	end_va = va + count * PAGE_SIZE;
939 	KKASSERT(va >= KvaStart && end_va < KvaEnd);
940 
941 	while (va < end_va) {
942 		pt_entry_t *pte;
943 
944 		pte = vtopte(va);
945 		if (*pte & VPTE_V)
946 			pmap_inval_pte(pte, &kernel_pmap, va);
947 		*pte = 0;
948 		va += PAGE_SIZE;
949 	}
950 }
951 
952 /*
953  * This routine works like vm_page_lookup() but also blocks as long as the
954  * page is busy.  This routine does not busy the page it returns.
955  *
956  * Unless the caller is managing objects whos pages are in a known state,
957  * the call should be made with a critical section held so the page's object
958  * association remains valid on return.
959  */
960 static vm_page_t
961 pmap_page_lookup(vm_object_t object, vm_pindex_t pindex)
962 {
963 	vm_page_t m;
964 
965 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
966 	m = vm_page_lookup_busy_wait(object, pindex, FALSE, "pplookp");
967 
968 	return(m);
969 }
970 
971 /*
972  * Create a new thread and optionally associate it with a (new) process.
973  * NOTE! the new thread's cpu may not equal the current cpu.
974  */
975 void
976 pmap_init_thread(thread_t td)
977 {
978 	/* enforce pcb placement */
979 	td->td_pcb = (struct pcb *)(td->td_kstack + td->td_kstack_size) - 1;
980 	td->td_savefpu = &td->td_pcb->pcb_save;
981 	td->td_sp = (char *)td->td_pcb - 16; /* JG is -16 needed on x86_64? */
982 }
983 
984 /*
985  * This routine directly affects the fork perf for a process.
986  */
987 void
988 pmap_init_proc(struct proc *p)
989 {
990 }
991 
992 /***************************************************
993  * Page table page management routines.....
994  ***************************************************/
995 
996 static __inline int pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va,
997 			vm_page_t m);
998 
999 /*
1000  * This routine unholds page table pages, and if the hold count
1001  * drops to zero, then it decrements the wire count.
1002  *
1003  * We must recheck that this is the last hold reference after busy-sleeping
1004  * on the page.
1005  */
1006 static int
1007 _pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va, vm_page_t m)
1008 {
1009 	vm_page_busy_wait(m, FALSE, "pmuwpt");
1010 	KASSERT(m->queue == PQ_NONE,
1011 		("_pmap_unwire_pte_hold: %p->queue != PQ_NONE", m));
1012 
1013 	if (m->hold_count == 1) {
1014 		/*
1015 		 * Unmap the page table page.
1016 		 */
1017 		//abort(); /* JG */
1018 		/* pmap_inval_add(info, pmap, -1); */
1019 
1020 		if (m->pindex >= (NUPDE + NUPDPE)) {
1021 			/* PDP page */
1022 			pml4_entry_t *pml4;
1023 			pml4 = pmap_pml4e(pmap, va);
1024 			*pml4 = 0;
1025 		} else if (m->pindex >= NUPDE) {
1026 			/* PD page */
1027 			pdp_entry_t *pdp;
1028 			pdp = pmap_pdpe(pmap, va);
1029 			*pdp = 0;
1030 		} else {
1031 			/* PT page */
1032 			pd_entry_t *pd;
1033 			pd = pmap_pde(pmap, va);
1034 			*pd = 0;
1035 		}
1036 
1037 		KKASSERT(pmap->pm_stats.resident_count > 0);
1038 		--pmap->pm_stats.resident_count;
1039 
1040 		if (pmap->pm_ptphint == m)
1041 			pmap->pm_ptphint = NULL;
1042 
1043 		if (m->pindex < NUPDE) {
1044 			/* We just released a PT, unhold the matching PD */
1045 			vm_page_t pdpg;
1046 
1047 			pdpg = PHYS_TO_VM_PAGE(*pmap_pdpe(pmap, va) & VPTE_FRAME);
1048 			pmap_unwire_pte_hold(pmap, va, pdpg);
1049 		}
1050 		if (m->pindex >= NUPDE && m->pindex < (NUPDE + NUPDPE)) {
1051 			/* We just released a PD, unhold the matching PDP */
1052 			vm_page_t pdppg;
1053 
1054 			pdppg = PHYS_TO_VM_PAGE(*pmap_pml4e(pmap, va) & VPTE_FRAME);
1055 			pmap_unwire_pte_hold(pmap, va, pdppg);
1056 		}
1057 
1058 		/*
1059 		 * This was our last hold, the page had better be unwired
1060 		 * after we decrement wire_count.
1061 		 *
1062 		 * FUTURE NOTE: shared page directory page could result in
1063 		 * multiple wire counts.
1064 		 */
1065 		vm_page_unhold(m);
1066 		--m->wire_count;
1067 		KKASSERT(m->wire_count == 0);
1068 		atomic_add_int(&vmstats.v_wire_count, -1);
1069 		vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
1070 		vm_page_flash(m);
1071 		vm_page_free_zero(m);
1072 		return 1;
1073 	} else {
1074 		KKASSERT(m->hold_count > 1);
1075 		vm_page_unhold(m);
1076 		vm_page_wakeup(m);
1077 		return 0;
1078 	}
1079 }
1080 
1081 static __inline int
1082 pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va, vm_page_t m)
1083 {
1084 	KKASSERT(m->hold_count > 0);
1085 	if (m->hold_count > 1) {
1086 		vm_page_unhold(m);
1087 		return 0;
1088 	} else {
1089 		return _pmap_unwire_pte_hold(pmap, va, m);
1090 	}
1091 }
1092 
1093 /*
1094  * After removing a page table entry, this routine is used to
1095  * conditionally free the page, and manage the hold/wire counts.
1096  */
1097 static int
1098 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
1099 {
1100 	/* JG Use FreeBSD/amd64 or FreeBSD/i386 ptepde approaches? */
1101 	vm_pindex_t ptepindex;
1102 
1103 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(pmap->pm_pteobj));
1104 
1105 	if (mpte == NULL) {
1106 		/*
1107 		 * page table pages in the kernel_pmap are not managed.
1108 		 */
1109 		if (pmap == &kernel_pmap)
1110 			return(0);
1111 		ptepindex = pmap_pde_pindex(va);
1112 		if (pmap->pm_ptphint &&
1113 			(pmap->pm_ptphint->pindex == ptepindex)) {
1114 			mpte = pmap->pm_ptphint;
1115 		} else {
1116 			mpte = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
1117 			pmap->pm_ptphint = mpte;
1118 			vm_page_wakeup(mpte);
1119 		}
1120 	}
1121 
1122 	return pmap_unwire_pte_hold(pmap, va, mpte);
1123 }
1124 
1125 /*
1126  * Initialize pmap0/vmspace0 .  Since process 0 never enters user mode we
1127  * just dummy it up so it works well enough for fork().
1128  *
1129  * In DragonFly, process pmaps may only be used to manipulate user address
1130  * space, never kernel address space.
1131  */
1132 void
1133 pmap_pinit0(struct pmap *pmap)
1134 {
1135 	pmap_pinit(pmap);
1136 }
1137 
1138 /*
1139  * Initialize a preallocated and zeroed pmap structure,
1140  * such as one in a vmspace structure.
1141  */
1142 void
1143 pmap_pinit(struct pmap *pmap)
1144 {
1145 	vm_page_t ptdpg;
1146 
1147 	/*
1148 	 * No need to allocate page table space yet but we do need a valid
1149 	 * page directory table.
1150 	 */
1151 	if (pmap->pm_pml4 == NULL) {
1152 		pmap->pm_pml4 =
1153 		    (pml4_entry_t *)kmem_alloc_pageable(&kernel_map, PAGE_SIZE);
1154 	}
1155 
1156 	/*
1157 	 * Allocate an object for the ptes
1158 	 */
1159 	if (pmap->pm_pteobj == NULL)
1160 		pmap->pm_pteobj = vm_object_allocate(OBJT_DEFAULT, NUPDE + NUPDPE + PML4PML4I + 1);
1161 
1162 	/*
1163 	 * Allocate the page directory page, unless we already have
1164 	 * one cached.  If we used the cached page the wire_count will
1165 	 * already be set appropriately.
1166 	 */
1167 	if ((ptdpg = pmap->pm_pdirm) == NULL) {
1168 		ptdpg = vm_page_grab(pmap->pm_pteobj,
1169 				     NUPDE + NUPDPE + PML4PML4I,
1170 				     VM_ALLOC_NORMAL | VM_ALLOC_RETRY |
1171 				     VM_ALLOC_ZERO);
1172 		pmap->pm_pdirm = ptdpg;
1173 		vm_page_flag_clear(ptdpg, PG_MAPPED);
1174 		vm_page_wire(ptdpg);
1175 		vm_page_wakeup(ptdpg);
1176 		pmap_kenter((vm_offset_t)pmap->pm_pml4, VM_PAGE_TO_PHYS(ptdpg));
1177 	}
1178 	pmap->pm_count = 1;
1179 	pmap->pm_active = 0;
1180 	pmap->pm_ptphint = NULL;
1181 	TAILQ_INIT(&pmap->pm_pvlist);
1182 	TAILQ_INIT(&pmap->pm_pvlist_free);
1183 	spin_init(&pmap->pm_spin);
1184 	lwkt_token_init(&pmap->pm_token, "pmap_tok");
1185 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1186 	pmap->pm_stats.resident_count = 1;
1187 }
1188 
1189 /*
1190  * Clean up a pmap structure so it can be physically freed.  This routine
1191  * is called by the vmspace dtor function.  A great deal of pmap data is
1192  * left passively mapped to improve vmspace management so we have a bit
1193  * of cleanup work to do here.
1194  *
1195  * No requirements.
1196  */
1197 void
1198 pmap_puninit(pmap_t pmap)
1199 {
1200 	vm_page_t p;
1201 
1202 	KKASSERT(pmap->pm_active == 0);
1203 	if ((p = pmap->pm_pdirm) != NULL) {
1204 		KKASSERT(pmap->pm_pml4 != NULL);
1205 		pmap_kremove((vm_offset_t)pmap->pm_pml4);
1206 		vm_page_busy_wait(p, FALSE, "pgpun");
1207 		p->wire_count--;
1208 		atomic_add_int(&vmstats.v_wire_count, -1);
1209 		vm_page_free_zero(p);
1210 		pmap->pm_pdirm = NULL;
1211 	}
1212 	if (pmap->pm_pml4) {
1213 		kmem_free(&kernel_map, (vm_offset_t)pmap->pm_pml4, PAGE_SIZE);
1214 		pmap->pm_pml4 = NULL;
1215 	}
1216 	if (pmap->pm_pteobj) {
1217 		vm_object_deallocate(pmap->pm_pteobj);
1218 		pmap->pm_pteobj = NULL;
1219 	}
1220 }
1221 
1222 /*
1223  * Wire in kernel global address entries.  To avoid a race condition
1224  * between pmap initialization and pmap_growkernel, this procedure
1225  * adds the pmap to the master list (which growkernel scans to update),
1226  * then copies the template.
1227  *
1228  * In a virtual kernel there are no kernel global address entries.
1229  *
1230  * No requirements.
