1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * Copyright (c) 1994 John S. Dyson
6  * Copyright (c) 1994 David Greenman
7  * Copyright (c) 2003 Peter Wemm
8  * Copyright (c) 2005-2008 Alan L. Cox <alc@cs.rice.edu>
9  * Copyright (c) 2008, 2009 The DragonFly Project.
10  * Copyright (c) 2008, 2009 Jordan Gordeev.
11  * All rights reserved.
12  *
13  * This code is derived from software contributed to Berkeley by
14  * the Systems Programming Group of the University of Utah Computer
15  * Science Department and William Jolitz of UUNET Technologies Inc.
16  *
17  * Redistribution and use in source and binary forms, with or without
18  * modification, are permitted provided that the following conditions
19  * are met:
20  * 1. Redistributions of source code must retain the above copyright
21  *    notice, this list of conditions and the following disclaimer.
22  * 2. Redistributions in binary form must reproduce the above copyright
23  *    notice, this list of conditions and the following disclaimer in the
24  *    documentation and/or other materials provided with the distribution.
25  * 3. All advertising materials mentioning features or use of this software
26  *    must display the following acknowledgement:
27  *	This product includes software developed by the University of
28  *	California, Berkeley and its contributors.
29  * 4. Neither the name of the University nor the names of its contributors
30  *    may be used to endorse or promote products derived from this software
31  *    without specific prior written permission.
32  *
33  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
34  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
35  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
36  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
37  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
38  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
39  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
41  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
42  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
43  * SUCH DAMAGE.
44  *
45  *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
46  * $FreeBSD: src/sys/i386/i386/pmap.c,v 1.250.2.18 2002/03/06 22:48:53 silby Exp $
47  */
48 
49 /*
50  * Manages physical address maps.
51  */
52 
53 #if JG
54 #include "opt_pmap.h"
55 #endif
56 #include "opt_msgbuf.h"
57 
58 #include <sys/param.h>
59 #include <sys/systm.h>
60 #include <sys/kernel.h>
61 #include <sys/proc.h>
62 #include <sys/msgbuf.h>
63 #include <sys/vmmeter.h>
64 #include <sys/mman.h>
65 #include <sys/vmspace.h>
66 
67 #include <vm/vm.h>
68 #include <vm/vm_param.h>
69 #include <sys/sysctl.h>
70 #include <sys/lock.h>
71 #include <vm/vm_kern.h>
72 #include <vm/vm_page.h>
73 #include <vm/vm_map.h>
74 #include <vm/vm_object.h>
75 #include <vm/vm_extern.h>
76 #include <vm/vm_pageout.h>
77 #include <vm/vm_pager.h>
78 #include <vm/vm_zone.h>
79 
80 #include <sys/user.h>
81 #include <sys/thread2.h>
82 #include <sys/sysref2.h>
83 #include <sys/spinlock2.h>
84 #include <vm/vm_page2.h>
85 
86 #include <machine/cputypes.h>
87 #include <machine/md_var.h>
88 #include <machine/specialreg.h>
89 #include <machine/smp.h>
90 #include <machine/globaldata.h>
91 #include <machine/pmap.h>
92 #include <machine/pmap_inval.h>
93 
94 #include <ddb/ddb.h>
95 
96 #include <stdio.h>
97 #include <assert.h>
98 #include <stdlib.h>
99 #include <pthread.h>
100 
101 #define PMAP_KEEP_PDIRS
102 #ifndef PMAP_SHPGPERPROC
103 #define PMAP_SHPGPERPROC 1000
104 #endif
105 
106 #if defined(DIAGNOSTIC)
107 #define PMAP_DIAGNOSTIC
108 #endif
109 
110 #define MINPV 2048
111 
112 #if !defined(PMAP_DIAGNOSTIC)
113 #define PMAP_INLINE __inline
114 #else
115 #define PMAP_INLINE
116 #endif
117 
118 /*
119  * Get PDEs and PTEs for user/kernel address space
120  */
121 static pd_entry_t *pmap_pde(pmap_t pmap, vm_offset_t va);
122 #define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
123 
124 #define pmap_pde_v(pte)		((*(pd_entry_t *)pte & VPTE_V) != 0)
125 #define pmap_pte_w(pte)		((*(pt_entry_t *)pte & VPTE_WIRED) != 0)
126 #define pmap_pte_m(pte)		((*(pt_entry_t *)pte & VPTE_M) != 0)
127 #define pmap_pte_u(pte)		((*(pt_entry_t *)pte & VPTE_A) != 0)
128 #define pmap_pte_v(pte)		((*(pt_entry_t *)pte & VPTE_V) != 0)
129 
130 /*
131  * Given a map and a machine independent protection code,
132  * convert to a vax protection code.
133  */
134 #define pte_prot(m, p)		\
135 	(protection_codes[p & (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE)])
136 static int protection_codes[8];
137 
138 struct pmap kernel_pmap;
139 
140 static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
141 
142 static vm_object_t kptobj;
143 
144 static int nkpt;
145 
146 static uint64_t	KPDphys;	/* phys addr of kernel level 2 */
147 uint64_t		KPDPphys;	/* phys addr of kernel level 3 */
148 uint64_t		KPML4phys;	/* phys addr of kernel level 4 */
149 
150 extern int vmm_enabled;
151 extern void *vkernel_stack;
152 
153 /*
154  * Data for the pv entry allocation mechanism
155  */
156 static vm_zone_t pvzone;
157 static struct vm_zone pvzone_store;
158 static struct vm_object pvzone_obj;
159 static int pv_entry_count=0, pv_entry_max=0, pv_entry_high_water=0;
160 static int pmap_pagedaemon_waken = 0;
161 static struct pv_entry *pvinit;
162 
163 /*
164  * All those kernel PT submaps that BSD is so fond of
165  */
166 pt_entry_t *CMAP1 = NULL, *ptmmap;
167 caddr_t CADDR1 = NULL;
168 static pt_entry_t *msgbufmap;
169 
170 uint64_t KPTphys;
171 
172 static PMAP_INLINE void	free_pv_entry (pv_entry_t pv);
173 static pv_entry_t get_pv_entry (void);
174 static void	i386_protection_init (void);
175 static __inline void	pmap_clearbit (vm_page_t m, int bit);
176 
177 static void	pmap_remove_all (vm_page_t m);
178 static int pmap_remove_pte (struct pmap *pmap, pt_entry_t *ptq,
179 				vm_offset_t sva);
180 static void pmap_remove_page (struct pmap *pmap, vm_offset_t va);
181 static int pmap_remove_entry (struct pmap *pmap, vm_page_t m,
182 				vm_offset_t va);
183 static boolean_t pmap_testbit (vm_page_t m, int bit);
184 static void pmap_insert_entry (pmap_t pmap, vm_offset_t va,
185 		vm_page_t mpte, vm_page_t m);
186 
187 static vm_page_t pmap_allocpte (pmap_t pmap, vm_offset_t va);
188 
189 static int pmap_release_free_page (pmap_t pmap, vm_page_t p);
190 static vm_page_t _pmap_allocpte (pmap_t pmap, vm_pindex_t ptepindex);
191 #if JGPMAP32
192 static pt_entry_t * pmap_pte_quick (pmap_t pmap, vm_offset_t va);
193 #endif
194 static vm_page_t pmap_page_lookup (vm_object_t object, vm_pindex_t pindex);
195 static int pmap_unuse_pt (pmap_t, vm_offset_t, vm_page_t);
196 
197 /*
198  * pmap_pte_quick:
199  *
200  *	Super fast pmap_pte routine best used when scanning the pv lists.
201  *	This eliminates many course-grained invltlb calls.  Note that many of
202  *	the pv list scans are across different pmaps and it is very wasteful
203  *	to do an entire invltlb when checking a single mapping.
204  *
205  *	Should only be called while in a critical section.
206  */
207 #if JGPMAP32
208 static __inline pt_entry_t *pmap_pte(pmap_t pmap, vm_offset_t va);
209 
210 static pt_entry_t *
211 pmap_pte_quick(pmap_t pmap, vm_offset_t va)
212 {
213 	return pmap_pte(pmap, va);
214 }
215 #endif
216 
217 /* Return a non-clipped PD index for a given VA */
218 static __inline vm_pindex_t
219 pmap_pde_pindex(vm_offset_t va)
220 {
221 	return va >> PDRSHIFT;
222 }
223 
224 /* Return various clipped indexes for a given VA */
225 static __inline vm_pindex_t
226 pmap_pte_index(vm_offset_t va)
227 {
228 	return ((va >> PAGE_SHIFT) & ((1ul << NPTEPGSHIFT) - 1));
229 }
230 
231 static __inline vm_pindex_t
232 pmap_pde_index(vm_offset_t va)
233 {
234 	return ((va >> PDRSHIFT) & ((1ul << NPDEPGSHIFT) - 1));
235 }
236 
237 static __inline vm_pindex_t
238 pmap_pdpe_index(vm_offset_t va)
239 {
240 	return ((va >> PDPSHIFT) & ((1ul << NPDPEPGSHIFT) - 1));
241 }
242 
243 static __inline vm_pindex_t
244 pmap_pml4e_index(vm_offset_t va)
245 {
246 	return ((va >> PML4SHIFT) & ((1ul << NPML4EPGSHIFT) - 1));
247 }
248 
249 /* Return a pointer to the PML4 slot that corresponds to a VA */
250 static __inline pml4_entry_t *
251 pmap_pml4e(pmap_t pmap, vm_offset_t va)
252 {
253 	return (&pmap->pm_pml4[pmap_pml4e_index(va)]);
254 }
255 
256 /* Return a pointer to the PDP slot that corresponds to a VA */
257 static __inline pdp_entry_t *
258 pmap_pml4e_to_pdpe(pml4_entry_t *pml4e, vm_offset_t va)
259 {
260 	pdp_entry_t *pdpe;
261 
262 	pdpe = (pdp_entry_t *)PHYS_TO_DMAP(*pml4e & VPTE_FRAME);
263 	return (&pdpe[pmap_pdpe_index(va)]);
264 }
265 
266 /* Return a pointer to the PDP slot that corresponds to a VA */
267 static __inline pdp_entry_t *
268 pmap_pdpe(pmap_t pmap, vm_offset_t va)
269 {
270 	pml4_entry_t *pml4e;
271 
272 	pml4e = pmap_pml4e(pmap, va);
273 	if ((*pml4e & VPTE_V) == 0)
274 		return NULL;
275 	return (pmap_pml4e_to_pdpe(pml4e, va));
276 }
277 
278 /* Return a pointer to the PD slot that corresponds to a VA */
279 static __inline pd_entry_t *
280 pmap_pdpe_to_pde(pdp_entry_t *pdpe, vm_offset_t va)
281 {
282 	pd_entry_t *pde;
283 
284 	pde = (pd_entry_t *)PHYS_TO_DMAP(*pdpe & VPTE_FRAME);
285 	return (&pde[pmap_pde_index(va)]);
286 }
287 
288 /* Return a pointer to the PD slot that corresponds to a VA */
289 static __inline pd_entry_t *
290 pmap_pde(pmap_t pmap, vm_offset_t va)
291 {
292 	pdp_entry_t *pdpe;
293 
294 	pdpe = pmap_pdpe(pmap, va);
295 	if (pdpe == NULL || (*pdpe & VPTE_V) == 0)
296 		 return NULL;
297 	return (pmap_pdpe_to_pde(pdpe, va));
298 }
299 
300 /* Return a pointer to the PT slot that corresponds to a VA */
301 static __inline pt_entry_t *
302 pmap_pde_to_pte(pd_entry_t *pde, vm_offset_t va)
303 {
304 	pt_entry_t *pte;
305 
306 	pte = (pt_entry_t *)PHYS_TO_DMAP(*pde & VPTE_FRAME);
307 	return (&pte[pmap_pte_index(va)]);
308 }
309 
310 /* Return a pointer to the PT slot that corresponds to a VA */
311 static __inline pt_entry_t *
312 pmap_pte(pmap_t pmap, vm_offset_t va)
313 {
314 	pd_entry_t *pde;
315 
316 	pde = pmap_pde(pmap, va);
317 	if (pde == NULL || (*pde & VPTE_V) == 0)
318 		return NULL;
319 	if ((*pde & VPTE_PS) != 0)	/* compat with i386 pmap_pte() */
320 		return ((pt_entry_t *)pde);
321 	return (pmap_pde_to_pte(pde, va));
322 }
323 
324 
325 #if JGV
326 PMAP_INLINE pt_entry_t *
327 vtopte(vm_offset_t va)
328 {
329 	uint64_t mask = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT +
330 				  NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1);
331 
332 	return (PTmap + ((va >> PAGE_SHIFT) & mask));
333 }
334 
335 static __inline pd_entry_t *
336 vtopde(vm_offset_t va)
337 {
338 	uint64_t mask = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT +
339 				  NPML4EPGSHIFT)) - 1);
340 
341 	return (PDmap + ((va >> PDRSHIFT) & mask));
342 }
343 #else
344 static PMAP_INLINE pt_entry_t *
345 vtopte(vm_offset_t va)
346 {
347 	pt_entry_t *x;
348 	x = pmap_pte(&kernel_pmap, va);
349 	assert(x != NULL);
350 	return x;
351 }
352 
353 static __inline pd_entry_t *
354 vtopde(vm_offset_t va)
355 {
356 	pd_entry_t *x;
357 	x = pmap_pde(&kernel_pmap, va);
358 	assert(x != NULL);
359 	return x;
360 }
361 #endif
362 
363 static uint64_t
364 allocpages(vm_paddr_t *firstaddr, int n)
365 {
366 	uint64_t ret;
367 
368 	ret = *firstaddr;
369 #if JGV
370 	bzero((void *)ret, n * PAGE_SIZE);
371 #endif
372 	*firstaddr += n * PAGE_SIZE;
373 	return (ret);
374 }
375 
376 static void
377 create_dmap_vmm(vm_paddr_t *firstaddr)
378 {
379 	void *stack_addr;
380 	int pml4_stack_index;
381 	int pdp_stack_index;
382 	int pd_stack_index;
383 	long i,j;
384 	int regs[4];
385 	int amd_feature;
386 
387 	uint64_t KPDP_DMAP_phys = allocpages(firstaddr, NDMPML4E);
388 	uint64_t KPDP_VSTACK_phys = allocpages(firstaddr, 1);
389 	uint64_t KPD_VSTACK_phys = allocpages(firstaddr, 1);
390 
391 	pml4_entry_t *KPML4virt = (pml4_entry_t *)PHYS_TO_DMAP(KPML4phys);
392 	pdp_entry_t *KPDP_DMAP_virt = (pdp_entry_t *)PHYS_TO_DMAP(KPDP_DMAP_phys);
393 	pdp_entry_t *KPDP_VSTACK_virt = (pdp_entry_t *)PHYS_TO_DMAP(KPDP_VSTACK_phys);
394 	pd_entry_t *KPD_VSTACK_virt = (pd_entry_t *)PHYS_TO_DMAP(KPD_VSTACK_phys);
395 
396 	bzero(KPDP_DMAP_virt, NDMPML4E * PAGE_SIZE);
397 	bzero(KPDP_VSTACK_virt, 1 * PAGE_SIZE);
398 	bzero(KPD_VSTACK_virt, 1 * PAGE_SIZE);
399 
400 	do_cpuid(0x80000001, regs);
401 	amd_feature = regs[3];
402 
403 	/* Build the mappings for the first 512GB */
404 	if (amd_feature & AMDID_PAGE1GB) {
405 		/* In pages of 1 GB, if supported */
406 		for (i = 0; i < NPDPEPG; i++) {
407 			KPDP_DMAP_virt[i] = ((uint64_t)i << PDPSHIFT);
408 			KPDP_DMAP_virt[i] |= VPTE_RW | VPTE_V | VPTE_PS | VPTE_U;
409 		}
410 	} else {
411 		/* In page of 2MB, otherwise */
412 		for (i = 0; i < NPDPEPG; i++) {
413 			uint64_t KPD_DMAP_phys = allocpages(firstaddr, 1);
414 			pd_entry_t *KPD_DMAP_virt = (pd_entry_t *)PHYS_TO_DMAP(KPD_DMAP_phys);
415 
416 			bzero(KPD_DMAP_virt, PAGE_SIZE);
417 
418 			KPDP_DMAP_virt[i] = KPD_DMAP_phys;
419 			KPDP_DMAP_virt[i] |= VPTE_RW | VPTE_V | VPTE_U;
420 
421 			/* For each PD, we have to allocate NPTEPG PT */
422 			for (j = 0; j < NPTEPG; j++) {
423 				KPD_DMAP_virt[j] = (i << PDPSHIFT) | (j << PDRSHIFT);
424 				KPD_DMAP_virt[j] |= VPTE_RW | VPTE_V | VPTE_PS | VPTE_U;
425 			}
426 		}
427 	}
428 
429 	/* DMAP for the first 512G */
430 	KPML4virt[0] = KPDP_DMAP_phys;
431 	KPML4virt[0] |= VPTE_RW | VPTE_V | VPTE_U;
432 
433 	/* create a 2 MB map of the new stack */
434 	pml4_stack_index = (uint64_t)&stack_addr >> PML4SHIFT;
435 	KPML4virt[pml4_stack_index] = KPDP_VSTACK_phys;
436 	KPML4virt[pml4_stack_index] |= VPTE_RW | VPTE_V | VPTE_U;
437 
438 	pdp_stack_index = ((uint64_t)&stack_addr & PML4MASK) >> PDPSHIFT;
439 	KPDP_VSTACK_virt[pdp_stack_index] = KPD_VSTACK_phys;
440 	KPDP_VSTACK_virt[pdp_stack_index] |= VPTE_RW | VPTE_V | VPTE_U;
441 
442 	pd_stack_index = ((uint64_t)&stack_addr & PDPMASK) >> PDRSHIFT;
443 	KPD_VSTACK_virt[pd_stack_index] = (uint64_t) vkernel_stack;
444 	KPD_VSTACK_virt[pd_stack_index] |= VPTE_RW | VPTE_V | VPTE_U | VPTE_PS;
445 }
446 
447 static void
448 create_pagetables(vm_paddr_t *firstaddr, int64_t ptov_offset)
449 {
450 	int i;
451 	pml4_entry_t *KPML4virt;
452 	pdp_entry_t *KPDPvirt;
453 	pd_entry_t *KPDvirt;
454 	pt_entry_t *KPTvirt;
455 	int kpml4i = pmap_pml4e_index(ptov_offset);
456 	int kpdpi = pmap_pdpe_index(ptov_offset);
457 	int kpdi = pmap_pde_index(ptov_offset);
458 
459 	/*
460          * Calculate NKPT - number of kernel page tables.  We have to
461          * accomodoate prealloction of the vm_page_array, dump bitmap,
462          * MSGBUF_SIZE, and other stuff.  Be generous.
