1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * Copyright (c) 1994 John S. Dyson
4  * Copyright (c) 1994 David Greenman
5  * Copyright (c) 2003 Peter Wemm
6  * Copyright (c) 2005-2008 Alan L. Cox <alc@cs.rice.edu>
7  * Copyright (c) 2008-2019 The DragonFly Project.
8  * Copyright (c) 2008, 2009 Jordan Gordeev.
9  * All rights reserved.
10  *
11  * This code is derived from software contributed to Berkeley by
12  * the Systems Programming Group of the University of Utah Computer
13  * Science Department and William Jolitz of UUNET Technologies Inc.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  * 3. All advertising materials mentioning features or use of this software
24  *    must display the following acknowledgement:
25  *	This product includes software developed by the University of
26  *	California, Berkeley and its contributors.
27  * 4. Neither the name of the University nor the names of its contributors
28  *    may be used to endorse or promote products derived from this software
29  *    without specific prior written permission.
30  *
31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41  * SUCH DAMAGE.
42  *
43  *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
44  * $FreeBSD: src/sys/i386/i386/pmap.c,v 1.250.2.18 2002/03/06 22:48:53 silby Exp $
45  */
46 
47 /*
48  * Manages physical address maps.
49  */
50 
51 #include "opt_msgbuf.h"
52 
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/kernel.h>
56 #include <sys/proc.h>
57 #include <sys/msgbuf.h>
58 #include <sys/vmmeter.h>
59 #include <sys/mman.h>
60 #include <sys/vmspace.h>
61 
62 #include <vm/vm.h>
63 #include <vm/vm_param.h>
64 #include <sys/sysctl.h>
65 #include <sys/lock.h>
66 #include <vm/vm_kern.h>
67 #include <vm/vm_page.h>
68 #include <vm/vm_map.h>
69 #include <vm/vm_object.h>
70 #include <vm/vm_extern.h>
71 #include <vm/vm_pageout.h>
72 #include <vm/vm_pager.h>
73 #include <vm/vm_zone.h>
74 
75 #include <sys/thread2.h>
76 #include <sys/spinlock2.h>
77 #include <vm/vm_page2.h>
78 
79 #include <machine/cputypes.h>
80 #include <machine/md_var.h>
81 #include <machine/specialreg.h>
82 #include <machine/smp.h>
83 #include <machine/globaldata.h>
84 #include <machine/pcb.h>
85 #include <machine/pmap.h>
86 #include <machine/pmap_inval.h>
87 
88 #include <ddb/ddb.h>
89 
90 #include <stdio.h>
91 #include <assert.h>
92 #include <stdlib.h>
93 
94 #define PMAP_KEEP_PDIRS
95 #ifndef PMAP_SHPGPERPROC
96 #define PMAP_SHPGPERPROC 1000
97 #endif
98 
99 #if defined(DIAGNOSTIC)
100 #define PMAP_DIAGNOSTIC
101 #endif
102 
103 #define MINPV 2048
104 
105 #if !defined(PMAP_DIAGNOSTIC)
106 #define PMAP_INLINE __inline
107 #else
108 #define PMAP_INLINE
109 #endif
110 
111 /*
112  * Get PDEs and PTEs for user/kernel address space
113  */
114 static pd_entry_t *pmap_pde(pmap_t pmap, vm_offset_t va);
115 #define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
116 
117 #define pmap_pde_v(pte)		((*(pd_entry_t *)pte & VPTE_V) != 0)
118 #define pmap_pte_w(pte)		((*(pt_entry_t *)pte & VPTE_WIRED) != 0)
119 #define pmap_pte_m(pte)		((*(pt_entry_t *)pte & VPTE_M) != 0)
120 #define pmap_pte_u(pte)		((*(pt_entry_t *)pte & VPTE_A) != 0)
121 #define pmap_pte_v(pte)		((*(pt_entry_t *)pte & VPTE_V) != 0)
122 
123 /*
124  * Given a map and a machine independent protection code,
125  * convert to a vax protection code.
126  */
127 #define pte_prot(m, p)		\
128 	(protection_codes[p & (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE)])
129 static uint64_t protection_codes[8];
130 
131 struct pmap kernel_pmap;
132 
133 static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
134 
135 static struct vm_object kptobj;
136 static int nkpt;
137 
138 static uint64_t	KPDphys;	/* phys addr of kernel level 2 */
139 uint64_t		KPDPphys;	/* phys addr of kernel level 3 */
140 uint64_t		KPML4phys;	/* phys addr of kernel level 4 */
141 
142 extern int vmm_enabled;
143 extern void *vkernel_stack;
144 
145 /*
146  * Data for the pv entry allocation mechanism
147  */
148 static vm_zone_t pvzone;
149 static struct vm_zone pvzone_store;
150 static vm_pindex_t pv_entry_count = 0;
151 static vm_pindex_t pv_entry_max = 0;
152 static vm_pindex_t pv_entry_high_water = 0;
153 static int pmap_pagedaemon_waken = 0;
154 static struct pv_entry *pvinit;
155 
156 /*
157  * All those kernel PT submaps that BSD is so fond of
158  */
159 pt_entry_t *CMAP1 = NULL, *ptmmap;
160 caddr_t CADDR1 = NULL;
161 static pt_entry_t *msgbufmap;
162 
163 uint64_t KPTphys;
164 
165 static PMAP_INLINE void	free_pv_entry (pv_entry_t pv);
166 static pv_entry_t get_pv_entry (void);
167 static void	x86_64_protection_init (void);
168 static __inline void	pmap_clearbit (vm_page_t m, int bit);
169 
170 static void	pmap_remove_all (vm_page_t m);
171 static int pmap_remove_pte (struct pmap *pmap, pt_entry_t *ptq,
172 				pt_entry_t oldpte, vm_offset_t sva);
173 static void pmap_remove_page (struct pmap *pmap, vm_offset_t va);
174 static int pmap_remove_entry (struct pmap *pmap, vm_page_t m,
175 				vm_offset_t va);
176 static boolean_t pmap_testbit (vm_page_t m, int bit);
177 static void pmap_insert_entry (pmap_t pmap, vm_offset_t va,
178 				vm_page_t mpte, vm_page_t m, pv_entry_t);
179 
180 static vm_page_t pmap_allocpte (pmap_t pmap, vm_offset_t va);
181 
182 static int pmap_release_free_page (pmap_t pmap, vm_page_t p);
183 static vm_page_t _pmap_allocpte (pmap_t pmap, vm_pindex_t ptepindex);
184 static vm_page_t pmap_page_lookup (vm_object_t object, vm_pindex_t pindex);
185 static int pmap_unuse_pt (pmap_t, vm_offset_t, vm_page_t);
186 
187 static int
188 pv_entry_compare(pv_entry_t pv1, pv_entry_t pv2)
189 {
190 	if (pv1->pv_va < pv2->pv_va)
191 		return(-1);
192 	if (pv1->pv_va > pv2->pv_va)
193 		return(1);
194 	return(0);
195 }
196 
197 RB_GENERATE2(pv_entry_rb_tree, pv_entry, pv_entry,
198 	    pv_entry_compare, vm_offset_t, pv_va);
199 
200 static __inline vm_pindex_t
201 pmap_pt_pindex(vm_offset_t va)
202 {
203 	return va >> PDRSHIFT;
204 }
205 
206 static __inline vm_pindex_t
207 pmap_pte_index(vm_offset_t va)
208 {
209 	return ((va >> PAGE_SHIFT) & ((1ul << NPTEPGSHIFT) - 1));
210 }
211 
212 static __inline vm_pindex_t
213 pmap_pde_index(vm_offset_t va)
214 {
215 	return ((va >> PDRSHIFT) & ((1ul << NPDEPGSHIFT) - 1));
216 }
217 
218 static __inline vm_pindex_t
219 pmap_pdpe_index(vm_offset_t va)
220 {
221 	return ((va >> PDPSHIFT) & ((1ul << NPDPEPGSHIFT) - 1));
222 }
223 
224 static __inline vm_pindex_t
225 pmap_pml4e_index(vm_offset_t va)
226 {
227 	return ((va >> PML4SHIFT) & ((1ul << NPML4EPGSHIFT) - 1));
228 }
229 
230 /* Return a pointer to the PML4 slot that corresponds to a VA */
231 static __inline pml4_entry_t *
232 pmap_pml4e(pmap_t pmap, vm_offset_t va)
233 {
234 	return (&pmap->pm_pml4[pmap_pml4e_index(va)]);
235 }
236 
237 /* Return a pointer to the PDP slot that corresponds to a VA */
238 static __inline pdp_entry_t *
239 pmap_pml4e_to_pdpe(pml4_entry_t *pml4e, vm_offset_t va)
240 {
241 	pdp_entry_t *pdpe;
242 
243 	pdpe = (pdp_entry_t *)PHYS_TO_DMAP(*pml4e & VPTE_FRAME);
244 	return (&pdpe[pmap_pdpe_index(va)]);
245 }
246 
247 /* Return a pointer to the PDP slot that corresponds to a VA */
248 static __inline pdp_entry_t *
249 pmap_pdpe(pmap_t pmap, vm_offset_t va)
250 {
251 	pml4_entry_t *pml4e;
252 
253 	pml4e = pmap_pml4e(pmap, va);
254 	if ((*pml4e & VPTE_V) == 0)
255 		return NULL;
256 	return (pmap_pml4e_to_pdpe(pml4e, va));
257 }
258 
259 /* Return a pointer to the PD slot that corresponds to a VA */
260 static __inline pd_entry_t *
261 pmap_pdpe_to_pde(pdp_entry_t *pdpe, vm_offset_t va)
262 {
263 	pd_entry_t *pde;
264 
265 	pde = (pd_entry_t *)PHYS_TO_DMAP(*pdpe & VPTE_FRAME);
266 	return (&pde[pmap_pde_index(va)]);
267 }
268 
269 /* Return a pointer to the PD slot that corresponds to a VA */
270 static __inline pd_entry_t *
271 pmap_pde(pmap_t pmap, vm_offset_t va)
272 {
273 	pdp_entry_t *pdpe;
274 
275 	pdpe = pmap_pdpe(pmap, va);
276 	if (pdpe == NULL || (*pdpe & VPTE_V) == 0)
277 		 return NULL;
278 	return (pmap_pdpe_to_pde(pdpe, va));
279 }
280 
281 /* Return a pointer to the PT slot that corresponds to a VA */
282 static __inline pt_entry_t *
283 pmap_pde_to_pte(pd_entry_t *pde, vm_offset_t va)
284 {
285 	pt_entry_t *pte;
286 
287 	pte = (pt_entry_t *)PHYS_TO_DMAP(*pde & VPTE_FRAME);
288 	return (&pte[pmap_pte_index(va)]);
289 }
290 
291 /*
292  * Hold pt_m for page table scans to prevent it from getting reused out
293  * from under us across blocking conditions in the body of the loop.
294  */
295 static __inline
296 vm_page_t
297 pmap_hold_pt_page(pd_entry_t *pde, vm_offset_t va)
298 {
299 	pt_entry_t pte;
300 	vm_page_t pt_m;
301 
302 	pte = (pt_entry_t)*pde;
303 	KKASSERT(pte != 0);
304 	pt_m = PHYS_TO_VM_PAGE(pte & VPTE_FRAME);
305 	vm_page_hold(pt_m);
306 
307 	return pt_m;
308 }
309 
310 /* Return a pointer to the PT slot that corresponds to a VA */
311 static __inline pt_entry_t *
312 pmap_pte(pmap_t pmap, vm_offset_t va)
313 {
314 	pd_entry_t *pde;
315 
316 	pde = pmap_pde(pmap, va);
317 	if (pde == NULL || (*pde & VPTE_V) == 0)
318 		return NULL;
319 	if ((*pde & VPTE_PS) != 0)	/* compat with x86 pmap_pte() */
320 		return ((pt_entry_t *)pde);
321 	return (pmap_pde_to_pte(pde, va));
322 }
323 
324 static PMAP_INLINE pt_entry_t *
325 vtopte(vm_offset_t va)
326 {
327 	pt_entry_t *x;
328 	x = pmap_pte(&kernel_pmap, va);
329 	assert(x != NULL);
330 	return x;
331 }
332 
333 static __inline pd_entry_t *
334 vtopde(vm_offset_t va)
335 {
336 	pd_entry_t *x;
337 	x = pmap_pde(&kernel_pmap, va);
338 	assert(x != NULL);
339 	return x;
340 }
341 
342 /*
343  * Returns the physical address translation from va for a user address.
344  * (vm_paddr_t)-1 is returned on failure.
345  */
346 vm_paddr_t
347 uservtophys(vm_offset_t va)
348 {
349 	struct vmspace *vm = curproc->p_vmspace;
350 	vm_page_t m;
351 	vm_paddr_t pa;
352 	int error;
353 	int busy;
354 
355 	/* XXX No idea how to handle this case in a simple way, just abort */
356 	if (PAGE_SIZE - (va & PAGE_MASK) < sizeof(u_int))
357 		return ((vm_paddr_t)-1);
358 
359 	m = vm_fault_page(&vm->vm_map, trunc_page(va),
360 			  VM_PROT_READ|VM_PROT_WRITE,
361 			  VM_FAULT_NORMAL,
362 			  &error, &busy);
363 	if (error)
364 		return ((vm_paddr_t)-1);
365 
366 	pa = VM_PAGE_TO_PHYS(m) | (va & PAGE_MASK);
367 	if (busy)
368 		vm_page_wakeup(m);
369 	else
370 		vm_page_unhold(m);
371 
372 	return pa;
373 }
374 
375 static uint64_t
376 allocpages(vm_paddr_t *firstaddr, int n)
377 {
378 	uint64_t ret;
379 
380 	ret = *firstaddr;
381 	/*bzero((void *)ret, n * PAGE_SIZE); not mapped yet */
382 	*firstaddr += n * PAGE_SIZE;
383 	return (ret);
384 }
385 
386 static void
387 create_dmap_vmm(vm_paddr_t *firstaddr)
388 {
389 	void *stack_addr;
390 	int pml4_stack_index;
391 	int pdp_stack_index;
392 	int pd_stack_index;
393 	long i,j;
394 	int regs[4];
395 	int amd_feature;
396 
397 	uint64_t KPDP_DMAP_phys = allocpages(firstaddr, NDMPML4E);
398 	uint64_t KPDP_VSTACK_phys = allocpages(firstaddr, 1);
399 	uint64_t KPD_VSTACK_phys = allocpages(firstaddr, 1);
400 
401 	pml4_entry_t *KPML4virt = (pml4_entry_t *)PHYS_TO_DMAP(KPML4phys);
402 	pdp_entry_t *KPDP_DMAP_virt = (pdp_entry_t *)PHYS_TO_DMAP(KPDP_DMAP_phys);
403 	pdp_entry_t *KPDP_VSTACK_virt = (pdp_entry_t *)PHYS_TO_DMAP(KPDP_VSTACK_phys);
404 	pd_entry_t *KPD_VSTACK_virt = (pd_entry_t *)PHYS_TO_DMAP(KPD_VSTACK_phys);
405 
406 	bzero(KPDP_DMAP_virt, NDMPML4E * PAGE_SIZE);
407 	bzero(KPDP_VSTACK_virt, 1 * PAGE_SIZE);
408 	bzero(KPD_VSTACK_virt, 1 * PAGE_SIZE);
409 
410 	do_cpuid(0x80000001, regs);
411 	amd_feature = regs[3];
412 
413 	/* Build the mappings for the first 512GB */
414 	if (amd_feature & AMDID_PAGE1GB) {
415 		/* In pages of 1 GB, if supported */
416 		for (i = 0; i < NPDPEPG; i++) {
417 			KPDP_DMAP_virt[i] = ((uint64_t)i << PDPSHIFT);
418 			KPDP_DMAP_virt[i] |= VPTE_RW | VPTE_V | VPTE_PS | VPTE_U;
419 		}
420 	} else {
421 		/* In page of 2MB, otherwise */
422 		for (i = 0; i < NPDPEPG; i++) {
423 			uint64_t KPD_DMAP_phys;
424 			pd_entry_t *KPD_DMAP_virt;
425 
426 			KPD_DMAP_phys = allocpages(firstaddr, 1);
427 			KPD_DMAP_virt =
428 				(pd_entry_t *)PHYS_TO_DMAP(KPD_DMAP_phys);
429 
430 			bzero(KPD_DMAP_virt, PAGE_SIZE);
431 
432 			KPDP_DMAP_virt[i] = KPD_DMAP_phys;
433 			KPDP_DMAP_virt[i] |= VPTE_RW | VPTE_V | VPTE_U;
434 
435 			/* For each PD, we have to allocate NPTEPG PT */
436 			for (j = 0; j < NPTEPG; j++) {
437 				KPD_DMAP_virt[j] = (i << PDPSHIFT) |
438 						   (j << PDRSHIFT);
439 				KPD_DMAP_virt[j] |= VPTE_RW | VPTE_V |
440 						    VPTE_PS | VPTE_U;
441 			}
442 		}
443 	}
444 
445 	/* DMAP for the first 512G */
446 	KPML4virt[0] = KPDP_DMAP_phys;
447 	KPML4virt[0] |= VPTE_RW | VPTE_V | VPTE_U;
448 
449 	/* create a 2 MB map of the new stack */
450 	pml4_stack_index = (uint64_t)&stack_addr >> PML4SHIFT;
451 	KPML4virt[pml4_stack_index] = KPDP_VSTACK_phys;
452 	KPML4virt[pml4_stack_index] |= VPTE_RW | VPTE_V | VPTE_U;
453 
454 	pdp_stack_index = ((uint64_t)&stack_addr & PML4MASK) >> PDPSHIFT;
455 	KPDP_VSTACK_virt[pdp_stack_index] = KPD_VSTACK_phys;
456 	KPDP_VSTACK_virt[pdp_stack_index] |= VPTE_RW | VPTE_V | VPTE_U;
457 
458 	pd_stack_index = ((uint64_t)&stack_addr & PDPMASK) >> PDRSHIFT;
459 	KPD_VSTACK_virt[pd_stack_index] = (uint64_t) vkernel_stack;
460 	KPD_VSTACK_virt[pd_stack_index] |= VPTE_RW | VPTE_V | VPTE_U | VPTE_PS;
461 }
462 
463 static void
464 create_pagetables(vm_paddr_t *firstaddr, int64_t ptov_offset)
465 {
466 	int i;
467 	pml4_entry_t *KPML4virt;
468 	pdp_entry_t *KPDPvirt;
469 	pd_entry_t *KPDvirt;
470 	pt_entry_t *KPTvirt;
471 	int kpml4i = pmap_pml4e_index(ptov_offset);
472 	int kpdpi = pmap_pdpe_index(ptov_offset);
473 	int kpdi = pmap_pde_index(ptov_offset);
474 
475 	/*
476          * Calculate NKPT - number of kernel page tables.  We have to
477          * accomodoate prealloction of the vm_page_array, dump bitmap,
478          * MSGBUF_SIZE, and other stuff.  Be generous.