1231  */
1232 void
1233 pmap_pinit2(struct pmap *pmap)
1234 {
1235 	spin_lock(&pmap_spin);
1236 	TAILQ_INSERT_TAIL(&pmap_list, pmap, pm_pmnode);
1237 	spin_unlock(&pmap_spin);
1238 }
1239 
1240 /*
1241  * Attempt to release and free a vm_page in a pmap.  Returns 1 on success,
1242  * 0 on failure (if the procedure had to sleep).
1243  *
1244  * When asked to remove the page directory page itself, we actually just
1245  * leave it cached so we do not have to incur the SMP inval overhead of
1246  * removing the kernel mapping.  pmap_puninit() will take care of it.
1247  */
1248 static int
1249 pmap_release_free_page(struct pmap *pmap, vm_page_t p)
1250 {
1251 	/*
1252 	 * This code optimizes the case of freeing non-busy
1253 	 * page-table pages.  Those pages are zero now, and
1254 	 * might as well be placed directly into the zero queue.
1255 	 */
1256 	if (vm_page_busy_try(p, FALSE)) {
1257 		vm_page_sleep_busy(p, FALSE, "pmaprl");
1258 		return 0;
1259 	}
1260 
1261 	/*
1262 	 * Remove the page table page from the processes address space.
1263 	 */
1264 	if (p->pindex == NUPDE + NUPDPE + PML4PML4I) {
1265 		/*
1266 		 * We are the pml4 table itself.
1267 		 */
1268 		/* XXX anything to do here? */
1269 	} else if (p->pindex >= (NUPDE + NUPDPE)) {
1270 		/*
1271 		 * We are a PDP page.
1272 		 * We look for the PML4 entry that points to us.
1273 		 */
1274 		vm_page_t m4 = vm_page_lookup(pmap->pm_pteobj, NUPDE + NUPDPE + PML4PML4I);
1275 		KKASSERT(m4 != NULL);
1276 		pml4_entry_t *pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m4));
1277 		int idx = (p->pindex - (NUPDE + NUPDPE)) % NPML4EPG;
1278 		KKASSERT(pml4[idx] != 0);
1279 		pml4[idx] = 0;
1280 		m4->hold_count--;
1281 		/* JG What about wire_count? */
1282 	} else if (p->pindex >= NUPDE) {
1283 		/*
1284 		 * We are a PD page.
1285 		 * We look for the PDP entry that points to us.
1286 		 */
1287 		vm_page_t m3 = vm_page_lookup(pmap->pm_pteobj, NUPDE + NUPDPE + (p->pindex - NUPDE) / NPDPEPG);
1288 		KKASSERT(m3 != NULL);
1289 		pdp_entry_t *pdp = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m3));
1290 		int idx = (p->pindex - NUPDE) % NPDPEPG;
1291 		KKASSERT(pdp[idx] != 0);
1292 		pdp[idx] = 0;
1293 		m3->hold_count--;
1294 		/* JG What about wire_count? */
1295 	} else {
1296 		/* We are a PT page.
1297 		 * We look for the PD entry that points to us.
1298 		 */
1299 		vm_page_t m2 = vm_page_lookup(pmap->pm_pteobj, NUPDE + p->pindex / NPDEPG);
1300 		KKASSERT(m2 != NULL);
1301 		pd_entry_t *pd = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m2));
1302 		int idx = p->pindex % NPDEPG;
1303 		pd[idx] = 0;
1304 		m2->hold_count--;
1305 		/* JG What about wire_count? */
1306 	}
1307 	KKASSERT(pmap->pm_stats.resident_count > 0);
1308 	--pmap->pm_stats.resident_count;
1309 
1310 	if (p->hold_count)  {
1311 		panic("pmap_release: freeing held page table page");
1312 	}
1313 	if (pmap->pm_ptphint && (pmap->pm_ptphint->pindex == p->pindex))
1314 		pmap->pm_ptphint = NULL;
1315 
1316 	/*
1317 	 * We leave the top-level page table page cached, wired, and mapped in
1318 	 * the pmap until the dtor function (pmap_puninit()) gets called.
1319 	 * However, still clean it up so we can set PG_ZERO.
1320 	 */
1321 	if (p->pindex == NUPDE + NUPDPE + PML4PML4I) {
1322 		bzero(pmap->pm_pml4, PAGE_SIZE);
1323 		vm_page_flag_set(p, PG_ZERO);
1324 		vm_page_wakeup(p);
1325 	} else {
1326 		abort();
1327 		p->wire_count--;
1328 		atomic_add_int(&vmstats.v_wire_count, -1);
1329 		/* JG eventually revert to using vm_page_free_zero() */
1330 		vm_page_free(p);
1331 	}
1332 	return 1;
1333 }
1334 
1335 /*
1336  * this routine is called if the page table page is not
1337  * mapped correctly.
1338  */
1339 static vm_page_t
1340 _pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex)
1341 {
1342 	vm_page_t m, pdppg, pdpg;
1343 
1344 	/*
1345 	 * Find or fabricate a new pagetable page.  Handle allocation
1346 	 * races by checking m->valid.
1347 	 */
1348 	m = vm_page_grab(pmap->pm_pteobj, ptepindex,
1349 			 VM_ALLOC_NORMAL | VM_ALLOC_ZERO | VM_ALLOC_RETRY);
1350 
1351 	KASSERT(m->queue == PQ_NONE,
1352 		("_pmap_allocpte: %p->queue != PQ_NONE", m));
1353 
1354 	/*
1355 	 * Increment the hold count for the page we will be returning to
1356 	 * the caller.
1357 	 */
1358 	m->hold_count++;
1359 	vm_page_wire(m);
1360 
1361 	/*
1362 	 * Map the pagetable page into the process address space, if
1363 	 * it isn't already there.
1364 	 */
1365 	++pmap->pm_stats.resident_count;
1366 
1367 	if (ptepindex >= (NUPDE + NUPDPE)) {
1368 		pml4_entry_t *pml4;
1369 		vm_pindex_t pml4index;
1370 
1371 		/* Wire up a new PDP page */
1372 		pml4index = ptepindex - (NUPDE + NUPDPE);
1373 		pml4 = &pmap->pm_pml4[pml4index];
1374 		*pml4 = VM_PAGE_TO_PHYS(m) |
1375 		    VPTE_RW | VPTE_V | VPTE_U |
1376 		    VPTE_A | VPTE_M;
1377 	} else if (ptepindex >= NUPDE) {
1378 		vm_pindex_t pml4index;
1379 		vm_pindex_t pdpindex;
1380 		pml4_entry_t *pml4;
1381 		pdp_entry_t *pdp;
1382 
1383 		/* Wire up a new PD page */
1384 		pdpindex = ptepindex - NUPDE;
1385 		pml4index = pdpindex >> NPML4EPGSHIFT;
1386 
1387 		pml4 = &pmap->pm_pml4[pml4index];
1388 		if ((*pml4 & VPTE_V) == 0) {
1389 			/* Have to allocate a new PDP page, recurse */
1390 			if (_pmap_allocpte(pmap, NUPDE + NUPDPE + pml4index)
1391 			     == NULL) {
1392 				--m->wire_count;
1393 				vm_page_free(m);
1394 				return (NULL);
1395 			}
1396 		} else {
1397 			/* Add reference to the PDP page */
1398 			pdppg = PHYS_TO_VM_PAGE(*pml4 & VPTE_FRAME);
1399 			pdppg->hold_count++;
1400 		}
1401 		pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & VPTE_FRAME);
1402 
1403 		/* Now find the pdp page */
1404 		pdp = &pdp[pdpindex & ((1ul << NPDPEPGSHIFT) - 1)];
1405 		KKASSERT(*pdp == 0);	/* JG DEBUG64 */
1406 		*pdp = VM_PAGE_TO_PHYS(m) | VPTE_RW | VPTE_V | VPTE_U |
1407 		       VPTE_A | VPTE_M;
1408 	} else {
1409 		vm_pindex_t pml4index;
1410 		vm_pindex_t pdpindex;
1411 		pml4_entry_t *pml4;
1412 		pdp_entry_t *pdp;
1413 		pd_entry_t *pd;
1414 
1415 		/* Wire up a new PT page */
1416 		pdpindex = ptepindex >> NPDPEPGSHIFT;
1417 		pml4index = pdpindex >> NPML4EPGSHIFT;
1418 
1419 		/* First, find the pdp and check that its valid. */
1420 		pml4 = &pmap->pm_pml4[pml4index];
1421 		if ((*pml4 & VPTE_V) == 0) {
1422 			/* We miss a PDP page. We ultimately need a PD page.
1423 			 * Recursively allocating a PD page will allocate
1424 			 * the missing PDP page and will also allocate
1425 			 * the PD page we need.
1426 			 */
1427 			/* Have to allocate a new PD page, recurse */
1428 			if (_pmap_allocpte(pmap, NUPDE + pdpindex)
1429 			     == NULL) {
1430 				--m->wire_count;
1431 				vm_page_free(m);
1432 				return (NULL);
1433 			}
1434 			pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & VPTE_FRAME);
1435 			pdp = &pdp[pdpindex & ((1ul << NPDPEPGSHIFT) - 1)];
1436 		} else {
1437 			pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & VPTE_FRAME);
1438 			pdp = &pdp[pdpindex & ((1ul << NPDPEPGSHIFT) - 1)];
1439 			if ((*pdp & VPTE_V) == 0) {
1440 				/* Have to allocate a new PD page, recurse */
1441 				if (_pmap_allocpte(pmap, NUPDE + pdpindex)
1442 				     == NULL) {
1443 					--m->wire_count;
1444 					vm_page_free(m);
1445 					return (NULL);
1446 				}
1447 			} else {
1448 				/* Add reference to the PD page */
1449 				pdpg = PHYS_TO_VM_PAGE(*pdp & VPTE_FRAME);
1450 				pdpg->hold_count++;
1451 			}
1452 		}
1453 		pd = (pd_entry_t *)PHYS_TO_DMAP(*pdp & VPTE_FRAME);
1454 
1455 		/* Now we know where the page directory page is */
1456 		pd = &pd[ptepindex & ((1ul << NPDEPGSHIFT) - 1)];
1457 		KKASSERT(*pd == 0);	/* JG DEBUG64 */
1458 		*pd = VM_PAGE_TO_PHYS(m) | VPTE_RW | VPTE_V | VPTE_U |
1459 		      VPTE_A | VPTE_M;
1460 	}
1461 
1462 	/*
1463 	 * Set the page table hint
1464 	 */
1465 	pmap->pm_ptphint = m;
1466 	vm_page_flag_set(m, PG_MAPPED);
1467 	vm_page_wakeup(m);
1468 
1469 	return m;
1470 }
1471 
1472 /*
1473  * Determine the page table page required to access the VA in the pmap
1474  * and allocate it if necessary.  Return a held vm_page_t for the page.
1475  *
1476  * Only used with user pmaps.
1477  */
1478 static vm_page_t
1479 pmap_allocpte(pmap_t pmap, vm_offset_t va)
1480 {
1481 	vm_pindex_t ptepindex;
1482 	pd_entry_t *pd;
1483 	vm_page_t m;
1484 
1485 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(pmap->pm_pteobj));
1486 
1487 	/*
1488 	 * Calculate pagetable page index
1489 	 */
1490 	ptepindex = pmap_pde_pindex(va);
1491 
1492 	/*
1493 	 * Get the page directory entry
1494 	 */
1495 	pd = pmap_pde(pmap, va);
1496 
1497 	/*
1498 	 * This supports switching from a 2MB page to a
1499 	 * normal 4K page.