463          *
464          * Maxmem is in pages.
465          */
466         nkpt = (Maxmem * (sizeof(struct vm_page) * 2) + MSGBUF_SIZE) / NBPDR;
467 	/*
468 	 * Allocate pages
469 	 */
470 	KPML4phys = allocpages(firstaddr, 1);
471 	KPDPphys = allocpages(firstaddr, NKPML4E);
472 	KPDphys = allocpages(firstaddr, NKPDPE);
473 	KPTphys = allocpages(firstaddr, nkpt);
474 
475 	KPML4virt = (pml4_entry_t *)PHYS_TO_DMAP(KPML4phys);
476 	KPDPvirt = (pdp_entry_t *)PHYS_TO_DMAP(KPDPphys);
477 	KPDvirt = (pd_entry_t *)PHYS_TO_DMAP(KPDphys);
478 	KPTvirt = (pt_entry_t *)PHYS_TO_DMAP(KPTphys);
479 
480 	bzero(KPML4virt, 1 * PAGE_SIZE);
481 	bzero(KPDPvirt, NKPML4E * PAGE_SIZE);
482 	bzero(KPDvirt, NKPDPE * PAGE_SIZE);
483 	bzero(KPTvirt, nkpt * PAGE_SIZE);
484 
485 	/* Now map the page tables at their location within PTmap */
486 	for (i = 0; i < nkpt; i++) {
487 		KPDvirt[i + kpdi] = KPTphys + (i << PAGE_SHIFT);
488 		KPDvirt[i + kpdi] |= VPTE_RW | VPTE_V | VPTE_U;
489 	}
490 
491 	/* And connect up the PD to the PDP */
492 	for (i = 0; i < NKPDPE; i++) {
493 		KPDPvirt[i + kpdpi] = KPDphys + (i << PAGE_SHIFT);
494 		KPDPvirt[i + kpdpi] |= VPTE_RW | VPTE_V | VPTE_U;
495 	}
496 
497 	/* And recursively map PML4 to itself in order to get PTmap */
498 	KPML4virt[PML4PML4I] = KPML4phys;
499 	KPML4virt[PML4PML4I] |= VPTE_RW | VPTE_V | VPTE_U;
500 
501 	/* Connect the KVA slot up to the PML4 */
502 	KPML4virt[kpml4i] = KPDPphys;
503 	KPML4virt[kpml4i] |= VPTE_RW | VPTE_V | VPTE_U;
504 }
505 
506 /*
507  * Typically used to initialize a fictitious page by vm/device_pager.c
508  */
509 void
510 pmap_page_init(struct vm_page *m)
511 {
512 	vm_page_init(m);
513 	TAILQ_INIT(&m->md.pv_list);
514 }
515 
516 /*
517  *	Bootstrap the system enough to run with virtual memory.
518  *
519  *	On the i386 this is called after mapping has already been enabled
520  *	and just syncs the pmap module with what has already been done.
521  *	[We can't call it easily with mapping off since the kernel is not
522  *	mapped with PA == VA, hence we would have to relocate every address
523  *	from the linked base (virtual) address "KERNBASE" to the actual
524  *	(physical) address starting relative to 0]
525  */
526 void
527 pmap_bootstrap(vm_paddr_t *firstaddr, int64_t ptov_offset)
528 {
529 	vm_offset_t va;
530 	pt_entry_t *pte;
531 
532 	/*
533 	 * Create an initial set of page tables to run the kernel in.
534 	 */
535 	create_pagetables(firstaddr, ptov_offset);
536 
537 	/* Create the DMAP for the VMM */
538 	if (vmm_enabled) {
539 		create_dmap_vmm(firstaddr);
540 	}
541 
542 	virtual_start = KvaStart;
543 	virtual_end = KvaEnd;
544 
545 	/*
546 	 * Initialize protection array.
547 	 */
548 	i386_protection_init();
549 
550 	/*
551 	 * The kernel's pmap is statically allocated so we don't have to use
552 	 * pmap_create, which is unlikely to work correctly at this part of
553 	 * the boot sequence (XXX and which no longer exists).
554 	 *
555 	 * The kernel_pmap's pm_pteobj is used only for locking and not
556 	 * for mmu pages.
557 	 */
558 	kernel_pmap.pm_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(KPML4phys);
559 	kernel_pmap.pm_count = 1;
560 	/* don't allow deactivation */
561 	CPUMASK_ASSALLONES(kernel_pmap.pm_active);
562 	kernel_pmap.pm_pteobj = NULL;	/* see pmap_init */
563 	TAILQ_INIT(&kernel_pmap.pm_pvlist);
564 	TAILQ_INIT(&kernel_pmap.pm_pvlist_free);
565 	lwkt_token_init(&kernel_pmap.pm_token, "kpmap_tok");
566 	spin_init(&kernel_pmap.pm_spin, "pmapbootstrap");
567 
568 	/*
569 	 * Reserve some special page table entries/VA space for temporary
570 	 * mapping of pages.
571 	 */
572 #define	SYSMAP(c, p, v, n)	\
573 	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
574 
575 	va = virtual_start;
576 	pte = pmap_pte(&kernel_pmap, va);
577 	/*
578 	 * CMAP1/CMAP2 are used for zeroing and copying pages.
579 	 */
580 	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
581 
582 #if JGV
583 	/*
584 	 * Crashdump maps.
585 	 */
586 	SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
587 #endif
588 
589 	/*
590 	 * ptvmmap is used for reading arbitrary physical pages via
591 	 * /dev/mem.
592 	 */
593 	SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
594 
595 	/*
596 	 * msgbufp is used to map the system message buffer.
597 	 * XXX msgbufmap is not used.
598 	 */
599 	SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
600 	       atop(round_page(MSGBUF_SIZE)))
601 
602 	virtual_start = va;
603 
604 	*CMAP1 = 0;
605 	/* Not ready to do an invltlb yet for VMM*/
606 	if (!vmm_enabled)
607 		cpu_invltlb();
608 
609 }
610 
611 /*
612  *	Initialize the pmap module.
613  *	Called by vm_init, to initialize any structures that the pmap
614  *	system needs to map virtual memory.
615  *	pmap_init has been enhanced to support in a fairly consistant
616  *	way, discontiguous physical memory.
617  */
618 void
619 pmap_init(void)
620 {
621 	int i;
622 	int initial_pvs;
623 
624 	/*
625 	 * object for kernel page table pages
626 	 */
627 	/* JG I think the number can be arbitrary */
628 	kptobj = vm_object_allocate(OBJT_DEFAULT, 5);
629 	kernel_pmap.pm_pteobj = kptobj;
630 
631 	/*
632 	 * Allocate memory for random pmap data structures.  Includes the
633 	 * pv_head_table.
634 	 */
635 	for(i = 0; i < vm_page_array_size; i++) {
636 		vm_page_t m;
637 
638 		m = &vm_page_array[i];
639 		TAILQ_INIT(&m->md.pv_list);
640 		m->md.pv_list_count = 0;
641 	}
642 
643 	/*
644 	 * init the pv free list
645 	 */
646 	initial_pvs = vm_page_array_size;
647 	if (initial_pvs < MINPV)
648 		initial_pvs = MINPV;
649 	pvzone = &pvzone_store;
650 	pvinit = (struct pv_entry *)
651 		kmem_alloc(&kernel_map,
652 			   initial_pvs * sizeof (struct pv_entry),
653 			   VM_SUBSYS_PVENTRY);
654 	zbootinit(pvzone, "PV ENTRY", sizeof (struct pv_entry), pvinit,
655 		initial_pvs);
656 
657 	/*
658 	 * Now it is safe to enable pv_table recording.
659 	 */
660 	pmap_initialized = TRUE;
661 }
662 
663 /*
664  * Initialize the address space (zone) for the pv_entries.  Set a
665  * high water mark so that the system can recover from excessive
666  * numbers of pv entries.
667  */
668 void
669 pmap_init2(void)
670 {
671 	int shpgperproc = PMAP_SHPGPERPROC;
672 
673 	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
674 	pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
675 	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
676 	pv_entry_high_water = 9 * (pv_entry_max / 10);
677 	zinitna(pvzone, &pvzone_obj, NULL, 0, pv_entry_max, ZONE_INTERRUPT);
678 }
679 
680 
681 /***************************************************
682  * Low level helper routines.....
683  ***************************************************/
684 
685 /*
686  * The modification bit is not tracked for any pages in this range. XXX
687  * such pages in this maps should always use pmap_k*() functions and not
688  * be managed anyhow.
689  *
690  * XXX User and kernel address spaces are independant for virtual kernels,
691  * this function only applies to the kernel pmap.
692  */
693 static int
694 pmap_track_modified(pmap_t pmap, vm_offset_t va)
695 {
696 	if (pmap != &kernel_pmap)
697 		return 1;
698 	if ((va < clean_sva) || (va >= clean_eva))
699 		return 1;
700 	else
701 		return 0;
702 }
703 
704 /*
705  * Extract the physical page address associated with the map/VA pair.
706  *
707  * No requirements.
708  */
709 vm_paddr_t
710 pmap_extract(pmap_t pmap, vm_offset_t va)
711 {
712 	vm_paddr_t rtval;
713 	pt_entry_t *pte;
714 	pd_entry_t pde, *pdep;
715 
716 	lwkt_gettoken(&vm_token);
717 	rtval = 0;
718 	pdep = pmap_pde(pmap, va);
719 	if (pdep != NULL) {
720 		pde = *pdep;
721 		if (pde) {
722 			if ((pde & VPTE_PS) != 0) {
723 				/* JGV */
724 				rtval = (pde & PG_PS_FRAME) | (va & PDRMASK);
725 			} else {
726 				pte = pmap_pde_to_pte(pdep, va);
727 				rtval = (*pte & VPTE_FRAME) | (va & PAGE_MASK);
728 			}
729 		}
730 	}
731 	lwkt_reltoken(&vm_token);
732 	return rtval;
733 }
734 
735 /*
736  * Similar to extract but checks protections, SMP-friendly short-cut for
737  * vm_fault_page[_quick]().
738  */
739 vm_page_t
740 pmap_fault_page_quick(pmap_t pmap __unused, vm_offset_t vaddr __unused,
741 		      vm_prot_t prot __unused)
742 {
743 	return(NULL);
744 }
745 
746 /*
747  *	Routine:	pmap_kextract
748  *	Function:
749  *		Extract the physical page address associated
750  *		kernel virtual address.
751  */
752 vm_paddr_t
753 pmap_kextract(vm_offset_t va)
754 {
755 	pd_entry_t pde;
756 	vm_paddr_t pa;
757 
758 	KKASSERT(va >= KvaStart && va < KvaEnd);
759 
760 	/*
761 	 * The DMAP region is not included in [KvaStart, KvaEnd)
762 	 */
763 #if 0
764 	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
765 		pa = DMAP_TO_PHYS(va);
766 	} else {
767 #endif
768 		pde = *vtopde(va);
769 		if (pde & VPTE_PS) {
770 			/* JGV */
771 			pa = (pde & PG_PS_FRAME) | (va & PDRMASK);
772 		} else {
773 			/*
774 			 * Beware of a concurrent promotion that changes the
775 			 * PDE at this point!  For example, vtopte() must not
776 			 * be used to access the PTE because it would use the
777 			 * new PDE.  It is, however, safe to use the old PDE
778 			 * because the page table page is preserved by the
779 			 * promotion.
780 			 */
781 			pa = *pmap_pde_to_pte(&pde, va);
782 			pa = (pa & VPTE_FRAME) | (va & PAGE_MASK);
783 		}
784 #if 0
785 	}
786 #endif
787 	return pa;
788 }
789 
790 /***************************************************
791  * Low level mapping routines.....
792  ***************************************************/
793 
794 /*
795  * Enter a mapping into kernel_pmap.  Mappings created in this fashion
796  * are not managed.  Mappings must be immediately accessible on all cpus.
797  *
798  * Call pmap_inval_pte() to invalidate the virtual pte and clean out the
799  * real pmap and handle related races before storing the new vpte.  The
800  * new semantics for kenter require use to do an UNCONDITIONAL invalidation,
801  * because the entry may have previously been cleared without an invalidation.
802  */
803 void
804 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
805 {
806 	pt_entry_t *pte;
807 	pt_entry_t npte;
808 
809 	KKASSERT(va >= KvaStart && va < KvaEnd);
810 	npte = pa | VPTE_RW | VPTE_V | VPTE_U;
811 	pte = vtopte(va);
812 
813 #if 1
814 	*pte = 0;
815 	pmap_inval_pte(pte, &kernel_pmap, va);
816 #else
817 	if (*pte & VPTE_V)
818 		pmap_inval_pte(pte, &kernel_pmap, va);
819 #endif
820 	*pte = npte;
821 }
822 
823 /*
824  * Enter an unmanaged KVA mapping for the private use of the current
825  * cpu only.
826  *
827  * It is illegal for the mapping to be accessed by other cpus without
828  * proper invalidation.
829  */
830 int
831 pmap_kenter_quick(vm_offset_t va, vm_paddr_t pa)
832 {
833 	pt_entry_t *ptep;
834 	pt_entry_t npte;
835 	int res;
836 
837 	KKASSERT(va >= KvaStart && va < KvaEnd);
838 
839 	npte = (vpte_t)pa | VPTE_RW | VPTE_V | VPTE_U;
840 	ptep = vtopte(va);
841 #if 1
842 	res = 1;
843 #else
844 	/* FUTURE */
845 	res = (*ptep != 0);
846 #endif
847 
848 	if (*ptep & VPTE_V)
849 		pmap_inval_pte_quick(ptep, &kernel_pmap, va);
850 	*ptep = npte;
851 
852 	return res;
853 }
854 
855 int
856 pmap_kenter_noinval(vm_offset_t va, vm_paddr_t pa)
857 {
858 	pt_entry_t *ptep;
859 	pt_entry_t npte;
860 	int res;
861 
862 	KKASSERT(va >= KvaStart && va < KvaEnd);
863 
864 	npte = (vpte_t)pa | VPTE_RW | VPTE_V | VPTE_U;
865 	ptep = vtopte(va);
866 #if 1
867 	res = 1;
868 #else
869 	/* FUTURE */
870 	res = (*ptep != 0);
871 #endif
872 
873 	*ptep = npte;
874 
875 	return res;
876 }
877 
878 /*
879  * Remove an unmanaged mapping created with pmap_kenter*().