479          *
480          * Maxmem is in pages.
481          */
482         nkpt = (Maxmem * (sizeof(struct vm_page) * 2) + MSGBUF_SIZE) / NBPDR;
483 	/*
484 	 * Allocate pages
485 	 */
486 	KPML4phys = allocpages(firstaddr, 1);
487 	KPDPphys = allocpages(firstaddr, NKPML4E);
488 	KPDphys = allocpages(firstaddr, NKPDPE);
489 	KPTphys = allocpages(firstaddr, nkpt);
490 
491 	KPML4virt = (pml4_entry_t *)PHYS_TO_DMAP(KPML4phys);
492 	KPDPvirt = (pdp_entry_t *)PHYS_TO_DMAP(KPDPphys);
493 	KPDvirt = (pd_entry_t *)PHYS_TO_DMAP(KPDphys);
494 	KPTvirt = (pt_entry_t *)PHYS_TO_DMAP(KPTphys);
495 
496 	bzero(KPML4virt, 1 * PAGE_SIZE);
497 	bzero(KPDPvirt, NKPML4E * PAGE_SIZE);
498 	bzero(KPDvirt, NKPDPE * PAGE_SIZE);
499 	bzero(KPTvirt, nkpt * PAGE_SIZE);
500 
501 	/* Now map the page tables at their location within PTmap */
502 	for (i = 0; i < nkpt; i++) {
503 		KPDvirt[i + kpdi] = KPTphys + (i << PAGE_SHIFT);
504 		KPDvirt[i + kpdi] |= VPTE_RW | VPTE_V | VPTE_U;
505 	}
506 
507 	/* And connect up the PD to the PDP */
508 	for (i = 0; i < NKPDPE; i++) {
509 		KPDPvirt[i + kpdpi] = KPDphys + (i << PAGE_SHIFT);
510 		KPDPvirt[i + kpdpi] |= VPTE_RW | VPTE_V | VPTE_U;
511 	}
512 
513 	/* And recursively map PML4 to itself in order to get PTmap */
514 	KPML4virt[PML4PML4I] = KPML4phys;
515 	KPML4virt[PML4PML4I] |= VPTE_RW | VPTE_V | VPTE_U;
516 
517 	/* Connect the KVA slot up to the PML4 */
518 	KPML4virt[kpml4i] = KPDPphys;
519 	KPML4virt[kpml4i] |= VPTE_RW | VPTE_V | VPTE_U;
520 }
521 
522 /*
523  * Typically used to initialize a fictitious page by vm/device_pager.c
524  */
525 void
526 pmap_page_init(struct vm_page *m)
527 {
528 	vm_page_init(m);
529 	TAILQ_INIT(&m->md.pv_list);
530 }
531 
532 /*
533  *	Bootstrap the system enough to run with virtual memory.
534  *
535  *	On x86_64 this is called after mapping has already been enabled
536  *	and just syncs the pmap module with what has already been done.
537  *	[We can't call it easily with mapping off since the kernel is not
538  *	mapped with PA == VA, hence we would have to relocate every address
539  *	from the linked base (virtual) address "KERNBASE" to the actual
540  *	(physical) address starting relative to 0]
541  */
542 void
543 pmap_bootstrap(vm_paddr_t *firstaddr, int64_t ptov_offset)
544 {
545 	vm_offset_t va;
546 	pt_entry_t *pte;
547 
548 	/*
549 	 * Create an initial set of page tables to run the kernel in.
550 	 */
551 	create_pagetables(firstaddr, ptov_offset);
552 
553 	/* Create the DMAP for the VMM */
554 	if (vmm_enabled) {
555 		create_dmap_vmm(firstaddr);
556 	}
557 
558 	virtual_start = KvaStart;
559 	virtual_end = KvaEnd;
560 
561 	/*
562 	 * Initialize protection array.
563 	 */
564 	x86_64_protection_init();
565 
566 	/*
567 	 * The kernel's pmap is statically allocated so we don't have to use
568 	 * pmap_create, which is unlikely to work correctly at this part of
569 	 * the boot sequence (XXX and which no longer exists).
570 	 *
571 	 * The kernel_pmap's pm_pteobj is used only for locking and not
572 	 * for mmu pages.
573 	 */
574 	kernel_pmap.pm_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(KPML4phys);
575 	kernel_pmap.pm_count = 1;
576 	/* don't allow deactivation */
577 	CPUMASK_ASSALLONES(kernel_pmap.pm_active);
578 	kernel_pmap.pm_pteobj = NULL;	/* see pmap_init */
579 	RB_INIT(&kernel_pmap.pm_pvroot);
580 	spin_init(&kernel_pmap.pm_spin, "pmapbootstrap");
581 
582 	/*
583 	 * Reserve some special page table entries/VA space for temporary
584 	 * mapping of pages.
585 	 */
586 #define	SYSMAP(c, p, v, n)	\
587 	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
588 
589 	va = virtual_start;
590 	pte = pmap_pte(&kernel_pmap, va);
591 	/*
592 	 * CMAP1/CMAP2 are used for zeroing and copying pages.
593 	 */
594 	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
595 
596 #if 0 /* JGV */
597 	/*
598 	 * Crashdump maps.
599 	 */
600 	SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
601 #endif
602 
603 	/*
604 	 * ptvmmap is used for reading arbitrary physical pages via
605 	 * /dev/mem.
606 	 */
607 	SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
608 
609 	/*
610 	 * msgbufp is used to map the system message buffer.
611 	 * XXX msgbufmap is not used.
612 	 */
613 	SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
614 	       atop(round_page(MSGBUF_SIZE)))
615 
616 	virtual_start = va;
617 
618 	*CMAP1 = 0;
619 	/* Not ready to do an invltlb yet for VMM*/
620 	if (!vmm_enabled)
621 		cpu_invltlb();
622 
623 }
624 
625 /*
626  *	Initialize the pmap module.
627  *	Called by vm_init, to initialize any structures that the pmap
628  *	system needs to map virtual memory.
629  *	pmap_init has been enhanced to support in a fairly consistant
630  *	way, discontiguous physical memory.
631  */
632 void
633 pmap_init(void)
634 {
635 	vm_pindex_t i;
636 	vm_pindex_t initial_pvs;
637 
638 	/*
639 	 * object for kernel page table pages
640 	 */
641 	/* JG I think the number can be arbitrary */
642 	vm_object_init(&kptobj, 5);
643 	kernel_pmap.pm_pteobj = &kptobj;
644 
645 	/*
646 	 * Allocate memory for random pmap data structures.  Includes the
647 	 * pv_head_table.
648 	 */
649 	for (i = 0; i < vm_page_array_size; i++) {
650 		vm_page_t m;
651 
652 		m = &vm_page_array[i];
653 		TAILQ_INIT(&m->md.pv_list);
654 		m->md.pv_list_count = 0;
655 	}
656 
657 	/*
658 	 * init the pv free list
659 	 */
660 	initial_pvs = vm_page_array_size;
661 	if (initial_pvs < MINPV)
662 		initial_pvs = MINPV;
663 	pvzone = &pvzone_store;
664 	pvinit = (struct pv_entry *)
665 		kmem_alloc(&kernel_map,
666 			   initial_pvs * sizeof (struct pv_entry),
667 			   VM_SUBSYS_PVENTRY);
668 	zbootinit(pvzone, "PV ENTRY", sizeof (struct pv_entry), pvinit,
669 		initial_pvs);
670 
671 	/*
672 	 * Now it is safe to enable pv_table recording.
673 	 */
674 	pmap_initialized = TRUE;
675 }
676 
677 /*
678  * Initialize the address space (zone) for the pv_entries.  Set a
679  * high water mark so that the system can recover from excessive
680  * numbers of pv entries.
681  */
682 void
683 pmap_init2(void)
684 {
685 	vm_pindex_t shpgperproc = PMAP_SHPGPERPROC;
686 
687 	TUNABLE_LONG_FETCH("vm.pmap.shpgperproc", &shpgperproc);
688 	pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
689 	TUNABLE_LONG_FETCH("vm.pmap.pv_entries", &pv_entry_max);
690 	pv_entry_high_water = 9 * (pv_entry_max / 10);
691 	zinitna(pvzone, NULL, 0, pv_entry_max, ZONE_INTERRUPT);
692 }
693 
694 
695 /***************************************************
696  * Low level helper routines.....
697  ***************************************************/
698 
699 /*
700  * The modification bit is not tracked for any pages in this range. XXX
701  * such pages in this maps should always use pmap_k*() functions and not
702  * be managed anyhow.
703  *
704  * XXX User and kernel address spaces are independant for virtual kernels,
705  * this function only applies to the kernel pmap.
706  */
707 static void
708 pmap_track_modified(pmap_t pmap, vm_offset_t va)
709 {
710 	KKASSERT(pmap != &kernel_pmap ||
711 		 va < clean_sva || va >= clean_eva);
712 }
713 
714 /*
715  * Extract the physical page address associated with the map/VA pair.
716  *
717  * No requirements.
718  */
719 vm_paddr_t
720 pmap_extract(pmap_t pmap, vm_offset_t va, void **handlep)
721 {
722 	vm_paddr_t rtval;
723 	pt_entry_t *pte;
724 	pd_entry_t pde, *pdep;
725 
726 	vm_object_hold(pmap->pm_pteobj);
727 	rtval = 0;
728 	pdep = pmap_pde(pmap, va);
729 	if (pdep != NULL) {
730 		pde = *pdep;
731 		if (pde) {
732 			if ((pde & VPTE_PS) != 0) {
733 				/* JGV */
734 				rtval = (pde & PG_PS_FRAME) | (va & PDRMASK);
735 			} else {
736 				pte = pmap_pde_to_pte(pdep, va);
737 				rtval = (*pte & VPTE_FRAME) | (va & PAGE_MASK);
738 			}
739 		}
740 	}
741 	if (handlep)
742 		*handlep = NULL;	/* XXX */
743 	vm_object_drop(pmap->pm_pteobj);
744 
745 	return rtval;
746 }
747 
748 void
749 pmap_extract_done(void *handle)
750 {
751 	pmap_t pmap;
752 
753 	if (handle) {
754 		pmap = handle;
755 		vm_object_drop(pmap->pm_pteobj);
756 	}
757 }
758 
759 /*
760  * Similar to extract but checks protections, SMP-friendly short-cut for
761  * vm_fault_page[_quick]().
762  *
763  * WARNING! THE RETURNED PAGE IS ONLY HELD AND NEITHER IT NOR ITS TARGET
764  *	    DATA IS SUITABLE FOR WRITING.  Writing can interfere with
765  *	    pageouts flushes, msync, etc.  The hold_count is not enough
766  *	    to avoid races against pageouts and other flush code doesn't
767  *	    care about hold_count.
768  */
769 vm_page_t
770 pmap_fault_page_quick(pmap_t pmap __unused, vm_offset_t vaddr __unused,
771 		      vm_prot_t prot __unused, int *busyp __unused)
772 {
773 	return(NULL);
774 }
775 
776 /*
777  *	Routine:	pmap_kextract
778  *	Function:
779  *		Extract the physical page address associated
780  *		kernel virtual address.
781  */
782 vm_paddr_t
783 pmap_kextract(vm_offset_t va)
784 {
785 	pd_entry_t pde;
786 	vm_paddr_t pa;
787 
788 	KKASSERT(va >= KvaStart && va < KvaEnd);
789 
790 	/*
791 	 * The DMAP region is not included in [KvaStart, KvaEnd)
792 	 */
793 #if 0
794 	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
795 		pa = DMAP_TO_PHYS(va);
796 	} else {
797 #endif
798 		pde = *vtopde(va);
799 		if (pde & VPTE_PS) {
800 			/* JGV */
801 			pa = (pde & PG_PS_FRAME) | (va & PDRMASK);
802 		} else {
803 			/*
804 			 * Beware of a concurrent promotion that changes the
805 			 * PDE at this point!  For example, vtopte() must not
806 			 * be used to access the PTE because it would use the
807 			 * new PDE.  It is, however, safe to use the old PDE
808 			 * because the page table page is preserved by the
809 			 * promotion.
810 			 */
811 			pa = *pmap_pde_to_pte(&pde, va);
812 			pa = (pa & VPTE_FRAME) | (va & PAGE_MASK);
813 		}
814 #if 0
815 	}
816 #endif
817 	return pa;
818 }
819 
820 /***************************************************
821  * Low level mapping routines.....
822  ***************************************************/
823 
824 /*
825  * Enter a mapping into kernel_pmap.  Mappings created in this fashion
826  * are not managed.  Mappings must be immediately accessible on all cpus.
827  *
828  * Call pmap_inval_pte() to invalidate the virtual pte and clean out the
829  * real pmap and handle related races before storing the new vpte.  The
830  * new semantics for kenter require use to do an UNCONDITIONAL invalidation,
831  * because the entry may have previously been cleared without an invalidation.
832  */
833 void
834 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
835 {
836 	pt_entry_t *ptep;
837 	pt_entry_t npte;
838 
839 	KKASSERT(va >= KvaStart && va < KvaEnd);
840 	npte = pa | VPTE_RW | VPTE_V | VPTE_U;
841 	ptep = vtopte(va);
842 
843 #if 1
844 	pmap_inval_pte(ptep, &kernel_pmap, va);
845 #else
846 	if (*pte & VPTE_V)
847 		pmap_inval_pte(ptep, &kernel_pmap, va);
848 #endif
849 	atomic_swap_long(ptep, npte);
850 }
851 
852 /*
853  * Enter an unmanaged KVA mapping for the private use of the current
854  * cpu only.