1500 	 */
1501 	if (pd != NULL && (*pd & (VPTE_PS | VPTE_V)) == (VPTE_PS | VPTE_V)) {
1502 		panic("no promotion/demotion yet");
1503 		*pd = 0;
1504 		pd = NULL;
1505 		/*cpu_invltlb();*/
1506 		/*smp_invltlb();*/
1507 	}
1508 
1509 	/*
1510 	 * If the page table page is mapped, we just increment the
1511 	 * hold count, and activate it.
1512 	 */
1513 	if (pd != NULL && (*pd & VPTE_V) != 0) {
1514 		/* YYY hint is used here on i386 */
1515 		m = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
1516 		pmap->pm_ptphint = m;
1517 		vm_page_hold(m);
1518 		vm_page_wakeup(m);
1519 		return m;
1520 	}
1521 	/*
1522 	 * Here if the pte page isn't mapped, or if it has been deallocated.
1523 	 */
1524 	return _pmap_allocpte(pmap, ptepindex);
1525 }
1526 
1527 
1528 /***************************************************
1529  * Pmap allocation/deallocation routines.
1530  ***************************************************/
1531 
1532 /*
1533  * Release any resources held by the given physical map.
1534  * Called when a pmap initialized by pmap_pinit is being released.
1535  * Should only be called if the map contains no valid mappings.
1536  *
1537  * Caller must hold pmap->pm_token
1538  */
1539 static int pmap_release_callback(struct vm_page *p, void *data);
1540 
1541 void
1542 pmap_release(struct pmap *pmap)
1543 {
1544 	vm_object_t object = pmap->pm_pteobj;
1545 	struct rb_vm_page_scan_info info;
1546 
1547 	KKASSERT(pmap != &kernel_pmap);
1548 
1549 #if defined(DIAGNOSTIC)
1550 	if (object->ref_count != 1)
1551 		panic("pmap_release: pteobj reference count != 1");
1552 #endif
1553 
1554 	info.pmap = pmap;
1555 	info.object = object;
1556 
1557 	spin_lock(&pmap_spin);
1558 	TAILQ_REMOVE(&pmap_list, pmap, pm_pmnode);
1559 	spin_unlock(&pmap_spin);
1560 
1561 	vm_object_hold(object);
1562 	do {
1563 		info.error = 0;
1564 		info.mpte = NULL;
1565 		info.limit = object->generation;
1566 
1567 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
1568 				        pmap_release_callback, &info);
1569 		if (info.error == 0 && info.mpte) {
1570 			if (!pmap_release_free_page(pmap, info.mpte))
1571 				info.error = 1;
1572 		}
1573 	} while (info.error);
1574 	vm_object_drop(object);
1575 }
1576 
1577 static int
1578 pmap_release_callback(struct vm_page *p, void *data)
1579 {
1580 	struct rb_vm_page_scan_info *info = data;
1581 
1582 	if (p->pindex == NUPDE + NUPDPE + PML4PML4I) {
1583 		info->mpte = p;
1584 		return(0);
1585 	}
1586 	if (!pmap_release_free_page(info->pmap, p)) {
1587 		info->error = 1;
1588 		return(-1);
1589 	}
1590 	if (info->object->generation != info->limit) {
1591 		info->error = 1;
1592 		return(-1);
1593 	}
1594 	return(0);
1595 }
1596 
1597 /*
1598  * Grow the number of kernel page table entries, if needed.
1599  *
1600  * No requirements.
1601  */
1602 void
1603 pmap_growkernel(vm_offset_t kstart, vm_offset_t kend)
1604 {
1605 	vm_offset_t addr;
1606 	vm_paddr_t paddr;
1607 	vm_offset_t ptppaddr;
1608 	vm_page_t nkpg;
1609 	pd_entry_t *pde, newpdir;
1610 	pdp_entry_t newpdp;
1611 
1612 	addr = kend;
1613 
1614 	vm_object_hold(kptobj);
1615 	if (kernel_vm_end == 0) {
1616 		kernel_vm_end = KvaStart;
1617 		nkpt = 0;
1618 		while ((*pmap_pde(&kernel_pmap, kernel_vm_end) & VPTE_V) != 0) {
1619 			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1620 			nkpt++;
1621 			if (kernel_vm_end - 1 >= kernel_map.max_offset) {
1622 				kernel_vm_end = kernel_map.max_offset;
1623 				break;
1624 			}
1625 		}
1626 	}
1627 	addr = roundup2(addr, PAGE_SIZE * NPTEPG);
1628 	if (addr - 1 >= kernel_map.max_offset)
1629 		addr = kernel_map.max_offset;
1630 	while (kernel_vm_end < addr) {
1631 		pde = pmap_pde(&kernel_pmap, kernel_vm_end);
1632 		if (pde == NULL) {
1633 			/* We need a new PDP entry */
1634 			nkpg = vm_page_alloc(kptobj, nkpt,
1635 			                     VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM
1636 					     | VM_ALLOC_INTERRUPT);
1637 			if (nkpg == NULL) {
1638 				panic("pmap_growkernel: no memory to "
1639 				      "grow kernel");
1640 			}
1641 			paddr = VM_PAGE_TO_PHYS(nkpg);
1642 			if ((nkpg->flags & PG_ZERO) == 0)
1643 				pmap_zero_page(paddr);
1644 			vm_page_flag_clear(nkpg, PG_ZERO);
1645 			newpdp = (pdp_entry_t)(paddr |
1646 			    VPTE_V | VPTE_RW | VPTE_U |
1647 			    VPTE_A | VPTE_M);
1648 			*pmap_pdpe(&kernel_pmap, kernel_vm_end) = newpdp;
1649 			nkpt++;
1650 			continue; /* try again */
1651 		}
1652 		if ((*pde & VPTE_V) != 0) {
1653 			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) &
1654 					~(PAGE_SIZE * NPTEPG - 1);
1655 			if (kernel_vm_end - 1 >= kernel_map.max_offset) {
1656 				kernel_vm_end = kernel_map.max_offset;
1657 				break;
1658 			}
1659 			continue;
1660 		}
1661 
1662 		/*
1663 		 * This index is bogus, but out of the way
1664 		 */
1665 		nkpg = vm_page_alloc(kptobj, nkpt,
1666 				     VM_ALLOC_NORMAL |
1667 				     VM_ALLOC_SYSTEM |
1668 				     VM_ALLOC_INTERRUPT);
1669 		if (nkpg == NULL)
1670 			panic("pmap_growkernel: no memory to grow kernel");
1671 
1672 		vm_page_wire(nkpg);
1673 		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1674 		pmap_zero_page(ptppaddr);
1675 		vm_page_flag_clear(nkpg, PG_ZERO);
1676 		newpdir = (pd_entry_t)(ptppaddr |
1677 		    VPTE_V | VPTE_RW | VPTE_U |
1678 		    VPTE_A | VPTE_M);
1679 		*pmap_pde(&kernel_pmap, kernel_vm_end) = newpdir;
1680 		nkpt++;
1681 
1682 		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) &
1683 				~(PAGE_SIZE * NPTEPG - 1);
1684 		if (kernel_vm_end - 1 >= kernel_map.max_offset) {
1685 			kernel_vm_end = kernel_map.max_offset;
1686 			break;
1687 		}
1688 	}
1689 	vm_object_drop(kptobj);
1690 }
1691 
1692 /*
1693  * Add a reference to the specified pmap.
1694  *
1695  * No requirements.
1696  */
1697 void
1698 pmap_reference(pmap_t pmap)
1699 {
1700 	if (pmap) {
1701 		lwkt_gettoken(&vm_token);
1702 		++pmap->pm_count;
1703 		lwkt_reltoken(&vm_token);
1704 	}
1705 }
1706 
1707 /************************************************************************
1708  *	   		VMSPACE MANAGEMENT				*
1709  ************************************************************************
1710  *
1711  * The VMSPACE management we do in our virtual kernel must be reflected
1712  * in the real kernel.  This is accomplished by making vmspace system
1713  * calls to the real kernel.
1714  */
1715 void
1716 cpu_vmspace_alloc(struct vmspace *vm)
1717 {
1718 	int r;
1719 	void *rp;
1720 	vpte_t vpte;
1721 
1722 	/*
1723 	 * If VMM enable, don't do nothing, we
1724 	 * are able to use real page tables
1725 	 */
1726 	if (vmm_enabled)
1727 		return;
1728 
1729 #define USER_SIZE	(VM_MAX_USER_ADDRESS - VM_MIN_USER_ADDRESS)
1730 
1731 	if (vmspace_create(&vm->vm_pmap, 0, NULL) < 0)
1732 		panic("vmspace_create() failed");
1733 
1734 	rp = vmspace_mmap(&vm->vm_pmap, VM_MIN_USER_ADDRESS, USER_SIZE,
1735 			  PROT_READ|PROT_WRITE,
1736 			  MAP_FILE|MAP_SHARED|MAP_VPAGETABLE|MAP_FIXED,
1737 			  MemImageFd, 0);
1738 	if (rp == MAP_FAILED)
1739 		panic("vmspace_mmap: failed");
1740 	vmspace_mcontrol(&vm->vm_pmap, VM_MIN_USER_ADDRESS, USER_SIZE,
1741 			 MADV_NOSYNC, 0);
1742 	vpte = VM_PAGE_TO_PHYS(vmspace_pmap(vm)->pm_pdirm) | VPTE_RW | VPTE_V | VPTE_U;
1743 	r = vmspace_mcontrol(&vm->vm_pmap, VM_MIN_USER_ADDRESS, USER_SIZE,
1744 			     MADV_SETMAP, vpte);
1745 	if (r < 0)
1746 		panic("vmspace_mcontrol: failed");
1747 }
1748 
1749 void
1750 cpu_vmspace_free(struct vmspace *vm)
1751 {
1752 	/*
1753 	 * If VMM enable, don't do nothing, we
1754 	 * are able to use real page tables
1755 	 */
1756 	if (vmm_enabled)
1757 		return;
1758 
1759 	if (vmspace_destroy(&vm->vm_pmap) < 0)
1760 		panic("vmspace_destroy() failed");
1761 }
1762 
1763 /***************************************************
1764 * page management routines.
1765  ***************************************************/
1766 
1767 /*
1768  * free the pv_entry back to the free list.  This function may be
1769  * called from an interrupt.
1770  */
1771 static __inline void
1772 free_pv_entry(pv_entry_t pv)
1773 {
1774 	pv_entry_count--;
1775 	KKASSERT(pv_entry_count >= 0);
1776 	zfree(pvzone, pv);
1777 }
1778 
1779 /*
1780  * get a new pv_entry, allocating a block from the system
1781  * when needed.  This function may be called from an interrupt.
1782  */
1783 static pv_entry_t
1784 get_pv_entry(void)
1785 {
1786 	pv_entry_count++;
1787 	if (pv_entry_high_water &&
1788 		(pv_entry_count > pv_entry_high_water) &&
1789 		(pmap_pagedaemon_waken == 0)) {
1790 		pmap_pagedaemon_waken = 1;
1791 		wakeup(&vm_pages_needed);
1792 	}
1793 	return zalloc(pvzone);
1794 }
1795 
1796 /*
1797  * This routine is very drastic, but can save the system
1798  * in a pinch.