880  */
881 void
882 pmap_kremove(vm_offset_t va)
883 {
884 	pt_entry_t *pte;
885 
886 	KKASSERT(va >= KvaStart && va < KvaEnd);
887 
888 	pte = vtopte(va);
889 	*pte = 0;
890 	pmap_inval_pte(pte, &kernel_pmap, va);
891 }
892 
893 /*
894  * Remove an unmanaged mapping created with pmap_kenter*() but synchronize
895  * only with this cpu.
896  *
897  * Unfortunately because we optimize new entries by testing VPTE_V later
898  * on, we actually still have to synchronize with all the cpus.  XXX maybe
899  * store a junk value and test against 0 in the other places instead?
900  */
901 void
902 pmap_kremove_quick(vm_offset_t va)
903 {
904 	pt_entry_t *pte;
905 
906 	KKASSERT(va >= KvaStart && va < KvaEnd);
907 
908 	pte = vtopte(va);
909 	*pte = 0;
910 	pmap_inval_pte(pte, &kernel_pmap, va); /* NOT _quick */
911 }
912 
913 void
914 pmap_kremove_noinval(vm_offset_t va)
915 {
916 	pt_entry_t *pte;
917 
918 	KKASSERT(va >= KvaStart && va < KvaEnd);
919 
920 	pte = vtopte(va);
921 	*pte = 0;
922 }
923 
924 /*
925  *	Used to map a range of physical addresses into kernel
926  *	virtual address space.
927  *
928  *	For now, VM is already on, we only need to map the
929  *	specified memory.
930  */
931 vm_offset_t
932 pmap_map(vm_offset_t *virtp, vm_paddr_t start, vm_paddr_t end, int prot)
933 {
934 	return PHYS_TO_DMAP(start);
935 }
936 
937 /*
938  * Map a set of unmanaged VM pages into KVM.
939  */
940 void
941 pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
942 {
943 	vm_offset_t end_va;
944 
945 	end_va = va + count * PAGE_SIZE;
946 	KKASSERT(va >= KvaStart && end_va < KvaEnd);
947 
948 	while (va < end_va) {
949 		pt_entry_t *pte;
950 
951 		pte = vtopte(va);
952 		*pte = 0;
953 		pmap_inval_pte(pte, &kernel_pmap, va);
954 		*pte = VM_PAGE_TO_PHYS(*m) | VPTE_RW | VPTE_V | VPTE_U;
955 		va += PAGE_SIZE;
956 		m++;
957 	}
958 }
959 
960 /*
961  * Undo the effects of pmap_qenter*().
962  */
963 void
964 pmap_qremove(vm_offset_t va, int count)
965 {
966 	vm_offset_t end_va;
967 
968 	end_va = va + count * PAGE_SIZE;
969 	KKASSERT(va >= KvaStart && end_va < KvaEnd);
970 
971 	while (va < end_va) {
972 		pt_entry_t *pte;
973 
974 		pte = vtopte(va);
975 		atomic_swap_long(pte, 0);
976 		pmap_inval_pte(pte, &kernel_pmap, va);
977 		va += PAGE_SIZE;
978 	}
979 }
980 
981 void
982 pmap_qremove_quick(vm_offset_t va, int count)
983 {
984 	vm_offset_t end_va;
985 
986 	end_va = va + count * PAGE_SIZE;
987 	KKASSERT(va >= KvaStart && end_va < KvaEnd);
988 
989 	while (va < end_va) {
990 		pt_entry_t *pte;
991 
992 		pte = vtopte(va);
993 		atomic_swap_long(pte, 0);
994 		cpu_invlpg((void *)va);
995 		va += PAGE_SIZE;
996 	}
997 }
998 
999 void
1000 pmap_qremove_noinval(vm_offset_t va, int count)
1001 {
1002 	vm_offset_t end_va;
1003 
1004 	end_va = va + count * PAGE_SIZE;
1005 	KKASSERT(va >= KvaStart && end_va < KvaEnd);
1006 
1007 	while (va < end_va) {
1008 		pt_entry_t *pte;
1009 
1010 		pte = vtopte(va);
1011 		atomic_swap_long(pte, 0);
1012 		va += PAGE_SIZE;
1013 	}
1014 }
1015 
1016 /*
1017  * This routine works like vm_page_lookup() but also blocks as long as the
1018  * page is busy.  This routine does not busy the page it returns.
1019  *
1020  * Unless the caller is managing objects whos pages are in a known state,
1021  * the call should be made with a critical section held so the page's object
1022  * association remains valid on return.
1023  */
1024 static vm_page_t
1025 pmap_page_lookup(vm_object_t object, vm_pindex_t pindex)
1026 {
1027 	vm_page_t m;
1028 
1029 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1030 	m = vm_page_lookup_busy_wait(object, pindex, FALSE, "pplookp");
1031 
1032 	return(m);
1033 }
1034 
1035 /*
1036  * Create a new thread and optionally associate it with a (new) process.
1037  * NOTE! the new thread's cpu may not equal the current cpu.
1038  */
1039 void
1040 pmap_init_thread(thread_t td)
1041 {
1042 	/* enforce pcb placement */
1043 	td->td_pcb = (struct pcb *)(td->td_kstack + td->td_kstack_size) - 1;
1044 	td->td_savefpu = &td->td_pcb->pcb_save;
1045 	td->td_sp = (char *)td->td_pcb - 16; /* JG is -16 needed on x86_64? */
1046 }
1047 
1048 /*
1049  * This routine directly affects the fork perf for a process.
1050  */
1051 void
1052 pmap_init_proc(struct proc *p)
1053 {
1054 }
1055 
1056 /***************************************************
1057  * Page table page management routines.....
1058  ***************************************************/
1059 
1060 static __inline int pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va,
1061 			vm_page_t m);
1062 
1063 /*
1064  * This routine unholds page table pages, and if the hold count
1065  * drops to zero, then it decrements the wire count.
1066  *
1067  * We must recheck that this is the last hold reference after busy-sleeping
1068  * on the page.
1069  */
1070 static int
1071 _pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va, vm_page_t m)
1072 {
1073 	vm_page_busy_wait(m, FALSE, "pmuwpt");
1074 	KASSERT(m->queue == PQ_NONE,
1075 		("_pmap_unwire_pte_hold: %p->queue != PQ_NONE", m));
1076 
1077 	if (m->hold_count == 1) {
1078 		/*
1079 		 * Unmap the page table page.
1080 		 */
1081 		//abort(); /* JG */
1082 		/* pmap_inval_add(info, pmap, -1); */
1083 
1084 		if (m->pindex >= (NUPDE + NUPDPE)) {
1085 			/* PDP page */
1086 			pml4_entry_t *pml4;
1087 			pml4 = pmap_pml4e(pmap, va);
1088 			*pml4 = 0;
1089 		} else if (m->pindex >= NUPDE) {
1090 			/* PD page */
1091 			pdp_entry_t *pdp;
1092 			pdp = pmap_pdpe(pmap, va);
1093 			*pdp = 0;
1094 		} else {
1095 			/* PT page */
1096 			pd_entry_t *pd;
1097 			pd = pmap_pde(pmap, va);
1098 			*pd = 0;
1099 		}
1100 
1101 		KKASSERT(pmap->pm_stats.resident_count > 0);
1102 		--pmap->pm_stats.resident_count;
1103 
1104 		if (pmap->pm_ptphint == m)
1105 			pmap->pm_ptphint = NULL;
1106 
1107 		if (m->pindex < NUPDE) {
1108 			/* We just released a PT, unhold the matching PD */
1109 			vm_page_t pdpg;
1110 
1111 			pdpg = PHYS_TO_VM_PAGE(*pmap_pdpe(pmap, va) & VPTE_FRAME);
1112 			pmap_unwire_pte_hold(pmap, va, pdpg);
1113 		}
1114 		if (m->pindex >= NUPDE && m->pindex < (NUPDE + NUPDPE)) {
1115 			/* We just released a PD, unhold the matching PDP */
1116 			vm_page_t pdppg;
1117 
1118 			pdppg = PHYS_TO_VM_PAGE(*pmap_pml4e(pmap, va) & VPTE_FRAME);
1119 			pmap_unwire_pte_hold(pmap, va, pdppg);
1120 		}
1121 
1122 		/*
1123 		 * This was our last hold, the page had better be unwired
1124 		 * after we decrement wire_count.
1125 		 *
1126 		 * FUTURE NOTE: shared page directory page could result in
1127 		 * multiple wire counts.
1128 		 */
1129 		vm_page_unhold(m);
1130 		--m->wire_count;
1131 		KKASSERT(m->wire_count == 0);
1132 		atomic_add_int(&vmstats.v_wire_count, -1);
1133 		vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
1134 		vm_page_flash(m);
1135 		vm_page_free_zero(m);
1136 		return 1;
1137 	} else {
1138 		KKASSERT(m->hold_count > 1);
1139 		vm_page_unhold(m);
1140 		vm_page_wakeup(m);
1141 		return 0;
1142 	}
1143 }
1144 
1145 static __inline int
1146 pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va, vm_page_t m)
1147 {
1148 	KKASSERT(m->hold_count > 0);
1149 	if (m->hold_count > 1) {
1150 		vm_page_unhold(m);
1151 		return 0;
1152 	} else {
1153 		return _pmap_unwire_pte_hold(pmap, va, m);
1154 	}
1155 }
1156 
1157 /*
1158  * After removing a page table entry, this routine is used to
1159  * conditionally free the page, and manage the hold/wire counts.
1160  */
1161 static int
1162 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
1163 {
1164 	/* JG Use FreeBSD/amd64 or FreeBSD/i386 ptepde approaches? */
1165 	vm_pindex_t ptepindex;
1166 
1167 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(pmap->pm_pteobj));
1168 
1169 	if (mpte == NULL) {
1170 		/*
1171 		 * page table pages in the kernel_pmap are not managed.
1172 		 */
1173 		if (pmap == &kernel_pmap)
1174 			return(0);
1175 		ptepindex = pmap_pde_pindex(va);
1176 		if (pmap->pm_ptphint &&
1177 			(pmap->pm_ptphint->pindex == ptepindex)) {
1178 			mpte = pmap->pm_ptphint;
1179 		} else {
1180 			mpte = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
1181 			pmap->pm_ptphint = mpte;
1182 			vm_page_wakeup(mpte);
1183 		}
1184 	}
1185 
1186 	return pmap_unwire_pte_hold(pmap, va, mpte);
1187 }
1188 
1189 /*
1190  * Initialize pmap0/vmspace0 .  Since process 0 never enters user mode we
1191  * just dummy it up so it works well enough for fork().
1192  *
1193  * In DragonFly, process pmaps may only be used to manipulate user address
1194  * space, never kernel address space.
1195  */
1196 void
1197 pmap_pinit0(struct pmap *pmap)
1198 {
1199 	pmap_pinit(pmap);
1200 }
1201 
1202 /*
1203  * Initialize a preallocated and zeroed pmap structure,
1204  * such as one in a vmspace structure.
1205  */
1206 void
1207 pmap_pinit(struct pmap *pmap)
1208 {
1209 	vm_page_t ptdpg;
1210 
1211 	/*
1212 	 * No need to allocate page table space yet but we do need a valid
1213 	 * page directory table.
1214 	 */
1215 	if (pmap->pm_pml4 == NULL) {
1216 		pmap->pm_pml4 = (pml4_entry_t *)
1217 			kmem_alloc_pageable(&kernel_map, PAGE_SIZE,
1218 					    VM_SUBSYS_PML4);
1219 	}
1220 
1221 	/*
1222 	 * Allocate an object for the ptes
1223 	 */
1224 	if (pmap->pm_pteobj == NULL)
1225 		pmap->pm_pteobj = vm_object_allocate(OBJT_DEFAULT, NUPDE + NUPDPE + PML4PML4I + 1);
1226 
1227 	/*
1228 	 * Allocate the page directory page, unless we already have
1229 	 * one cached.  If we used the cached page the wire_count will
1230 	 * already be set appropriately.
1231 	 */
1232 	if ((ptdpg = pmap->pm_pdirm) == NULL) {
1233 		ptdpg = vm_page_grab(pmap->pm_pteobj,
1234 				     NUPDE + NUPDPE + PML4PML4I,
1235 				     VM_ALLOC_NORMAL | VM_ALLOC_RETRY |
1236 				     VM_ALLOC_ZERO);
1237 		pmap->pm_pdirm = ptdpg;
1238 		vm_page_flag_clear(ptdpg, PG_MAPPED);
1239 		vm_page_wire(ptdpg);
1240 		vm_page_wakeup(ptdpg);
1241 		pmap_kenter((vm_offset_t)pmap->pm_pml4, VM_PAGE_TO_PHYS(ptdpg));
1242 	}
1243 	pmap->pm_count = 1;
1244 	CPUMASK_ASSZERO(pmap->pm_active);
1245 	pmap->pm_ptphint = NULL;
1246 	TAILQ_INIT(&pmap->pm_pvlist);
1247 	TAILQ_INIT(&pmap->pm_pvlist_free);
1248 	spin_init(&pmap->pm_spin, "pmapinit");
1249 	lwkt_token_init(&pmap->pm_token, "pmap_tok");
1250 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1251 	pmap->pm_stats.resident_count = 1;
1252 }
1253 
1254 /*
1255  * Clean up a pmap structure so it can be physically freed.  This routine
1256  * is called by the vmspace dtor function.  A great deal of pmap data is
1257  * left passively mapped to improve vmspace management so we have a bit
1258  * of cleanup work to do here.
1259  *
1260  * No requirements.
1261  */
1262 void
1263 pmap_puninit(pmap_t pmap)
1264 {
1265 	vm_page_t p;
1266 
1267 	KKASSERT(CPUMASK_TESTZERO(pmap->pm_active));
1268 	if ((p = pmap->pm_pdirm) != NULL) {
1269 		KKASSERT(pmap->pm_pml4 != NULL);
1270 		pmap_kremove((vm_offset_t)pmap->pm_pml4);
1271 		vm_page_busy_wait(p, FALSE, "pgpun");
1272 		p->wire_count--;
1273 		atomic_add_int(&vmstats.v_wire_count, -1);
1274 		vm_page_free_zero(p);
1275 		pmap->pm_pdirm = NULL;
1276 	}
1277 	if (pmap->pm_pml4) {
1278 		kmem_free(&kernel_map, (vm_offset_t)pmap->pm_pml4, PAGE_SIZE);
1279 		pmap->pm_pml4 = NULL;
1280 	}
1281 	if (pmap->pm_pteobj) {
1282 		vm_object_deallocate(pmap->pm_pteobj);
1283 		pmap->pm_pteobj = NULL;
1284 	}
1285 }
1286 
1287 /*
1288  * This function is now unused (used to add the pmap to the pmap_list)
1289  */
1290 void
1291 pmap_pinit2(struct pmap *pmap)
1292 {
1293 }
1294 
1295 /*
1296  * Attempt to release and free a vm_page in a pmap.  Returns 1 on success,
1297  * 0 on failure (if the procedure had to sleep).
1298  *
1299  * When asked to remove the page directory page itself, we actually just
1300  * leave it cached so we do not have to incur the SMP inval overhead of
1301  * removing the kernel mapping.  pmap_puninit() will take care of it.
1302  */
1303 static int
1304 pmap_release_free_page(struct pmap *pmap, vm_page_t p)
1305 {
1306 	/*
1307 	 * This code optimizes the case of freeing non-busy
1308 	 * page-table pages.  Those pages are zero now, and
1309 	 * might as well be placed directly into the zero queue.
1310 	 */
1311 	if (vm_page_busy_try(p, FALSE)) {
1312 		vm_page_sleep_busy(p, FALSE, "pmaprl");
1313 		return 0;
1314 	}
1315 
1316 	/*
1317 	 * Remove the page table page from the processes address space.
1318 	 */
1319 	if (p->pindex == NUPDE + NUPDPE + PML4PML4I) {
1320 		/*
1321 		 * We are the pml4 table itself.