855  *
856  * It is illegal for the mapping to be accessed by other cpus without
857  * proper invalidation.
858  */
859 int
860 pmap_kenter_quick(vm_offset_t va, vm_paddr_t pa)
861 {
862 	pt_entry_t *ptep;
863 	pt_entry_t npte;
864 	int res;
865 
866 	KKASSERT(va >= KvaStart && va < KvaEnd);
867 
868 	npte = (vpte_t)pa | VPTE_RW | VPTE_V | VPTE_U;
869 	ptep = vtopte(va);
870 
871 #if 1
872 	pmap_inval_pte_quick(ptep, &kernel_pmap, va);
873 	res = 1;
874 #else
875 	/* FUTURE */
876 	res = (*ptep != 0);
877 	if (*pte & VPTE_V)
878 		pmap_inval_pte(pte, &kernel_pmap, va);
879 #endif
880 	atomic_swap_long(ptep, npte);
881 
882 	return res;
883 }
884 
885 /*
886  * Invalidation will occur later, ok to be lazy here.
887  */
888 int
889 pmap_kenter_noinval(vm_offset_t va, vm_paddr_t pa)
890 {
891 	pt_entry_t *ptep;
892 	pt_entry_t npte;
893 	int res;
894 
895 	KKASSERT(va >= KvaStart && va < KvaEnd);
896 
897 	npte = (vpte_t)pa | VPTE_RW | VPTE_V | VPTE_U;
898 	ptep = vtopte(va);
899 #if 1
900 	res = 1;
901 #else
902 	/* FUTURE */
903 	res = (*ptep != 0);
904 #endif
905 	atomic_swap_long(ptep, npte);
906 
907 	return res;
908 }
909 
910 /*
911  * Remove an unmanaged mapping created with pmap_kenter*().
912  */
913 void
914 pmap_kremove(vm_offset_t va)
915 {
916 	pt_entry_t *ptep;
917 
918 	KKASSERT(va >= KvaStart && va < KvaEnd);
919 
920 	ptep = vtopte(va);
921 	atomic_swap_long(ptep, 0);
922 	pmap_inval_pte(ptep, &kernel_pmap, va);
923 }
924 
925 /*
926  * Remove an unmanaged mapping created with pmap_kenter*() but synchronize
927  * only with this cpu.
928  *
929  * Unfortunately because we optimize new entries by testing VPTE_V later
930  * on, we actually still have to synchronize with all the cpus.  XXX maybe
931  * store a junk value and test against 0 in the other places instead?
932  */
933 void
934 pmap_kremove_quick(vm_offset_t va)
935 {
936 	pt_entry_t *ptep;
937 
938 	KKASSERT(va >= KvaStart && va < KvaEnd);
939 
940 	ptep = vtopte(va);
941 	atomic_swap_long(ptep, 0);
942 	pmap_inval_pte(ptep, &kernel_pmap, va); /* NOT _quick */
943 }
944 
945 /*
946  * Invalidation will occur later, ok to be lazy here.
947  */
948 void
949 pmap_kremove_noinval(vm_offset_t va)
950 {
951 	pt_entry_t *ptep;
952 
953 	KKASSERT(va >= KvaStart && va < KvaEnd);
954 
955 	ptep = vtopte(va);
956 	atomic_swap_long(ptep, 0);
957 }
958 
959 /*
960  *	Used to map a range of physical addresses into kernel
961  *	virtual address space.
962  *
963  *	For now, VM is already on, we only need to map the
964  *	specified memory.
965  */
966 vm_offset_t
967 pmap_map(vm_offset_t *virtp, vm_paddr_t start, vm_paddr_t end, int prot)
968 {
969 	return PHYS_TO_DMAP(start);
970 }
971 
972 /*
973  * Map a set of unmanaged VM pages into KVM.
974  */
975 static __inline void
976 _pmap_qenter(vm_offset_t beg_va, vm_page_t *m, int count, int doinval)
977 {
978 	vm_offset_t end_va;
979 	vm_offset_t va;
980 
981 	end_va = beg_va + count * PAGE_SIZE;
982 	KKASSERT(beg_va >= KvaStart && end_va <= KvaEnd);
983 
984 	for (va = beg_va; va < end_va; va += PAGE_SIZE) {
985 		pt_entry_t *ptep;
986 
987 		ptep = vtopte(va);
988 		atomic_swap_long(ptep, VM_PAGE_TO_PHYS(*m) |
989 				       VPTE_RW | VPTE_V | VPTE_U);
990 		++m;
991 	}
992 	if (doinval)
993 		pmap_invalidate_range(&kernel_pmap, beg_va, end_va);
994 	/* pmap_inval_pte(pte, &kernel_pmap, va); */
995 }
996 
997 void
998 pmap_qenter(vm_offset_t beg_va, vm_page_t *m, int count)
999 {
1000 	_pmap_qenter(beg_va, m, count, 1);
1001 }
1002 
1003 void
1004 pmap_qenter_noinval(vm_offset_t beg_va, vm_page_t *m, int count)
1005 {
1006 	_pmap_qenter(beg_va, m, count, 0);
1007 }
1008 
1009 /*
1010  * Undo the effects of pmap_qenter*().
1011  */
1012 void
1013 pmap_qremove(vm_offset_t beg_va, int count)
1014 {
1015 	vm_offset_t end_va;
1016 	vm_offset_t va;
1017 
1018 	end_va = beg_va + count * PAGE_SIZE;
1019 	KKASSERT(beg_va >= KvaStart && end_va < KvaEnd);
1020 
1021 	for (va = beg_va; va < end_va; va += PAGE_SIZE) {
1022 		pt_entry_t *ptep;
1023 
1024 		ptep = vtopte(va);
1025 		atomic_swap_long(ptep, 0);
1026 	}
1027 	pmap_invalidate_range(&kernel_pmap, beg_va, end_va);
1028 }
1029 
1030 /*
1031  * Unlike the real pmap code, we can't avoid calling the real-kernel.
1032  */
1033 void
1034 pmap_qremove_quick(vm_offset_t va, int count)
1035 {
1036 	pmap_qremove(va, count);
1037 }
1038 
1039 void
1040 pmap_qremove_noinval(vm_offset_t va, int count)
1041 {
1042 	pmap_qremove(va, count);
1043 }
1044 
1045 /*
1046  * This routine works like vm_page_lookup() but also blocks as long as the
1047  * page is busy.  This routine does not busy the page it returns.
1048  *
1049  * Unless the caller is managing objects whos pages are in a known state,
1050  * the call should be made with a critical section held so the page's object
1051  * association remains valid on return.
1052  */
1053 static vm_page_t
1054 pmap_page_lookup(vm_object_t object, vm_pindex_t pindex)
1055 {
1056 	vm_page_t m;
1057 
1058 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1059 	m = vm_page_lookup_busy_wait(object, pindex, TRUE, "pplookp");
1060 
1061 	return(m);
1062 }
1063 
1064 /*
1065  * Create a new thread and optionally associate it with a (new) process.
1066  * NOTE! the new thread's cpu may not equal the current cpu.
1067  */
1068 void
1069 pmap_init_thread(thread_t td)
1070 {
1071 	/* enforce pcb placement */
1072 	td->td_pcb = (struct pcb *)(td->td_kstack + td->td_kstack_size) - 1;
1073 	td->td_savefpu = &td->td_pcb->pcb_save;
1074 	td->td_sp = (char *)td->td_pcb - 16; /* JG is -16 needed on x86_64? */
1075 }
1076 
1077 /*
1078  * This routine directly affects the fork perf for a process.
1079  */
1080 void
1081 pmap_init_proc(struct proc *p)
1082 {
1083 }
1084 
1085 /*
1086  * Unwire a page table which has been removed from the pmap.  We own the
1087  * wire_count, so the page cannot go away.  The page representing the page
1088  * table is passed in unbusied and must be busied if we cannot trivially
1089  * unwire it.
1090  *
1091  * XXX NOTE!  This code is not usually run because we do not currently
1092  *	      implement dynamic page table page removal.  The page in
1093  *	      its parent assumes at least 1 wire count, so no call to this
1094  *	      function ever sees a wire count less than 2.
1095  */
1096 static int
1097 pmap_unwire_pgtable(pmap_t pmap, vm_offset_t va, vm_page_t m)
1098 {
1099 	/*
1100 	 * Try to unwire optimally.  If non-zero is returned the wire_count
1101 	 * is 1 and we must busy the page to unwire it.
1102 	 */
1103 	if (vm_page_unwire_quick(m) == 0)
1104 		return 0;
1105 
1106 	vm_page_busy_wait(m, TRUE, "pmuwpt");
1107 	KASSERT(m->queue == PQ_NONE,
1108 		("_pmap_unwire_pgtable: %p->queue != PQ_NONE", m));
1109 
1110 	if (m->wire_count == 1) {
1111 		/*
1112 		 * Unmap the page table page.
1113 		 */
1114 		/* pmap_inval_add(info, pmap, -1); */
1115 
1116 		if (m->pindex >= (NUPT_TOTAL + NUPD_TOTAL)) {
1117 			/* PDP page */
1118 			pml4_entry_t *pml4;
1119 			pml4 = pmap_pml4e(pmap, va);
1120 			*pml4 = 0;
1121 		} else if (m->pindex >= NUPT_TOTAL) {
1122 			/* PD page */
1123 			pdp_entry_t *pdp;
1124 			pdp = pmap_pdpe(pmap, va);
1125 			*pdp = 0;
1126 		} else {
1127 			/* PT page */
1128 			pd_entry_t *pd;
1129 			pd = pmap_pde(pmap, va);
1130 			*pd = 0;
1131 		}
1132 
1133 		KKASSERT(pmap->pm_stats.resident_count > 0);
1134 		atomic_add_long(&pmap->pm_stats.resident_count, -1);
1135 
1136 		if (pmap->pm_ptphint == m)
1137 			pmap->pm_ptphint = NULL;
1138 
1139 		if (m->pindex < NUPT_TOTAL) {
1140 			/* We just released a PT, unhold the matching PD */
1141 			vm_page_t pdpg;
1142 
1143 			pdpg = PHYS_TO_VM_PAGE(*pmap_pdpe(pmap, va) &
1144 					       VPTE_FRAME);
1145 			pmap_unwire_pgtable(pmap, va, pdpg);
1146 		}
1147 		if (m->pindex >= NUPT_TOTAL &&
1148 		    m->pindex < (NUPT_TOTAL + NUPD_TOTAL)) {
1149 			/* We just released a PD, unhold the matching PDP */
1150 			vm_page_t pdppg;
1151 
1152 			pdppg = PHYS_TO_VM_PAGE(*pmap_pml4e(pmap, va) &
1153 						VPTE_FRAME);
1154 			pmap_unwire_pgtable(pmap, va, pdppg);
1155 		}
1156 
1157 		/*
1158 		 * This was our last wire, the page had better be unwired
1159 		 * after we decrement wire_count.
1160 		 *
1161 		 * FUTURE NOTE: shared page directory page could result in
1162 		 * multiple wire counts.
1163 		 */
1164 		vm_page_unwire(m, 0);
1165 		KKASSERT(m->wire_count == 0);
1166 		vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
1167 		vm_page_flash(m);
1168 		vm_page_free(m);
1169 		return 1;
1170 	} else {
1171 		/* XXX SMP race to 1 if not holding vmobj */
1172 		vm_page_unwire(m, 0);
1173 		vm_page_wakeup(m);
1174 		return 0;
1175 	}
1176 }
1177 
1178 /*
1179  * After removing a page table entry, this routine is used to
1180  * conditionally free the page, and manage the hold/wire counts.
1181  *
1182  * If not NULL the caller owns a wire_count on mpte, so it can't disappear.
1183  * If NULL the caller owns a wire_count on what would be the mpte, we must
1184  * look it up.
1185  */
1186 static int
1187 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
1188 {
1189 	vm_pindex_t ptepindex;
1190 
1191 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(pmap->pm_pteobj));
1192 
1193 	if (mpte == NULL) {
1194 		/*
1195 		 * page table pages in the kernel_pmap are not managed.
1196 		 */
1197 		if (pmap == &kernel_pmap)
1198 			return(0);
1199 		ptepindex = pmap_pt_pindex(va);
1200 		if (pmap->pm_ptphint &&
1201 		    (pmap->pm_ptphint->pindex == ptepindex)) {
1202 			mpte = pmap->pm_ptphint;
1203 		} else {
1204 			mpte = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
1205 			pmap->pm_ptphint = mpte;
1206 			vm_page_wakeup(mpte);
1207 		}
1208 	}
1209 	return pmap_unwire_pgtable(pmap, va, mpte);
1210 }
1211 
1212 /*
1213  * Initialize pmap0/vmspace0 .  Since process 0 never enters user mode we
1214  * just dummy it up so it works well enough for fork().
1215  *
1216  * In DragonFly, process pmaps may only be used to manipulate user address
1217  * space, never kernel address space.
1218  */
1219 void
1220 pmap_pinit0(struct pmap *pmap)
1221 {
1222 	pmap_pinit(pmap);
1223 }
1224 
1225 /*
1226  * Initialize a preallocated and zeroed pmap structure,
1227  * such as one in a vmspace structure.
1228  */
1229 void
1230 pmap_pinit(struct pmap *pmap)
1231 {
1232 	vm_page_t ptdpg;
1233 
1234 	/*
1235 	 * No need to allocate page table space yet but we do need a valid
1236 	 * page directory table.
1237 	 */
1238 	if (pmap->pm_pml4 == NULL) {
1239 		pmap->pm_pml4 = (pml4_entry_t *)
1240 			kmem_alloc_pageable(&kernel_map, PAGE_SIZE,
1241 					    VM_SUBSYS_PML4);
1242 	}
1243 
1244 	/*
1245 	 * Allocate an object for the ptes
1246 	 */
1247 	if (pmap->pm_pteobj == NULL)
1248 		pmap->pm_pteobj = vm_object_allocate(OBJT_DEFAULT, NUPT_TOTAL + NUPD_TOTAL + NUPDP_TOTAL + 1);
1249 
1250 	/*
1251 	 * Allocate the page directory page, unless we already have
1252 	 * one cached.  If we used the cached page the wire_count will
1253 	 * already be set appropriately.
1254 	 */
1255 	if ((ptdpg = pmap->pm_pdirm) == NULL) {
1256 		ptdpg = vm_page_grab(pmap->pm_pteobj,
1257 				     NUPT_TOTAL + NUPD_TOTAL + NUPDP_TOTAL,
1258 				     VM_ALLOC_NORMAL | VM_ALLOC_RETRY |
1259 				     VM_ALLOC_ZERO);
1260 		pmap->pm_pdirm = ptdpg;
1261 		vm_page_flag_clear(ptdpg, PG_MAPPED | PG_WRITEABLE);
1262 		vm_page_wire(ptdpg);
1263 		vm_page_wakeup(ptdpg);
1264 		pmap_kenter((vm_offset_t)pmap->pm_pml4, VM_PAGE_TO_PHYS(ptdpg));
1265 	}
1266 	pmap->pm_count = 1;
1267 	CPUMASK_ASSZERO(pmap->pm_active);
1268 	pmap->pm_ptphint = NULL;
1269 	RB_INIT(&pmap->pm_pvroot);
1270 	spin_init(&pmap->pm_spin, "pmapinit");
1271 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1272 	pmap->pm_stats.resident_count = 1;
1273 	pmap->pm_stats.wired_count = 1;
1274 }
1275 
1276 /*
1277  * Clean up a pmap structure so it can be physically freed.  This routine
1278  * is called by the vmspace dtor function.  A great deal of pmap data is
1279  * left passively mapped to improve vmspace management so we have a bit
1280  * of cleanup work to do here.
1281  *
1282  * No requirements.
