1 /*-
2  * Copyright (c) 1992 Terrence R. Lambert.
3  * Copyright (C) 1994, David Greenman
4  * Copyright (c) 1982, 1987, 1990, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * William Jolitz.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
39  * $FreeBSD: src/sys/i386/i386/machdep.c,v 1.385.2.30 2003/05/31 08:48:05 alc Exp $
40  */
41 
42 #include "opt_compat.h"
43 #include "opt_ddb.h"
44 #include "opt_directio.h"
45 #include "opt_inet.h"
46 #include "opt_ipx.h"
47 #include "opt_msgbuf.h"
48 #include "opt_swap.h"
49 
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/sysproto.h>
53 #include <sys/signalvar.h>
54 #include <sys/kernel.h>
55 #include <sys/linker.h>
56 #include <sys/malloc.h>
57 #include <sys/proc.h>
58 #include <sys/buf.h>
59 #include <sys/reboot.h>
60 #include <sys/mbuf.h>
61 #include <sys/msgbuf.h>
62 #include <sys/sysent.h>
63 #include <sys/sysctl.h>
64 #include <sys/vmmeter.h>
65 #include <sys/bus.h>
66 #include <sys/usched.h>
67 #include <sys/reg.h>
68 
69 #include <vm/vm.h>
70 #include <vm/vm_param.h>
71 #include <sys/lock.h>
72 #include <vm/vm_kern.h>
73 #include <vm/vm_object.h>
74 #include <vm/vm_page.h>
75 #include <vm/vm_map.h>
76 #include <vm/vm_pager.h>
77 #include <vm/vm_extern.h>
78 
79 #include <sys/thread2.h>
80 #include <sys/mplock2.h>
81 
82 #include <sys/user.h>
83 #include <sys/exec.h>
84 #include <sys/cons.h>
85 
86 #include <ddb/ddb.h>
87 
88 #include <machine/cpu.h>
89 #include <machine/clock.h>
90 #include <machine/specialreg.h>
91 #include <machine/md_var.h>
92 #include <machine/pcb_ext.h>		/* pcb.h included via sys/user.h */
93 #include <machine/globaldata.h>		/* CPU_prvspace */
94 #include <machine/smp.h>
95 #ifdef PERFMON
96 #include <machine/perfmon.h>
97 #endif
98 #include <machine/cputypes.h>
99 
100 #include <bus/isa/rtc.h>
101 #include <sys/random.h>
102 #include <sys/ptrace.h>
103 #include <machine/sigframe.h>
104 #include <unistd.h>		/* umtx_* functions */
105 #include <pthread.h>		/* pthread_yield() */
106 
107 extern void dblfault_handler (void);
108 
109 #ifndef CPU_DISABLE_SSE
110 static void set_fpregs_xmm (struct save87 *, struct savexmm *);
111 static void fill_fpregs_xmm (struct savexmm *, struct save87 *);
112 #endif /* CPU_DISABLE_SSE */
113 #ifdef DIRECTIO
114 extern void ffs_rawread_setup(void);
115 #endif /* DIRECTIO */
116 
117 int64_t tsc_offsets[MAXCPU];
118 
119 #if defined(SWTCH_OPTIM_STATS)
120 extern int swtch_optim_stats;
121 SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
122 	CTLFLAG_RD, &swtch_optim_stats, 0, "");
123 SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
124 	CTLFLAG_RD, &tlb_flush_count, 0, "");
125 #endif
126 
127 static int
128 sysctl_hw_physmem(SYSCTL_HANDLER_ARGS)
129 {
130 	u_long pmem = ctob(physmem);
131 
132 	int error = sysctl_handle_long(oidp, &pmem, 0, req);
133 	return (error);
134 }
135 
136 SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_ULONG|CTLFLAG_RD,
137 	0, 0, sysctl_hw_physmem, "LU", "Total system memory in bytes (number of pages * page size)");
138 
139 static int
140 sysctl_hw_usermem(SYSCTL_HANDLER_ARGS)
141 {
142 	/* JG */
143 	int error = sysctl_handle_int(oidp, 0,
144 		ctob((int)Maxmem - vmstats.v_wire_count), req);
145 	return (error);
146 }
147 
148 SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
149 	0, 0, sysctl_hw_usermem, "IU", "");
150 
151 SYSCTL_ULONG(_hw, OID_AUTO, availpages, CTLFLAG_RD, &Maxmem, 0, "");
152 
153 #if 0
154 
155 static int
156 sysctl_machdep_msgbuf(SYSCTL_HANDLER_ARGS)
157 {
158 	int error;
159 
160 	/* Unwind the buffer, so that it's linear (possibly starting with
161 	 * some initial nulls).