1322 		 */
1323 		/* XXX anything to do here? */
1324 	} else if (p->pindex >= (NUPDE + NUPDPE)) {
1325 		/*
1326 		 * We are a PDP page.
1327 		 * We look for the PML4 entry that points to us.
1328 		 */
1329 		vm_page_t m4 = vm_page_lookup(pmap->pm_pteobj, NUPDE + NUPDPE + PML4PML4I);
1330 		KKASSERT(m4 != NULL);
1331 		pml4_entry_t *pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m4));
1332 		int idx = (p->pindex - (NUPDE + NUPDPE)) % NPML4EPG;
1333 		KKASSERT(pml4[idx] != 0);
1334 		pml4[idx] = 0;
1335 		m4->hold_count--;
1336 		/* JG What about wire_count? */
1337 	} else if (p->pindex >= NUPDE) {
1338 		/*
1339 		 * We are a PD page.
1340 		 * We look for the PDP entry that points to us.
1341 		 */
1342 		vm_page_t m3 = vm_page_lookup(pmap->pm_pteobj, NUPDE + NUPDPE + (p->pindex - NUPDE) / NPDPEPG);
1343 		KKASSERT(m3 != NULL);
1344 		pdp_entry_t *pdp = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m3));
1345 		int idx = (p->pindex - NUPDE) % NPDPEPG;
1346 		KKASSERT(pdp[idx] != 0);
1347 		pdp[idx] = 0;
1348 		m3->hold_count--;
1349 		/* JG What about wire_count? */
1350 	} else {
1351 		/* We are a PT page.
1352 		 * We look for the PD entry that points to us.
1353 		 */
1354 		vm_page_t m2 = vm_page_lookup(pmap->pm_pteobj, NUPDE + p->pindex / NPDEPG);
1355 		KKASSERT(m2 != NULL);
1356 		pd_entry_t *pd = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m2));
1357 		int idx = p->pindex % NPDEPG;
1358 		pd[idx] = 0;
1359 		m2->hold_count--;
1360 		/* JG What about wire_count? */
1361 	}
1362 	KKASSERT(pmap->pm_stats.resident_count > 0);
1363 	--pmap->pm_stats.resident_count;
1364 
1365 	if (p->hold_count)  {
1366 		panic("pmap_release: freeing held pt page "
1367 		      "pmap=%p pg=%p dmap=%p pi=%ld {%ld,%ld,%ld}",
1368 		      pmap, p, (void *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(p)),
1369 		      p->pindex, NUPDE, NUPDPE, PML4PML4I);
1370 	}
1371 	if (pmap->pm_ptphint && (pmap->pm_ptphint->pindex == p->pindex))
1372 		pmap->pm_ptphint = NULL;
1373 
1374 	/*
1375 	 * We leave the top-level page table page cached, wired, and mapped in
1376 	 * the pmap until the dtor function (pmap_puninit()) gets called.
1377 	 * However, still clean it up.
1378 	 */
1379 	if (p->pindex == NUPDE + NUPDPE + PML4PML4I) {
1380 		bzero(pmap->pm_pml4, PAGE_SIZE);
1381 		vm_page_wakeup(p);
1382 	} else {
1383 		abort();
1384 		p->wire_count--;
1385 		atomic_add_int(&vmstats.v_wire_count, -1);
1386 		/* JG eventually revert to using vm_page_free_zero() */
1387 		vm_page_free(p);
1388 	}
1389 	return 1;
1390 }
1391 
1392 /*
1393  * this routine is called if the page table page is not
1394  * mapped correctly.
1395  */
1396 static vm_page_t
1397 _pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex)
1398 {
1399 	vm_page_t m, pdppg, pdpg;
1400 
1401 	/*
1402 	 * Find or fabricate a new pagetable page.  Handle allocation
1403 	 * races by checking m->valid.
1404 	 */
1405 	m = vm_page_grab(pmap->pm_pteobj, ptepindex,
1406 			 VM_ALLOC_NORMAL | VM_ALLOC_ZERO | VM_ALLOC_RETRY);
1407 
1408 	KASSERT(m->queue == PQ_NONE,
1409 		("_pmap_allocpte: %p->queue != PQ_NONE", m));
1410 
1411 	/*
1412 	 * Increment the hold count for the page we will be returning to
1413 	 * the caller.
1414 	 */
1415 	m->hold_count++;
1416 	vm_page_wire(m);
1417 
1418 	/*
1419 	 * Map the pagetable page into the process address space, if
1420 	 * it isn't already there.
1421 	 */
1422 	++pmap->pm_stats.resident_count;
1423 
1424 	if (ptepindex >= (NUPDE + NUPDPE)) {
1425 		pml4_entry_t *pml4;
1426 		vm_pindex_t pml4index;
1427 
1428 		/* Wire up a new PDP page */
1429 		pml4index = ptepindex - (NUPDE + NUPDPE);
1430 		pml4 = &pmap->pm_pml4[pml4index];
1431 		*pml4 = VM_PAGE_TO_PHYS(m) |
1432 		    VPTE_RW | VPTE_V | VPTE_U |
1433 		    VPTE_A | VPTE_M;
1434 	} else if (ptepindex >= NUPDE) {
1435 		vm_pindex_t pml4index;
1436 		vm_pindex_t pdpindex;
1437 		pml4_entry_t *pml4;
1438 		pdp_entry_t *pdp;
1439 
1440 		/* Wire up a new PD page */
1441 		pdpindex = ptepindex - NUPDE;
1442 		pml4index = pdpindex >> NPML4EPGSHIFT;
1443 
1444 		pml4 = &pmap->pm_pml4[pml4index];
1445 		if ((*pml4 & VPTE_V) == 0) {
1446 			/* Have to allocate a new PDP page, recurse */
1447 			if (_pmap_allocpte(pmap, NUPDE + NUPDPE + pml4index)
1448 			     == NULL) {
1449 				--m->wire_count;
1450 				vm_page_free(m);
1451 				return (NULL);
1452 			}
1453 		} else {
1454 			/* Add reference to the PDP page */
1455 			pdppg = PHYS_TO_VM_PAGE(*pml4 & VPTE_FRAME);
1456 			pdppg->hold_count++;
1457 		}
1458 		pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & VPTE_FRAME);
1459 
1460 		/* Now find the pdp page */
1461 		pdp = &pdp[pdpindex & ((1ul << NPDPEPGSHIFT) - 1)];
1462 		KKASSERT(*pdp == 0);	/* JG DEBUG64 */
1463 		*pdp = VM_PAGE_TO_PHYS(m) | VPTE_RW | VPTE_V | VPTE_U |
1464 		       VPTE_A | VPTE_M;
1465 	} else {
1466 		vm_pindex_t pml4index;
1467 		vm_pindex_t pdpindex;
1468 		pml4_entry_t *pml4;
1469 		pdp_entry_t *pdp;
1470 		pd_entry_t *pd;
1471 
1472 		/* Wire up a new PT page */
1473 		pdpindex = ptepindex >> NPDPEPGSHIFT;
1474 		pml4index = pdpindex >> NPML4EPGSHIFT;
1475 
1476 		/* First, find the pdp and check that its valid. */
1477 		pml4 = &pmap->pm_pml4[pml4index];
1478 		if ((*pml4 & VPTE_V) == 0) {
1479 			/* We miss a PDP page. We ultimately need a PD page.
1480 			 * Recursively allocating a PD page will allocate
1481 			 * the missing PDP page and will also allocate
1482 			 * the PD page we need.
1483 			 */
1484 			/* Have to allocate a new PD page, recurse */
1485 			if (_pmap_allocpte(pmap, NUPDE + pdpindex)
1486 			     == NULL) {
1487 				--m->wire_count;
1488 				vm_page_free(m);
1489 				return (NULL);
1490 			}
1491 			pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & VPTE_FRAME);
1492 			pdp = &pdp[pdpindex & ((1ul << NPDPEPGSHIFT) - 1)];
1493 		} else {
1494 			pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & VPTE_FRAME);
1495 			pdp = &pdp[pdpindex & ((1ul << NPDPEPGSHIFT) - 1)];
1496 			if ((*pdp & VPTE_V) == 0) {
1497 				/* Have to allocate a new PD page, recurse */
1498 				if (_pmap_allocpte(pmap, NUPDE + pdpindex)
1499 				     == NULL) {
1500 					--m->wire_count;
1501 					vm_page_free(m);
1502 					return (NULL);
1503 				}
1504 			} else {
1505 				/* Add reference to the PD page */
1506 				pdpg = PHYS_TO_VM_PAGE(*pdp & VPTE_FRAME);
1507 				pdpg->hold_count++;
1508 			}
1509 		}
1510 		pd = (pd_entry_t *)PHYS_TO_DMAP(*pdp & VPTE_FRAME);
1511 
1512 		/* Now we know where the page directory page is */
1513 		pd = &pd[ptepindex & ((1ul << NPDEPGSHIFT) - 1)];
1514 		KKASSERT(*pd == 0);	/* JG DEBUG64 */
1515 		*pd = VM_PAGE_TO_PHYS(m) | VPTE_RW | VPTE_V | VPTE_U |
1516 		      VPTE_A | VPTE_M;
1517 	}
1518 
1519 	/*
1520 	 * Set the page table hint
1521 	 */
1522 	pmap->pm_ptphint = m;
1523 	vm_page_flag_set(m, PG_MAPPED);
1524 	vm_page_wakeup(m);
1525 
1526 	return m;
1527 }
1528 
1529 /*
1530  * Determine the page table page required to access the VA in the pmap
1531  * and allocate it if necessary.  Return a held vm_page_t for the page.
1532  *
1533  * Only used with user pmaps.
1534  */
1535 static vm_page_t
1536 pmap_allocpte(pmap_t pmap, vm_offset_t va)
1537 {
1538 	vm_pindex_t ptepindex;
1539 	pd_entry_t *pd;
1540 	vm_page_t m;
1541 
1542 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(pmap->pm_pteobj));
1543 
1544 	/*
1545 	 * Calculate pagetable page index
1546 	 */
1547 	ptepindex = pmap_pde_pindex(va);
1548 
1549 	/*
1550 	 * Get the page directory entry
1551 	 */
1552 	pd = pmap_pde(pmap, va);
1553 
1554 	/*
1555 	 * This supports switching from a 2MB page to a
1556 	 * normal 4K page.
1557 	 */
1558 	if (pd != NULL && (*pd & (VPTE_PS | VPTE_V)) == (VPTE_PS | VPTE_V)) {
1559 		panic("no promotion/demotion yet");
1560 		*pd = 0;
1561 		pd = NULL;
1562 		/*cpu_invltlb();*/
1563 		/*smp_invltlb();*/
1564 	}
1565 
1566 	/*
1567 	 * If the page table page is mapped, we just increment the
1568 	 * hold count, and activate it.
1569 	 */
1570 	if (pd != NULL && (*pd & VPTE_V) != 0) {
1571 		/* YYY hint is used here on i386 */
1572 		m = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
1573 		pmap->pm_ptphint = m;
1574 		vm_page_hold(m);
1575 		vm_page_wakeup(m);
1576 		return m;
1577 	}
1578 	/*
1579 	 * Here if the pte page isn't mapped, or if it has been deallocated.
1580 	 */
1581 	return _pmap_allocpte(pmap, ptepindex);
1582 }
1583 
1584 
1585 /***************************************************
1586  * Pmap allocation/deallocation routines.
1587  ***************************************************/
1588 
1589 /*
1590  * Release any resources held by the given physical map.
1591  * Called when a pmap initialized by pmap_pinit is being released.
1592  * Should only be called if the map contains no valid mappings.
1593  *
1594  * Caller must hold pmap->pm_token
1595  */
1596 static int pmap_release_callback(struct vm_page *p, void *data);
1597 
1598 void
1599 pmap_release(struct pmap *pmap)
1600 {
1601 	vm_object_t object = pmap->pm_pteobj;
1602 	struct rb_vm_page_scan_info info;
1603 
1604 	KKASSERT(pmap != &kernel_pmap);
1605 
1606 	lwkt_gettoken(&vm_token);
1607 #if defined(DIAGNOSTIC)
1608 	if (object->ref_count != 1)
1609 		panic("pmap_release: pteobj reference count != 1");
1610 #endif
1611 
1612 	info.pmap = pmap;
1613 	info.object = object;
1614 
1615 	KASSERT(CPUMASK_TESTZERO(pmap->pm_active),
1616 		("pmap %p still active! %016jx",
1617 		pmap,
1618 		(uintmax_t)CPUMASK_LOWMASK(pmap->pm_active)));
1619 
1620 	vm_object_hold(object);
1621 	do {
1622 		info.error = 0;
1623 		info.mpte = NULL;
1624 		info.limit = object->generation;
1625 
1626 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
1627 				        pmap_release_callback, &info);
1628 		if (info.error == 0 && info.mpte) {
1629 			if (!pmap_release_free_page(pmap, info.mpte))
1630 				info.error = 1;
1631 		}
1632 	} while (info.error);
1633 	vm_object_drop(object);
1634 	lwkt_reltoken(&vm_token);
1635 }
1636 
1637 static int
1638 pmap_release_callback(struct vm_page *p, void *data)
1639 {
1640 	struct rb_vm_page_scan_info *info = data;
1641 
1642 	if (p->pindex == NUPDE + NUPDPE + PML4PML4I) {
1643 		info->mpte = p;
1644 		return(0);
1645 	}
1646 	if (!pmap_release_free_page(info->pmap, p)) {
1647 		info->error = 1;
1648 		return(-1);
1649 	}
1650 	if (info->object->generation != info->limit) {
1651 		info->error = 1;
1652 		return(-1);
1653 	}
1654 	return(0);
1655 }
1656 
1657 /*
1658  * Grow the number of kernel page table entries, if needed.
1659  *
1660  * No requirements.
1661  */
1662 void
1663 pmap_growkernel(vm_offset_t kstart, vm_offset_t kend)
1664 {
1665 	vm_offset_t addr;
1666 	vm_paddr_t paddr;
1667 	vm_offset_t ptppaddr;
1668 	vm_page_t nkpg;
1669 	pd_entry_t *pde, newpdir;
1670 	pdp_entry_t newpdp;
1671 
1672 	addr = kend;
1673 
1674 	vm_object_hold(kptobj);
1675 	if (kernel_vm_end == 0) {
1676 		kernel_vm_end = KvaStart;
1677 		nkpt = 0;
1678 		while ((*pmap_pde(&kernel_pmap, kernel_vm_end) & VPTE_V) != 0) {
1679 			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1680 			nkpt++;
1681 			if (kernel_vm_end - 1 >= kernel_map.max_offset) {
1682 				kernel_vm_end = kernel_map.max_offset;
1683 				break;
1684 			}
1685 		}
1686 	}
1687 	addr = roundup2(addr, PAGE_SIZE * NPTEPG);
1688 	if (addr - 1 >= kernel_map.max_offset)
1689 		addr = kernel_map.max_offset;
1690 	while (kernel_vm_end < addr) {
1691 		pde = pmap_pde(&kernel_pmap, kernel_vm_end);
1692 		if (pde == NULL) {
1693 			/* We need a new PDP entry */
1694 			nkpg = vm_page_alloc(kptobj, nkpt,
1695 			                     VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM
1696 					     | VM_ALLOC_INTERRUPT);
1697 			if (nkpg == NULL) {
1698 				panic("pmap_growkernel: no memory to "
1699 				      "grow kernel");
1700 			}
1701 			paddr = VM_PAGE_TO_PHYS(nkpg);
1702 			pmap_zero_page(paddr);
1703 			newpdp = (pdp_entry_t)(paddr |
1704 			    VPTE_V | VPTE_RW | VPTE_U |
1705 			    VPTE_A | VPTE_M);
1706 			*pmap_pdpe(&kernel_pmap, kernel_vm_end) = newpdp;
1707 			nkpt++;
1708 			continue; /* try again */
1709 		}
1710 		if ((*pde & VPTE_V) != 0) {
1711 			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) &
1712 					~(PAGE_SIZE * NPTEPG - 1);
1713 			if (kernel_vm_end - 1 >= kernel_map.max_offset) {
1714 				kernel_vm_end = kernel_map.max_offset;
1715 				break;
1716 			}
1717 			continue;
1718 		}
1719 
1720 		/*
1721 		 * This index is bogus, but out of the way
1722 		 */
1723 		nkpg = vm_page_alloc(kptobj, nkpt,
1724 				     VM_ALLOC_NORMAL |
1725 				     VM_ALLOC_SYSTEM |
1726 				     VM_ALLOC_INTERRUPT);
1727 		if (nkpg == NULL)
1728 			panic("pmap_growkernel: no memory to grow kernel");
1729 
1730 		vm_page_wire(nkpg);
1731 		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1732 		pmap_zero_page(ptppaddr);
1733 		newpdir = (pd_entry_t)(ptppaddr |
1734 		    VPTE_V | VPTE_RW | VPTE_U |
1735 		    VPTE_A | VPTE_M);
1736 		*pmap_pde(&kernel_pmap, kernel_vm_end) = newpdir;
1737 		nkpt++;
1738 
1739 		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) &
1740 				~(PAGE_SIZE * NPTEPG - 1);
1741 		if (kernel_vm_end - 1 >= kernel_map.max_offset) {
1742 			kernel_vm_end = kernel_map.max_offset;
1743 			break;
1744 		}
1745 	}
1746 	vm_object_drop(kptobj);
1747 }
1748 
1749 /*
1750  * Add a reference to the specified pmap.