1283  */
1284 void
1285 pmap_puninit(pmap_t pmap)
1286 {
1287 	vm_page_t p;
1288 
1289 	KKASSERT(CPUMASK_TESTZERO(pmap->pm_active));
1290 	if ((p = pmap->pm_pdirm) != NULL) {
1291 		KKASSERT(pmap->pm_pml4 != NULL);
1292 		pmap_kremove((vm_offset_t)pmap->pm_pml4);
1293 		vm_page_busy_wait(p, TRUE, "pgpun");
1294 		vm_page_unwire(p, 0);
1295 		vm_page_flag_clear(p, PG_MAPPED | PG_WRITEABLE);
1296 		vm_page_free(p);
1297 		pmap->pm_pdirm = NULL;
1298 		atomic_add_long(&pmap->pm_stats.wired_count, -1);
1299 		KKASSERT(pmap->pm_stats.wired_count == 0);
1300 	}
1301 	if (pmap->pm_pml4) {
1302 		kmem_free(&kernel_map, (vm_offset_t)pmap->pm_pml4, PAGE_SIZE);
1303 		pmap->pm_pml4 = NULL;
1304 	}
1305 	if (pmap->pm_pteobj) {
1306 		vm_object_deallocate(pmap->pm_pteobj);
1307 		pmap->pm_pteobj = NULL;
1308 	}
1309 }
1310 
1311 /*
1312  * This function is now unused (used to add the pmap to the pmap_list)
1313  */
1314 void
1315 pmap_pinit2(struct pmap *pmap)
1316 {
1317 }
1318 
1319 /*
1320  * Attempt to release and free a vm_page in a pmap.  Returns 1 on success,
1321  * 0 on failure (if the procedure had to sleep).
1322  *
1323  * When asked to remove the page directory page itself, we actually just
1324  * leave it cached so we do not have to incur the SMP inval overhead of
1325  * removing the kernel mapping.  pmap_puninit() will take care of it.
1326  */
1327 static int
1328 pmap_release_free_page(struct pmap *pmap, vm_page_t p)
1329 {
1330 	/*
1331 	 * This code optimizes the case of freeing non-busy
1332 	 * page-table pages.  Those pages are zero now, and
1333 	 * might as well be placed directly into the zero queue.
1334 	 */
1335 	if (vm_page_busy_try(p, TRUE)) {
1336 		vm_page_sleep_busy(p, TRUE, "pmaprl");
1337 		return 1;
1338 	}
1339 
1340 	/*
1341 	 * Remove the page table page from the processes address space.
1342 	 */
1343 	if (p->pindex == NUPT_TOTAL + NUPD_TOTAL + NUPDP_TOTAL) {
1344 		/*
1345 		 * We are the pml4 table itself.
1346 		 */
1347 		/* XXX anything to do here? */
1348 	} else if (p->pindex >= (NUPT_TOTAL + NUPD_TOTAL)) {
1349 		/*
1350 		 * We are a PDP page.
1351 		 * We look for the PML4 entry that points to us.
1352 		 */
1353 		vm_page_t m4;
1354 		pml4_entry_t *pml4;
1355 		int idx;
1356 
1357 		m4 = vm_page_lookup(pmap->pm_pteobj,
1358 				    NUPT_TOTAL + NUPD_TOTAL + NUPDP_TOTAL);
1359 		KKASSERT(m4 != NULL);
1360 		pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m4));
1361 		idx = (p->pindex - (NUPT_TOTAL + NUPD_TOTAL)) % NPML4EPG;
1362 		KKASSERT(pml4[idx] != 0);
1363 		if (pml4[idx] == 0)
1364 			kprintf("pmap_release: Unmapped PML4\n");
1365 		pml4[idx] = 0;
1366 		vm_page_unwire_quick(m4);
1367 	} else if (p->pindex >= NUPT_TOTAL) {
1368 		/*
1369 		 * We are a PD page.
1370 		 * We look for the PDP entry that points to us.
1371 		 */
1372 		vm_page_t m3;
1373 		pdp_entry_t *pdp;
1374 		int idx;
1375 
1376 		m3 = vm_page_lookup(pmap->pm_pteobj,
1377 				    NUPT_TOTAL + NUPD_TOTAL +
1378 				     (p->pindex - NUPT_TOTAL) / NPDPEPG);
1379 		KKASSERT(m3 != NULL);
1380 		pdp = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m3));
1381 		idx = (p->pindex - NUPT_TOTAL) % NPDPEPG;
1382 		KKASSERT(pdp[idx] != 0);
1383 		if (pdp[idx] == 0)
1384 			kprintf("pmap_release: Unmapped PDP %d\n", idx);
1385 		pdp[idx] = 0;
1386 		vm_page_unwire_quick(m3);
1387 	} else {
1388 		/* We are a PT page.
1389 		 * We look for the PD entry that points to us.
1390 		 */
1391 		vm_page_t m2;
1392 		pd_entry_t *pd;
1393 		int idx;
1394 
1395 		m2 = vm_page_lookup(pmap->pm_pteobj,
1396 				    NUPT_TOTAL + p->pindex / NPDEPG);
1397 		KKASSERT(m2 != NULL);
1398 		pd = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m2));
1399 		idx = p->pindex % NPDEPG;
1400 		if (pd[idx] == 0)
1401 			kprintf("pmap_release: Unmapped PD %d\n", idx);
1402 		pd[idx] = 0;
1403 		vm_page_unwire_quick(m2);
1404 	}
1405 	KKASSERT(pmap->pm_stats.resident_count > 0);
1406 	atomic_add_long(&pmap->pm_stats.resident_count, -1);
1407 
1408 	if (p->wire_count > 1)  {
1409 		panic("pmap_release: freeing held pt page "
1410 		      "pmap=%p pg=%p dmap=%p pi=%ld {%ld,%ld,%ld}",
1411 		      pmap, p, (void *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(p)),
1412 		      p->pindex, NUPT_TOTAL, NUPD_TOTAL, NUPDP_TOTAL);
1413 	}
1414 
1415 	if (pmap->pm_ptphint == p)
1416 		pmap->pm_ptphint = NULL;
1417 
1418 	/*
1419 	 * We leave the top-level page table page cached, wired, and mapped in
1420 	 * the pmap until the dtor function (pmap_puninit()) gets called.
1421 	 * However, still clean it up.
1422 	 */
1423 	if (p->pindex == NUPT_TOTAL + NUPD_TOTAL + NUPDP_TOTAL) {
1424 		bzero(pmap->pm_pml4, PAGE_SIZE);
1425 		vm_page_wakeup(p);
1426 	} else {
1427 		vm_page_unwire(p, 0);
1428 		vm_page_flag_clear(p, PG_MAPPED | PG_WRITEABLE);
1429 		vm_page_free(p);
1430 		atomic_add_long(&pmap->pm_stats.wired_count, -1);
1431 	}
1432 	return 0;
1433 }
1434 
1435 /*
1436  * Locate the requested PT, PD, or PDP page table page.
1437  *
1438  * Returns a busied page, caller must vm_page_wakeup() when done.
1439  */
1440 static vm_page_t
1441 _pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex)
1442 {
1443 	vm_page_t m;
1444 	vm_page_t pm;
1445 	vm_pindex_t pindex;
1446 	pt_entry_t *ptep;
1447 	pt_entry_t data;
1448 
1449 	/*
1450 	 * Find or fabricate a new pagetable page.  A non-zero wire_count
1451 	 * indicates that the page has already been mapped into its parent.
1452 	 */
1453 	m = vm_page_grab(pmap->pm_pteobj, ptepindex,
1454 			 VM_ALLOC_NORMAL | VM_ALLOC_ZERO | VM_ALLOC_RETRY);
1455 	if (m->wire_count != 0)
1456 		return m;
1457 
1458 	/*
1459 	 * Map the page table page into its parent, giving it 1 wire count.
1460 	 */
1461 	vm_page_wire(m);
1462 	vm_page_unqueue(m);
1463 	atomic_add_long(&pmap->pm_stats.resident_count, 1);
1464 	vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
1465 
1466 	data = VM_PAGE_TO_PHYS(m) |
1467 	       VPTE_RW | VPTE_V | VPTE_U | VPTE_A | VPTE_M | VPTE_WIRED;
1468 	atomic_add_long(&pmap->pm_stats.wired_count, 1);
1469 
1470 	if (ptepindex >= (NUPT_TOTAL + NUPD_TOTAL)) {
1471 		/*
1472 		 * Map PDP into the PML4
1473 		 */
1474 		pindex = ptepindex - (NUPT_TOTAL + NUPD_TOTAL);
1475 		pindex &= (NUPDP_TOTAL - 1);
1476 		ptep = (pt_entry_t *)pmap->pm_pml4;
1477 		pm = NULL;
1478 	} else if (ptepindex >= NUPT_TOTAL) {
1479 		/*
1480 		 * Map PD into its PDP
1481 		 */
1482 		pindex = (ptepindex - NUPT_TOTAL) >> NPDPEPGSHIFT;
1483 		pindex += NUPT_TOTAL + NUPD_TOTAL;
1484 		pm = _pmap_allocpte(pmap, pindex);
1485 		pindex = (ptepindex - NUPT_TOTAL) & (NPDPEPG - 1);
1486 		ptep = (void *)PHYS_TO_DMAP(pm->phys_addr);
1487 	} else {
1488 		/*
1489 		 * Map PT into its PD
1490 		 */
1491 		pindex = ptepindex >> NPDPEPGSHIFT;
1492 		pindex += NUPT_TOTAL;
1493 		pm = _pmap_allocpte(pmap, pindex);
1494 		pindex = ptepindex & (NPTEPG - 1);
1495 		ptep = (void *)PHYS_TO_DMAP(pm->phys_addr);
1496 	}
1497 
1498 	/*
1499 	 * Install the pte in (pm).  (m) prevents races.
1500 	 */
1501 	ptep += pindex;
1502 	data = atomic_swap_long(ptep, data);
1503 	if (pm) {
1504 		vm_page_wire_quick(pm);
1505 		vm_page_wakeup(pm);
1506 	}
1507 	pmap->pm_ptphint = pm;
1508 
1509 	return m;
1510 }
1511 
1512 /*
1513  * Determine the page table page required to access the VA in the pmap
1514  * and allocate it if necessary.  Return a held vm_page_t for the page.
1515  *
1516  * Only used with user pmaps.
1517  */
1518 static vm_page_t
1519 pmap_allocpte(pmap_t pmap, vm_offset_t va)
1520 {
1521 	vm_pindex_t ptepindex;
1522 	vm_page_t m;
1523 
1524 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(pmap->pm_pteobj));
1525 
1526 	/*
1527 	 * Calculate pagetable page index, and return the PT page to
1528 	 * the caller.
1529 	 */
1530 	ptepindex = pmap_pt_pindex(va);
1531 	m = _pmap_allocpte(pmap, ptepindex);
1532 
1533 	return m;
1534 }
1535 
1536 /***************************************************
1537  * Pmap allocation/deallocation routines.
1538  ***************************************************/
1539 
1540 /*
1541  * Release any resources held by the given physical map.
1542  * Called when a pmap initialized by pmap_pinit is being released.
1543  * Should only be called if the map contains no valid mappings.
1544  */
1545 static int pmap_release_callback(struct vm_page *p, void *data);
1546 
1547 void
1548 pmap_release(struct pmap *pmap)
1549 {
1550 	vm_object_t object = pmap->pm_pteobj;
1551 	struct rb_vm_page_scan_info info;
1552 
1553 	KKASSERT(pmap != &kernel_pmap);
1554 
1555 #if defined(DIAGNOSTIC)
1556 	if (object->ref_count != 1)
1557 		panic("pmap_release: pteobj reference count != 1");
1558 #endif
1559 
1560 	info.pmap = pmap;
1561 	info.object = object;
1562 
1563 	KASSERT(CPUMASK_TESTZERO(pmap->pm_active),
1564 		("pmap %p still active! %016jx",
1565 		pmap,
1566 		(uintmax_t)CPUMASK_LOWMASK(pmap->pm_active)));
1567 
1568 	vm_object_hold(object);
1569 	do {
1570 		info.error = 0;
1571 		info.mpte = NULL;
1572 		info.limit = object->generation;
1573 
1574 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
1575 				        pmap_release_callback, &info);
1576 		if (info.error == 0 && info.mpte) {
1577 			if (pmap_release_free_page(pmap, info.mpte))
1578 				info.error = 1;
1579 		}
1580 	} while (info.error);
1581 
1582 	pmap->pm_ptphint = NULL;
1583 
1584 	KASSERT((pmap->pm_stats.wired_count == (pmap->pm_pdirm != NULL)),
1585 		("pmap_release: dangling count %p %ld",
1586 		pmap, pmap->pm_stats.wired_count));
1587 
1588 	vm_object_drop(object);
1589 }
1590 
1591 static int
1592 pmap_release_callback(struct vm_page *p, void *data)
1593 {
1594 	struct rb_vm_page_scan_info *info = data;
1595 
1596 	if (p->pindex == NUPT_TOTAL + NUPD_TOTAL + NUPDP_TOTAL) {
1597 		info->mpte = p;
1598 		return(0);
1599 	}
1600 	if (pmap_release_free_page(info->pmap, p)) {
1601 		info->error = 1;
1602 		return(-1);
1603 	}
1604 	if (info->object->generation != info->limit) {
1605 		info->error = 1;
1606 		return(-1);
1607 	}
1608 	return(0);
1609 }
1610 
1611 /*
1612  * Grow the number of kernel page table entries, if needed.
1613  *
1614  * kernel_map must be locked exclusively by the caller.
1615  */
1616 void
1617 pmap_growkernel(vm_offset_t kstart, vm_offset_t kend)
1618 {
1619 	vm_offset_t addr;
1620 	vm_paddr_t paddr;
1621 	vm_offset_t ptppaddr;
1622 	vm_page_t nkpg;
1623 	pd_entry_t *pde, newpdir;
1624 	pdp_entry_t newpdp;
1625 
1626 	addr = kend;
1627 
1628 	vm_object_hold(&kptobj);
1629 	if (kernel_vm_end == 0) {
1630 		kernel_vm_end = KvaStart;
1631 		nkpt = 0;
1632 		while ((*pmap_pde(&kernel_pmap, kernel_vm_end) & VPTE_V) != 0) {
1633 			kernel_vm_end =
1634 			    rounddown2(kernel_vm_end + PAGE_SIZE * NPTEPG,
1635 				PAGE_SIZE * NPTEPG);
1636 			nkpt++;
1637 			if (kernel_vm_end - 1 >= vm_map_max(&kernel_map)) {
1638 				kernel_vm_end = vm_map_max(&kernel_map);
1639 				break;
1640 			}
1641 		}
1642 	}
1643 	addr = roundup2(addr, PAGE_SIZE * NPTEPG);
1644 	if (addr - 1 >= vm_map_max(&kernel_map))
1645 		addr = vm_map_max(&kernel_map);
1646 	while (kernel_vm_end < addr) {
1647 		pde = pmap_pde(&kernel_pmap, kernel_vm_end);
1648 		if (pde == NULL) {
1649 			/* We need a new PDP entry */
1650 			nkpg = vm_page_alloc(&kptobj, nkpt,
1651 			                     VM_ALLOC_NORMAL |
1652 					     VM_ALLOC_SYSTEM |
1653 					     VM_ALLOC_INTERRUPT);
1654 			if (nkpg == NULL) {
1655 				panic("pmap_growkernel: no memory to "
1656 				      "grow kernel");
1657 			}
1658 			paddr = VM_PAGE_TO_PHYS(nkpg);
1659 			pmap_zero_page(paddr);
1660 			newpdp = (pdp_entry_t)(paddr |
1661 					       VPTE_V | VPTE_RW | VPTE_U |
1662 					       VPTE_A | VPTE_M | VPTE_WIRED);
1663 			*pmap_pdpe(&kernel_pmap, kernel_vm_end) = newpdp;
1664 			atomic_add_long(&kernel_pmap.pm_stats.wired_count, 1);
1665 			nkpt++;
1666 			continue; /* try again */
1667 		}
1668 		if ((*pde & VPTE_V) != 0) {
1669 			kernel_vm_end =
1670 			    rounddown2(kernel_vm_end + PAGE_SIZE * NPTEPG,
1671 				PAGE_SIZE * NPTEPG);
1672 			if (kernel_vm_end - 1 >= vm_map_max(&kernel_map)) {
1673 				kernel_vm_end = vm_map_max(&kernel_map);
1674 				break;
1675 			}
1676 			continue;
1677 		}
1678 
1679 		/*
1680 		 * This index is bogus, but out of the way
1681 		 */
1682 		nkpg = vm_page_alloc(&kptobj, nkpt,
1683 				     VM_ALLOC_NORMAL |
1684 				     VM_ALLOC_SYSTEM |
1685 				     VM_ALLOC_INTERRUPT);
1686 		if (nkpg == NULL)
1687 			panic("pmap_growkernel: no memory to grow kernel");
1688 
1689 		vm_page_wire(nkpg);
1690 		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1691 		pmap_zero_page(ptppaddr);
1692 		newpdir = (pd_entry_t)(ptppaddr |
1693 				       VPTE_V | VPTE_RW | VPTE_U |
1694 				       VPTE_A | VPTE_M | VPTE_WIRED);
1695 		*pmap_pde(&kernel_pmap, kernel_vm_end) = newpdir;
1696 		atomic_add_long(&kernel_pmap.pm_stats.wired_count, 1);
1697 		nkpt++;
1698 
1699 		kernel_vm_end =
1700 		    rounddown2(kernel_vm_end + PAGE_SIZE * NPTEPG,
1701 			PAGE_SIZE * NPTEPG);
1702 		if (kernel_vm_end - 1 >= vm_map_max(&kernel_map)) {
1703 			kernel_vm_end = vm_map_max(&kernel_map);
1704 			break;
1705 		}
1706 	}
1707 	vm_object_drop(&kptobj);
1708 }
1709 
1710 /*
1711  * Add a reference to the specified pmap.