162 	 */
163 	error=sysctl_handle_opaque(oidp,msgbufp->msg_ptr+msgbufp->msg_bufr,
164 		msgbufp->msg_size-msgbufp->msg_bufr,req);
165 	if(error) return(error);
166 	if(msgbufp->msg_bufr>0) {
167 		error=sysctl_handle_opaque(oidp,msgbufp->msg_ptr,
168 			msgbufp->msg_bufr,req);
169 	}
170 	return(error);
171 }
172 
173 SYSCTL_PROC(_machdep, OID_AUTO, msgbuf, CTLTYPE_STRING|CTLFLAG_RD,
174 	0, 0, sysctl_machdep_msgbuf, "A","Contents of kernel message buffer");
175 
176 static int msgbuf_clear;
177 
178 static int
179 sysctl_machdep_msgbuf_clear(SYSCTL_HANDLER_ARGS)
180 {
181 	int error;
182 	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
183 		req);
184 	if (!error && req->newptr) {
185 		/* Clear the buffer and reset write pointer */
186 		bzero(msgbufp->msg_ptr,msgbufp->msg_size);
187 		msgbufp->msg_bufr=msgbufp->msg_bufx=0;
188 		msgbuf_clear=0;
189 	}
190 	return (error);
191 }
192 
193 SYSCTL_PROC(_machdep, OID_AUTO, msgbuf_clear, CTLTYPE_INT|CTLFLAG_RW,
194 	&msgbuf_clear, 0, sysctl_machdep_msgbuf_clear, "I",
195 	"Clear kernel message buffer");
196 
197 #endif
198 
199 /*
200  * Send an interrupt to process.
201  *
202  * Stack is set up to allow sigcode stored
203  * at top to call routine, followed by kcall
204  * to sigreturn routine below.  After sigreturn
205  * resets the signal mask, the stack, and the
206  * frame pointer, it returns to the user
207  * specified pc, psl.
208  */
209 void
210 sendsig(sig_t catcher, int sig, sigset_t *mask, u_long code)
211 {
212 	struct lwp *lp = curthread->td_lwp;
213 	struct proc *p = lp->lwp_proc;
214 	struct trapframe *regs;
215 	struct sigacts *psp = p->p_sigacts;
216 	struct sigframe sf, *sfp;
217 	int oonstack;
218 	char *sp;
219 
220 	regs = lp->lwp_md.md_regs;
221 	oonstack = (lp->lwp_sigstk.ss_flags & SS_ONSTACK) ? 1 : 0;
222 
223 	/* Save user context */
224 	bzero(&sf, sizeof(struct sigframe));
225 	sf.sf_uc.uc_sigmask = *mask;
226 	sf.sf_uc.uc_stack = lp->lwp_sigstk;
227 	sf.sf_uc.uc_mcontext.mc_onstack = oonstack;
228 	KKASSERT(__offsetof(struct trapframe, tf_rdi) == 0);
229 	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(struct trapframe));
230 
231 	/* Make the size of the saved context visible to userland */
232 	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext);
233 
234 	/* Allocate and validate space for the signal handler context. */
235         if ((lp->lwp_flags & LWP_ALTSTACK) != 0 && !oonstack &&
236 	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
237 		sp = (char *)(lp->lwp_sigstk.ss_sp + lp->lwp_sigstk.ss_size -
238 			      sizeof(struct sigframe));
239 		lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
240 	} else {
241 		/* We take red zone into account */
242 		sp = (char *)regs->tf_rsp - sizeof(struct sigframe) - 128;
243 	}
244 
245 	/* Align to 16 bytes */
246 	sfp = (struct sigframe *)((intptr_t)sp & ~0xFUL);
247 
248 	/* Translate the signal is appropriate */
249 	if (p->p_sysent->sv_sigtbl) {
250 		if (sig <= p->p_sysent->sv_sigsize)
251 			sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
252 	}
253 
254 	/*
255 	 * Build the argument list for the signal handler.
256 	 *
257 	 * Arguments are in registers (%rdi, %rsi, %rdx, %rcx)
258 	 */
259 	regs->tf_rdi = sig;				/* argument 1 */
260 	regs->tf_rdx = (register_t)&sfp->sf_uc;		/* argument 3 */
261 
262 	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
263 		/*
264 		 * Signal handler installed with SA_SIGINFO.