1751  *
1752  * No requirements.
1753  */
1754 void
1755 pmap_reference(pmap_t pmap)
1756 {
1757 	if (pmap) {
1758 		lwkt_gettoken(&vm_token);
1759 		++pmap->pm_count;
1760 		lwkt_reltoken(&vm_token);
1761 	}
1762 }
1763 
1764 /************************************************************************
1765  *	   		VMSPACE MANAGEMENT				*
1766  ************************************************************************
1767  *
1768  * The VMSPACE management we do in our virtual kernel must be reflected
1769  * in the real kernel.  This is accomplished by making vmspace system
1770  * calls to the real kernel.
1771  */
1772 void
1773 cpu_vmspace_alloc(struct vmspace *vm)
1774 {
1775 	int r;
1776 	void *rp;
1777 	vpte_t vpte;
1778 
1779 	/*
1780 	 * If VMM enable, don't do nothing, we
1781 	 * are able to use real page tables
1782 	 */
1783 	if (vmm_enabled)
1784 		return;
1785 
1786 #define USER_SIZE	(VM_MAX_USER_ADDRESS - VM_MIN_USER_ADDRESS)
1787 
1788 	if (vmspace_create(&vm->vm_pmap, 0, NULL) < 0)
1789 		panic("vmspace_create() failed");
1790 
1791 	rp = vmspace_mmap(&vm->vm_pmap, VM_MIN_USER_ADDRESS, USER_SIZE,
1792 			  PROT_READ|PROT_WRITE,
1793 			  MAP_FILE|MAP_SHARED|MAP_VPAGETABLE|MAP_FIXED,
1794 			  MemImageFd, 0);
1795 	if (rp == MAP_FAILED)
1796 		panic("vmspace_mmap: failed");
1797 	vmspace_mcontrol(&vm->vm_pmap, VM_MIN_USER_ADDRESS, USER_SIZE,
1798 			 MADV_NOSYNC, 0);
1799 	vpte = VM_PAGE_TO_PHYS(vmspace_pmap(vm)->pm_pdirm) | VPTE_RW | VPTE_V | VPTE_U;
1800 	r = vmspace_mcontrol(&vm->vm_pmap, VM_MIN_USER_ADDRESS, USER_SIZE,
1801 			     MADV_SETMAP, vpte);
1802 	if (r < 0)
1803 		panic("vmspace_mcontrol: failed");
1804 }
1805 
1806 void
1807 cpu_vmspace_free(struct vmspace *vm)
1808 {
1809 	/*
1810 	 * If VMM enable, don't do nothing, we
1811 	 * are able to use real page tables
1812 	 */
1813 	if (vmm_enabled)
1814 		return;
1815 
1816 	if (vmspace_destroy(&vm->vm_pmap) < 0)
1817 		panic("vmspace_destroy() failed");
1818 }
1819 
1820 /***************************************************
1821 * page management routines.
1822  ***************************************************/
1823 
1824 /*
1825  * free the pv_entry back to the free list.  This function may be
1826  * called from an interrupt.
1827  */
1828 static __inline void
1829 free_pv_entry(pv_entry_t pv)
1830 {
1831 	pv_entry_count--;
1832 	KKASSERT(pv_entry_count >= 0);
1833 	zfree(pvzone, pv);
1834 }
1835 
1836 /*
1837  * get a new pv_entry, allocating a block from the system
1838  * when needed.  This function may be called from an interrupt.
1839  */
1840 static pv_entry_t
1841 get_pv_entry(void)
1842 {
1843 	pv_entry_count++;
1844 	if (pv_entry_high_water &&
1845 		(pv_entry_count > pv_entry_high_water) &&
1846 		(pmap_pagedaemon_waken == 0)) {
1847 		pmap_pagedaemon_waken = 1;
1848 		wakeup(&vm_pages_needed);
1849 	}
1850 	return zalloc(pvzone);
1851 }
1852 
1853 /*
1854  * This routine is very drastic, but can save the system
1855  * in a pinch.
1856  *
1857  * No requirements.
1858  */
1859 void
1860 pmap_collect(void)
1861 {
1862 	int i;
1863 	vm_page_t m;
1864 	static int warningdone=0;
1865 
1866 	if (pmap_pagedaemon_waken == 0)
1867 		return;
1868 	lwkt_gettoken(&vm_token);
1869 	pmap_pagedaemon_waken = 0;
1870 
1871 	if (warningdone < 5) {
1872 		kprintf("pmap_collect: collecting pv entries -- "
1873 			"suggest increasing PMAP_SHPGPERPROC\n");
1874 		warningdone++;
1875 	}
1876 
1877 	for (i = 0; i < vm_page_array_size; i++) {
1878 		m = &vm_page_array[i];
1879 		if (m->wire_count || m->hold_count)
1880 			continue;
1881 		if (vm_page_busy_try(m, TRUE) == 0) {
1882 			if (m->wire_count == 0 && m->hold_count == 0) {
1883 				pmap_remove_all(m);
1884 			}
1885 			vm_page_wakeup(m);
1886 		}
1887 	}
1888 	lwkt_reltoken(&vm_token);
1889 }
1890 
1891 
1892 /*
1893  * If it is the first entry on the list, it is actually
1894  * in the header and we must copy the following entry up
1895  * to the header.  Otherwise we must search the list for
1896  * the entry.  In either case we free the now unused entry.
1897  *
1898  * caller must hold vm_token.
1899  */
1900 static int
1901 pmap_remove_entry(struct pmap *pmap, vm_page_t m, vm_offset_t va)
1902 {
1903 	pv_entry_t pv;
1904 	int rtval;
1905 
1906 	if (m->md.pv_list_count < pmap->pm_stats.resident_count) {
1907 		TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
1908 			if (pmap == pv->pv_pmap && va == pv->pv_va)
1909 				break;
1910 		}
1911 	} else {
1912 		TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
1913 			if (va == pv->pv_va)
1914 				break;
1915 		}
1916 	}
1917 
1918 	/*
1919 	 * Note that pv_ptem is NULL if the page table page itself is not
1920 	 * managed, even if the page being removed IS managed.
1921 	 */
1922 	rtval = 0;
1923 	/* JGXXX When can 'pv' be NULL? */
1924 	if (pv) {
1925 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1926 		m->md.pv_list_count--;
1927 		atomic_add_int(&m->object->agg_pv_list_count, -1);
1928 		KKASSERT(m->md.pv_list_count >= 0);
1929 		if (TAILQ_EMPTY(&m->md.pv_list))
1930 			vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
1931 		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1932 		++pmap->pm_generation;
1933 		KKASSERT(pmap->pm_pteobj != NULL);
1934 		vm_object_hold(pmap->pm_pteobj);
1935 		rtval = pmap_unuse_pt(pmap, va, pv->pv_ptem);
1936 		vm_object_drop(pmap->pm_pteobj);
1937 		free_pv_entry(pv);
1938 	}
1939 	return rtval;
1940 }
1941 
1942 /*
1943  * Create a pv entry for page at pa for (pmap, va).  If the page table page
1944  * holding the VA is managed, mpte will be non-NULL.
1945  */
1946 static void
1947 pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t mpte, vm_page_t m)
1948 {
1949 	pv_entry_t pv;
1950 
1951 	crit_enter();
1952 	pv = get_pv_entry();
1953 	pv->pv_va = va;
1954 	pv->pv_pmap = pmap;
1955 	pv->pv_ptem = mpte;
1956 
1957 	TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1958 	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1959 	m->md.pv_list_count++;
1960 	atomic_add_int(&m->object->agg_pv_list_count, 1);
1961 
1962 	crit_exit();
1963 }
1964 
1965 /*
1966  * pmap_remove_pte: do the things to unmap a page in a process
1967  */
1968 static int
1969 pmap_remove_pte(struct pmap *pmap, pt_entry_t *ptq, vm_offset_t va)
1970 {
1971 	pt_entry_t oldpte;
1972 	vm_page_t m;
1973 
1974 	oldpte = pmap_inval_loadandclear(ptq, pmap, va);
1975 	if (oldpte & VPTE_WIRED)
1976 		--pmap->pm_stats.wired_count;
1977 	KKASSERT(pmap->pm_stats.wired_count >= 0);
1978 
1979 #if 0
1980 	/*
1981 	 * Machines that don't support invlpg, also don't support
1982 	 * PG_G.  XXX PG_G is disabled for SMP so don't worry about
1983 	 * the SMP case.
1984 	 */
1985 	if (oldpte & PG_G)
1986 		cpu_invlpg((void *)va);
1987 #endif
1988 	KKASSERT(pmap->pm_stats.resident_count > 0);
1989 	--pmap->pm_stats.resident_count;
1990 	if (oldpte & VPTE_MANAGED) {
1991 		m = PHYS_TO_VM_PAGE(oldpte);
1992 		if (oldpte & VPTE_M) {
1993 #if defined(PMAP_DIAGNOSTIC)
1994 			if (pmap_nw_modified(oldpte)) {
1995 				kprintf("pmap_remove: modified page not "
1996 					"writable: va: 0x%lx, pte: 0x%lx\n",
1997 					va, oldpte);
1998 			}
1999 #endif
2000 			if (pmap_track_modified(pmap, va))
2001 				vm_page_dirty(m);
2002 		}
2003 		if (oldpte & VPTE_A)
2004 			vm_page_flag_set(m, PG_REFERENCED);
2005 		return pmap_remove_entry(pmap, m, va);
2006 	} else {
2007 		return pmap_unuse_pt(pmap, va, NULL);
2008 	}
2009 
2010 	return 0;
2011 }
2012 
2013 /*
2014  * pmap_remove_page:
2015  *
2016  *	Remove a single page from a process address space.
2017  *
2018  *	This function may not be called from an interrupt if the pmap is
2019  *	not kernel_pmap.
2020  */
2021 static void
2022 pmap_remove_page(struct pmap *pmap, vm_offset_t va)
2023 {
2024 	pt_entry_t *pte;
2025 
2026 	pte = pmap_pte(pmap, va);
2027 	if (pte == NULL)
2028 		return;
2029 	if ((*pte & VPTE_V) == 0)
2030 		return;
2031 	pmap_remove_pte(pmap, pte, va);
2032 }
2033 
2034 /*
2035  * Remove the given range of addresses from the specified map.
2036  *
2037  * It is assumed that the start and end are properly rounded to
2038  * the page size.
2039  *
2040  * This function may not be called from an interrupt if the pmap is
2041  * not kernel_pmap.
2042  *
2043  * No requirements.
2044  */
2045 void
2046 pmap_remove(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
2047 {
2048 	vm_offset_t va_next;
2049 	pml4_entry_t *pml4e;
2050 	pdp_entry_t *pdpe;
2051 	pd_entry_t ptpaddr, *pde;
2052 	pt_entry_t *pte;
2053 
2054 	if (pmap == NULL)
2055 		return;
2056 
2057 	vm_object_hold(pmap->pm_pteobj);
2058 	lwkt_gettoken(&vm_token);
2059 	KKASSERT(pmap->pm_stats.resident_count >= 0);
2060 	if (pmap->pm_stats.resident_count == 0) {
2061 		lwkt_reltoken(&vm_token);
2062 		vm_object_drop(pmap->pm_pteobj);
2063 		return;
2064 	}
2065 
2066 	/*
2067 	 * special handling of removing one page.  a very
2068 	 * common operation and easy to short circuit some
2069 	 * code.
2070 	 */
2071 	if (sva + PAGE_SIZE == eva) {
2072 		pde = pmap_pde(pmap, sva);
2073 		if (pde && (*pde & VPTE_PS) == 0) {
2074 			pmap_remove_page(pmap, sva);
2075 			lwkt_reltoken(&vm_token);
2076 			vm_object_drop(pmap->pm_pteobj);
2077 			return;
2078 		}
2079 	}
2080 
2081 	for (; sva < eva; sva = va_next) {
2082 		pml4e = pmap_pml4e(pmap, sva);
2083 		if ((*pml4e & VPTE_V) == 0) {
2084 			va_next = (sva + NBPML4) & ~PML4MASK;
2085 			if (va_next < sva)
2086 				va_next = eva;
2087 			continue;
2088 		}
2089 
2090 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
2091 		if ((*pdpe & VPTE_V) == 0) {
2092 			va_next = (sva + NBPDP) & ~PDPMASK;
2093 			if (va_next < sva)
2094 				va_next = eva;
2095 			continue;
2096 		}
2097 
2098 		/*
2099 		 * Calculate index for next page table.
2100 		 */
2101 		va_next = (sva + NBPDR) & ~PDRMASK;
2102 		if (va_next < sva)
2103 			va_next = eva;
2104 
2105 		pde = pmap_pdpe_to_pde(pdpe, sva);
2106 		ptpaddr = *pde;
2107 
2108 		/*
2109 		 * Weed out invalid mappings.
2110 		 */
2111 		if (ptpaddr == 0)
2112 			continue;
2113 
2114 		/*
2115 		 * Check for large page.
2116 		 */
2117 		if ((ptpaddr & VPTE_PS) != 0) {
2118 			/* JG FreeBSD has more complex treatment here */
2119 			KKASSERT(*pde != 0);
2120 			pmap_inval_pde(pde, pmap, sva);
2121 			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2122 			continue;
2123 		}
2124 
2125 		/*
2126 		 * Limit our scan to either the end of the va represented
2127 		 * by the current page table page, or to the end of the
2128 		 * range being removed.
2129 		 */
2130 		if (va_next > eva)
2131 			va_next = eva;
2132 
2133 		/*
2134 		 * NOTE: pmap_remove_pte() can block.
2135 		 */
2136 		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
2137 		    sva += PAGE_SIZE) {
2138 			if (*pte == 0)
2139 				continue;
2140 			if (pmap_remove_pte(pmap, pte, sva))
2141 				break;
2142 		}
2143 	}
2144 	lwkt_reltoken(&vm_token);
2145 	vm_object_drop(pmap->pm_pteobj);
2146 }
2147 
2148 /*
2149  * Removes this physical page from all physical maps in which it resides.
2150  * Reflects back modify bits to the pager.
2151  *
2152  * This routine may not be called from an interrupt.
2153  *
2154  * No requirements.
2155  */
2156 static void
2157 pmap_remove_all(vm_page_t m)
2158 {
2159 	pt_entry_t *pte, tpte;
2160 	pv_entry_t pv;
2161 
2162 #if defined(PMAP_DIAGNOSTIC)
2163 	/*
2164 	 * XXX this makes pmap_page_protect(NONE) illegal for non-managed
2165 	 * pages!
2166 	 */
2167 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
2168 		panic("pmap_page_protect: illegal for unmanaged page, va: 0x%08llx", (long long)VM_PAGE_TO_PHYS(m));
2169 	}
2170 #endif
2171 
2172 	lwkt_gettoken(&vm_token);
2173 	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2174 		KKASSERT(pv->pv_pmap->pm_stats.resident_count > 0);
2175 		--pv->pv_pmap->pm_stats.resident_count;
2176 
2177 		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2178 		KKASSERT(pte != NULL);
2179 
2180 		tpte = pmap_inval_loadandclear(pte, pv->pv_pmap, pv->pv_va);
2181 		if (tpte & VPTE_WIRED)
2182 			pv->pv_pmap->pm_stats.wired_count--;
2183 		KKASSERT(pv->pv_pmap->pm_stats.wired_count >= 0);
2184 
2185 		if (tpte & VPTE_A)
2186 			vm_page_flag_set(m, PG_REFERENCED);
2187 
2188 		/*
2189 		 * Update the vm_page_t clean and reference bits.