1712  *
1713  * No requirements.
1714  */
1715 void
1716 pmap_reference(pmap_t pmap)
1717 {
1718 	if (pmap)
1719 		atomic_add_int(&pmap->pm_count, 1);
1720 }
1721 
1722 /************************************************************************
1723  *	   		VMSPACE MANAGEMENT				*
1724  ************************************************************************
1725  *
1726  * The VMSPACE management we do in our virtual kernel must be reflected
1727  * in the real kernel.  This is accomplished by making vmspace system
1728  * calls to the real kernel.
1729  */
1730 void
1731 cpu_vmspace_alloc(struct vmspace *vm)
1732 {
1733 	int r;
1734 	void *rp;
1735 	vpte_t vpte;
1736 
1737 	/*
1738 	 * If VMM enable, don't do nothing, we
1739 	 * are able to use real page tables
1740 	 */
1741 	if (vmm_enabled)
1742 		return;
1743 
1744 #define USER_SIZE	(VM_MAX_USER_ADDRESS - VM_MIN_USER_ADDRESS)
1745 
1746 	if (vmspace_create(&vm->vm_pmap, 0, NULL) < 0)
1747 		panic("vmspace_create() failed");
1748 
1749 	rp = vmspace_mmap(&vm->vm_pmap, VM_MIN_USER_ADDRESS, USER_SIZE,
1750 			  PROT_READ|PROT_WRITE|PROT_EXEC,
1751 			  MAP_FILE|MAP_SHARED|MAP_VPAGETABLE|MAP_FIXED,
1752 			  MemImageFd, 0);
1753 	if (rp == MAP_FAILED)
1754 		panic("vmspace_mmap: failed");
1755 	vmspace_mcontrol(&vm->vm_pmap, VM_MIN_USER_ADDRESS, USER_SIZE,
1756 			 MADV_NOSYNC, 0);
1757 	vpte = VM_PAGE_TO_PHYS(vmspace_pmap(vm)->pm_pdirm) |
1758 			       VPTE_RW | VPTE_V | VPTE_U;
1759 	r = vmspace_mcontrol(&vm->vm_pmap, VM_MIN_USER_ADDRESS, USER_SIZE,
1760 			     MADV_SETMAP, vpte);
1761 	if (r < 0)
1762 		panic("vmspace_mcontrol: failed");
1763 }
1764 
1765 void
1766 cpu_vmspace_free(struct vmspace *vm)
1767 {
1768 	/*
1769 	 * If VMM enable, don't do nothing, we
1770 	 * are able to use real page tables
1771 	 */
1772 	if (vmm_enabled)
1773 		return;
1774 
1775 	if (vmspace_destroy(&vm->vm_pmap) < 0)
1776 		panic("vmspace_destroy() failed");
1777 }
1778 
1779 /***************************************************
1780 * page management routines.
1781  ***************************************************/
1782 
1783 /*
1784  * free the pv_entry back to the free list.  This function may be
1785  * called from an interrupt.
1786  */
1787 static __inline void
1788 free_pv_entry(pv_entry_t pv)
1789 {
1790 	atomic_add_long(&pv_entry_count, -1);
1791 	zfree(pvzone, pv);
1792 }
1793 
1794 /*
1795  * get a new pv_entry, allocating a block from the system
1796  * when needed.  This function may be called from an interrupt.
1797  */
1798 static pv_entry_t
1799 get_pv_entry(void)
1800 {
1801 	atomic_add_long(&pv_entry_count, 1);
1802 	if (pv_entry_high_water &&
1803 	    (pv_entry_count > pv_entry_high_water) &&
1804 	    atomic_swap_int(&pmap_pagedaemon_waken, 1) == 0) {
1805 		wakeup(&vm_pages_needed);
1806 	}
1807 	return zalloc(pvzone);
1808 }
1809 
1810 /*
1811  * This routine is very drastic, but can save the system
1812  * in a pinch.
1813  *
1814  * No requirements.
1815  */
1816 void
1817 pmap_collect(void)
1818 {
1819 	int i;
1820 	vm_page_t m;
1821 	static int warningdone=0;
1822 
1823 	if (pmap_pagedaemon_waken == 0)
1824 		return;
1825 	pmap_pagedaemon_waken = 0;
1826 
1827 	if (warningdone < 5) {
1828 		kprintf("pmap_collect: collecting pv entries -- "
1829 			"suggest increasing PMAP_SHPGPERPROC\n");
1830 		warningdone++;
1831 	}
1832 
1833 	for (i = 0; i < vm_page_array_size; i++) {
1834 		m = &vm_page_array[i];
1835 		if (m->wire_count || m->hold_count)
1836 			continue;
1837 		if (vm_page_busy_try(m, TRUE) == 0) {
1838 			if (m->wire_count == 0 && m->hold_count == 0) {
1839 				pmap_remove_all(m);
1840 			}
1841 			vm_page_wakeup(m);
1842 		}
1843 	}
1844 }
1845 
1846 
1847 /*
1848  * If it is the first entry on the list, it is actually
1849  * in the header and we must copy the following entry up
1850  * to the header.  Otherwise we must search the list for
1851  * the entry.  In either case we free the now unused entry.
1852  *
1853  * pmap->pm_pteobj must be held and (m) must be spin-locked by the caller.
1854  */
1855 static int
1856 pmap_remove_entry(struct pmap *pmap, vm_page_t m, vm_offset_t va)
1857 {
1858 	pv_entry_t pv;
1859 	int rtval;
1860 
1861 	vm_page_spin_lock(m);
1862 	pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot, va);
1863 
1864 	/*
1865 	 * Note that pv_ptem is NULL if the page table page itself is not
1866 	 * managed, even if the page being removed IS managed.
1867 	 */
1868 	rtval = 0;
1869 	if (pv) {
1870 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1871 		if (TAILQ_EMPTY(&m->md.pv_list))
1872 			vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
1873 		m->md.pv_list_count--;
1874 		KKASSERT(m->md.pv_list_count >= 0);
1875 		pv_entry_rb_tree_RB_REMOVE(&pmap->pm_pvroot, pv);
1876 		atomic_add_int(&pmap->pm_generation, 1);
1877 		vm_page_spin_unlock(m);
1878 		rtval = pmap_unuse_pt(pmap, va, pv->pv_ptem);
1879 		free_pv_entry(pv);
1880 	} else {
1881 		vm_page_spin_unlock(m);
1882 		kprintf("pmap_remove_entry: could not find "
1883 			"pmap=%p m=%p va=%016jx\n",
1884 			pmap, m, va);
1885 	}
1886 	return rtval;
1887 }
1888 
1889 /*
1890  * Create a pv entry for page at pa for (pmap, va).  If the page table page
1891  * holding the VA is managed, mpte will be non-NULL.
1892  *
1893  * pmap->pm_pteobj must be held and (m) must be spin-locked by the caller.
1894  */
1895 static void
1896 pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t mpte, vm_page_t m,
1897 		  pv_entry_t pv)
1898 {
1899 	pv->pv_va = va;
1900 	pv->pv_pmap = pmap;
1901 	pv->pv_ptem = mpte;
1902 
1903 	m->md.pv_list_count++;
1904 	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1905 	pv = pv_entry_rb_tree_RB_INSERT(&pmap->pm_pvroot, pv);
1906 	vm_page_flag_set(m, PG_MAPPED);
1907 	KKASSERT(pv == NULL);
1908 }
1909 
1910 /*
1911  * pmap_remove_pte: do the things to unmap a page in a process
1912  *
1913  * Caller holds pmap->pm_pteobj and holds the associated page table
1914  * page busy to prevent races.
1915  */
1916 static int
1917 pmap_remove_pte(struct pmap *pmap, pt_entry_t *ptq, pt_entry_t oldpte,
1918 		vm_offset_t va)
1919 {
1920 	vm_page_t m;
1921 	int error;
1922 
1923 	if (ptq)
1924 		oldpte = pmap_inval_loadandclear(ptq, pmap, va);
1925 
1926 	if (oldpte & VPTE_WIRED)
1927 		atomic_add_long(&pmap->pm_stats.wired_count, -1);
1928 	KKASSERT(pmap->pm_stats.wired_count >= 0);
1929 
1930 #if 0
1931 	/*
1932 	 * Machines that don't support invlpg, also don't support
1933 	 * PG_G.  XXX PG_G is disabled for SMP so don't worry about
1934 	 * the SMP case.
1935 	 */
1936 	if (oldpte & PG_G)
1937 		cpu_invlpg((void *)va);
1938 #endif
1939 	KKASSERT(pmap->pm_stats.resident_count > 0);
1940 	atomic_add_long(&pmap->pm_stats.resident_count, -1);
1941 	if (oldpte & VPTE_MANAGED) {
1942 		m = PHYS_TO_VM_PAGE(oldpte);
1943 
1944 		/*
1945 		 * NOTE: pmap_remove_entry() will spin-lock the page
1946 		 */
1947 		if (oldpte & VPTE_M) {
1948 #if defined(PMAP_DIAGNOSTIC)
1949 			if (pmap_nw_modified(oldpte)) {
1950 				kprintf("pmap_remove: modified page not "
1951 					"writable: va: 0x%lx, pte: 0x%lx\n",
1952 					va, oldpte);
1953 			}
1954 #endif
1955 			pmap_track_modified(pmap, va);
1956 			vm_page_dirty(m);
1957 		}
1958 		if (oldpte & VPTE_A)
1959 			vm_page_flag_set(m, PG_REFERENCED);
1960 		error = pmap_remove_entry(pmap, m, va);
1961 	} else {
1962 		error = pmap_unuse_pt(pmap, va, NULL);
1963 	}
1964 	return error;
1965 }
1966 
1967 /*
1968  * pmap_remove_page:
1969  *
1970  * Remove a single page from a process address space.
1971  *
1972  * This function may not be called from an interrupt if the pmap is
1973  * not kernel_pmap.
1974  *
1975  * Caller holds pmap->pm_pteobj
1976  */
1977 static void
1978 pmap_remove_page(struct pmap *pmap, vm_offset_t va)
1979 {
1980 	pt_entry_t *pte;
1981 
1982 	pte = pmap_pte(pmap, va);
1983 	if (pte == NULL)
1984 		return;
1985 	if ((*pte & VPTE_V) == 0)
1986 		return;
1987 	pmap_remove_pte(pmap, pte, 0, va);
1988 }
1989 
1990 /*
1991  * Remove the given range of addresses from the specified map.
1992  *
1993  * It is assumed that the start and end are properly rounded to
1994  * the page size.
1995  *
1996  * This function may not be called from an interrupt if the pmap is
1997  * not kernel_pmap.
1998  *
1999  * No requirements.
2000  */
2001 void
2002 pmap_remove(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
2003 {
2004 	vm_offset_t va_next;
2005 	pml4_entry_t *pml4e;
2006 	pdp_entry_t *pdpe;
2007 	pd_entry_t ptpaddr, *pde;
2008 	pt_entry_t *pte;
2009 	vm_page_t pt_m;
2010 
2011 	if (pmap == NULL)
2012 		return;
2013 
2014 	vm_object_hold(pmap->pm_pteobj);
2015 	KKASSERT(pmap->pm_stats.resident_count >= 0);
2016 	if (pmap->pm_stats.resident_count == 0) {
2017 		vm_object_drop(pmap->pm_pteobj);
2018 		return;
2019 	}
2020 
2021 	/*
2022 	 * special handling of removing one page.  a very
2023 	 * common operation and easy to short circuit some
2024 	 * code.
2025 	 */
2026 	if (sva + PAGE_SIZE == eva) {
2027 		pde = pmap_pde(pmap, sva);
2028 		if (pde && (*pde & VPTE_PS) == 0) {
2029 			pmap_remove_page(pmap, sva);
2030 			vm_object_drop(pmap->pm_pteobj);
2031 			return;
2032 		}
2033 	}
2034 
2035 	for (; sva < eva; sva = va_next) {
2036 		pml4e = pmap_pml4e(pmap, sva);
2037 		if ((*pml4e & VPTE_V) == 0) {
2038 			va_next = (sva + NBPML4) & ~PML4MASK;
2039 			if (va_next < sva)
2040 				va_next = eva;
2041 			continue;
2042 		}
2043 
2044 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
2045 		if ((*pdpe & VPTE_V) == 0) {
2046 			va_next = (sva + NBPDP) & ~PDPMASK;
2047 			if (va_next < sva)
2048 				va_next = eva;
2049 			continue;
2050 		}
2051 
2052 		/*
2053 		 * Calculate index for next page table.
2054 		 */
2055 		va_next = (sva + NBPDR) & ~PDRMASK;
2056 		if (va_next < sva)
2057 			va_next = eva;
2058 
2059 		pde = pmap_pdpe_to_pde(pdpe, sva);
2060 		ptpaddr = *pde;
2061 
2062 		/*
2063 		 * Weed out invalid mappings.
2064 		 */
2065 		if (ptpaddr == 0)
2066 			continue;
2067 
2068 		/*
2069 		 * Check for large page.
2070 		 */
2071 		if ((ptpaddr & VPTE_PS) != 0) {
2072 			/* JG FreeBSD has more complex treatment here */
2073 			KKASSERT(*pde != 0);
2074 			pmap_inval_pde(pde, pmap, sva);
2075 			atomic_add_long(&pmap->pm_stats.resident_count,
2076 				       -NBPDR / PAGE_SIZE);
2077 			continue;
2078 		}
2079 
2080 		/*
2081 		 * Limit our scan to either the end of the va represented
2082 		 * by the current page table page, or to the end of the
2083 		 * range being removed.
2084 		 */
2085 		if (va_next > eva)
2086 			va_next = eva;
2087 
2088 		/*
2089 		 * NOTE: pmap_remove_pte() can block.
2090 		 */
2091 		pt_m = pmap_hold_pt_page(pde, sva);
2092 		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
2093 		     sva += PAGE_SIZE) {
2094 			if (*pte) {
2095 				if (pmap_remove_pte(pmap, pte, 0, sva))
2096 					break;
2097 			}
2098 		}
2099 		vm_page_unhold(pt_m);
2100 	}
2101 	vm_object_drop(pmap->pm_pteobj);
2102 }
2103 
2104 /*
2105  * Removes this physical page from all physical maps in which it resides.
2106  * Reflects back modify bits to the pager.
2107  *
2108  * This routine may not be called from an interrupt.
2109  *
2110  * No requirements.
2111  */
2112 static void
2113 pmap_remove_all(vm_page_t m)
2114 {
2115 	pt_entry_t *pte, tpte;
2116 	pv_entry_t pv;
2117 	vm_object_t pmobj;
2118 	pmap_t pmap;
2119 
2120 #if defined(PMAP_DIAGNOSTIC)
2121 	/*
2122 	 * XXX this makes pmap_page_protect(NONE) illegal for non-managed
2123 	 * pages!