265 		 *
266 		 * action(signo, siginfo, ucontext)
267 		 */
268 		regs->tf_rsi = (register_t)&sfp->sf_si;	/* argument 2 */
269 		regs->tf_rcx = (register_t)regs->tf_err; /* argument 4 */
270 		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
271 
272 		/* fill siginfo structure */
273 		sf.sf_si.si_signo = sig;
274 		sf.sf_si.si_code = code;
275 		sf.sf_si.si_addr = (void *)regs->tf_addr;
276 	} else {
277 		/*
278 		 * Old FreeBSD-style arguments.
279 		 *
280 		 * handler (signo, code, [uc], addr)
281 		 */
282 		regs->tf_rsi = (register_t)code;	/* argument 2 */
283 		regs->tf_rcx = (register_t)regs->tf_addr; /* argument 4 */
284 		sf.sf_ahu.sf_handler = catcher;
285 	}
286 
287 #if 0
288 	/*
289 	 * If we're a vm86 process, we want to save the segment registers.
290 	 * We also change eflags to be our emulated eflags, not the actual
291 	 * eflags.
292 	 */
293 	if (regs->tf_eflags & PSL_VM) {
294 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
295 		struct vm86_kernel *vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
296 
297 		sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
298 		sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
299 		sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
300 		sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
301 
302 		if (vm86->vm86_has_vme == 0)
303 			sf.sf_uc.uc_mcontext.mc_eflags =
304 			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
305 			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
306 
307 		/*
308 		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
309 		 * syscalls made by the signal handler.  This just avoids
310 		 * wasting time for our lazy fixup of such faults.  PSL_NT
311 		 * does nothing in vm86 mode, but vm86 programs can set it
312 		 * almost legitimately in probes for old cpu types.
313 		 */
314 		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
315 	}
316 #endif
317 
318 	/*
319 	 * Save the FPU state and reinit the FP unit
320 	 */
321 	npxpush(&sf.sf_uc.uc_mcontext);
322 
323 	/*
324 	 * Copy the sigframe out to the user's stack.
325 	 */
326 	if (copyout(&sf, sfp, sizeof(struct sigframe)) != 0) {
327 		/*
328 		 * Something is wrong with the stack pointer.
329 		 * ...Kill the process.
330 		 */
331 		sigexit(lp, SIGILL);
332 	}
333 
334 	regs->tf_rsp = (register_t)sfp;
335 	regs->tf_rip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
336 
337 	/*
338 	 * i386 abi specifies that the direction flag must be cleared
339 	 * on function entry
340 	 */
341 	regs->tf_rflags &= ~(PSL_T|PSL_D);
342 
343 	/*
344 	 * 64 bit mode has a code and stack selector but
345 	 * no data or extra selector.  %fs and %gs are not
346 	 * stored in-context.
347 	 */
348 	regs->tf_cs = _ucodesel;
349 	regs->tf_ss = _udatasel;
350 }
351 
352 /*
353  * Sanitize the trapframe for a virtual kernel passing control to a custom
354  * VM context.  Remove any items that would otherwise create a privilage
355  * issue.
356  *
357  * XXX at the moment we allow userland to set the resume flag.  Is this a
358  * bad idea?
359  */
360 int
361 cpu_sanitize_frame(struct trapframe *frame)
362 {
363 	frame->tf_cs = _ucodesel;
364 	frame->tf_ss = _udatasel;
365 	/* XXX VM (8086) mode not supported? */
366 	frame->tf_rflags &= (PSL_RF | PSL_USERCHANGE | PSL_VM_UNSUPP);
367 	frame->tf_rflags |= PSL_RESERVED_DEFAULT | PSL_I;
368 
369 	return(0);
370 }
371 
372 /*
373  * Sanitize the tls so loading the descriptor does not blow up
374  * on us.  For x86_64 we don't have to do anything.
375  */
376 int
377 cpu_sanitize_tls(struct savetls *tls)
378 {
379 	return(0);
380 }
381 
382 /*
383  * sigreturn(ucontext_t *sigcntxp)
384  *
385  * System call to cleanup state after a signal
386  * has been taken.  Reset signal mask and
387  * stack state from context left by sendsig (above).
388  * Return to previous pc and psl as specified by
389  * context left by sendsig. Check carefully to
390  * make sure that the user has not modified the
391  * state to gain improper privileges.