1799  *
1800  * No requirements.
1801  */
1802 void
1803 pmap_collect(void)
1804 {
1805 	int i;
1806 	vm_page_t m;
1807 	static int warningdone=0;
1808 
1809 	if (pmap_pagedaemon_waken == 0)
1810 		return;
1811 	lwkt_gettoken(&vm_token);
1812 	pmap_pagedaemon_waken = 0;
1813 
1814 	if (warningdone < 5) {
1815 		kprintf("pmap_collect: collecting pv entries -- suggest increasing PMAP_SHPGPERPROC\n");
1816 		warningdone++;
1817 	}
1818 
1819 	for (i = 0; i < vm_page_array_size; i++) {
1820 		m = &vm_page_array[i];
1821 		if (m->wire_count || m->hold_count)
1822 			continue;
1823 		if (vm_page_busy_try(m, TRUE) == 0) {
1824 			if (m->wire_count == 0 && m->hold_count == 0) {
1825 				pmap_remove_all(m);
1826 			}
1827 			vm_page_wakeup(m);
1828 		}
1829 	}
1830 	lwkt_reltoken(&vm_token);
1831 }
1832 
1833 
1834 /*
1835  * If it is the first entry on the list, it is actually
1836  * in the header and we must copy the following entry up
1837  * to the header.  Otherwise we must search the list for
1838  * the entry.  In either case we free the now unused entry.
1839  *
1840  * caller must hold vm_token.
1841  */
1842 static int
1843 pmap_remove_entry(struct pmap *pmap, vm_page_t m, vm_offset_t va)
1844 {
1845 	pv_entry_t pv;
1846 	int rtval;
1847 
1848 	if (m->md.pv_list_count < pmap->pm_stats.resident_count) {
1849 		TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
1850 			if (pmap == pv->pv_pmap && va == pv->pv_va)
1851 				break;
1852 		}
1853 	} else {
1854 		TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
1855 			if (va == pv->pv_va)
1856 				break;
1857 		}
1858 	}
1859 
1860 	/*
1861 	 * Note that pv_ptem is NULL if the page table page itself is not
1862 	 * managed, even if the page being removed IS managed.
1863 	 */
1864 	rtval = 0;
1865 	/* JGXXX When can 'pv' be NULL? */
1866 	if (pv) {
1867 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1868 		m->md.pv_list_count--;
1869 		atomic_add_int(&m->object->agg_pv_list_count, -1);
1870 		KKASSERT(m->md.pv_list_count >= 0);
1871 		if (TAILQ_EMPTY(&m->md.pv_list))
1872 			vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
1873 		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1874 		++pmap->pm_generation;
1875 		KKASSERT(pmap->pm_pteobj != NULL);
1876 		vm_object_hold(pmap->pm_pteobj);
1877 		rtval = pmap_unuse_pt(pmap, va, pv->pv_ptem);
1878 		vm_object_drop(pmap->pm_pteobj);
1879 		free_pv_entry(pv);
1880 	}
1881 	return rtval;
1882 }
1883 
1884 /*
1885  * Create a pv entry for page at pa for (pmap, va).  If the page table page
1886  * holding the VA is managed, mpte will be non-NULL.
1887  */
1888 static void
1889 pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t mpte, vm_page_t m)
1890 {
1891 	pv_entry_t pv;
1892 
1893 	crit_enter();
1894 	pv = get_pv_entry();
1895 	pv->pv_va = va;
1896 	pv->pv_pmap = pmap;
1897 	pv->pv_ptem = mpte;
1898 
1899 	TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1900 	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1901 	m->md.pv_list_count++;
1902 	atomic_add_int(&m->object->agg_pv_list_count, 1);
1903 
1904 	crit_exit();
1905 }
1906 
1907 /*
1908  * pmap_remove_pte: do the things to unmap a page in a process
1909  */
1910 static int
1911 pmap_remove_pte(struct pmap *pmap, pt_entry_t *ptq, vm_offset_t va)
1912 {
1913 	pt_entry_t oldpte;
1914 	vm_page_t m;
1915 
1916 	oldpte = pmap_inval_loadandclear(ptq, pmap, va);
1917 	if (oldpte & VPTE_WIRED)
1918 		--pmap->pm_stats.wired_count;
1919 	KKASSERT(pmap->pm_stats.wired_count >= 0);
1920 
1921 #if 0
1922 	/*
1923 	 * Machines that don't support invlpg, also don't support
1924 	 * PG_G.  XXX PG_G is disabled for SMP so don't worry about
1925 	 * the SMP case.
1926 	 */
1927 	if (oldpte & PG_G)
1928 		cpu_invlpg((void *)va);
1929 #endif
1930 	KKASSERT(pmap->pm_stats.resident_count > 0);
1931 	--pmap->pm_stats.resident_count;
1932 	if (oldpte & VPTE_MANAGED) {
1933 		m = PHYS_TO_VM_PAGE(oldpte);
1934 		if (oldpte & VPTE_M) {
1935 #if defined(PMAP_DIAGNOSTIC)
1936 			if (pmap_nw_modified(oldpte)) {
1937 				kprintf("pmap_remove: modified page not "
1938 					"writable: va: 0x%lx, pte: 0x%lx\n",
1939 					va, oldpte);
1940 			}
1941 #endif
1942 			if (pmap_track_modified(pmap, va))
1943 				vm_page_dirty(m);
1944 		}
1945 		if (oldpte & VPTE_A)
1946 			vm_page_flag_set(m, PG_REFERENCED);
1947 		return pmap_remove_entry(pmap, m, va);
1948 	} else {
1949 		return pmap_unuse_pt(pmap, va, NULL);
1950 	}
1951 
1952 	return 0;
1953 }
1954 
1955 /*
1956  * pmap_remove_page:
1957  *
1958  *	Remove a single page from a process address space.
1959  *
1960  *	This function may not be called from an interrupt if the pmap is
1961  *	not kernel_pmap.
1962  */
1963 static void
1964 pmap_remove_page(struct pmap *pmap, vm_offset_t va)
1965 {
1966 	pt_entry_t *pte;
1967 
1968 	pte = pmap_pte(pmap, va);
1969 	if (pte == NULL)
1970 		return;
1971 	if ((*pte & VPTE_V) == 0)
1972 		return;
1973 	pmap_remove_pte(pmap, pte, va);
1974 }
1975 
1976 /*
1977  * Remove the given range of addresses from the specified map.
1978  *
1979  * It is assumed that the start and end are properly rounded to
1980  * the page size.
1981  *
1982  * This function may not be called from an interrupt if the pmap is
1983  * not kernel_pmap.
1984  *
1985  * No requirements.
1986  */
1987 void
1988 pmap_remove(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
1989 {
1990 	vm_offset_t va_next;
1991 	pml4_entry_t *pml4e;
1992 	pdp_entry_t *pdpe;
1993 	pd_entry_t ptpaddr, *pde;
1994 	pt_entry_t *pte;
1995 
1996 	if (pmap == NULL)
1997 		return;
1998 
1999 	vm_object_hold(pmap->pm_pteobj);
2000 	lwkt_gettoken(&vm_token);
2001 	KKASSERT(pmap->pm_stats.resident_count >= 0);
2002 	if (pmap->pm_stats.resident_count == 0) {
2003 		lwkt_reltoken(&vm_token);
2004 		vm_object_drop(pmap->pm_pteobj);
2005 		return;
2006 	}
2007 
2008 	/*
2009 	 * special handling of removing one page.  a very
2010 	 * common operation and easy to short circuit some
2011 	 * code.
2012 	 */
2013 	if (sva + PAGE_SIZE == eva) {
2014 		pde = pmap_pde(pmap, sva);
2015 		if (pde && (*pde & VPTE_PS) == 0) {
2016 			pmap_remove_page(pmap, sva);
2017 			lwkt_reltoken(&vm_token);
2018 			vm_object_drop(pmap->pm_pteobj);
2019 			return;
2020 		}
2021 	}
2022 
2023 	for (; sva < eva; sva = va_next) {
2024 		pml4e = pmap_pml4e(pmap, sva);
2025 		if ((*pml4e & VPTE_V) == 0) {
2026 			va_next = (sva + NBPML4) & ~PML4MASK;
2027 			if (va_next < sva)
2028 				va_next = eva;
2029 			continue;
2030 		}
2031 
2032 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
2033 		if ((*pdpe & VPTE_V) == 0) {
2034 			va_next = (sva + NBPDP) & ~PDPMASK;
2035 			if (va_next < sva)
2036 				va_next = eva;
2037 			continue;
2038 		}
2039 
2040 		/*
2041 		 * Calculate index for next page table.
2042 		 */
2043 		va_next = (sva + NBPDR) & ~PDRMASK;
2044 		if (va_next < sva)
2045 			va_next = eva;
2046 
2047 		pde = pmap_pdpe_to_pde(pdpe, sva);
2048 		ptpaddr = *pde;
2049 
2050 		/*
2051 		 * Weed out invalid mappings.
2052 		 */
2053 		if (ptpaddr == 0)
2054 			continue;
2055 
2056 		/*
2057 		 * Check for large page.
2058 		 */
2059 		if ((ptpaddr & VPTE_PS) != 0) {
2060 			/* JG FreeBSD has more complex treatment here */
2061 			KKASSERT(*pde != 0);
2062 			pmap_inval_pde(pde, pmap, sva);
2063 			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2064 			continue;
2065 		}
2066 
2067 		/*
2068 		 * Limit our scan to either the end of the va represented
2069 		 * by the current page table page, or to the end of the
2070 		 * range being removed.
2071 		 */
2072 		if (va_next > eva)
2073 			va_next = eva;
2074 
2075 		/*
2076 		 * NOTE: pmap_remove_pte() can block.
2077 		 */
2078 		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
2079 		    sva += PAGE_SIZE) {
2080 			if (*pte == 0)
2081 				continue;
2082 			if (pmap_remove_pte(pmap, pte, sva))
2083 				break;
2084 		}
2085 	}
2086 	lwkt_reltoken(&vm_token);
2087 	vm_object_drop(pmap->pm_pteobj);
2088 }
2089 
2090 /*
2091  * Removes this physical page from all physical maps in which it resides.
2092  * Reflects back modify bits to the pager.
2093  *
2094  * This routine may not be called from an interrupt.
2095  *
2096  * No requirements.
2097  */
2098 static void
2099 pmap_remove_all(vm_page_t m)
2100 {
2101 	pt_entry_t *pte, tpte;
2102 	pv_entry_t pv;
2103 
2104 #if defined(PMAP_DIAGNOSTIC)
2105 	/*
2106 	 * XXX this makes pmap_page_protect(NONE) illegal for non-managed
2107 	 * pages!
2108 	 */
2109 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
2110 		panic("pmap_page_protect: illegal for unmanaged page, va: 0x%08llx", (long long)VM_PAGE_TO_PHYS(m));
2111 	}
2112 #endif
2113 
2114 	lwkt_gettoken(&vm_token);
2115 	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2116 		KKASSERT(pv->pv_pmap->pm_stats.resident_count > 0);
2117 		--pv->pv_pmap->pm_stats.resident_count;
2118 
2119 		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2120 		KKASSERT(pte != NULL);
2121 
2122 		tpte = pmap_inval_loadandclear(pte, pv->pv_pmap, pv->pv_va);
2123 		if (tpte & VPTE_WIRED)
2124 			pv->pv_pmap->pm_stats.wired_count--;
2125 		KKASSERT(pv->pv_pmap->pm_stats.wired_count >= 0);
2126 
2127 		if (tpte & VPTE_A)
2128 			vm_page_flag_set(m, PG_REFERENCED);
2129 
2130 		/*
2131 		 * Update the vm_page_t clean and reference bits.