2124 	 */
2125 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
2126 		panic("pmap_page_protect: illegal for unmanaged page, va: 0x%08llx", (long long)VM_PAGE_TO_PHYS(m));
2127 	}
2128 #endif
2129 
2130 restart:
2131 	vm_page_spin_lock(m);
2132 	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2133 		pmap = pv->pv_pmap;
2134 		pmobj = pmap->pm_pteobj;
2135 
2136 		/*
2137 		 * Handle reversed lock ordering
2138 		 */
2139 		if (vm_object_hold_try(pmobj) == 0) {
2140 			refcount_acquire(&pmobj->hold_count);
2141 			vm_page_spin_unlock(m);
2142 			vm_object_lock(pmobj);
2143 			vm_page_spin_lock(m);
2144 			if (pv != TAILQ_FIRST(&m->md.pv_list) ||
2145 			    pmap != pv->pv_pmap ||
2146 			    pmobj != pmap->pm_pteobj) {
2147 				vm_page_spin_unlock(m);
2148 				vm_object_drop(pmobj);
2149 				goto restart;
2150 			}
2151 		}
2152 
2153 		KKASSERT(pmap->pm_stats.resident_count > 0);
2154 		atomic_add_long(&pmap->pm_stats.resident_count, -1);
2155 
2156 		pte = pmap_pte(pmap, pv->pv_va);
2157 		KKASSERT(pte != NULL);
2158 
2159 		tpte = pmap_inval_loadandclear(pte, pmap, pv->pv_va);
2160 		if (tpte & VPTE_WIRED)
2161 			atomic_add_long(&pmap->pm_stats.wired_count, -1);
2162 		KKASSERT(pmap->pm_stats.wired_count >= 0);
2163 
2164 		if (tpte & VPTE_A)
2165 			vm_page_flag_set(m, PG_REFERENCED);
2166 
2167 		/*
2168 		 * Update the vm_page_t clean and reference bits.
2169 		 */
2170 		if (tpte & VPTE_M) {
2171 #if defined(PMAP_DIAGNOSTIC)
2172 			if (pmap_nw_modified(tpte)) {
2173 				kprintf(
2174 	"pmap_remove_all: modified page not writable: va: 0x%lx, pte: 0x%lx\n",
2175 				    pv->pv_va, tpte);
2176 			}
2177 #endif
2178 			pmap_track_modified(pmap, pv->pv_va);
2179 			vm_page_dirty(m);
2180 		}
2181 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2182 		if (TAILQ_EMPTY(&m->md.pv_list))
2183 			vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
2184 		m->md.pv_list_count--;
2185 		KKASSERT(m->md.pv_list_count >= 0);
2186 		pv_entry_rb_tree_RB_REMOVE(&pmap->pm_pvroot, pv);
2187 		atomic_add_int(&pmap->pm_generation, 1);
2188 		vm_page_spin_unlock(m);
2189 		pmap_unuse_pt(pmap, pv->pv_va, pv->pv_ptem);
2190 		free_pv_entry(pv);
2191 
2192 		vm_object_drop(pmobj);
2193 		vm_page_spin_lock(m);
2194 	}
2195 	KKASSERT((m->flags & (PG_MAPPED|PG_WRITEABLE)) == 0);
2196 	vm_page_spin_unlock(m);
2197 }
2198 
2199 /*
2200  * Removes the page from a particular pmap
2201  */
2202 void
2203 pmap_remove_specific(pmap_t pmap, vm_page_t m)
2204 {
2205 	pt_entry_t *pte, tpte;
2206 	pv_entry_t pv;
2207 
2208 	vm_object_hold(pmap->pm_pteobj);
2209 again:
2210 	vm_page_spin_lock(m);
2211 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2212 		if (pv->pv_pmap != pmap)
2213 			continue;
2214 
2215 		KKASSERT(pmap->pm_stats.resident_count > 0);
2216 		atomic_add_long(&pmap->pm_stats.resident_count, -1);
2217 
2218 		pte = pmap_pte(pmap, pv->pv_va);
2219 		KKASSERT(pte != NULL);
2220 
2221 		tpte = pmap_inval_loadandclear(pte, pmap, pv->pv_va);
2222 		if (tpte & VPTE_WIRED)
2223 			atomic_add_long(&pmap->pm_stats.wired_count, -1);
2224 		KKASSERT(pmap->pm_stats.wired_count >= 0);
2225 
2226 		if (tpte & VPTE_A)
2227 			vm_page_flag_set(m, PG_REFERENCED);
2228 
2229 		/*
2230 		 * Update the vm_page_t clean and reference bits.
2231 		 */
2232 		if (tpte & VPTE_M) {
2233 			pmap_track_modified(pmap, pv->pv_va);
2234 			vm_page_dirty(m);
2235 		}
2236 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2237 		pv_entry_rb_tree_RB_REMOVE(&pmap->pm_pvroot, pv);
2238 		atomic_add_int(&pmap->pm_generation, 1);
2239 		m->md.pv_list_count--;
2240 		KKASSERT(m->md.pv_list_count >= 0);
2241 		if (TAILQ_EMPTY(&m->md.pv_list))
2242 			vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
2243 		pmap_unuse_pt(pmap, pv->pv_va, pv->pv_ptem);
2244 		vm_page_spin_unlock(m);
2245 		free_pv_entry(pv);
2246 		goto again;
2247 	}
2248 	vm_page_spin_unlock(m);
2249 	vm_object_drop(pmap->pm_pteobj);
2250 }
2251 
2252 /*
2253  * Set the physical protection on the specified range of this map
2254  * as requested.
2255  *
2256  * This function may not be called from an interrupt if the map is
2257  * not the kernel_pmap.
2258  *
2259  * No requirements.
2260  */
2261 void
2262 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2263 {
2264 	vm_offset_t va_next;
2265 	pml4_entry_t *pml4e;
2266 	pdp_entry_t *pdpe;
2267 	pd_entry_t ptpaddr, *pde;
2268 	pt_entry_t *pte;
2269 	vm_page_t pt_m;
2270 
2271 	if (pmap == NULL)
2272 		return;
2273 
2274 	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == VM_PROT_NONE) {
2275 		pmap_remove(pmap, sva, eva);
2276 		return;
2277 	}
2278 
2279 	if (prot & VM_PROT_WRITE)
2280 		return;
2281 
2282 	vm_object_hold(pmap->pm_pteobj);
2283 
2284 	for (; sva < eva; sva = va_next) {
2285 		pml4e = pmap_pml4e(pmap, sva);
2286 		if ((*pml4e & VPTE_V) == 0) {
2287 			va_next = (sva + NBPML4) & ~PML4MASK;
2288 			if (va_next < sva)
2289 				va_next = eva;
2290 			continue;
2291 		}
2292 
2293 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
2294 		if ((*pdpe & VPTE_V) == 0) {
2295 			va_next = (sva + NBPDP) & ~PDPMASK;
2296 			if (va_next < sva)
2297 				va_next = eva;
2298 			continue;
2299 		}
2300 
2301 		va_next = (sva + NBPDR) & ~PDRMASK;
2302 		if (va_next < sva)
2303 			va_next = eva;
2304 
2305 		pde = pmap_pdpe_to_pde(pdpe, sva);
2306 		ptpaddr = *pde;
2307 
2308 #if 0
2309 		/*
2310 		 * Check for large page.
2311 		 */
2312 		if ((ptpaddr & VPTE_PS) != 0) {
2313 			/* JG correct? */
2314 			pmap_clean_pde(pde, pmap, sva);
2315 			atomic_add_long(&pmap->pm_stats.resident_count,
2316 					-NBPDR / PAGE_SIZE);
2317 			continue;
2318 		}
2319 #endif
2320 
2321 		/*
2322 		 * Weed out invalid mappings. Note: we assume that the page
2323 		 * directory table is always allocated, and in kernel virtual.
2324 		 */
2325 		if (ptpaddr == 0)
2326 			continue;
2327 
2328 		if (va_next > eva)
2329 			va_next = eva;
2330 
2331 		pt_m = pmap_hold_pt_page(pde, sva);
2332 		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
2333 		    sva += PAGE_SIZE) {
2334 			/*
2335 			 * Clean managed pages and also check the accessed
2336 			 * bit.  Just remove write perms for unmanaged
2337 			 * pages.  Be careful of races, turning off write
2338 			 * access will force a fault rather then setting
2339 			 * the modified bit at an unexpected time.
2340 			 */
2341 			pmap_track_modified(pmap, sva);
2342 			pmap_clean_pte(pte, pmap, sva, NULL);
2343 		}
2344 		vm_page_unhold(pt_m);
2345 	}
2346 	vm_object_drop(pmap->pm_pteobj);
2347 }
2348 
2349 /*
2350  * Enter a managed page into a pmap.  If the page is not wired related pmap
2351  * data can be destroyed at any time for later demand-operation.
2352  *
2353  * Insert the vm_page (m) at virtual address (v) in (pmap), with the
2354  * specified protection, and wire the mapping if requested.
2355  *
2356  * NOTE: This routine may not lazy-evaluate or lose information.  The
2357  *	 page must actually be inserted into the given map NOW.
2358  *
2359  * NOTE: When entering a page at a KVA address, the pmap must be the
2360  *	 kernel_pmap.
2361  *
2362  * No requirements.
2363  */
2364 void
2365 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
2366 	   boolean_t wired, vm_map_entry_t entry __unused)
2367 {
2368 	vm_paddr_t pa;
2369 	pv_entry_t pv;
2370 	pt_entry_t *pte;
2371 	pt_entry_t origpte, newpte;
2372 	vm_paddr_t opa;
2373 	vm_page_t mpte;
2374 
2375 	if (pmap == NULL)
2376 		return;
2377 
2378 	va = trunc_page(va);
2379 
2380 	vm_object_hold(pmap->pm_pteobj);
2381 
2382 	/*
2383 	 * Get the page table page.   The kernel_pmap's page table pages
2384 	 * are preallocated and have no associated vm_page_t.
2385 	 *
2386 	 * If not NULL, mpte will be busied and we must vm_page_wakeup()
2387 	 * to cleanup.  There will already be at least one wire count from
2388 	 * it being mapped into its parent.
2389 	 */
2390 	if (pmap == &kernel_pmap) {
2391 		mpte = NULL;
2392 		pte = vtopte(va);
2393 	} else {
2394 		mpte = pmap_allocpte(pmap, va);
2395 		pte = (void *)PHYS_TO_DMAP(mpte->phys_addr);
2396 		pte += pmap_pte_index(va);
2397 	}
2398 
2399 	/*
2400 	 * Deal with races against the kernel's real MMU by cleaning the
2401 	 * page, even if we are re-entering the same page.
2402 	 */
2403 	pa = VM_PAGE_TO_PHYS(m);
2404 	origpte = pmap_inval_loadandclear(pte, pmap, va);
2405 	/*origpte = pmap_clean_pte(pte, pmap, va, NULL);*/
2406 	opa = origpte & VPTE_FRAME;
2407 
2408 	if (origpte & VPTE_PS)
2409 		panic("pmap_enter: attempted pmap_enter on 2MB page");
2410 
2411 	if ((origpte & (VPTE_MANAGED|VPTE_M)) == (VPTE_MANAGED|VPTE_M)) {
2412 		vm_page_t om;
2413 
2414 		pmap_track_modified(pmap, va);
2415 		om = PHYS_TO_VM_PAGE(opa);
2416 		vm_page_dirty(om);
2417 	}
2418 
2419 	/*
2420 	 * Mapping has not changed, must be protection or wiring change.
2421 	 */
2422 	if (origpte && (opa == pa)) {
2423 		/*
2424 		 * Wiring change, just update stats. We don't worry about
2425 		 * wiring PT pages as they remain resident as long as there
2426 		 * are valid mappings in them. Hence, if a user page is wired,
2427 		 * the PT page will be also.
2428 		 */
2429 		if (wired && ((origpte & VPTE_WIRED) == 0))
2430 			atomic_add_long(&pmap->pm_stats.wired_count, 1);
2431 		else if (!wired && (origpte & VPTE_WIRED))
2432 			atomic_add_long(&pmap->pm_stats.wired_count, -1);
2433 
2434 		if (origpte & VPTE_MANAGED) {
2435 			pa |= VPTE_MANAGED;
2436 			KKASSERT(m->flags & PG_MAPPED);
2437 			KKASSERT((m->flags & PG_FICTITIOUS) == 0);
2438 		} else {
2439 			KKASSERT((m->flags & PG_FICTITIOUS));
2440 		}
2441 		vm_page_spin_lock(m);
2442 		goto validate;
2443 	}
2444 
2445 	/*
2446 	 * Bump the wire_count for the page table page.
2447 	 */
2448 	if (mpte)
2449 		vm_page_wire_quick(mpte);
2450 
2451 	/*
2452 	 * Mapping has changed, invalidate old range and fall through to
2453 	 * handle validating new mapping.  Don't inherit anything from
2454 	 * oldpte.
2455 	 */
2456 	if (opa) {
2457 		int err;
2458 		err = pmap_remove_pte(pmap, NULL, origpte, va);
2459 		origpte = 0;
2460 		if (err)
2461 			panic("pmap_enter: pte vanished, va: 0x%lx", va);
2462 	}
2463 
2464 	/*
2465 	 * Enter on the PV list if part of our managed memory. Note that we
2466 	 * raise IPL while manipulating pv_table since pmap_enter can be
2467 	 * called at interrupt time.
2468 	 */
2469 	if (pmap_initialized) {
2470 		if ((m->flags & PG_FICTITIOUS) == 0) {
2471 			/*
2472 			 * WARNING!  We are using m's spin-lock as a
2473 			 *	     man's pte lock to interlock against
2474 			 *	     pmap_page_protect() operations.
2475 			 *
2476 			 *	     This is a bad hack (obviously).
2477 			 */
2478 			pv = get_pv_entry();
2479 			vm_page_spin_lock(m);
2480 			pmap_insert_entry(pmap, va, mpte, m, pv);
2481 			pa |= VPTE_MANAGED;
2482 			/* vm_page_spin_unlock(m); */
2483 		} else {
2484 			vm_page_spin_lock(m);
2485 		}
2486 	} else {
2487 		vm_page_spin_lock(m);
2488 	}
2489 
2490 	/*
2491 	 * Increment counters
2492 	 */
2493 	atomic_add_long(&pmap->pm_stats.resident_count, 1);
2494 	if (wired)
2495 		atomic_add_long(&pmap->pm_stats.wired_count, 1);
2496 
2497 validate:
2498 	/*
2499 	 * Now validate mapping with desired protection/wiring.
2500 	 */
2501 	newpte = (pt_entry_t)(pa | pte_prot(pmap, prot) | VPTE_V | VPTE_U);
2502 	newpte |= VPTE_A;
2503 
2504 	if (wired)
2505 		newpte |= VPTE_WIRED;
2506 //	if (pmap != &kernel_pmap)
2507 		newpte |= VPTE_U;
2508 	if (newpte & VPTE_RW)
2509 		vm_page_flag_set(m, PG_WRITEABLE);
2510 	KKASSERT((newpte & VPTE_MANAGED) == 0 || (m->flags & PG_MAPPED));
2511 
2512 	origpte = atomic_swap_long(pte, newpte);
2513 	if (origpte & VPTE_M) {
2514 		kprintf("pmap [M] race @ %016jx\n", va);
2515 		atomic_set_long(pte, VPTE_M);
2516 	}
2517 	vm_page_spin_unlock(m);
2518 
2519 	if (mpte)
2520 		vm_page_wakeup(mpte);
2521 	vm_object_drop(pmap->pm_pteobj);
2522 }
2523 
2524 /*
2525  * Make a temporary mapping for a physical address.  This is only intended
2526  * to be used for panic dumps.
2527  *
2528  * The caller is responsible for calling smp_invltlb().
2529  */
2530 void *
2531 pmap_kenter_temporary(vm_paddr_t pa, long i)
2532 {
2533 	pmap_kenter_quick(crashdumpmap + (i * PAGE_SIZE), pa);
2534 	return ((void *)crashdumpmap);
2535 }
2536 
2537 #define MAX_INIT_PT (96)
2538 
2539 /*
2540  * This routine preloads the ptes for a given object into the specified pmap.