392  */
393 #define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
394 #define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
395 
396 int
397 sys_sigreturn(struct sigreturn_args *uap)
398 {
399 	struct lwp *lp = curthread->td_lwp;
400 	struct trapframe *regs;
401 	ucontext_t uc;
402 	ucontext_t *ucp;
403 	register_t rflags;
404 	int cs;
405 	int error;
406 
407 	/*
408 	 * We have to copy the information into kernel space so userland
409 	 * can't modify it while we are sniffing it.
410 	 */
411 	regs = lp->lwp_md.md_regs;
412 	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
413 	if (error)
414 		return (error);
415 	ucp = &uc;
416 	rflags = ucp->uc_mcontext.mc_rflags;
417 
418 	/* VM (8086) mode not supported */
419 	rflags &= ~PSL_VM_UNSUPP;
420 
421 #if 0
422 	if (eflags & PSL_VM) {
423 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
424 		struct vm86_kernel *vm86;
425 
426 		/*
427 		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
428 		 * set up the vm86 area, and we can't enter vm86 mode.
429 		 */
430 		if (lp->lwp_thread->td_pcb->pcb_ext == 0)
431 			return (EINVAL);
432 		vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
433 		if (vm86->vm86_inited == 0)
434 			return (EINVAL);
435 
436 		/* go back to user mode if both flags are set */
437 		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
438 			trapsignal(lp->lwp_proc, SIGBUS, 0);
439 
440 		if (vm86->vm86_has_vme) {
441 			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
442 			    (eflags & VME_USERCHANGE) | PSL_VM;
443 		} else {
444 			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
445 			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |					    (eflags & VM_USERCHANGE) | PSL_VM;
446 		}
447 		bcopy(&ucp.uc_mcontext.mc_gs, tf, sizeof(struct trapframe));
448 		tf->tf_eflags = eflags;
449 		tf->tf_vm86_ds = tf->tf_ds;
450 		tf->tf_vm86_es = tf->tf_es;
451 		tf->tf_vm86_fs = tf->tf_fs;
452 		tf->tf_vm86_gs = tf->tf_gs;
453 		tf->tf_ds = _udatasel;
454 		tf->tf_es = _udatasel;
455 #if 0
456 		tf->tf_fs = _udatasel;
457 		tf->tf_gs = _udatasel;
458 #endif
459 	} else
460 #endif
461 	{
462 		/*
463 		 * Don't allow users to change privileged or reserved flags.
464 		 */
465 		/*
466 		 * XXX do allow users to change the privileged flag PSL_RF.
467 		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
468 		 * should sometimes set it there too.  tf_eflags is kept in
469 		 * the signal context during signal handling and there is no
470 		 * other place to remember it, so the PSL_RF bit may be
471 		 * corrupted by the signal handler without us knowing.
472 		 * Corruption of the PSL_RF bit at worst causes one more or
473 		 * one less debugger trap, so allowing it is fairly harmless.
474 		 */
475 		if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
476 			kprintf("sigreturn: rflags = 0x%lx\n", (long)rflags);
477 			return(EINVAL);
478 		}
479 
480 		/*
481 		 * Don't allow users to load a valid privileged %cs.  Let the
482 		 * hardware check for invalid selectors, excess privilege in
483 		 * other selectors, invalid %eip's and invalid %esp's.
484 		 */
485 		cs = ucp->uc_mcontext.mc_cs;
486 		if (!CS_SECURE(cs)) {
487 			kprintf("sigreturn: cs = 0x%x\n", cs);
488 			trapsignal(lp, SIGBUS, T_PROTFLT);
489 			return(EINVAL);
490 		}
491 		bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(struct trapframe));
492 	}
493 
494 	/*
495 	 * Restore the FPU state from the frame
496 	 */
497 	npxpop(&ucp->uc_mcontext);
498 
499 	if (ucp->uc_mcontext.mc_onstack & 1)
500 		lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
501 	else
502 		lp->lwp_sigstk.ss_flags &= ~SS_ONSTACK;
503 
504 	lp->lwp_sigmask = ucp->uc_sigmask;
505 	SIG_CANTMASK(lp->lwp_sigmask);
506 	return(EJUSTRETURN);
507 }
508 
509 /*
510  * cpu_idle() represents the idle LWKT.  You cannot return from this function
511  * (unless you want to blow things up!).  Instead we look for runnable threads
512  * and loop or halt as appropriate.  Giant is not held on entry to the thread.