2132 		 */
2133 		if (tpte & VPTE_M) {
2134 #if defined(PMAP_DIAGNOSTIC)
2135 			if (pmap_nw_modified(tpte)) {
2136 				kprintf(
2137 	"pmap_remove_all: modified page not writable: va: 0x%lx, pte: 0x%lx\n",
2138 				    pv->pv_va, tpte);
2139 			}
2140 #endif
2141 			if (pmap_track_modified(pv->pv_pmap, pv->pv_va))
2142 				vm_page_dirty(m);
2143 		}
2144 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2145 		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
2146 		++pv->pv_pmap->pm_generation;
2147 		m->md.pv_list_count--;
2148 		atomic_add_int(&m->object->agg_pv_list_count, -1);
2149 		KKASSERT(m->md.pv_list_count >= 0);
2150 		if (TAILQ_EMPTY(&m->md.pv_list))
2151 			vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
2152 		vm_object_hold(pv->pv_pmap->pm_pteobj);
2153 		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
2154 		vm_object_drop(pv->pv_pmap->pm_pteobj);
2155 		free_pv_entry(pv);
2156 	}
2157 	KKASSERT((m->flags & (PG_MAPPED|PG_WRITEABLE)) == 0);
2158 	lwkt_reltoken(&vm_token);
2159 }
2160 
2161 /*
2162  * Set the physical protection on the specified range of this map
2163  * as requested.
2164  *
2165  * This function may not be called from an interrupt if the map is
2166  * not the kernel_pmap.
2167  *
2168  * No requirements.
2169  */
2170 void
2171 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2172 {
2173 	vm_offset_t va_next;
2174 	pml4_entry_t *pml4e;
2175 	pdp_entry_t *pdpe;
2176 	pd_entry_t ptpaddr, *pde;
2177 	pt_entry_t *pte;
2178 
2179 	/* JG review for NX */
2180 
2181 	if (pmap == NULL)
2182 		return;
2183 
2184 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2185 		pmap_remove(pmap, sva, eva);
2186 		return;
2187 	}
2188 
2189 	if (prot & VM_PROT_WRITE)
2190 		return;
2191 
2192 	lwkt_gettoken(&vm_token);
2193 
2194 	for (; sva < eva; sva = va_next) {
2195 
2196 		pml4e = pmap_pml4e(pmap, sva);
2197 		if ((*pml4e & VPTE_V) == 0) {
2198 			va_next = (sva + NBPML4) & ~PML4MASK;
2199 			if (va_next < sva)
2200 				va_next = eva;
2201 			continue;
2202 		}
2203 
2204 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
2205 		if ((*pdpe & VPTE_V) == 0) {
2206 			va_next = (sva + NBPDP) & ~PDPMASK;
2207 			if (va_next < sva)
2208 				va_next = eva;
2209 			continue;
2210 		}
2211 
2212 		va_next = (sva + NBPDR) & ~PDRMASK;
2213 		if (va_next < sva)
2214 			va_next = eva;
2215 
2216 		pde = pmap_pdpe_to_pde(pdpe, sva);
2217 		ptpaddr = *pde;
2218 
2219 		/*
2220 		 * Check for large page.
2221 		 */
2222 		if ((ptpaddr & VPTE_PS) != 0) {
2223 			/* JG correct? */
2224 			pmap_clean_pde(pde, pmap, sva);
2225 			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2226 			continue;
2227 		}
2228 
2229 		/*
2230 		 * Weed out invalid mappings. Note: we assume that the page
2231 		 * directory table is always allocated, and in kernel virtual.
2232 		 */
2233 		if (ptpaddr == 0)
2234 			continue;
2235 
2236 		if (va_next > eva)
2237 			va_next = eva;
2238 
2239 		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
2240 		    sva += PAGE_SIZE) {
2241 			pt_entry_t pbits;
2242 			vm_page_t m;
2243 
2244 			/*
2245 			 * Clean managed pages and also check the accessed
2246 			 * bit.  Just remove write perms for unmanaged
2247 			 * pages.  Be careful of races, turning off write
2248 			 * access will force a fault rather then setting
2249 			 * the modified bit at an unexpected time.
2250 			 */
2251 			if (*pte & VPTE_MANAGED) {
2252 				pbits = pmap_clean_pte(pte, pmap, sva);
2253 				m = NULL;
2254 				if (pbits & VPTE_A) {
2255 					m = PHYS_TO_VM_PAGE(pbits & VPTE_FRAME);
2256 					vm_page_flag_set(m, PG_REFERENCED);
2257 					atomic_clear_long(pte, VPTE_A);
2258 				}
2259 				if (pbits & VPTE_M) {
2260 					if (pmap_track_modified(pmap, sva)) {
2261 						if (m == NULL)
2262 							m = PHYS_TO_VM_PAGE(pbits & VPTE_FRAME);
2263 						vm_page_dirty(m);
2264 					}
2265 				}
2266 			} else {
2267 				pbits = pmap_setro_pte(pte, pmap, sva);
2268 			}
2269 		}
2270 	}
2271 	lwkt_reltoken(&vm_token);
2272 }
2273 
2274 /*
2275  * Enter a managed page into a pmap.  If the page is not wired related pmap
2276  * data can be destroyed at any time for later demand-operation.
2277  *
2278  * Insert the vm_page (m) at virtual address (v) in (pmap), with the
2279  * specified protection, and wire the mapping if requested.
2280  *
2281  * NOTE: This routine may not lazy-evaluate or lose information.  The
2282  * page must actually be inserted into the given map NOW.
2283  *
2284  * NOTE: When entering a page at a KVA address, the pmap must be the
2285  * kernel_pmap.
2286  *
2287  * No requirements.
2288  */
2289 void
2290 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
2291 	   boolean_t wired, vm_map_entry_t entry __unused)
2292 {
2293 	vm_paddr_t pa;
2294 	pd_entry_t *pde;
2295 	pt_entry_t *pte;
2296 	vm_paddr_t opa;
2297 	pt_entry_t origpte, newpte;
2298 	vm_page_t mpte;
2299 
2300 	if (pmap == NULL)
2301 		return;
2302 
2303 	va = trunc_page(va);
2304 
2305 	vm_object_hold(pmap->pm_pteobj);
2306 	lwkt_gettoken(&vm_token);
2307 
2308 	/*
2309 	 * Get the page table page.   The kernel_pmap's page table pages
2310 	 * are preallocated and have no associated vm_page_t.
2311 	 */
2312 	if (pmap == &kernel_pmap)
2313 		mpte = NULL;
2314 	else
2315 		mpte = pmap_allocpte(pmap, va);
2316 
2317 	pde = pmap_pde(pmap, va);
2318 	if (pde != NULL && (*pde & VPTE_V) != 0) {
2319 		if ((*pde & VPTE_PS) != 0)
2320 			panic("pmap_enter: attempted pmap_enter on 2MB page");
2321 		pte = pmap_pde_to_pte(pde, va);
2322 	} else {
2323 		panic("pmap_enter: invalid page directory va=%#lx", va);
2324 	}
2325 
2326 	KKASSERT(pte != NULL);
2327 	/*
2328 	 * Deal with races on the original mapping (though don't worry
2329 	 * about VPTE_A races) by cleaning it.  This will force a fault
2330 	 * if an attempt is made to write to the page.
2331 	 */
2332 	pa = VM_PAGE_TO_PHYS(m);
2333 	origpte = pmap_clean_pte(pte, pmap, va);
2334 	opa = origpte & VPTE_FRAME;
2335 
2336 	if (origpte & VPTE_PS)
2337 		panic("pmap_enter: attempted pmap_enter on 2MB page");
2338 
2339 	/*
2340 	 * Mapping has not changed, must be protection or wiring change.
2341 	 */
2342 	if (origpte && (opa == pa)) {
2343 		/*
2344 		 * Wiring change, just update stats. We don't worry about
2345 		 * wiring PT pages as they remain resident as long as there
2346 		 * are valid mappings in them. Hence, if a user page is wired,
2347 		 * the PT page will be also.
2348 		 */
2349 		if (wired && ((origpte & VPTE_WIRED) == 0))
2350 			++pmap->pm_stats.wired_count;
2351 		else if (!wired && (origpte & VPTE_WIRED))
2352 			--pmap->pm_stats.wired_count;
2353 
2354 		/*
2355 		 * Remove the extra pte reference.  Note that we cannot
2356 		 * optimize the RO->RW case because we have adjusted the
2357 		 * wiring count above and may need to adjust the wiring
2358 		 * bits below.
2359 		 */
2360 		if (mpte)
2361 			mpte->hold_count--;
2362 
2363 		/*
2364 		 * We might be turning off write access to the page,
2365 		 * so we go ahead and sense modify status.
2366 		 */
2367 		if (origpte & VPTE_MANAGED) {
2368 			if ((origpte & VPTE_M) &&
2369 			    pmap_track_modified(pmap, va)) {
2370 				vm_page_t om;
2371 				om = PHYS_TO_VM_PAGE(opa);
2372 				vm_page_dirty(om);
2373 			}
2374 			pa |= VPTE_MANAGED;
2375 			KKASSERT(m->flags & PG_MAPPED);
2376 		}
2377 		goto validate;
2378 	}
2379 	/*
2380 	 * Mapping has changed, invalidate old range and fall through to
2381 	 * handle validating new mapping.
2382 	 */
2383 	if (opa) {
2384 		int err;
2385 		err = pmap_remove_pte(pmap, pte, va);
2386 		if (err)
2387 			panic("pmap_enter: pte vanished, va: 0x%lx", va);
2388 	}
2389 
2390 	/*
2391 	 * Enter on the PV list if part of our managed memory. Note that we
2392 	 * raise IPL while manipulating pv_table since pmap_enter can be
2393 	 * called at interrupt time.
2394 	 */
2395 	if (pmap_initialized &&
2396 	    (m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
2397 		pmap_insert_entry(pmap, va, mpte, m);
2398 		pa |= VPTE_MANAGED;
2399 		vm_page_flag_set(m, PG_MAPPED);
2400 	}
2401 
2402 	/*
2403 	 * Increment counters
2404 	 */
2405 	++pmap->pm_stats.resident_count;
2406 	if (wired)
2407 		pmap->pm_stats.wired_count++;
2408 
2409 validate:
2410 	/*
2411 	 * Now validate mapping with desired protection/wiring.
2412 	 */
2413 	newpte = (pt_entry_t) (pa | pte_prot(pmap, prot) | VPTE_V | VPTE_U);
2414 
2415 	if (wired)
2416 		newpte |= VPTE_WIRED;
2417 //	if (pmap != &kernel_pmap)
2418 		newpte |= VPTE_U;
2419 
2420 	/*
2421 	 * If the mapping or permission bits are different from the
2422 	 * (now cleaned) original pte, an update is needed.  We've
2423 	 * already downgraded or invalidated the page so all we have
2424 	 * to do now is update the bits.