2190 		 */
2191 		if (tpte & VPTE_M) {
2192 #if defined(PMAP_DIAGNOSTIC)
2193 			if (pmap_nw_modified(tpte)) {
2194 				kprintf(
2195 	"pmap_remove_all: modified page not writable: va: 0x%lx, pte: 0x%lx\n",
2196 				    pv->pv_va, tpte);
2197 			}
2198 #endif
2199 			if (pmap_track_modified(pv->pv_pmap, pv->pv_va))
2200 				vm_page_dirty(m);
2201 		}
2202 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2203 		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
2204 		++pv->pv_pmap->pm_generation;
2205 		m->md.pv_list_count--;
2206 		atomic_add_int(&m->object->agg_pv_list_count, -1);
2207 		KKASSERT(m->md.pv_list_count >= 0);
2208 		if (TAILQ_EMPTY(&m->md.pv_list))
2209 			vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
2210 		vm_object_hold(pv->pv_pmap->pm_pteobj);
2211 		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
2212 		vm_object_drop(pv->pv_pmap->pm_pteobj);
2213 		free_pv_entry(pv);
2214 	}
2215 	KKASSERT((m->flags & (PG_MAPPED|PG_WRITEABLE)) == 0);
2216 	lwkt_reltoken(&vm_token);
2217 }
2218 
2219 /*
2220  * Removes the page from a particular pmap
2221  */
2222 void
2223 pmap_remove_specific(pmap_t pmap, vm_page_t m)
2224 {
2225 	pt_entry_t *pte, tpte;
2226 	pv_entry_t pv;
2227 
2228 	lwkt_gettoken(&vm_token);
2229 again:
2230 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2231 		if (pv->pv_pmap != pmap)
2232 			continue;
2233 
2234 		KKASSERT(pv->pv_pmap->pm_stats.resident_count > 0);
2235 		--pv->pv_pmap->pm_stats.resident_count;
2236 
2237 		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2238 		KKASSERT(pte != NULL);
2239 
2240 		tpte = pmap_inval_loadandclear(pte, pv->pv_pmap, pv->pv_va);
2241 		if (tpte & VPTE_WIRED)
2242 			pv->pv_pmap->pm_stats.wired_count--;
2243 		KKASSERT(pv->pv_pmap->pm_stats.wired_count >= 0);
2244 
2245 		if (tpte & VPTE_A)
2246 			vm_page_flag_set(m, PG_REFERENCED);
2247 
2248 		/*
2249 		 * Update the vm_page_t clean and reference bits.
2250 		 */
2251 		if (tpte & VPTE_M) {
2252 			if (pmap_track_modified(pv->pv_pmap, pv->pv_va))
2253 				vm_page_dirty(m);
2254 		}
2255 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2256 		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
2257 		++pv->pv_pmap->pm_generation;
2258 		m->md.pv_list_count--;
2259 		atomic_add_int(&m->object->agg_pv_list_count, -1);
2260 		KKASSERT(m->md.pv_list_count >= 0);
2261 		if (TAILQ_EMPTY(&m->md.pv_list))
2262 			vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
2263 		vm_object_hold(pv->pv_pmap->pm_pteobj);
2264 		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
2265 		vm_object_drop(pv->pv_pmap->pm_pteobj);
2266 		free_pv_entry(pv);
2267 		goto again;
2268 	}
2269 	lwkt_reltoken(&vm_token);
2270 }
2271 
2272 /*
2273  * Set the physical protection on the specified range of this map
2274  * as requested.
2275  *
2276  * This function may not be called from an interrupt if the map is
2277  * not the kernel_pmap.
2278  *
2279  * No requirements.
2280  */
2281 void
2282 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2283 {
2284 	vm_offset_t va_next;
2285 	pml4_entry_t *pml4e;
2286 	pdp_entry_t *pdpe;
2287 	pd_entry_t ptpaddr, *pde;
2288 	pt_entry_t *pte;
2289 
2290 	/* JG review for NX */
2291 
2292 	if (pmap == NULL)
2293 		return;
2294 
2295 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2296 		pmap_remove(pmap, sva, eva);
2297 		return;
2298 	}
2299 
2300 	if (prot & VM_PROT_WRITE)
2301 		return;
2302 
2303 	lwkt_gettoken(&vm_token);
2304 
2305 	for (; sva < eva; sva = va_next) {
2306 
2307 		pml4e = pmap_pml4e(pmap, sva);
2308 		if ((*pml4e & VPTE_V) == 0) {
2309 			va_next = (sva + NBPML4) & ~PML4MASK;
2310 			if (va_next < sva)
2311 				va_next = eva;
2312 			continue;
2313 		}
2314 
2315 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
2316 		if ((*pdpe & VPTE_V) == 0) {
2317 			va_next = (sva + NBPDP) & ~PDPMASK;
2318 			if (va_next < sva)
2319 				va_next = eva;
2320 			continue;
2321 		}
2322 
2323 		va_next = (sva + NBPDR) & ~PDRMASK;
2324 		if (va_next < sva)
2325 			va_next = eva;
2326 
2327 		pde = pmap_pdpe_to_pde(pdpe, sva);
2328 		ptpaddr = *pde;
2329 
2330 		/*
2331 		 * Check for large page.
2332 		 */
2333 		if ((ptpaddr & VPTE_PS) != 0) {
2334 			/* JG correct? */
2335 			pmap_clean_pde(pde, pmap, sva);
2336 			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2337 			continue;
2338 		}
2339 
2340 		/*
2341 		 * Weed out invalid mappings. Note: we assume that the page
2342 		 * directory table is always allocated, and in kernel virtual.
2343 		 */
2344 		if (ptpaddr == 0)
2345 			continue;
2346 
2347 		if (va_next > eva)
2348 			va_next = eva;
2349 
2350 		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
2351 		    sva += PAGE_SIZE) {
2352 			pt_entry_t pbits;
2353 			vm_page_t m;
2354 
2355 			/*
2356 			 * Clean managed pages and also check the accessed
2357 			 * bit.  Just remove write perms for unmanaged
2358 			 * pages.  Be careful of races, turning off write
2359 			 * access will force a fault rather then setting
2360 			 * the modified bit at an unexpected time.
2361 			 */
2362 			if (*pte & VPTE_MANAGED) {
2363 				pbits = pmap_clean_pte(pte, pmap, sva);
2364 				m = NULL;
2365 				if (pbits & VPTE_A) {
2366 					m = PHYS_TO_VM_PAGE(pbits & VPTE_FRAME);
2367 					vm_page_flag_set(m, PG_REFERENCED);
2368 					atomic_clear_long(pte, VPTE_A);
2369 				}
2370 				if (pbits & VPTE_M) {
2371 					if (pmap_track_modified(pmap, sva)) {
2372 						if (m == NULL)
2373 							m = PHYS_TO_VM_PAGE(pbits & VPTE_FRAME);
2374 						vm_page_dirty(m);
2375 					}
2376 				}
2377 			} else {
2378 				pbits = pmap_setro_pte(pte, pmap, sva);
2379 			}
2380 		}
2381 	}
2382 	lwkt_reltoken(&vm_token);
2383 }
2384 
2385 /*
2386  * Enter a managed page into a pmap.  If the page is not wired related pmap
2387  * data can be destroyed at any time for later demand-operation.
2388  *
2389  * Insert the vm_page (m) at virtual address (v) in (pmap), with the
2390  * specified protection, and wire the mapping if requested.
2391  *
2392  * NOTE: This routine may not lazy-evaluate or lose information.  The
2393  * page must actually be inserted into the given map NOW.
2394  *
2395  * NOTE: When entering a page at a KVA address, the pmap must be the
2396  * kernel_pmap.
2397  *
2398  * No requirements.
2399  */
2400 void
2401 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
2402 	   boolean_t wired, vm_map_entry_t entry __unused)
2403 {
2404 	vm_paddr_t pa;
2405 	pd_entry_t *pde;
2406 	pt_entry_t *pte;
2407 	vm_paddr_t opa;
2408 	pt_entry_t origpte, newpte;
2409 	vm_page_t mpte;
2410 
2411 	if (pmap == NULL)
2412 		return;
2413 
2414 	va = trunc_page(va);
2415 
2416 	vm_object_hold(pmap->pm_pteobj);
2417 	lwkt_gettoken(&vm_token);
2418 
2419 	/*
2420 	 * Get the page table page.   The kernel_pmap's page table pages
2421 	 * are preallocated and have no associated vm_page_t.
2422 	 */
2423 	if (pmap == &kernel_pmap)
2424 		mpte = NULL;
2425 	else
2426 		mpte = pmap_allocpte(pmap, va);
2427 
2428 	pde = pmap_pde(pmap, va);
2429 	if (pde != NULL && (*pde & VPTE_V) != 0) {
2430 		if ((*pde & VPTE_PS) != 0)
2431 			panic("pmap_enter: attempted pmap_enter on 2MB page");
2432 		pte = pmap_pde_to_pte(pde, va);
2433 	} else {
2434 		panic("pmap_enter: invalid page directory va=%#lx", va);
2435 	}
2436 
2437 	KKASSERT(pte != NULL);
2438 	/*
2439 	 * Deal with races on the original mapping (though don't worry
2440 	 * about VPTE_A races) by cleaning it.  This will force a fault
2441 	 * if an attempt is made to write to the page.
2442 	 */
2443 	pa = VM_PAGE_TO_PHYS(m);
2444 	origpte = pmap_clean_pte(pte, pmap, va);
2445 	opa = origpte & VPTE_FRAME;
2446 
2447 	if (origpte & VPTE_PS)
2448 		panic("pmap_enter: attempted pmap_enter on 2MB page");
2449 
2450 	/*
2451 	 * Mapping has not changed, must be protection or wiring change.
2452 	 */
2453 	if (origpte && (opa == pa)) {
2454 		/*
2455 		 * Wiring change, just update stats. We don't worry about
2456 		 * wiring PT pages as they remain resident as long as there
2457 		 * are valid mappings in them. Hence, if a user page is wired,
2458 		 * the PT page will be also.
2459 		 */
2460 		if (wired && ((origpte & VPTE_WIRED) == 0))
2461 			++pmap->pm_stats.wired_count;
2462 		else if (!wired && (origpte & VPTE_WIRED))
2463 			--pmap->pm_stats.wired_count;
2464 
2465 		/*
2466 		 * Remove the extra pte reference.  Note that we cannot
2467 		 * optimize the RO->RW case because we have adjusted the
2468 		 * wiring count above and may need to adjust the wiring
2469 		 * bits below.
2470 		 */
2471 		if (mpte)
2472 			mpte->hold_count--;
2473 
2474 		/*
2475 		 * We might be turning off write access to the page,
2476 		 * so we go ahead and sense modify status.
2477 		 */
2478 		if (origpte & VPTE_MANAGED) {
2479 			if ((origpte & VPTE_M) &&
2480 			    pmap_track_modified(pmap, va)) {
2481 				vm_page_t om;
2482 				om = PHYS_TO_VM_PAGE(opa);
2483 				vm_page_dirty(om);
2484 			}
2485 			pa |= VPTE_MANAGED;
2486 			KKASSERT(m->flags & PG_MAPPED);
2487 		}
2488 		goto validate;
2489 	}
2490 	/*
2491 	 * Mapping has changed, invalidate old range and fall through to
2492 	 * handle validating new mapping.
2493 	 */
2494 	if (opa) {
2495 		int err;
2496 		err = pmap_remove_pte(pmap, pte, va);
2497 		if (err)
2498 			panic("pmap_enter: pte vanished, va: 0x%lx", va);
2499 	}
2500 
2501 	/*
2502 	 * Enter on the PV list if part of our managed memory. Note that we
2503 	 * raise IPL while manipulating pv_table since pmap_enter can be
2504 	 * called at interrupt time.
2505 	 */
2506 	if (pmap_initialized &&
2507 	    (m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
2508 		pmap_insert_entry(pmap, va, mpte, m);
2509 		pa |= VPTE_MANAGED;
2510 		vm_page_flag_set(m, PG_MAPPED);
2511 	}
2512 
2513 	/*
2514 	 * Increment counters
2515 	 */
2516 	++pmap->pm_stats.resident_count;
2517 	if (wired)
2518 		pmap->pm_stats.wired_count++;
2519 
2520 validate:
2521 	/*
2522 	 * Now validate mapping with desired protection/wiring.
2523 	 */
2524 	newpte = (pt_entry_t) (pa | pte_prot(pmap, prot) | VPTE_V | VPTE_U);
2525 
2526 	if (wired)
2527 		newpte |= VPTE_WIRED;
2528 //	if (pmap != &kernel_pmap)
2529 		newpte |= VPTE_U;
2530 
2531 	/*
2532 	 * If the mapping or permission bits are different from the
2533 	 * (now cleaned) original pte, an update is needed.  We've
2534 	 * already downgraded or invalidated the page so all we have
2535 	 * to do now is update the bits.
2536 	 *
2537 	 * XXX should we synchronize RO->RW changes to avoid another
2538 	 * fault?
2539 	 */
2540 	if ((origpte & ~(VPTE_RW|VPTE_M|VPTE_A)) != newpte) {
2541 		*pte = newpte | VPTE_A;
2542 		if (newpte & VPTE_RW)
2543 			vm_page_flag_set(m, PG_WRITEABLE);
2544 	}
2545 	KKASSERT((newpte & VPTE_MANAGED) == 0 || (m->flags & PG_MAPPED));
2546 	lwkt_reltoken(&vm_token);
2547 	vm_object_drop(pmap->pm_pteobj);
2548 }
2549 
2550 /*
2551  * This code works like pmap_enter() but assumes VM_PROT_READ and not-wired.
2552  *
2553  * Currently this routine may only be used on user pmaps, not kernel_pmap.
2554  *
2555  * No requirements.
2556  */
2557 void
2558 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m)
2559 {
2560 	pt_entry_t *pte;
2561 	vm_paddr_t pa;
2562 	vm_page_t mpte;
2563 	vm_pindex_t ptepindex;
2564 	pd_entry_t *ptepa;
2565 
2566 	KKASSERT(pmap != &kernel_pmap);
2567 
2568 	KKASSERT(va >= VM_MIN_USER_ADDRESS && va < VM_MAX_USER_ADDRESS);
2569 
2570 	/*
2571 	 * Calculate pagetable page index
2572 	 */
2573 	ptepindex = pmap_pde_pindex(va);
2574 
2575 	vm_object_hold(pmap->pm_pteobj);
2576 	lwkt_gettoken(&vm_token);
2577 
2578 	do {
2579 		/*
2580 		 * Get the page directory entry
2581 		 */
2582 		ptepa = pmap_pde(pmap, va);
2583 
2584 		/*
2585 		 * If the page table page is mapped, we just increment
2586 		 * the hold count, and activate it.
2587 		 */
2588 		if (ptepa && (*ptepa & VPTE_V) != 0) {
2589 			if (*ptepa & VPTE_PS)
2590 				panic("pmap_enter_quick: unexpected mapping into 2MB page");
2591 			if (pmap->pm_ptphint &&
2592 			    (pmap->pm_ptphint->pindex == ptepindex)) {
2593 				mpte = pmap->pm_ptphint;
2594 			} else {
2595 				mpte = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
2596 				pmap->pm_ptphint = mpte;
2597 				vm_page_wakeup(mpte);
2598 			}
2599 			if (mpte)
2600 				mpte->hold_count++;
2601 		} else {
2602 			mpte = _pmap_allocpte(pmap, ptepindex);
2603 		}
2604 	} while (mpte == NULL);
2605 
2606 	/*
2607 	 * Ok, now that the page table page has been validated, get the pte.
2608 	 * If the pte is already mapped undo mpte's hold_count and
2609 	 * just return.