2541  * This eliminates the blast of soft faults on process startup and
2542  * immediately after an mmap.
2543  *
2544  * No requirements.
2545  */
2546 static int pmap_object_init_pt_callback(vm_page_t p, void *data);
2547 
2548 void
2549 pmap_object_init_pt(pmap_t pmap, vm_map_entry_t entry,
2550 		    vm_offset_t addr, vm_size_t size, int limit)
2551 {
2552 	vm_prot_t prot = entry->protection;
2553 	vm_object_t object = entry->ba.object;
2554 	vm_pindex_t pindex = atop(entry->ba.offset + (addr - entry->ba.start));
2555 	struct rb_vm_page_scan_info info;
2556 	struct lwp *lp;
2557 	vm_size_t psize;
2558 
2559 	/*
2560 	 * We can't preinit if read access isn't set or there is no pmap
2561 	 * or object.
2562 	 */
2563 	if ((prot & VM_PROT_READ) == 0 || pmap == NULL || object == NULL)
2564 		return;
2565 
2566 	/*
2567 	 * We can't preinit if the pmap is not the current pmap
2568 	 */
2569 	lp = curthread->td_lwp;
2570 	if (lp == NULL || pmap != vmspace_pmap(lp->lwp_vmspace))
2571 		return;
2572 
2573 	/*
2574 	 * Misc additional checks
2575 	 */
2576 	psize = x86_64_btop(size);
2577 
2578 	if ((object->type != OBJT_VNODE) ||
2579 		((limit & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
2580 			(object->resident_page_count > MAX_INIT_PT))) {
2581 		return;
2582 	}
2583 
2584 	if (psize + pindex > object->size) {
2585 		if (object->size < pindex)
2586 			return;
2587 		psize = object->size - pindex;
2588 	}
2589 
2590 	if (psize == 0)
2591 		return;
2592 
2593 	/*
2594 	 * Use a red-black scan to traverse the requested range and load
2595 	 * any valid pages found into the pmap.
2596 	 *
2597 	 * We cannot safely scan the object's memq unless we are in a
2598 	 * critical section since interrupts can remove pages from objects.
2599 	 */
2600 	info.start_pindex = pindex;
2601 	info.end_pindex = pindex + psize - 1;
2602 	info.limit = limit;
2603 	info.mpte = NULL;
2604 	info.addr = addr;
2605 	info.pmap = pmap;
2606 	info.entry = entry;
2607 
2608 	vm_object_hold_shared(object);
2609 	vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
2610 				pmap_object_init_pt_callback, &info);
2611 	vm_object_drop(object);
2612 }
2613 
2614 static
2615 int
2616 pmap_object_init_pt_callback(vm_page_t p, void *data)
2617 {
2618 	struct rb_vm_page_scan_info *info = data;
2619 	vm_pindex_t rel_index;
2620 	/*
2621 	 * don't allow an madvise to blow away our really
2622 	 * free pages allocating pv entries.
2623 	 */
2624 	if ((info->limit & MAP_PREFAULT_MADVISE) &&
2625 		vmstats.v_free_count < vmstats.v_free_reserved) {
2626 		    return(-1);
2627 	}
2628 
2629 	/*
2630 	 * Ignore list markers and ignore pages we cannot instantly
2631 	 * busy (while holding the object token).
2632 	 */
2633 	if (p->flags & PG_MARKER)
2634 		return 0;
2635 	if (vm_page_busy_try(p, TRUE))
2636 		return 0;
2637 	if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2638 	    (p->flags & PG_FICTITIOUS) == 0) {
2639 		if ((p->queue - p->pc) == PQ_CACHE)
2640 			vm_page_deactivate(p);
2641 		rel_index = p->pindex - info->start_pindex;
2642 		pmap_enter(info->pmap, info->addr + x86_64_ptob(rel_index), p,
2643 			   VM_PROT_READ, FALSE, info->entry);
2644 	}
2645 	vm_page_wakeup(p);
2646 	return(0);
2647 }
2648 
2649 /*
2650  * Return TRUE if the pmap is in shape to trivially
2651  * pre-fault the specified address.
2652  *
2653  * Returns FALSE if it would be non-trivial or if a
2654  * pte is already loaded into the slot.
2655  *
2656  * No requirements.
2657  */
2658 int
2659 pmap_prefault_ok(pmap_t pmap, vm_offset_t addr)
2660 {
2661 	pt_entry_t *pte;
2662 	pd_entry_t *pde;
2663 	int ret;
2664 
2665 	vm_object_hold(pmap->pm_pteobj);
2666 	pde = pmap_pde(pmap, addr);
2667 	if (pde == NULL || *pde == 0) {
2668 		ret = 0;
2669 	} else {
2670 		pte = pmap_pde_to_pte(pde, addr);
2671 		ret = (*pte) ? 0 : 1;
2672 	}
2673 	vm_object_drop(pmap->pm_pteobj);
2674 
2675 	return (ret);
2676 }
2677 
2678 /*
2679  * Change the wiring attribute for a map/virtual-address pair.
2680  *
2681  * The mapping must already exist in the pmap.
2682  * No other requirements.
2683  */
2684 vm_page_t
2685 pmap_unwire(pmap_t pmap, vm_offset_t va)
2686 {
2687 	pt_entry_t *pte;
2688 	vm_paddr_t pa;
2689 	vm_page_t m;
2690 
2691 	if (pmap == NULL)
2692 		return NULL;
2693 
2694 	vm_object_hold(pmap->pm_pteobj);
2695 	pte = pmap_pte(pmap, va);
2696 
2697 	if (pte == NULL || (*pte & VPTE_V) == 0) {
2698 		vm_object_drop(pmap->pm_pteobj);
2699 		return NULL;
2700 	}
2701 
2702 	/*
2703 	 * Wiring is not a hardware characteristic so there is no need to
2704 	 * invalidate TLB.  However, in an SMP environment we must use
2705 	 * a locked bus cycle to update the pte (if we are not using
2706 	 * the pmap_inval_*() API that is)... it's ok to do this for simple
2707 	 * wiring changes.
2708 	 */
2709 	if (pmap_pte_w(pte))
2710 		atomic_add_long(&pmap->pm_stats.wired_count, -1);
2711 	/* XXX else return NULL so caller doesn't unwire m ? */
2712 	atomic_clear_long(pte, VPTE_WIRED);
2713 
2714 	pa = *pte & VPTE_FRAME;
2715 	m = PHYS_TO_VM_PAGE(pa);	/* held by wired count */
2716 
2717 	vm_object_drop(pmap->pm_pteobj);
2718 
2719 	return m;
2720 }
2721 
2722 /*
2723  *	Copy the range specified by src_addr/len
2724  *	from the source map to the range dst_addr/len
2725  *	in the destination map.
2726  *
2727  *	This routine is only advisory and need not do anything.
2728  */
2729 void
2730 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
2731 	vm_size_t len, vm_offset_t src_addr)
2732 {
2733 	/*
2734 	 * XXX BUGGY.  Amoung other things srcmpte is assumed to remain
2735 	 * valid through blocking calls, and that's just not going to
2736 	 * be the case.
2737 	 *
2738 	 * FIXME!
2739 	 */
2740 	return;
2741 }
2742 
2743 /*
2744  * pmap_zero_page:
2745  *
2746  *	Zero the specified physical page.
2747  *
2748  *	This function may be called from an interrupt and no locking is
2749  *	required.
2750  */
2751 void
2752 pmap_zero_page(vm_paddr_t phys)
2753 {
2754 	vm_offset_t va = PHYS_TO_DMAP(phys);
2755 
2756 	bzero((void *)va, PAGE_SIZE);
2757 }
2758 
2759 /*
2760  * pmap_zero_page:
2761  *
2762  *	Zero part of a physical page by mapping it into memory and clearing
2763  *	its contents with bzero.
2764  *
2765  *	off and size may not cover an area beyond a single hardware page.
2766  */
2767 void
2768 pmap_zero_page_area(vm_paddr_t phys, int off, int size)
2769 {
2770 	vm_offset_t virt = PHYS_TO_DMAP(phys);
2771 
2772 	bzero((char *)virt + off, size);
2773 }
2774 
2775 /*
2776  * pmap_copy_page:
2777  *
2778  *	Copy the physical page from the source PA to the target PA.
2779  *	This function may be called from an interrupt.  No locking
2780  *	is required.
2781  */
2782 void
2783 pmap_copy_page(vm_paddr_t src, vm_paddr_t dst)
2784 {
2785 	vm_offset_t src_virt, dst_virt;
2786 
2787 	src_virt = PHYS_TO_DMAP(src);
2788 	dst_virt = PHYS_TO_DMAP(dst);
2789 	bcopy((void *)src_virt, (void *)dst_virt, PAGE_SIZE);
2790 }
2791 
2792 /*
2793  * pmap_copy_page_frag:
2794  *
2795  *	Copy the physical page from the source PA to the target PA.
2796  *	This function may be called from an interrupt.  No locking
2797  *	is required.
2798  */
2799 void
2800 pmap_copy_page_frag(vm_paddr_t src, vm_paddr_t dst, size_t bytes)
2801 {
2802 	vm_offset_t src_virt, dst_virt;
2803 
2804 	src_virt = PHYS_TO_DMAP(src);
2805 	dst_virt = PHYS_TO_DMAP(dst);
2806 	bcopy((char *)src_virt + (src & PAGE_MASK),
2807 	      (char *)dst_virt + (dst & PAGE_MASK),
2808 	      bytes);
2809 }
2810 
2811 /*
2812  * Remove all pages from specified address space this aids process
2813  * exit speeds.  Also, this code is special cased for current
2814  * process only, but can have the more generic (and slightly slower)
2815  * mode enabled.  This is much faster than pmap_remove in the case
2816  * of running down an entire address space.
2817  *
2818  * No other requirements.
2819  */
2820 void
2821 pmap_remove_pages(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2822 {
2823 	pmap_remove(pmap, sva, eva);
2824 #if 0
2825 	pt_entry_t *pte, tpte;
2826 	pv_entry_t pv, npv;
2827 	vm_page_t m;
2828 	int save_generation;
2829 
2830 	if (pmap->pm_pteobj)
2831 		vm_object_hold(pmap->pm_pteobj);
2832 
2833 	pmap_invalidate_range(pmap, sva, eva);
2834 
2835 	for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
2836 		if (pv->pv_va >= eva || pv->pv_va < sva) {
2837 			npv = TAILQ_NEXT(pv, pv_plist);
2838 			continue;
2839 		}
2840 
2841 		KKASSERT(pmap == pv->pv_pmap);
2842 
2843 		pte = pmap_pte(pmap, pv->pv_va);
2844 
2845 		/*
2846 		 * We cannot remove wired pages from a process' mapping
2847 		 * at this time
2848 		 */
2849 		if (*pte & VPTE_WIRED) {
2850 			npv = TAILQ_NEXT(pv, pv_plist);
2851 			continue;
2852 		}
2853 		tpte = pmap_inval_loadandclear(pte, pmap, pv->pv_va);
2854 
2855 		m = PHYS_TO_VM_PAGE(tpte & VPTE_FRAME);
2856 		vm_page_spin_lock(m);
2857 
2858 		KASSERT(m < &vm_page_array[vm_page_array_size],
2859 			("pmap_remove_pages: bad tpte %lx", tpte));
2860 
2861 		KKASSERT(pmap->pm_stats.resident_count > 0);
2862 		atomic_add_long(&pmap->pm_stats.resident_count, -1);
2863 
2864 		/*
2865 		 * Update the vm_page_t clean and reference bits.
2866 		 */
2867 		if (tpte & VPTE_M) {
2868 			vm_page_dirty(m);
2869 		}
2870 
2871 		npv = TAILQ_NEXT(pv, pv_plist);
2872 		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
2873 		atomic_add_int(&pmap->pm_generation, 1);
2874 		save_generation = pmap->pm_generation;
2875 		m->md.pv_list_count--;
2876 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2877 		if (TAILQ_EMPTY(&m->md.pv_list))
2878 			vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
2879 		vm_page_spin_unlock(m);
2880 
2881 		pmap_unuse_pt(pmap, pv->pv_va, pv->pv_ptem);
2882 		free_pv_entry(pv);
2883 
2884 		/*
2885 		 * Restart the scan if we blocked during the unuse or free
2886 		 * calls and other removals were made.
2887 		 */
2888 		if (save_generation != pmap->pm_generation) {
2889 			kprintf("Warning: pmap_remove_pages race-A avoided\n");
2890 			npv = TAILQ_FIRST(&pmap->pm_pvlist);
2891 		}
2892 	}
2893 	if (pmap->pm_pteobj)
2894 		vm_object_drop(pmap->pm_pteobj);
2895 	pmap_remove(pmap, sva, eva);
2896 #endif
2897 }
2898 
2899 /*
2900  * pmap_testbit tests bits in active mappings of a VM page.
2901  */
2902 static boolean_t
2903 pmap_testbit(vm_page_t m, int bit)
2904 {
2905 	pv_entry_t pv;
2906 	pt_entry_t *pte;
2907 
2908 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2909 		return FALSE;
2910 
2911 	if (TAILQ_FIRST(&m->md.pv_list) == NULL)
2912 		return FALSE;
2913 
2914 	vm_page_spin_lock(m);
2915 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2916 		/*
2917 		 * if the bit being tested is the modified bit, then
2918 		 * mark clean_map and ptes as never
2919 		 * modified.
2920 		 */
2921 		if (bit & (VPTE_A|VPTE_M))
2922 			pmap_track_modified(pv->pv_pmap, pv->pv_va);
2923 
2924 #if defined(PMAP_DIAGNOSTIC)
2925 		if (pv->pv_pmap == NULL) {
2926 			kprintf("Null pmap (tb) at va: 0x%lx\n", pv->pv_va);
2927 			continue;
2928 		}
2929 #endif
2930 		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2931 		if (*pte & bit) {
2932 			vm_page_spin_unlock(m);
2933 			return TRUE;
2934 		}
2935 	}
2936 	vm_page_spin_unlock(m);
2937 	return (FALSE);
2938 }
2939 
2940 /*
2941  * This routine is used to clear bits in ptes.  Certain bits require special
2942  * handling, in particular (on virtual kernels) the VPTE_M (modify) bit.
2943  *
2944  * This routine is only called with certain VPTE_* bit combinations.
2945  */
2946 static __inline void
2947 pmap_clearbit(vm_page_t m, int bit)
2948 {
2949 	pv_entry_t pv;
2950 	pt_entry_t *pte;
2951 	pt_entry_t pbits;
2952 	vm_object_t pmobj;
2953 	pmap_t pmap;
2954 
2955 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
2956 		if (bit == VPTE_RW)
2957 			vm_page_flag_clear(m, PG_WRITEABLE);
2958 		return;
2959 	}
2960 
2961 	/*
2962 	 * Loop over all current mappings setting/clearing as appropos If
2963 	 * setting RO do we need to clear the VAC?
2964 	 */
2965 restart:
2966 	vm_page_spin_lock(m);
2967 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2968 		/*
2969 		 * Need the pmap object lock(?)
2970 		 */
2971 		pmap = pv->pv_pmap;
2972 		pmobj = pmap->pm_pteobj;
2973 
2974 		if (vm_object_hold_try(pmobj) == 0) {
2975 			refcount_acquire(&pmobj->hold_count);
2976 			vm_page_spin_unlock(m);
2977 			vm_object_lock(pmobj);
2978 			vm_object_drop(pmobj);
2979 			goto restart;
2980 		}
2981 
2982 		/*
2983 		 * don't write protect pager mappings
2984 		 */
2985 		if (bit == VPTE_RW) {
2986 			pmap_track_modified(pv->pv_pmap, pv->pv_va);
2987 		}
2988 
2989 #if defined(PMAP_DIAGNOSTIC)
2990 		if (pv->pv_pmap == NULL) {
2991 			kprintf("Null pmap (cb) at va: 0x%lx\n", pv->pv_va);
2992 			vm_object_drop(pmobj);
2993 			continue;
2994 		}
2995 #endif
2996 
2997 		/*
2998 		 * Careful here.  We can use a locked bus instruction to
2999 		 * clear VPTE_A or VPTE_M safely but we need to synchronize
3000 		 * with the target cpus when we mess with VPTE_RW.