2425 	 *
2426 	 * XXX should we synchronize RO->RW changes to avoid another
2427 	 * fault?
2428 	 */
2429 	if ((origpte & ~(VPTE_RW|VPTE_M|VPTE_A)) != newpte) {
2430 		*pte = newpte | VPTE_A;
2431 		if (newpte & VPTE_RW)
2432 			vm_page_flag_set(m, PG_WRITEABLE);
2433 	}
2434 	KKASSERT((newpte & VPTE_MANAGED) == 0 || (m->flags & PG_MAPPED));
2435 	lwkt_reltoken(&vm_token);
2436 	vm_object_drop(pmap->pm_pteobj);
2437 }
2438 
2439 /*
2440  * This code works like pmap_enter() but assumes VM_PROT_READ and not-wired.
2441  *
2442  * Currently this routine may only be used on user pmaps, not kernel_pmap.
2443  *
2444  * No requirements.
2445  */
2446 void
2447 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m)
2448 {
2449 	pt_entry_t *pte;
2450 	vm_paddr_t pa;
2451 	vm_page_t mpte;
2452 	vm_pindex_t ptepindex;
2453 	pd_entry_t *ptepa;
2454 
2455 	KKASSERT(pmap != &kernel_pmap);
2456 
2457 	KKASSERT(va >= VM_MIN_USER_ADDRESS && va < VM_MAX_USER_ADDRESS);
2458 
2459 	/*
2460 	 * Calculate pagetable page index
2461 	 */
2462 	ptepindex = pmap_pde_pindex(va);
2463 
2464 	vm_object_hold(pmap->pm_pteobj);
2465 	lwkt_gettoken(&vm_token);
2466 
2467 	do {
2468 		/*
2469 		 * Get the page directory entry
2470 		 */
2471 		ptepa = pmap_pde(pmap, va);
2472 
2473 		/*
2474 		 * If the page table page is mapped, we just increment
2475 		 * the hold count, and activate it.
2476 		 */
2477 		if (ptepa && (*ptepa & VPTE_V) != 0) {
2478 			if (*ptepa & VPTE_PS)
2479 				panic("pmap_enter_quick: unexpected mapping into 2MB page");
2480 			if (pmap->pm_ptphint &&
2481 			    (pmap->pm_ptphint->pindex == ptepindex)) {
2482 				mpte = pmap->pm_ptphint;
2483 			} else {
2484 				mpte = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
2485 				pmap->pm_ptphint = mpte;
2486 				vm_page_wakeup(mpte);
2487 			}
2488 			if (mpte)
2489 				mpte->hold_count++;
2490 		} else {
2491 			mpte = _pmap_allocpte(pmap, ptepindex);
2492 		}
2493 	} while (mpte == NULL);
2494 
2495 	/*
2496 	 * Ok, now that the page table page has been validated, get the pte.
2497 	 * If the pte is already mapped undo mpte's hold_count and
2498 	 * just return.
2499 	 */
2500 	pte = pmap_pte(pmap, va);
2501 	if (*pte & VPTE_V) {
2502 		KKASSERT(mpte != NULL);
2503 		pmap_unwire_pte_hold(pmap, va, mpte);
2504 		pa = VM_PAGE_TO_PHYS(m);
2505 		KKASSERT(((*pte ^ pa) & VPTE_FRAME) == 0);
2506 		lwkt_reltoken(&vm_token);
2507 		vm_object_drop(pmap->pm_pteobj);
2508 		return;
2509 	}
2510 
2511 	/*
2512 	 * Enter on the PV list if part of our managed memory
2513 	 */
2514 	if ((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
2515 		pmap_insert_entry(pmap, va, mpte, m);
2516 		vm_page_flag_set(m, PG_MAPPED);
2517 	}
2518 
2519 	/*
2520 	 * Increment counters
2521 	 */
2522 	++pmap->pm_stats.resident_count;
2523 
2524 	pa = VM_PAGE_TO_PHYS(m);
2525 
2526 	/*
2527 	 * Now validate mapping with RO protection
2528 	 */
2529 	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
2530 		*pte = (vpte_t)pa | VPTE_V | VPTE_U;
2531 	else
2532 		*pte = (vpte_t)pa | VPTE_V | VPTE_U | VPTE_MANAGED;
2533 	/*pmap_inval_add(&info, pmap, va); shouldn't be needed 0->valid */
2534 	/*pmap_inval_flush(&info); don't need for vkernel */
2535 	lwkt_reltoken(&vm_token);
2536 	vm_object_drop(pmap->pm_pteobj);
2537 }
2538 
2539 /*
2540  * Make a temporary mapping for a physical address.  This is only intended
2541  * to be used for panic dumps.
2542  *
2543  * The caller is responsible for calling smp_invltlb().
2544  */
2545 void *
2546 pmap_kenter_temporary(vm_paddr_t pa, long i)
2547 {
2548 	pmap_kenter_quick(crashdumpmap + (i * PAGE_SIZE), pa);
2549 	return ((void *)crashdumpmap);
2550 }
2551 
2552 #define MAX_INIT_PT (96)
2553 
2554 /*
2555  * This routine preloads the ptes for a given object into the specified pmap.
2556  * This eliminates the blast of soft faults on process startup and
2557  * immediately after an mmap.
2558  *
2559  * No requirements.
2560  */
2561 static int pmap_object_init_pt_callback(vm_page_t p, void *data);
2562 
2563 void
2564 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_prot_t prot,
2565 		    vm_object_t object, vm_pindex_t pindex,
2566 		    vm_size_t size, int limit)
2567 {
2568 	struct rb_vm_page_scan_info info;
2569 	struct lwp *lp;
2570 	vm_size_t psize;
2571 
2572 	/*
2573 	 * We can't preinit if read access isn't set or there is no pmap
2574 	 * or object.
2575 	 */
2576 	if ((prot & VM_PROT_READ) == 0 || pmap == NULL || object == NULL)
2577 		return;
2578 
2579 	/*
2580 	 * We can't preinit if the pmap is not the current pmap
2581 	 */
2582 	lp = curthread->td_lwp;
2583 	if (lp == NULL || pmap != vmspace_pmap(lp->lwp_vmspace))
2584 		return;
2585 
2586 	psize = x86_64_btop(size);
2587 
2588 	if ((object->type != OBJT_VNODE) ||
2589 		((limit & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
2590 			(object->resident_page_count > MAX_INIT_PT))) {
2591 		return;
2592 	}
2593 
2594 	if (psize + pindex > object->size) {
2595 		if (object->size < pindex)
2596 			return;
2597 		psize = object->size - pindex;
2598 	}
2599 
2600 	if (psize == 0)
2601 		return;
2602 
2603 	/*
2604 	 * Use a red-black scan to traverse the requested range and load
2605 	 * any valid pages found into the pmap.
2606 	 *
2607 	 * We cannot safely scan the object's memq unless we are in a
2608 	 * critical section since interrupts can remove pages from objects.
2609 	 */
2610 	info.start_pindex = pindex;
2611 	info.end_pindex = pindex + psize - 1;
2612 	info.limit = limit;
2613 	info.mpte = NULL;
2614 	info.addr = addr;
2615 	info.pmap = pmap;
2616 
2617 	vm_object_hold_shared(object);
2618 	vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
2619 				pmap_object_init_pt_callback, &info);
2620 	vm_object_drop(object);
2621 }
2622 
2623 static
2624 int
2625 pmap_object_init_pt_callback(vm_page_t p, void *data)
2626 {
2627 	struct rb_vm_page_scan_info *info = data;
2628 	vm_pindex_t rel_index;
2629 	/*
2630 	 * don't allow an madvise to blow away our really
2631 	 * free pages allocating pv entries.
2632 	 */
2633 	if ((info->limit & MAP_PREFAULT_MADVISE) &&
2634 		vmstats.v_free_count < vmstats.v_free_reserved) {
2635 		    return(-1);
2636 	}
2637 
2638 	/*
2639 	 * Ignore list markers and ignore pages we cannot instantly
2640 	 * busy (while holding the object token).
2641 	 */
2642 	if (p->flags & PG_MARKER)
2643 		return 0;
2644 	if (vm_page_busy_try(p, TRUE))
2645 		return 0;
2646 	if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2647 	    (p->flags & PG_FICTITIOUS) == 0) {
2648 		if ((p->queue - p->pc) == PQ_CACHE)
2649 			vm_page_deactivate(p);
2650 		rel_index = p->pindex - info->start_pindex;
2651 		pmap_enter_quick(info->pmap,
2652 				 info->addr + x86_64_ptob(rel_index), p);
2653 	}
2654 	vm_page_wakeup(p);
2655 	return(0);
2656 }
2657 
2658 /*
2659  * Return TRUE if the pmap is in shape to trivially
2660  * pre-fault the specified address.
2661  *
2662  * Returns FALSE if it would be non-trivial or if a
2663  * pte is already loaded into the slot.
2664  *
2665  * No requirements.
2666  */
2667 int
2668 pmap_prefault_ok(pmap_t pmap, vm_offset_t addr)
2669 {
2670 	pt_entry_t *pte;
2671 	pd_entry_t *pde;
2672 	int ret;
2673 
2674 	lwkt_gettoken(&vm_token);
2675 	pde = pmap_pde(pmap, addr);
2676 	if (pde == NULL || *pde == 0) {
2677 		ret = 0;
2678 	} else {
2679 		pte = pmap_pde_to_pte(pde, addr);
2680 		ret = (*pte) ? 0 : 1;
2681 	}
2682 	lwkt_reltoken(&vm_token);
2683 	return (ret);
2684 }
2685 
2686 /*
2687  * Change the wiring attribute for a map/virtual-address pair.
2688  *
2689  * The mapping must already exist in the pmap.
2690  * No other requirements.
2691  */
2692 void
2693 pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired,
2694 		   vm_map_entry_t entry __unused)
2695 {
2696 	pt_entry_t *pte;
2697 
2698 	if (pmap == NULL)
2699 		return;
2700 
2701 	lwkt_gettoken(&vm_token);
2702 	pte = pmap_pte(pmap, va);
2703 
2704 	if (wired && !pmap_pte_w(pte))
2705 		pmap->pm_stats.wired_count++;
2706 	else if (!wired && pmap_pte_w(pte))
2707 		pmap->pm_stats.wired_count--;
2708 
2709 	/*
2710 	 * Wiring is not a hardware characteristic so there is no need to
2711 	 * invalidate TLB.  However, in an SMP environment we must use
2712 	 * a locked bus cycle to update the pte (if we are not using
2713 	 * the pmap_inval_*() API that is)... it's ok to do this for simple
2714 	 * wiring changes.
2715 	 */
2716 	if (wired)
2717 		atomic_set_long(pte, VPTE_WIRED);
2718 	else
2719 		atomic_clear_long(pte, VPTE_WIRED);
2720 	lwkt_reltoken(&vm_token);
2721 }
2722 
2723 /*
2724  *	Copy the range specified by src_addr/len
2725  *	from the source map to the range dst_addr/len
2726  *	in the destination map.
2727  *
2728  *	This routine is only advisory and need not do anything.
2729  */
2730 void
2731 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
2732 	vm_size_t len, vm_offset_t src_addr)
2733 {
2734 	/*
2735 	 * XXX BUGGY.  Amoung other things srcmpte is assumed to remain
2736 	 * valid through blocking calls, and that's just not going to
2737 	 * be the case.