2610 	 */
2611 	pte = pmap_pte(pmap, va);
2612 	if (*pte & VPTE_V) {
2613 		KKASSERT(mpte != NULL);
2614 		pmap_unwire_pte_hold(pmap, va, mpte);
2615 		pa = VM_PAGE_TO_PHYS(m);
2616 		KKASSERT(((*pte ^ pa) & VPTE_FRAME) == 0);
2617 		lwkt_reltoken(&vm_token);
2618 		vm_object_drop(pmap->pm_pteobj);
2619 		return;
2620 	}
2621 
2622 	/*
2623 	 * Enter on the PV list if part of our managed memory
2624 	 */
2625 	if ((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
2626 		pmap_insert_entry(pmap, va, mpte, m);
2627 		vm_page_flag_set(m, PG_MAPPED);
2628 	}
2629 
2630 	/*
2631 	 * Increment counters
2632 	 */
2633 	++pmap->pm_stats.resident_count;
2634 
2635 	pa = VM_PAGE_TO_PHYS(m);
2636 
2637 	/*
2638 	 * Now validate mapping with RO protection
2639 	 */
2640 	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
2641 		*pte = (vpte_t)pa | VPTE_V | VPTE_U;
2642 	else
2643 		*pte = (vpte_t)pa | VPTE_V | VPTE_U | VPTE_MANAGED;
2644 	/*pmap_inval_add(&info, pmap, va); shouldn't be needed 0->valid */
2645 	/*pmap_inval_flush(&info); don't need for vkernel */
2646 	lwkt_reltoken(&vm_token);
2647 	vm_object_drop(pmap->pm_pteobj);
2648 }
2649 
2650 /*
2651  * Make a temporary mapping for a physical address.  This is only intended
2652  * to be used for panic dumps.
2653  *
2654  * The caller is responsible for calling smp_invltlb().
2655  */
2656 void *
2657 pmap_kenter_temporary(vm_paddr_t pa, long i)
2658 {
2659 	pmap_kenter_quick(crashdumpmap + (i * PAGE_SIZE), pa);
2660 	return ((void *)crashdumpmap);
2661 }
2662 
2663 #define MAX_INIT_PT (96)
2664 
2665 /*
2666  * This routine preloads the ptes for a given object into the specified pmap.
2667  * This eliminates the blast of soft faults on process startup and
2668  * immediately after an mmap.
2669  *
2670  * No requirements.
2671  */
2672 static int pmap_object_init_pt_callback(vm_page_t p, void *data);
2673 
2674 void
2675 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_prot_t prot,
2676 		    vm_object_t object, vm_pindex_t pindex,
2677 		    vm_size_t size, int limit)
2678 {
2679 	struct rb_vm_page_scan_info info;
2680 	struct lwp *lp;
2681 	vm_size_t psize;
2682 
2683 	/*
2684 	 * We can't preinit if read access isn't set or there is no pmap
2685 	 * or object.
2686 	 */
2687 	if ((prot & VM_PROT_READ) == 0 || pmap == NULL || object == NULL)
2688 		return;
2689 
2690 	/*
2691 	 * We can't preinit if the pmap is not the current pmap
2692 	 */
2693 	lp = curthread->td_lwp;
2694 	if (lp == NULL || pmap != vmspace_pmap(lp->lwp_vmspace))
2695 		return;
2696 
2697 	psize = x86_64_btop(size);
2698 
2699 	if ((object->type != OBJT_VNODE) ||
2700 		((limit & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
2701 			(object->resident_page_count > MAX_INIT_PT))) {
2702 		return;
2703 	}
2704 
2705 	if (psize + pindex > object->size) {
2706 		if (object->size < pindex)
2707 			return;
2708 		psize = object->size - pindex;
2709 	}
2710 
2711 	if (psize == 0)
2712 		return;
2713 
2714 	/*
2715 	 * Use a red-black scan to traverse the requested range and load
2716 	 * any valid pages found into the pmap.
2717 	 *
2718 	 * We cannot safely scan the object's memq unless we are in a
2719 	 * critical section since interrupts can remove pages from objects.
2720 	 */
2721 	info.start_pindex = pindex;
2722 	info.end_pindex = pindex + psize - 1;
2723 	info.limit = limit;
2724 	info.mpte = NULL;
2725 	info.addr = addr;
2726 	info.pmap = pmap;
2727 
2728 	vm_object_hold_shared(object);
2729 	vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
2730 				pmap_object_init_pt_callback, &info);
2731 	vm_object_drop(object);
2732 }
2733 
2734 static
2735 int
2736 pmap_object_init_pt_callback(vm_page_t p, void *data)
2737 {
2738 	struct rb_vm_page_scan_info *info = data;
2739 	vm_pindex_t rel_index;
2740 	/*
2741 	 * don't allow an madvise to blow away our really
2742 	 * free pages allocating pv entries.
2743 	 */
2744 	if ((info->limit & MAP_PREFAULT_MADVISE) &&
2745 		vmstats.v_free_count < vmstats.v_free_reserved) {
2746 		    return(-1);
2747 	}
2748 
2749 	/*
2750 	 * Ignore list markers and ignore pages we cannot instantly
2751 	 * busy (while holding the object token).
2752 	 */
2753 	if (p->flags & PG_MARKER)
2754 		return 0;
2755 	if (vm_page_busy_try(p, TRUE))
2756 		return 0;
2757 	if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2758 	    (p->flags & PG_FICTITIOUS) == 0) {
2759 		if ((p->queue - p->pc) == PQ_CACHE)
2760 			vm_page_deactivate(p);
2761 		rel_index = p->pindex - info->start_pindex;
2762 		pmap_enter_quick(info->pmap,
2763 				 info->addr + x86_64_ptob(rel_index), p);
2764 	}
2765 	vm_page_wakeup(p);
2766 	return(0);
2767 }
2768 
2769 /*
2770  * Return TRUE if the pmap is in shape to trivially
2771  * pre-fault the specified address.
2772  *
2773  * Returns FALSE if it would be non-trivial or if a
2774  * pte is already loaded into the slot.
2775  *
2776  * No requirements.
2777  */
2778 int
2779 pmap_prefault_ok(pmap_t pmap, vm_offset_t addr)
2780 {
2781 	pt_entry_t *pte;
2782 	pd_entry_t *pde;
2783 	int ret;
2784 
2785 	lwkt_gettoken(&vm_token);
2786 	pde = pmap_pde(pmap, addr);
2787 	if (pde == NULL || *pde == 0) {
2788 		ret = 0;
2789 	} else {
2790 		pte = pmap_pde_to_pte(pde, addr);
2791 		ret = (*pte) ? 0 : 1;
2792 	}
2793 	lwkt_reltoken(&vm_token);
2794 	return (ret);
2795 }
2796 
2797 /*
2798  * Change the wiring attribute for a map/virtual-address pair.
2799  *
2800  * The mapping must already exist in the pmap.
2801  * No other requirements.
2802  */
2803 void
2804 pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired,
2805 		   vm_map_entry_t entry __unused)
2806 {
2807 	pt_entry_t *pte;
2808 
2809 	if (pmap == NULL)
2810 		return;
2811 
2812 	lwkt_gettoken(&vm_token);
2813 	pte = pmap_pte(pmap, va);
2814 
2815 	if (wired && !pmap_pte_w(pte))
2816 		pmap->pm_stats.wired_count++;
2817 	else if (!wired && pmap_pte_w(pte))
2818 		pmap->pm_stats.wired_count--;
2819 
2820 	/*
2821 	 * Wiring is not a hardware characteristic so there is no need to
2822 	 * invalidate TLB.  However, in an SMP environment we must use
2823 	 * a locked bus cycle to update the pte (if we are not using
2824 	 * the pmap_inval_*() API that is)... it's ok to do this for simple
2825 	 * wiring changes.
2826 	 */
2827 	if (wired)
2828 		atomic_set_long(pte, VPTE_WIRED);
2829 	else
2830 		atomic_clear_long(pte, VPTE_WIRED);
2831 	lwkt_reltoken(&vm_token);
2832 }
2833 
2834 /*
2835  *	Copy the range specified by src_addr/len
2836  *	from the source map to the range dst_addr/len
2837  *	in the destination map.
2838  *
2839  *	This routine is only advisory and need not do anything.
2840  */
2841 void
2842 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
2843 	vm_size_t len, vm_offset_t src_addr)
2844 {
2845 	/*
2846 	 * XXX BUGGY.  Amoung other things srcmpte is assumed to remain
2847 	 * valid through blocking calls, and that's just not going to
2848 	 * be the case.
2849 	 *
2850 	 * FIXME!
2851 	 */
2852 	return;
2853 }
2854 
2855 /*
2856  * pmap_zero_page:
2857  *
2858  *	Zero the specified physical page.
2859  *
2860  *	This function may be called from an interrupt and no locking is
2861  *	required.
2862  */
2863 void
2864 pmap_zero_page(vm_paddr_t phys)
2865 {
2866 	vm_offset_t va = PHYS_TO_DMAP(phys);
2867 
2868 	bzero((void *)va, PAGE_SIZE);
2869 }
2870 
2871 /*
2872  * pmap_zero_page:
2873  *
2874  *	Zero part of a physical page by mapping it into memory and clearing
2875  *	its contents with bzero.
2876  *
2877  *	off and size may not cover an area beyond a single hardware page.
2878  */
2879 void
2880 pmap_zero_page_area(vm_paddr_t phys, int off, int size)
2881 {
2882 	crit_enter();
2883 	vm_offset_t virt = PHYS_TO_DMAP(phys);
2884 	bzero((char *)virt + off, size);
2885 	crit_exit();
2886 }
2887 
2888 /*
2889  * pmap_copy_page:
2890  *
2891  *	Copy the physical page from the source PA to the target PA.
2892  *	This function may be called from an interrupt.  No locking
2893  *	is required.
2894  */
2895 void
2896 pmap_copy_page(vm_paddr_t src, vm_paddr_t dst)
2897 {
2898 	vm_offset_t src_virt, dst_virt;
2899 
2900 	crit_enter();
2901 	src_virt = PHYS_TO_DMAP(src);
2902 	dst_virt = PHYS_TO_DMAP(dst);
2903 	bcopy((void *)src_virt, (void *)dst_virt, PAGE_SIZE);
2904 	crit_exit();
2905 }
2906 
2907 /*
2908  * pmap_copy_page_frag:
2909  *
2910  *	Copy the physical page from the source PA to the target PA.
2911  *	This function may be called from an interrupt.  No locking
2912  *	is required.
2913  */
2914 void
2915 pmap_copy_page_frag(vm_paddr_t src, vm_paddr_t dst, size_t bytes)
2916 {
2917 	vm_offset_t src_virt, dst_virt;
2918 
2919 	crit_enter();
2920 	src_virt = PHYS_TO_DMAP(src);
2921 	dst_virt = PHYS_TO_DMAP(dst);
2922 	bcopy((char *)src_virt + (src & PAGE_MASK),
2923 	      (char *)dst_virt + (dst & PAGE_MASK),
2924 	      bytes);
2925 	crit_exit();
2926 }
2927 
2928 /*
2929  * Returns true if the pmap's pv is one of the first 16 pvs linked to
2930  * from this page.  This count may be changed upwards or downwards
2931  * in the future; it is only necessary that true be returned for a small
2932  * subset of pmaps for proper page aging.
2933  *
2934  * No other requirements.
2935  */
2936 boolean_t
2937 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
2938 {
2939 	pv_entry_t pv;
2940 	int loops = 0;
2941 
2942 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2943 		return FALSE;
2944 
2945 	crit_enter();
2946 	lwkt_gettoken(&vm_token);
2947 
2948 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2949 		if (pv->pv_pmap == pmap) {
2950 			lwkt_reltoken(&vm_token);
2951 			crit_exit();
2952 			return TRUE;
2953 		}
2954 		loops++;
2955 		if (loops >= 16)
2956 			break;
2957 	}
2958 	lwkt_reltoken(&vm_token);
2959 	crit_exit();
2960 	return (FALSE);
2961 }
2962 
2963 /*
2964  * Remove all pages from specified address space this aids process
2965  * exit speeds.  Also, this code is special cased for current
2966  * process only, but can have the more generic (and slightly slower)
2967  * mode enabled.  This is much faster than pmap_remove in the case
2968  * of running down an entire address space.
2969  *
2970  * No other requirements.
2971  */
2972 void
2973 pmap_remove_pages(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2974 {
2975 	pt_entry_t *pte, tpte;
2976 	pv_entry_t pv, npv;
2977 	vm_page_t m;
2978 	int save_generation;
2979 
2980 	if (pmap->pm_pteobj)
2981 		vm_object_hold(pmap->pm_pteobj);
2982 	lwkt_gettoken(&vm_token);
2983 
2984 	for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
2985 		if (pv->pv_va >= eva || pv->pv_va < sva) {
2986 			npv = TAILQ_NEXT(pv, pv_plist);
2987 			continue;
2988 		}
2989 
2990 		KKASSERT(pmap == pv->pv_pmap);
2991 
2992 		pte = pmap_pte(pmap, pv->pv_va);
2993 
2994 		/*
2995 		 * We cannot remove wired pages from a process' mapping
2996 		 * at this time
2997 		 */
2998 		if (*pte & VPTE_WIRED) {
2999 			npv = TAILQ_NEXT(pv, pv_plist);
3000 			continue;
3001 		}
3002 		tpte = pmap_inval_loadandclear(pte, pmap, pv->pv_va);
3003 
3004 		m = PHYS_TO_VM_PAGE(tpte & VPTE_FRAME);
3005 
3006 		KASSERT(m < &vm_page_array[vm_page_array_size],
3007 			("pmap_remove_pages: bad tpte %lx", tpte));
3008 
3009 		KKASSERT(pmap->pm_stats.resident_count > 0);
3010 		--pmap->pm_stats.resident_count;
3011 
3012 		/*
3013 		 * Update the vm_page_t clean and reference bits.
3014 		 */
3015 		if (tpte & VPTE_M) {
3016 			vm_page_dirty(m);
3017 		}
3018 
3019 		npv = TAILQ_NEXT(pv, pv_plist);
3020 		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
3021 		save_generation = ++pmap->pm_generation;
3022 
3023 		m->md.pv_list_count--;
3024 		atomic_add_int(&m->object->agg_pv_list_count, -1);
3025 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3026 		if (TAILQ_EMPTY(&m->md.pv_list))
3027 			vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
3028 
3029 		pmap_unuse_pt(pmap, pv->pv_va, pv->pv_ptem);
3030 		free_pv_entry(pv);
3031 
3032 		/*
3033 		 * Restart the scan if we blocked during the unuse or free
3034 		 * calls and other removals were made.
3035 		 */
3036 		if (save_generation != pmap->pm_generation) {
3037 			kprintf("Warning: pmap_remove_pages race-A avoided\n");
3038 			npv = TAILQ_FIRST(&pmap->pm_pvlist);
3039 		}
3040 	}
3041 	lwkt_reltoken(&vm_token);
3042 	if (pmap->pm_pteobj)
3043 		vm_object_drop(pmap->pm_pteobj);
3044 }
3045 
3046 /*
3047  * pmap_testbit tests bits in active mappings of a VM page.
3048  */
3049 static boolean_t
3050 pmap_testbit(vm_page_t m, int bit)
3051 {
3052 	pv_entry_t pv;
3053 	pt_entry_t *pte;
3054 
3055 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3056 		return FALSE;
3057 
3058 	if (TAILQ_FIRST(&m->md.pv_list) == NULL)
3059 		return FALSE;
3060 
3061 	crit_enter();
3062 
3063 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3064 		/*
3065 		 * if the bit being tested is the modified bit, then
3066 		 * mark clean_map and ptes as never
3067 		 * modified.
3068 		 */
3069 		if (bit & (VPTE_A|VPTE_M)) {
3070 			if (!pmap_track_modified(pv->pv_pmap, pv->pv_va))
3071 				continue;
3072 		}
3073 
3074 #if defined(PMAP_DIAGNOSTIC)
3075 		if (pv->pv_pmap == NULL) {
3076 			kprintf("Null pmap (tb) at va: 0x%lx\n", pv->pv_va);
3077 			continue;
3078 		}
3079 #endif
3080 		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
3081 		if (*pte & bit) {
3082 			crit_exit();
3083 			return TRUE;
3084 		}
3085 	}
3086 	crit_exit();
3087 	return (FALSE);
3088 }
3089 
3090 /*
3091  * This routine is used to clear bits in ptes.  Certain bits require special
3092  * handling, in particular (on virtual kernels) the VPTE_M (modify) bit.
3093  *
3094  * This routine is only called with certain VPTE_* bit combinations.