513  *
514  * The main loop is entered with a critical section held, we must release
515  * the critical section before doing anything else.  lwkt_switch() will
516  * check for pending interrupts due to entering and exiting its own
517  * critical section.
518  *
519  * Note on cpu_idle_hlt:  On an SMP system we rely on a scheduler IPI
520  * to wake a HLTed cpu up.
521  */
522 static int	cpu_idle_hlt = 1;
523 static int	cpu_idle_hltcnt;
524 static int	cpu_idle_spincnt;
525 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
526     &cpu_idle_hlt, 0, "Idle loop HLT enable");
527 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hltcnt, CTLFLAG_RW,
528     &cpu_idle_hltcnt, 0, "Idle loop entry halts");
529 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_spincnt, CTLFLAG_RW,
530     &cpu_idle_spincnt, 0, "Idle loop entry spins");
531 
532 void
533 cpu_idle(void)
534 {
535 	struct thread *td = curthread;
536 	struct mdglobaldata *gd = mdcpu;
537 	int reqflags;
538 
539 	crit_exit();
540 	KKASSERT(td->td_critcount == 0);
541 	cpu_enable_intr();
542 
543 	for (;;) {
544 		/*
545 		 * See if there are any LWKTs ready to go.
546 		 */
547 		lwkt_switch();
548 
549 		/*
550 		 * The idle loop halts only if no threads are scheduleable
551 		 * and no signals have occured.
552 		 */
553 		if (cpu_idle_hlt &&
554 		    (td->td_gd->gd_reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
555 			splz();
556 			if ((td->td_gd->gd_reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
557 #ifdef DEBUGIDLE
558 				struct timeval tv1, tv2;
559 				gettimeofday(&tv1, NULL);
560 #endif
561 				reqflags = gd->mi.gd_reqflags &
562 					   ~RQF_IDLECHECK_WK_MASK;
563 				KKASSERT(gd->mi.gd_processing_ipiq == 0);
564 				umtx_sleep(&gd->mi.gd_reqflags, reqflags,
565 					   1000000);
566 #ifdef DEBUGIDLE
567 				gettimeofday(&tv2, NULL);
568 				if (tv2.tv_usec - tv1.tv_usec +
569 				    (tv2.tv_sec - tv1.tv_sec) * 1000000
570 				    > 500000) {
571 					kprintf("cpu %d idlelock %08x %08x\n",
572 						gd->mi.gd_cpuid,
573 						gd->mi.gd_reqflags,
574 						gd->gd_fpending);
575 				}
576 #endif
577 			}
578 			++cpu_idle_hltcnt;
579 		} else {
580 			splz();
581 			__asm __volatile("pause");
582 			++cpu_idle_spincnt;
583 		}
584 	}
585 }
586 
587 /*
588  * Called by the spinlock code with or without a critical section held
589  * when a spinlock is found to be seriously constested.
590  *
591  * We need to enter a critical section to prevent signals from recursing
592  * into pthreads.
593  */
594 void
595 cpu_spinlock_contested(void)
596 {
597 	cpu_pause();
598 }
599 
600 /*
601  * Clear registers on exec
602  */
603 void
604 exec_setregs(u_long entry, u_long stack, u_long ps_strings)
605 {
606 	struct thread *td = curthread;
607 	struct lwp *lp = td->td_lwp;
608 	struct pcb *pcb = td->td_pcb;
609 	struct trapframe *regs = lp->lwp_md.md_regs;
610 
611 	/* was i386_user_cleanup() in NetBSD */
612 	user_ldt_free(pcb);
613 
614 	bzero((char *)regs, sizeof(struct trapframe));
615 	regs->tf_rip = entry;
616 	regs->tf_rsp = ((stack - 8) & ~0xFul) + 8; /* align the stack */
617 	regs->tf_rdi = stack;		/* argv */
618 	regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
619 	regs->tf_ss = _udatasel;
620 	regs->tf_cs = _ucodesel;
621 	regs->tf_rbx = ps_strings;
622 
623 	/*
624 	 * Reset the hardware debug registers if they were in use.
625 	 * They won't have any meaning for the newly exec'd process.
626 	 */
627 	if (pcb->pcb_flags & PCB_DBREGS) {
628 		pcb->pcb_dr0 = 0;
629 		pcb->pcb_dr1 = 0;
630 		pcb->pcb_dr2 = 0;
631 		pcb->pcb_dr3 = 0;
632 		pcb->pcb_dr6 = 0;
633 		pcb->pcb_dr7 = 0; /* JG set bit 10? */
634 		if (pcb == td->td_pcb) {
635 			/*
636 			 * Clear the debug registers on the running
637 			 * CPU, otherwise they will end up affecting
638 			 * the next process we switch to.