2738 	 *
2739 	 * FIXME!
2740 	 */
2741 	return;
2742 }
2743 
2744 /*
2745  * pmap_zero_page:
2746  *
2747  *	Zero the specified physical page.
2748  *
2749  *	This function may be called from an interrupt and no locking is
2750  *	required.
2751  */
2752 void
2753 pmap_zero_page(vm_paddr_t phys)
2754 {
2755 	vm_offset_t va = PHYS_TO_DMAP(phys);
2756 
2757 	bzero((void *)va, PAGE_SIZE);
2758 }
2759 
2760 /*
2761  * pmap_page_assertzero:
2762  *
2763  *	Assert that a page is empty, panic if it isn't.
2764  */
2765 void
2766 pmap_page_assertzero(vm_paddr_t phys)
2767 {
2768 	int i;
2769 
2770 	crit_enter();
2771 	vm_offset_t virt = PHYS_TO_DMAP(phys);
2772 
2773 	for (i = 0; i < PAGE_SIZE; i += sizeof(int)) {
2774 	    if (*(int *)((char *)virt + i) != 0) {
2775 		panic("pmap_page_assertzero() @ %p not zero!",
2776 		    (void *)virt);
2777 	    }
2778 	}
2779 	crit_exit();
2780 }
2781 
2782 /*
2783  * pmap_zero_page:
2784  *
2785  *	Zero part of a physical page by mapping it into memory and clearing
2786  *	its contents with bzero.
2787  *
2788  *	off and size may not cover an area beyond a single hardware page.
2789  */
2790 void
2791 pmap_zero_page_area(vm_paddr_t phys, int off, int size)
2792 {
2793 	crit_enter();
2794 	vm_offset_t virt = PHYS_TO_DMAP(phys);
2795 	bzero((char *)virt + off, size);
2796 	crit_exit();
2797 }
2798 
2799 /*
2800  * pmap_copy_page:
2801  *
2802  *	Copy the physical page from the source PA to the target PA.
2803  *	This function may be called from an interrupt.  No locking
2804  *	is required.
2805  */
2806 void
2807 pmap_copy_page(vm_paddr_t src, vm_paddr_t dst)
2808 {
2809 	vm_offset_t src_virt, dst_virt;
2810 
2811 	crit_enter();
2812 	src_virt = PHYS_TO_DMAP(src);
2813 	dst_virt = PHYS_TO_DMAP(dst);
2814 	bcopy((void *)src_virt, (void *)dst_virt, PAGE_SIZE);
2815 	crit_exit();
2816 }
2817 
2818 /*
2819  * pmap_copy_page_frag:
2820  *
2821  *	Copy the physical page from the source PA to the target PA.
2822  *	This function may be called from an interrupt.  No locking
2823  *	is required.
2824  */
2825 void
2826 pmap_copy_page_frag(vm_paddr_t src, vm_paddr_t dst, size_t bytes)
2827 {
2828 	vm_offset_t src_virt, dst_virt;
2829 
2830 	crit_enter();
2831 	src_virt = PHYS_TO_DMAP(src);
2832 	dst_virt = PHYS_TO_DMAP(dst);
2833 	bcopy((char *)src_virt + (src & PAGE_MASK),
2834 	      (char *)dst_virt + (dst & PAGE_MASK),
2835 	      bytes);
2836 	crit_exit();
2837 }
2838 
2839 /*
2840  * Returns true if the pmap's pv is one of the first 16 pvs linked to
2841  * from this page.  This count may be changed upwards or downwards
2842  * in the future; it is only necessary that true be returned for a small
2843  * subset of pmaps for proper page aging.
2844  *
2845  * No other requirements.
2846  */
2847 boolean_t
2848 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
2849 {
2850 	pv_entry_t pv;
2851 	int loops = 0;
2852 
2853 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2854 		return FALSE;
2855 
2856 	crit_enter();
2857 	lwkt_gettoken(&vm_token);
2858 
2859 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2860 		if (pv->pv_pmap == pmap) {
2861 			lwkt_reltoken(&vm_token);
2862 			crit_exit();
2863 			return TRUE;
2864 		}
2865 		loops++;
2866 		if (loops >= 16)
2867 			break;
2868 	}
2869 	lwkt_reltoken(&vm_token);
2870 	crit_exit();
2871 	return (FALSE);
2872 }
2873 
2874 /*
2875  * Remove all pages from specified address space this aids process
2876  * exit speeds.  Also, this code is special cased for current
2877  * process only, but can have the more generic (and slightly slower)
2878  * mode enabled.  This is much faster than pmap_remove in the case
2879  * of running down an entire address space.
2880  *
2881  * No other requirements.
2882  */
2883 void
2884 pmap_remove_pages(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2885 {
2886 	pt_entry_t *pte, tpte;
2887 	pv_entry_t pv, npv;
2888 	vm_page_t m;
2889 	int save_generation;
2890 
2891 	if (pmap->pm_pteobj)
2892 		vm_object_hold(pmap->pm_pteobj);
2893 	lwkt_gettoken(&vm_token);
2894 
2895 	for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
2896 		if (pv->pv_va >= eva || pv->pv_va < sva) {
2897 			npv = TAILQ_NEXT(pv, pv_plist);
2898 			continue;
2899 		}
2900 
2901 		KKASSERT(pmap == pv->pv_pmap);
2902 
2903 		pte = pmap_pte(pmap, pv->pv_va);
2904 
2905 		/*
2906 		 * We cannot remove wired pages from a process' mapping
2907 		 * at this time
2908 		 */
2909 		if (*pte & VPTE_WIRED) {
2910 			npv = TAILQ_NEXT(pv, pv_plist);
2911 			continue;
2912 		}
2913 		tpte = pmap_inval_loadandclear(pte, pmap, pv->pv_va);
2914 
2915 		m = PHYS_TO_VM_PAGE(tpte & VPTE_FRAME);
2916 
2917 		KASSERT(m < &vm_page_array[vm_page_array_size],
2918 			("pmap_remove_pages: bad tpte %lx", tpte));
2919 
2920 		KKASSERT(pmap->pm_stats.resident_count > 0);
2921 		--pmap->pm_stats.resident_count;
2922 
2923 		/*
2924 		 * Update the vm_page_t clean and reference bits.
2925 		 */
2926 		if (tpte & VPTE_M) {
2927 			vm_page_dirty(m);
2928 		}
2929 
2930 		npv = TAILQ_NEXT(pv, pv_plist);
2931 		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
2932 		save_generation = ++pmap->pm_generation;
2933 
2934 		m->md.pv_list_count--;
2935 		atomic_add_int(&m->object->agg_pv_list_count, -1);
2936 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2937 		if (TAILQ_EMPTY(&m->md.pv_list))
2938 			vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
2939 
2940 		pmap_unuse_pt(pmap, pv->pv_va, pv->pv_ptem);
2941 		free_pv_entry(pv);
2942 
2943 		/*
2944 		 * Restart the scan if we blocked during the unuse or free
2945 		 * calls and other removals were made.
2946 		 */
2947 		if (save_generation != pmap->pm_generation) {
2948 			kprintf("Warning: pmap_remove_pages race-A avoided\n");
2949 			npv = TAILQ_FIRST(&pmap->pm_pvlist);
2950 		}
2951 	}
2952 	lwkt_reltoken(&vm_token);
2953 	if (pmap->pm_pteobj)
2954 		vm_object_drop(pmap->pm_pteobj);
2955 }
2956 
2957 /*
2958  * pmap_testbit tests bits in active mappings of a VM page.
2959  */
2960 static boolean_t
2961 pmap_testbit(vm_page_t m, int bit)
2962 {
2963 	pv_entry_t pv;
2964 	pt_entry_t *pte;
2965 
2966 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2967 		return FALSE;
2968 
2969 	if (TAILQ_FIRST(&m->md.pv_list) == NULL)
2970 		return FALSE;
2971 
2972 	crit_enter();
2973 
2974 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2975 		/*
2976 		 * if the bit being tested is the modified bit, then
2977 		 * mark clean_map and ptes as never
2978 		 * modified.
2979 		 */
2980 		if (bit & (VPTE_A|VPTE_M)) {
2981 			if (!pmap_track_modified(pv->pv_pmap, pv->pv_va))
2982 				continue;
2983 		}
2984 
2985 #if defined(PMAP_DIAGNOSTIC)
2986 		if (pv->pv_pmap == NULL) {
2987 			kprintf("Null pmap (tb) at va: 0x%lx\n", pv->pv_va);
2988 			continue;
2989 		}
2990 #endif
2991 		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2992 		if (*pte & bit) {
2993 			crit_exit();
2994 			return TRUE;
2995 		}
2996 	}
2997 	crit_exit();
2998 	return (FALSE);
2999 }
3000 
3001 /*
3002  * This routine is used to clear bits in ptes.  Certain bits require special
3003  * handling, in particular (on virtual kernels) the VPTE_M (modify) bit.
3004  *
3005  * This routine is only called with certain VPTE_* bit combinations.
3006  */
3007 static __inline void
3008 pmap_clearbit(vm_page_t m, int bit)
3009 {
3010 	pv_entry_t pv;
3011 	pt_entry_t *pte;
3012 	pt_entry_t pbits;
3013 
3014 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3015 		return;
3016 
3017 	crit_enter();
3018 
3019 	/*
3020 	 * Loop over all current mappings setting/clearing as appropos If
3021 	 * setting RO do we need to clear the VAC?
3022 	 */
3023 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3024 		/*
3025 		 * don't write protect pager mappings
3026 		 */
3027 		if (bit == VPTE_RW) {
3028 			if (!pmap_track_modified(pv->pv_pmap, pv->pv_va))
3029 				continue;
3030 		}
3031 
3032 #if defined(PMAP_DIAGNOSTIC)
3033 		if (pv->pv_pmap == NULL) {
3034 			kprintf("Null pmap (cb) at va: 0x%lx\n", pv->pv_va);
3035 			continue;
3036 		}
3037 #endif
3038 
3039 		/*
3040 		 * Careful here.  We can use a locked bus instruction to
3041 		 * clear VPTE_A or VPTE_M safely but we need to synchronize
3042 		 * with the target cpus when we mess with VPTE_RW.
3043 		 *
3044 		 * On virtual kernels we must force a new fault-on-write
3045 		 * in the real kernel if we clear the Modify bit ourselves,
3046 		 * otherwise the real kernel will not get a new fault and
3047 		 * will never set our Modify bit again.
3048 		 */
3049 		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
3050 		if (*pte & bit) {
3051 			if (bit == VPTE_RW) {
3052 				/*
3053 				 * We must also clear VPTE_M when clearing
3054 				 * VPTE_RW
3055 				 */
3056 				pbits = pmap_clean_pte(pte, pv->pv_pmap,
3057 						       pv->pv_va);
3058 				if (pbits & VPTE_M)
3059 					vm_page_dirty(m);
3060 			} else if (bit == VPTE_M) {
3061 				/*
3062 				 * We do not have to make the page read-only
3063 				 * when clearing the Modify bit.  The real
3064 				 * kernel will make the real PTE read-only
3065 				 * or otherwise detect the write and set
3066 				 * our VPTE_M again simply by us invalidating
3067 				 * the real kernel VA for the pmap (as we did
3068 				 * above).  This allows the real kernel to
3069 				 * handle the write fault without forwarding
3070 				 * the fault to us.