3001 		 *
3002 		 * On virtual kernels we must force a new fault-on-write
3003 		 * in the real kernel if we clear the Modify bit ourselves,
3004 		 * otherwise the real kernel will not get a new fault and
3005 		 * will never set our Modify bit again.
3006 		 */
3007 		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
3008 		if (*pte & bit) {
3009 			if (bit == VPTE_RW) {
3010 				/*
3011 				 * We must also clear VPTE_M when clearing
3012 				 * VPTE_RW and synchronize its state to
3013 				 * the page.
3014 				 */
3015 				pmap_track_modified(pv->pv_pmap, pv->pv_va);
3016 				pbits = pmap_clean_pte(pte, pv->pv_pmap,
3017 						       pv->pv_va, m);
3018 			} else if (bit == VPTE_M) {
3019 				/*
3020 				 * We must invalidate the real-kernel pte
3021 				 * when clearing VPTE_M bit to force the
3022 				 * real-kernel to take a new fault to re-set
3023 				 * VPTE_M.
3024 				 */
3025 				atomic_clear_long(pte, VPTE_M);
3026 				if (*pte & VPTE_RW) {
3027 					pmap_invalidate_range(pv->pv_pmap,
3028 						      pv->pv_va,
3029 						      pv->pv_va + PAGE_SIZE);
3030 				}
3031 			} else if ((bit & (VPTE_RW|VPTE_M)) ==
3032 				   (VPTE_RW|VPTE_M)) {
3033 				/*
3034 				 * We've been asked to clear W & M, I guess
3035 				 * the caller doesn't want us to update
3036 				 * the dirty status of the VM page.
3037 				 */
3038 				pmap_track_modified(pv->pv_pmap, pv->pv_va);
3039 				pmap_clean_pte(pte, pv->pv_pmap, pv->pv_va, m);
3040 				panic("shouldn't be called");
3041 			} else {
3042 				/*
3043 				 * We've been asked to clear bits that do
3044 				 * not interact with hardware.
3045 				 */
3046 				atomic_clear_long(pte, bit);
3047 			}
3048 		}
3049 		vm_object_drop(pmobj);
3050 	}
3051 	if (bit == VPTE_RW)
3052 		vm_page_flag_clear(m, PG_WRITEABLE);
3053 	vm_page_spin_unlock(m);
3054 }
3055 
3056 /*
3057  * Lower the permission for all mappings to a given page.
3058  *
3059  * No other requirements.
3060  */
3061 void
3062 pmap_page_protect(vm_page_t m, vm_prot_t prot)
3063 {
3064 	if ((prot & VM_PROT_WRITE) == 0) {
3065 		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
3066 			pmap_clearbit(m, VPTE_RW);
3067 		} else {
3068 			pmap_remove_all(m);
3069 		}
3070 	}
3071 }
3072 
3073 vm_paddr_t
3074 pmap_phys_address(vm_pindex_t ppn)
3075 {
3076 	return (x86_64_ptob(ppn));
3077 }
3078 
3079 /*
3080  * Return a count of reference bits for a page, clearing those bits.
3081  * It is not necessary for every reference bit to be cleared, but it
3082  * is necessary that 0 only be returned when there are truly no
3083  * reference bits set.
3084  *
3085  * XXX: The exact number of bits to check and clear is a matter that
3086  * should be tested and standardized at some point in the future for
3087  * optimal aging of shared pages.
3088  *
3089  * No other requirements.
3090  */
3091 int
3092 pmap_ts_referenced(vm_page_t m)
3093 {
3094 	pv_entry_t pv, pvf, pvn;
3095 	pt_entry_t *pte;
3096 	int rtval = 0;
3097 
3098 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3099 		return (rtval);
3100 
3101 	vm_page_spin_lock(m);
3102 	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3103 		pvf = pv;
3104 		do {
3105 			pvn = TAILQ_NEXT(pv, pv_list);
3106 			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3107 			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
3108 
3109 			pmap_track_modified(pv->pv_pmap, pv->pv_va);
3110 			pte = pmap_pte(pv->pv_pmap, pv->pv_va);
3111 
3112 			if (pte && (*pte & VPTE_A)) {
3113 				atomic_clear_long(pte, VPTE_A);
3114 				rtval++;
3115 				if (rtval > 4) {
3116 					break;
3117 				}
3118 			}
3119 		} while ((pv = pvn) != NULL && pv != pvf);
3120 	}
3121 	vm_page_spin_unlock(m);
3122 
3123 	return (rtval);
3124 }
3125 
3126 /*
3127  * Return whether or not the specified physical page was modified
3128  * in any physical maps.
3129  *
3130  * No other requirements.
3131  */
3132 boolean_t
3133 pmap_is_modified(vm_page_t m)
3134 {
3135 	boolean_t res;
3136 
3137 	res = pmap_testbit(m, VPTE_M);
3138 
3139 	return (res);
3140 }
3141 
3142 /*
3143  * Clear the modify bits on the specified physical page.  For the vkernel
3144  * we really need to clean the page, which clears VPTE_RW and VPTE_M, in
3145  * order to ensure that we take a fault on the next write to the page.
3146  * Otherwise the page may become dirty without us knowing it.
3147  *
3148  * No other requirements.
3149  */
3150 void
3151 pmap_clear_modify(vm_page_t m)
3152 {
3153 	pmap_clearbit(m, VPTE_RW);
3154 }
3155 
3156 /*
3157  * Clear the reference bit on the specified physical page.
3158  *
3159  * No other requirements.
3160  */
3161 void
3162 pmap_clear_reference(vm_page_t m)
3163 {
3164 	pmap_clearbit(m, VPTE_A);
3165 }
3166 
3167 /*
3168  * Miscellaneous support routines follow
3169  */
3170 static void
3171 x86_64_protection_init(void)
3172 {
3173 	uint64_t *kp;
3174 	int prot;
3175 
3176 	kp = protection_codes;
3177 	for (prot = 0; prot < 8; prot++) {
3178 		if (prot & VM_PROT_READ)
3179 			*kp |= 0;			/* R */
3180 		if (prot & VM_PROT_WRITE)
3181 			*kp |= VPTE_RW;			/* R+W */
3182 		if (prot && (prot & VM_PROT_EXECUTE) == 0)
3183 			*kp |= VPTE_NX;			/* NX - !executable */
3184 		++kp;
3185 	}
3186 }
3187 
3188 /*
3189  * Sets the memory attribute for the specified page.
3190  */
3191 void
3192 pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
3193 {
3194 	/* This is a vkernel, do nothing */
3195 }
3196 
3197 /*
3198  * Change the PAT attribute on an existing kernel memory map.  Caller
3199  * must ensure that the virtual memory in question is not accessed
3200  * during the adjustment.
3201  */
3202 void
3203 pmap_change_attr(vm_offset_t va, vm_size_t count, int mode)
3204 {
3205 	/* This is a vkernel, do nothing */
3206 }
3207 
3208 /*
3209  * Perform the pmap work for mincore
3210  *
3211  * No other requirements.
3212  */
3213 int
3214 pmap_mincore(pmap_t pmap, vm_offset_t addr)
3215 {
3216 	pt_entry_t *ptep, pte;
3217 	vm_page_t m;
3218 	int val = 0;
3219 
3220 	vm_object_hold(pmap->pm_pteobj);
3221 	ptep = pmap_pte(pmap, addr);
3222 
3223 	if (ptep && (pte = *ptep) != 0) {
3224 		vm_paddr_t pa;
3225 
3226 		val = MINCORE_INCORE;
3227 		if ((pte & VPTE_MANAGED) == 0)
3228 			goto done;
3229 
3230 		pa = pte & VPTE_FRAME;
3231 
3232 		m = PHYS_TO_VM_PAGE(pa);
3233 
3234 		/*
3235 		 * Modified by us
3236 		 */
3237 		if (pte & VPTE_M)
3238 			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
3239 		/*
3240 		 * Modified by someone
3241 		 */
3242 		else if (m->dirty || pmap_is_modified(m))
3243 			val |= MINCORE_MODIFIED_OTHER;
3244 		/*
3245 		 * Referenced by us
3246 		 */
3247 		if (pte & VPTE_A)
3248 			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
3249 
3250 		/*
3251 		 * Referenced by someone
3252 		 */
3253 		else if ((m->flags & PG_REFERENCED) || pmap_ts_referenced(m)) {
3254 			val |= MINCORE_REFERENCED_OTHER;
3255 			vm_page_flag_set(m, PG_REFERENCED);
3256 		}
3257 	}
3258 done:
3259 	vm_object_drop(pmap->pm_pteobj);
3260 
3261 	return val;
3262 }
3263 
3264 /*
3265  * Replace p->p_vmspace with a new one.  If adjrefs is non-zero the new
3266  * vmspace will be ref'd and the old one will be deref'd.
3267  *
3268  * Caller must hold vmspace->vm_map.token for oldvm and newvm
3269  */
3270 void
3271 pmap_replacevm(struct proc *p, struct vmspace *newvm, int adjrefs)
3272 {
3273 	struct vmspace *oldvm;
3274 	struct lwp *lp;
3275 
3276 	oldvm = p->p_vmspace;
3277 	if (oldvm != newvm) {
3278 		if (adjrefs)
3279 			vmspace_ref(newvm);
3280 		KKASSERT((newvm->vm_refcnt & VM_REF_DELETED) == 0);
3281 		p->p_vmspace = newvm;
3282 		KKASSERT(p->p_nthreads == 1);
3283 		lp = RB_ROOT(&p->p_lwp_tree);
3284 		pmap_setlwpvm(lp, newvm);
3285 		if (adjrefs)
3286 			vmspace_rel(oldvm);
3287 	}
3288 }
3289 
3290 /*
3291  * Set the vmspace for a LWP.  The vmspace is almost universally set the
3292  * same as the process vmspace, but virtual kernels need to swap out contexts
3293  * on a per-lwp basis.
3294  */
3295 void
3296 pmap_setlwpvm(struct lwp *lp, struct vmspace *newvm)
3297 {
3298 	struct vmspace *oldvm;
3299 	struct pmap *pmap;
3300 
3301 	oldvm = lp->lwp_vmspace;
3302 	if (oldvm != newvm) {
3303 		crit_enter();
3304 		KKASSERT((newvm->vm_refcnt & VM_REF_DELETED) == 0);
3305 		lp->lwp_vmspace = newvm;
3306 		if (curthread->td_lwp == lp) {
3307 			pmap = vmspace_pmap(newvm);
3308 			ATOMIC_CPUMASK_ORBIT(pmap->pm_active, mycpu->gd_cpuid);
3309 			if (pmap->pm_active_lock & CPULOCK_EXCL)
3310 				pmap_interlock_wait(newvm);
3311 #if defined(SWTCH_OPTIM_STATS)
3312 			tlb_flush_count++;
3313 #endif
3314 			pmap = vmspace_pmap(oldvm);
3315 			ATOMIC_CPUMASK_NANDBIT(pmap->pm_active,
3316 					       mycpu->gd_cpuid);
3317 		}
3318 		crit_exit();
3319 	}
3320 }
3321 
3322 /*
3323  * The swtch code tried to switch in a heavy weight process whos pmap
3324  * is locked by another cpu.  We have to wait for the lock to clear before
3325  * the pmap can be used.
3326  */
3327 void
3328 pmap_interlock_wait (struct vmspace *vm)
3329 {
3330 	pmap_t pmap = vmspace_pmap(vm);
3331 
3332 	if (pmap->pm_active_lock & CPULOCK_EXCL) {
3333 		crit_enter();
3334 		while (pmap->pm_active_lock & CPULOCK_EXCL) {
3335 			cpu_ccfence();
3336 			vkernel_yield();
3337 		}
3338 		crit_exit();
3339 	}
3340 }
3341 
3342 vm_offset_t
3343 pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
3344 {
3345 
3346 	if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
3347 		return addr;
3348 	}
3349 
3350 	addr = roundup2(addr, NBPDR);
3351 	return addr;
3352 }
3353 
3354 /*
3355  * Used by kmalloc/kfree, page already exists at va
3356  */
3357 vm_page_t
3358 pmap_kvtom(vm_offset_t va)
3359 {
3360 	vpte_t *ptep;
3361 
3362 	KKASSERT(va >= KvaStart && va < KvaEnd);
3363 	ptep = vtopte(va);
3364 	return(PHYS_TO_VM_PAGE(*ptep & PG_FRAME));
3365 }
3366 
3367 void
3368 pmap_object_init(vm_object_t object)
3369 {
3370 	/* empty */
3371 }
3372 
3373 void
3374 pmap_object_free(vm_object_t object)
3375 {
3376 	/* empty */
3377 }
3378 
3379 void
3380 pmap_pgscan(struct pmap_pgscan_info *pginfo)
3381 {
3382 	pmap_t pmap = pginfo->pmap;
3383 	vm_offset_t sva = pginfo->beg_addr;
3384 	vm_offset_t eva = pginfo->end_addr;
3385 	vm_offset_t va_next;
3386 	pml4_entry_t *pml4e;
3387 	pdp_entry_t *pdpe;
3388 	pd_entry_t ptpaddr, *pde;
3389 	pt_entry_t *pte;
3390 	vm_page_t pt_m;
3391 	int stop = 0;
3392 
3393 	vm_object_hold(pmap->pm_pteobj);
3394 
3395 	for (; sva < eva; sva = va_next) {
3396 		if (stop)
3397 			break;
3398 
3399 		pml4e = pmap_pml4e(pmap, sva);
3400 		if ((*pml4e & VPTE_V) == 0) {
3401 			va_next = (sva + NBPML4) & ~PML4MASK;
3402 			if (va_next < sva)
3403 				va_next = eva;
3404 			continue;
3405 		}
3406 
3407 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
3408 		if ((*pdpe & VPTE_V) == 0) {
3409 			va_next = (sva + NBPDP) & ~PDPMASK;
3410 			if (va_next < sva)
3411 				va_next = eva;
3412 			continue;
3413 		}
3414 
3415 		va_next = (sva + NBPDR) & ~PDRMASK;
3416 		if (va_next < sva)
3417 			va_next = eva;
3418 
3419 		pde = pmap_pdpe_to_pde(pdpe, sva);
3420 		ptpaddr = *pde;
3421 
3422 #if 0
3423 		/*
3424 		 * Check for large page (ignore).
3425 		 */
3426 		if ((ptpaddr & VPTE_PS) != 0) {
3427 #if 0
3428 			pmap_clean_pde(pde, pmap, sva);
3429 			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
3430 #endif
3431 			continue;
3432 		}
3433 #endif
3434 
3435 		/*
3436 		 * Weed out invalid mappings. Note: we assume that the page
3437 		 * directory table is always allocated, and in kernel virtual.
3438 		 */
3439 		if (ptpaddr == 0)
3440 			continue;
3441 
3442 		if (va_next > eva)
3443 			va_next = eva;
3444 
3445 		pt_m = pmap_hold_pt_page(pde, sva);
3446 		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
3447 		    sva += PAGE_SIZE) {
3448 			vm_page_t m;
3449 
3450 			if (stop)
3451 				break;
3452 			if ((*pte & VPTE_MANAGED) == 0)
3453 				continue;
3454 
3455 			m = PHYS_TO_VM_PAGE(*pte & VPTE_FRAME);
3456 			if (vm_page_busy_try(m, TRUE) == 0) {
3457 				if (pginfo->callback(pginfo, sva, m) < 0)
3458 					stop = 1;
3459 			}
3460 		}
3461 		vm_page_unhold(pt_m);
3462 	}
3463 	vm_object_drop(pmap->pm_pteobj);
3464 }
3465 
3466 void
3467 pmap_maybethreaded(pmap_t pmap)
3468 {
3469 	/* nop */
3470 }
3471 
3472 /*
3473  * Called while page is hard-busied to clear the PG_MAPPED and PG_WRITEABLE
3474  * flags if able.
3475  *
3476  * vkernel code is using the old pmap style so the flags should already
3477  * be properly set.
3478  */
3479 int
3480 pmap_mapped_sync(vm_page_t m)
3481 {
3482 	return (m->flags);
3483 }
3484