3095  */
3096 static __inline void
3097 pmap_clearbit(vm_page_t m, int bit)
3098 {
3099 	pv_entry_t pv;
3100 	pt_entry_t *pte;
3101 	pt_entry_t pbits;
3102 
3103 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3104 		return;
3105 
3106 	crit_enter();
3107 
3108 	/*
3109 	 * Loop over all current mappings setting/clearing as appropos If
3110 	 * setting RO do we need to clear the VAC?
3111 	 */
3112 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3113 		/*
3114 		 * don't write protect pager mappings
3115 		 */
3116 		if (bit == VPTE_RW) {
3117 			if (!pmap_track_modified(pv->pv_pmap, pv->pv_va))
3118 				continue;
3119 		}
3120 
3121 #if defined(PMAP_DIAGNOSTIC)
3122 		if (pv->pv_pmap == NULL) {
3123 			kprintf("Null pmap (cb) at va: 0x%lx\n", pv->pv_va);
3124 			continue;
3125 		}
3126 #endif
3127 
3128 		/*
3129 		 * Careful here.  We can use a locked bus instruction to
3130 		 * clear VPTE_A or VPTE_M safely but we need to synchronize
3131 		 * with the target cpus when we mess with VPTE_RW.
3132 		 *
3133 		 * On virtual kernels we must force a new fault-on-write
3134 		 * in the real kernel if we clear the Modify bit ourselves,
3135 		 * otherwise the real kernel will not get a new fault and
3136 		 * will never set our Modify bit again.
3137 		 */
3138 		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
3139 		if (*pte & bit) {
3140 			if (bit == VPTE_RW) {
3141 				/*
3142 				 * We must also clear VPTE_M when clearing
3143 				 * VPTE_RW
3144 				 */
3145 				pbits = pmap_clean_pte(pte, pv->pv_pmap,
3146 						       pv->pv_va);
3147 				if (pbits & VPTE_M)
3148 					vm_page_dirty(m);
3149 			} else if (bit == VPTE_M) {
3150 				/*
3151 				 * We do not have to make the page read-only
3152 				 * when clearing the Modify bit.  The real
3153 				 * kernel will make the real PTE read-only
3154 				 * or otherwise detect the write and set
3155 				 * our VPTE_M again simply by us invalidating
3156 				 * the real kernel VA for the pmap (as we did
3157 				 * above).  This allows the real kernel to
3158 				 * handle the write fault without forwarding
3159 				 * the fault to us.
3160 				 */
3161 				atomic_clear_long(pte, VPTE_M);
3162 			} else if ((bit & (VPTE_RW|VPTE_M)) == (VPTE_RW|VPTE_M)) {
3163 				/*
3164 				 * We've been asked to clear W & M, I guess
3165 				 * the caller doesn't want us to update
3166 				 * the dirty status of the VM page.
3167 				 */
3168 				pmap_clean_pte(pte, pv->pv_pmap, pv->pv_va);
3169 			} else {
3170 				/*
3171 				 * We've been asked to clear bits that do
3172 				 * not interact with hardware.
3173 				 */
3174 				atomic_clear_long(pte, bit);
3175 			}
3176 		}
3177 	}
3178 	crit_exit();
3179 }
3180 
3181 /*
3182  * Lower the permission for all mappings to a given page.
3183  *
3184  * No other requirements.
3185  */
3186 void
3187 pmap_page_protect(vm_page_t m, vm_prot_t prot)
3188 {
3189 	/* JG NX support? */
3190 	if ((prot & VM_PROT_WRITE) == 0) {
3191 		lwkt_gettoken(&vm_token);
3192 		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
3193 			pmap_clearbit(m, VPTE_RW);
3194 			vm_page_flag_clear(m, PG_WRITEABLE);
3195 		} else {
3196 			pmap_remove_all(m);
3197 		}
3198 		lwkt_reltoken(&vm_token);
3199 	}
3200 }
3201 
3202 vm_paddr_t
3203 pmap_phys_address(vm_pindex_t ppn)
3204 {
3205 	return (x86_64_ptob(ppn));
3206 }
3207 
3208 /*
3209  * Return a count of reference bits for a page, clearing those bits.
3210  * It is not necessary for every reference bit to be cleared, but it
3211  * is necessary that 0 only be returned when there are truly no
3212  * reference bits set.
3213  *
3214  * XXX: The exact number of bits to check and clear is a matter that
3215  * should be tested and standardized at some point in the future for
3216  * optimal aging of shared pages.
3217  *
3218  * No other requirements.
3219  */
3220 int
3221 pmap_ts_referenced(vm_page_t m)
3222 {
3223 	pv_entry_t pv, pvf, pvn;
3224 	pt_entry_t *pte;
3225 	int rtval = 0;
3226 
3227 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3228 		return (rtval);
3229 
3230 	crit_enter();
3231 	lwkt_gettoken(&vm_token);
3232 
3233 	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3234 
3235 		pvf = pv;
3236 
3237 		do {
3238 			pvn = TAILQ_NEXT(pv, pv_list);
3239 
3240 			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3241 
3242 			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
3243 
3244 			if (!pmap_track_modified(pv->pv_pmap, pv->pv_va))
3245 				continue;
3246 
3247 			pte = pmap_pte(pv->pv_pmap, pv->pv_va);
3248 
3249 			if (pte && (*pte & VPTE_A)) {
3250 				atomic_clear_long(pte, VPTE_A);
3251 				rtval++;
3252 				if (rtval > 4) {
3253 					break;
3254 				}
3255 			}
3256 		} while ((pv = pvn) != NULL && pv != pvf);
3257 	}
3258 	lwkt_reltoken(&vm_token);
3259 	crit_exit();
3260 
3261 	return (rtval);
3262 }
3263 
3264 /*
3265  * Return whether or not the specified physical page was modified
3266  * in any physical maps.
3267  *
3268  * No other requirements.
3269  */
3270 boolean_t
3271 pmap_is_modified(vm_page_t m)
3272 {
3273 	boolean_t res;
3274 
3275 	lwkt_gettoken(&vm_token);
3276 	res = pmap_testbit(m, VPTE_M);
3277 	lwkt_reltoken(&vm_token);
3278 	return (res);
3279 }
3280 
3281 /*
3282  * Clear the modify bits on the specified physical page.
3283  *
3284  * No other requirements.
3285  */
3286 void
3287 pmap_clear_modify(vm_page_t m)
3288 {
3289 	lwkt_gettoken(&vm_token);
3290 	pmap_clearbit(m, VPTE_M);
3291 	lwkt_reltoken(&vm_token);
3292 }
3293 
3294 /*
3295  * Clear the reference bit on the specified physical page.
3296  *
3297  * No other requirements.
3298  */
3299 void
3300 pmap_clear_reference(vm_page_t m)
3301 {
3302 	lwkt_gettoken(&vm_token);
3303 	pmap_clearbit(m, VPTE_A);
3304 	lwkt_reltoken(&vm_token);
3305 }
3306 
3307 /*
3308  * Miscellaneous support routines follow
3309  */
3310 
3311 static void
3312 i386_protection_init(void)
3313 {
3314 	int *kp, prot;
3315 
3316 	kp = protection_codes;
3317 	for (prot = 0; prot < 8; prot++) {
3318 		if (prot & VM_PROT_READ)
3319 			*kp |= 0; /* if it's VALID is readeable */
3320 		if (prot & VM_PROT_WRITE)
3321 			*kp |= VPTE_RW;
3322 		if (prot & VM_PROT_EXECUTE)
3323 			*kp |= 0; /* if it's VALID is executable */
3324 		++kp;
3325 	}
3326 }
3327 
3328 /*
3329  * Sets the memory attribute for the specified page.
3330  */
3331 void
3332 pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
3333 {
3334 	/* This is a vkernel, do nothing */
3335 }
3336 
3337 /*
3338  * Change the PAT attribute on an existing kernel memory map.  Caller
3339  * must ensure that the virtual memory in question is not accessed
3340  * during the adjustment.
3341  */
3342 void
3343 pmap_change_attr(vm_offset_t va, vm_size_t count, int mode)
3344 {
3345 	/* This is a vkernel, do nothing */
3346 }
3347 
3348 /*
3349  * Perform the pmap work for mincore
3350  *
3351  * No other requirements.
3352  */
3353 int
3354 pmap_mincore(pmap_t pmap, vm_offset_t addr)
3355 {
3356 	pt_entry_t *ptep, pte;
3357 	vm_page_t m;
3358 	int val = 0;
3359 
3360 	lwkt_gettoken(&vm_token);
3361 	ptep = pmap_pte(pmap, addr);
3362 
3363 	if (ptep && (pte = *ptep) != 0) {
3364 		vm_paddr_t pa;
3365 
3366 		val = MINCORE_INCORE;
3367 		if ((pte & VPTE_MANAGED) == 0)
3368 			goto done;
3369 
3370 		pa = pte & VPTE_FRAME;
3371 
3372 		m = PHYS_TO_VM_PAGE(pa);
3373 
3374 		/*
3375 		 * Modified by us
3376 		 */
3377 		if (pte & VPTE_M)
3378 			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
3379 		/*
3380 		 * Modified by someone
3381 		 */
3382 		else if (m->dirty || pmap_is_modified(m))
3383 			val |= MINCORE_MODIFIED_OTHER;
3384 		/*
3385 		 * Referenced by us
3386 		 */
3387 		if (pte & VPTE_A)
3388 			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
3389 
3390 		/*
3391 		 * Referenced by someone
3392 		 */
3393 		else if ((m->flags & PG_REFERENCED) || pmap_ts_referenced(m)) {
3394 			val |= MINCORE_REFERENCED_OTHER;
3395 			vm_page_flag_set(m, PG_REFERENCED);
3396 		}
3397 	}
3398 done:
3399 	lwkt_reltoken(&vm_token);
3400 	return val;
3401 }
3402 
3403 /*
3404  * Replace p->p_vmspace with a new one.  If adjrefs is non-zero the new
3405  * vmspace will be ref'd and the old one will be deref'd.
3406  *
3407  * Caller must hold vmspace->vm_map.token for oldvm and newvm
3408  */
3409 void
3410 pmap_replacevm(struct proc *p, struct vmspace *newvm, int adjrefs)
3411 {
3412 	struct vmspace *oldvm;
3413 	struct lwp *lp;
3414 
3415 	crit_enter();
3416 	oldvm = p->p_vmspace;
3417 	if (oldvm != newvm) {
3418 		if (adjrefs)
3419 			vmspace_ref(newvm);
3420 		p->p_vmspace = newvm;
3421 		KKASSERT(p->p_nthreads == 1);
3422 		lp = RB_ROOT(&p->p_lwp_tree);
3423 		pmap_setlwpvm(lp, newvm);
3424 		if (adjrefs)
3425 			vmspace_rel(oldvm);
3426 	}
3427 	crit_exit();
3428 }
3429 
3430 /*
3431  * Set the vmspace for a LWP.  The vmspace is almost universally set the
3432  * same as the process vmspace, but virtual kernels need to swap out contexts
3433  * on a per-lwp basis.
3434  */
3435 void
3436 pmap_setlwpvm(struct lwp *lp, struct vmspace *newvm)
3437 {
3438 	struct vmspace *oldvm;
3439 	struct pmap *pmap;
3440 
3441 	oldvm = lp->lwp_vmspace;
3442 	if (oldvm != newvm) {
3443 		crit_enter();
3444 		lp->lwp_vmspace = newvm;
3445 		if (curthread->td_lwp == lp) {
3446 			pmap = vmspace_pmap(newvm);
3447 			ATOMIC_CPUMASK_ORBIT(pmap->pm_active, mycpu->gd_cpuid);
3448 			if (pmap->pm_active_lock & CPULOCK_EXCL)
3449 				pmap_interlock_wait(newvm);
3450 #if defined(SWTCH_OPTIM_STATS)
3451 			tlb_flush_count++;
3452 #endif
3453 			pmap = vmspace_pmap(oldvm);
3454 			ATOMIC_CPUMASK_NANDBIT(pmap->pm_active,
3455 					       mycpu->gd_cpuid);
3456 		}
3457 		crit_exit();
3458 	}
3459 }
3460 
3461 /*
3462  * The swtch code tried to switch in a heavy weight process whos pmap
3463  * is locked by another cpu.  We have to wait for the lock to clear before
3464  * the pmap can be used.
3465  */
3466 void
3467 pmap_interlock_wait (struct vmspace *vm)
3468 {
3469 	pmap_t pmap = vmspace_pmap(vm);
3470 
3471 	if (pmap->pm_active_lock & CPULOCK_EXCL) {
3472 		crit_enter();
3473 		while (pmap->pm_active_lock & CPULOCK_EXCL) {
3474 			cpu_ccfence();
3475 			pthread_yield();
3476 		}
3477 		crit_exit();
3478 	}
3479 }
3480 
3481 vm_offset_t
3482 pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
3483 {
3484 
3485 	if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
3486 		return addr;
3487 	}
3488 
3489 	addr = roundup2(addr, NBPDR);
3490 	return addr;
3491 }
3492 
3493 /*
3494  * Used by kmalloc/kfree, page already exists at va
3495  */
3496 vm_page_t
3497 pmap_kvtom(vm_offset_t va)
3498 {
3499 	vpte_t *ptep;
3500 
3501 	KKASSERT(va >= KvaStart && va < KvaEnd);
3502 	ptep = vtopte(va);
3503 	return(PHYS_TO_VM_PAGE(*ptep & PG_FRAME));
3504 }
3505 
3506 void
3507 pmap_object_init(vm_object_t object)
3508 {
3509 	/* empty */
3510 }
3511 
3512 void
3513 pmap_object_free(vm_object_t object)
3514 {
3515 	/* empty */
3516 }
3517 
3518 void
3519 pmap_pgscan(struct pmap_pgscan_info *pginfo)
3520 {
3521 	pmap_t pmap = pginfo->pmap;
3522 	vm_offset_t sva = pginfo->beg_addr;
3523 	vm_offset_t eva = pginfo->end_addr;
3524 	vm_offset_t va_next;
3525 	pml4_entry_t *pml4e;
3526 	pdp_entry_t *pdpe;
3527 	pd_entry_t ptpaddr, *pde;
3528 	pt_entry_t *pte;
3529 	int stop = 0;
3530 
3531 	lwkt_gettoken(&vm_token);
3532 
3533 	for (; sva < eva; sva = va_next) {
3534 		if (stop)
3535 			break;
3536 
3537 		pml4e = pmap_pml4e(pmap, sva);
3538 		if ((*pml4e & VPTE_V) == 0) {
3539 			va_next = (sva + NBPML4) & ~PML4MASK;
3540 			if (va_next < sva)
3541 				va_next = eva;
3542 			continue;
3543 		}
3544 
3545 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
3546 		if ((*pdpe & VPTE_V) == 0) {
3547 			va_next = (sva + NBPDP) & ~PDPMASK;
3548 			if (va_next < sva)
3549 				va_next = eva;
3550 			continue;
3551 		}
3552 
3553 		va_next = (sva + NBPDR) & ~PDRMASK;
3554 		if (va_next < sva)
3555 			va_next = eva;
3556 
3557 		pde = pmap_pdpe_to_pde(pdpe, sva);
3558 		ptpaddr = *pde;
3559 
3560 		/*
3561 		 * Check for large page (ignore).
3562 		 */
3563 		if ((ptpaddr & VPTE_PS) != 0) {
3564 #if 0
3565 			pmap_clean_pde(pde, pmap, sva);
3566 			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
3567 #endif
3568 			continue;
3569 		}
3570 
3571 		/*
3572 		 * Weed out invalid mappings. Note: we assume that the page
3573 		 * directory table is always allocated, and in kernel virtual.
3574 		 */
3575 		if (ptpaddr == 0)
3576 			continue;
3577 
3578 		if (va_next > eva)
3579 			va_next = eva;
3580 
3581 		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
3582 		    sva += PAGE_SIZE) {
3583 			vm_page_t m;
3584 
3585 			if (stop)
3586 				break;
3587 			if ((*pte & VPTE_MANAGED) == 0)
3588 				continue;
3589 
3590 			m = PHYS_TO_VM_PAGE(*pte & VPTE_FRAME);
3591 			if (vm_page_busy_try(m, TRUE) == 0) {
3592 				if (pginfo->callback(pginfo, sva, m) < 0)
3593 					stop = 1;
3594 			}
3595 		}
3596 	}
3597 	lwkt_reltoken(&vm_token);
3598 }
3599