3071 				 */
3072 				atomic_clear_long(pte, VPTE_M);
3073 			} else if ((bit & (VPTE_RW|VPTE_M)) == (VPTE_RW|VPTE_M)) {
3074 				/*
3075 				 * We've been asked to clear W & M, I guess
3076 				 * the caller doesn't want us to update
3077 				 * the dirty status of the VM page.
3078 				 */
3079 				pmap_clean_pte(pte, pv->pv_pmap, pv->pv_va);
3080 			} else {
3081 				/*
3082 				 * We've been asked to clear bits that do
3083 				 * not interact with hardware.
3084 				 */
3085 				atomic_clear_long(pte, bit);
3086 			}
3087 		}
3088 	}
3089 	crit_exit();
3090 }
3091 
3092 /*
3093  * Lower the permission for all mappings to a given page.
3094  *
3095  * No other requirements.
3096  */
3097 void
3098 pmap_page_protect(vm_page_t m, vm_prot_t prot)
3099 {
3100 	/* JG NX support? */
3101 	if ((prot & VM_PROT_WRITE) == 0) {
3102 		lwkt_gettoken(&vm_token);
3103 		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
3104 			pmap_clearbit(m, VPTE_RW);
3105 			vm_page_flag_clear(m, PG_WRITEABLE);
3106 		} else {
3107 			pmap_remove_all(m);
3108 		}
3109 		lwkt_reltoken(&vm_token);
3110 	}
3111 }
3112 
3113 vm_paddr_t
3114 pmap_phys_address(vm_pindex_t ppn)
3115 {
3116 	return (x86_64_ptob(ppn));
3117 }
3118 
3119 /*
3120  * Return a count of reference bits for a page, clearing those bits.
3121  * It is not necessary for every reference bit to be cleared, but it
3122  * is necessary that 0 only be returned when there are truly no
3123  * reference bits set.
3124  *
3125  * XXX: The exact number of bits to check and clear is a matter that
3126  * should be tested and standardized at some point in the future for
3127  * optimal aging of shared pages.
3128  *
3129  * No other requirements.
3130  */
3131 int
3132 pmap_ts_referenced(vm_page_t m)
3133 {
3134 	pv_entry_t pv, pvf, pvn;
3135 	pt_entry_t *pte;
3136 	int rtval = 0;
3137 
3138 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3139 		return (rtval);
3140 
3141 	crit_enter();
3142 	lwkt_gettoken(&vm_token);
3143 
3144 	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3145 
3146 		pvf = pv;
3147 
3148 		do {
3149 			pvn = TAILQ_NEXT(pv, pv_list);
3150 
3151 			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3152 
3153 			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
3154 
3155 			if (!pmap_track_modified(pv->pv_pmap, pv->pv_va))
3156 				continue;
3157 
3158 			pte = pmap_pte(pv->pv_pmap, pv->pv_va);
3159 
3160 			if (pte && (*pte & VPTE_A)) {
3161 				atomic_clear_long(pte, VPTE_A);
3162 				rtval++;
3163 				if (rtval > 4) {
3164 					break;
3165 				}
3166 			}
3167 		} while ((pv = pvn) != NULL && pv != pvf);
3168 	}
3169 	lwkt_reltoken(&vm_token);
3170 	crit_exit();
3171 
3172 	return (rtval);
3173 }
3174 
3175 /*
3176  * Return whether or not the specified physical page was modified
3177  * in any physical maps.
3178  *
3179  * No other requirements.
3180  */
3181 boolean_t
3182 pmap_is_modified(vm_page_t m)
3183 {
3184 	boolean_t res;
3185 
3186 	lwkt_gettoken(&vm_token);
3187 	res = pmap_testbit(m, VPTE_M);
3188 	lwkt_reltoken(&vm_token);
3189 	return (res);
3190 }
3191 
3192 /*
3193  * Clear the modify bits on the specified physical page.
3194  *
3195  * No other requirements.
3196  */
3197 void
3198 pmap_clear_modify(vm_page_t m)
3199 {
3200 	lwkt_gettoken(&vm_token);
3201 	pmap_clearbit(m, VPTE_M);
3202 	lwkt_reltoken(&vm_token);
3203 }
3204 
3205 /*
3206  * Clear the reference bit on the specified physical page.
3207  *
3208  * No other requirements.
3209  */
3210 void
3211 pmap_clear_reference(vm_page_t m)
3212 {
3213 	lwkt_gettoken(&vm_token);
3214 	pmap_clearbit(m, VPTE_A);
3215 	lwkt_reltoken(&vm_token);
3216 }
3217 
3218 /*
3219  * Miscellaneous support routines follow
3220  */
3221 
3222 static void
3223 i386_protection_init(void)
3224 {
3225 	int *kp, prot;
3226 
3227 	kp = protection_codes;
3228 	for (prot = 0; prot < 8; prot++) {
3229 		if (prot & VM_PROT_READ)
3230 			*kp |= 0; /* if it's VALID is readeable */
3231 		if (prot & VM_PROT_WRITE)
3232 			*kp |= VPTE_RW;
3233 		if (prot & VM_PROT_EXECUTE)
3234 			*kp |= 0; /* if it's VALID is executable */
3235 		++kp;
3236 	}
3237 }
3238 
3239 /*
3240  * Sets the memory attribute for the specified page.
3241  */
3242 void
3243 pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
3244 {
3245 	/* This is a vkernel, do nothing */
3246 }
3247 
3248 /*
3249  * Change the PAT attribute on an existing kernel memory map.  Caller
3250  * must ensure that the virtual memory in question is not accessed
3251  * during the adjustment.
3252  */
3253 void
3254 pmap_change_attr(vm_offset_t va, vm_size_t count, int mode)
3255 {
3256 	/* This is a vkernel, do nothing */
3257 }
3258 
3259 /*
3260  * Perform the pmap work for mincore
3261  *
3262  * No other requirements.
3263  */
3264 int
3265 pmap_mincore(pmap_t pmap, vm_offset_t addr)
3266 {
3267 	pt_entry_t *ptep, pte;
3268 	vm_page_t m;
3269 	int val = 0;
3270 
3271 	lwkt_gettoken(&vm_token);
3272 	ptep = pmap_pte(pmap, addr);
3273 
3274 	if (ptep && (pte = *ptep) != 0) {
3275 		vm_paddr_t pa;
3276 
3277 		val = MINCORE_INCORE;
3278 		if ((pte & VPTE_MANAGED) == 0)
3279 			goto done;
3280 
3281 		pa = pte & VPTE_FRAME;
3282 
3283 		m = PHYS_TO_VM_PAGE(pa);
3284 
3285 		/*
3286 		 * Modified by us
3287 		 */
3288 		if (pte & VPTE_M)
3289 			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
3290 		/*
3291 		 * Modified by someone
3292 		 */
3293 		else if (m->dirty || pmap_is_modified(m))
3294 			val |= MINCORE_MODIFIED_OTHER;
3295 		/*
3296 		 * Referenced by us
3297 		 */
3298 		if (pte & VPTE_A)
3299 			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
3300 
3301 		/*
3302 		 * Referenced by someone
3303 		 */
3304 		else if ((m->flags & PG_REFERENCED) || pmap_ts_referenced(m)) {
3305 			val |= MINCORE_REFERENCED_OTHER;
3306 			vm_page_flag_set(m, PG_REFERENCED);
3307 		}
3308 	}
3309 done:
3310 	lwkt_reltoken(&vm_token);
3311 	return val;
3312 }
3313 
3314 /*
3315  * Replace p->p_vmspace with a new one.  If adjrefs is non-zero the new
3316  * vmspace will be ref'd and the old one will be deref'd.
3317  *
3318  * Caller must hold vmspace->vm_map.token for oldvm and newvm
3319  */
3320 void
3321 pmap_replacevm(struct proc *p, struct vmspace *newvm, int adjrefs)
3322 {
3323 	struct vmspace *oldvm;
3324 	struct lwp *lp;
3325 
3326 	crit_enter();
3327 	oldvm = p->p_vmspace;
3328 	if (oldvm != newvm) {
3329 		p->p_vmspace = newvm;
3330 		KKASSERT(p->p_nthreads == 1);
3331 		lp = RB_ROOT(&p->p_lwp_tree);
3332 		pmap_setlwpvm(lp, newvm);
3333 		if (adjrefs) {
3334 			sysref_get(&newvm->vm_sysref);
3335 			sysref_put(&oldvm->vm_sysref);
3336 		}
3337 	}
3338 	crit_exit();
3339 }
3340 
3341 /*
3342  * Set the vmspace for a LWP.  The vmspace is almost universally set the
3343  * same as the process vmspace, but virtual kernels need to swap out contexts
3344  * on a per-lwp basis.
3345  */
3346 void
3347 pmap_setlwpvm(struct lwp *lp, struct vmspace *newvm)
3348 {
3349 	struct vmspace *oldvm;
3350 	struct pmap *pmap;
3351 
3352 	oldvm = lp->lwp_vmspace;
3353 	if (oldvm == newvm)
3354 		return;
3355 	lp->lwp_vmspace = newvm;
3356 	if (curthread->td_lwp != lp)
3357 		return;
3358 	/*
3359 	 * NOTE: We don't have to worry about the CPULOCK here because
3360 	 *	 the virtual kernel doesn't call this function when VMM
3361 	 *	 is enabled (and depends on the host kernel when it isn't).
3362 	 */
3363 	crit_enter();
3364 	pmap = vmspace_pmap(newvm);
3365 	atomic_set_cpumask(&pmap->pm_active, CPUMASK(mycpu->gd_cpuid));
3366 #if defined(SWTCH_OPTIM_STATS)
3367 	tlb_flush_count++;
3368 #endif
3369 	pmap = vmspace_pmap(oldvm);
3370 	atomic_clear_cpumask(&pmap->pm_active, CPUMASK(mycpu->gd_cpuid));
3371 	crit_exit();
3372 }
3373 
3374 /*
3375  * The swtch code tried to switch in a heavy weight process whos pmap
3376  * is locked by another cpu.  We have to wait for the lock to clear before
3377  * the pmap can be used.
3378  */
3379 void
3380 pmap_interlock_wait (struct vmspace *vm)
3381 {
3382 	pmap_t pmap = vmspace_pmap(vm);
3383 
3384 	while (pmap->pm_active & CPUMASK_LOCK)
3385 		pthread_yield();
3386 }
3387 
3388 vm_offset_t
3389 pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
3390 {
3391 
3392 	if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
3393 		return addr;
3394 	}
3395 
3396 	addr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
3397 	return addr;
3398 }
3399 
3400 /*
3401  * Used by kmalloc/kfree, page already exists at va
3402  */
3403 vm_page_t
3404 pmap_kvtom(vm_offset_t va)
3405 {
3406 	vpte_t *ptep;
3407 
3408 	KKASSERT(va >= KvaStart && va < KvaEnd);
3409 	ptep = vtopte(va);
3410 	return(PHYS_TO_VM_PAGE(*ptep & PG_FRAME));
3411 }
3412 
3413 void
3414 pmap_object_init(vm_object_t object)
3415 {
3416 	/* empty */
3417 }
3418 
3419 void
3420 pmap_object_free(vm_object_t object)
3421 {
3422 	/* empty */
3423 }
3424