639 			 */
640 			reset_dbregs();
641 		}
642 		pcb->pcb_flags &= ~PCB_DBREGS;
643 	}
644 
645 	/*
646 	 * Initialize the math emulator (if any) for the current process.
647 	 * Actually, just clear the bit that says that the emulator has
648 	 * been initialized.  Initialization is delayed until the process
649 	 * traps to the emulator (if it is done at all) mainly because
650 	 * emulators don't provide an entry point for initialization.
651 	 */
652 	pcb->pcb_flags &= ~FP_SOFTFP;
653 
654 	/*
655 	 * NOTE: do not set CR0_TS here.  npxinit() must do it after clearing
656 	 *	 gd_npxthread.  Otherwise a preemptive interrupt thread
657 	 *	 may panic in npxdna().
658 	 */
659 	crit_enter();
660 #if 0
661 	load_cr0(rcr0() | CR0_MP);
662 #endif
663 
664 	/*
665 	 * NOTE: The MSR values must be correct so we can return to
666 	 * 	 userland.  gd_user_fs/gs must be correct so the switch
667 	 *	 code knows what the current MSR values are.
668 	 */
669 	pcb->pcb_fsbase = 0;	/* Values loaded from PCB on switch */
670 	pcb->pcb_gsbase = 0;
671 	/* Initialize the npx (if any) for the current process. */
672 	npxinit(__INITIAL_FPUCW__);
673 	crit_exit();
674 
675 	/*
676 	 * note: linux emulator needs edx to be 0x0 on entry, which is
677 	 * handled in execve simply by setting the 64 bit syscall
678 	 * return value to 0.
679 	 */
680 }
681 
682 void
683 cpu_setregs(void)
684 {
685 #if 0
686 	unsigned int cr0;
687 
688 	cr0 = rcr0();
689 	cr0 |= CR0_NE;			/* Done by npxinit() */
690 	cr0 |= CR0_MP | CR0_TS;		/* Done at every execve() too. */
691 	cr0 |= CR0_WP | CR0_AM;
692 	load_cr0(cr0);
693 	load_gs(_udatasel);
694 #endif
695 }
696 
697 static int
698 sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
699 {
700 	int error;
701 	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
702 		req);
703 	if (!error && req->newptr)
704 		resettodr();
705 	return (error);
706 }
707 
708 SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
709 	&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
710 
711 extern u_long bootdev;		/* not a cdev_t - encoding is different */
712 SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
713 	CTLFLAG_RD, &bootdev, 0, "Boot device (not in cdev_t format)");
714 
715 /*
716  * Initialize 386 and configure to run kernel
717  */
718 
719 /*
720  * Initialize segments & interrupt table
721  */
722 
723 extern  struct user *proc0paddr;
724 
725 #if 0
726 
727 extern inthand_t
728 	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
729 	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
730 	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
731 	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
732 	IDTVEC(xmm), IDTVEC(dblfault),
733 	IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
734 #endif
735 
736 #ifdef DEBUG_INTERRUPTS
737 extern inthand_t *Xrsvdary[256];
738 #endif
739 
740 int
741 ptrace_set_pc(struct lwp *lp, unsigned long addr)
742 {
743 	lp->lwp_md.md_regs->tf_rip = addr;
744 	return (0);
745 }
746 
747 int
748 ptrace_single_step(struct lwp *lp)
749 {
750 	lp->lwp_md.md_regs->tf_rflags |= PSL_T;
751 	return (0);
752 }
753 
754 int
755 fill_regs(struct lwp *lp, struct reg *regs)
756 {
757 	struct trapframe *tp;
758 
759 	if ((tp = lp->lwp_md.md_regs) == NULL)
760 		return EINVAL;
761 	bcopy(&tp->tf_rdi, &regs->r_rdi, sizeof(*regs));
762 	return (0);
763 }
764 
765 int
766 set_regs(struct lwp *lp, struct reg *regs)
767 {
768 	struct trapframe *tp;
769 
770 	tp = lp->lwp_md.md_regs;
771 	if (!EFL_SECURE(regs->r_rflags, tp->tf_rflags) ||
772 	    !CS_SECURE(regs->r_cs))
773 		return (EINVAL);
774 	bcopy(&regs->r_rdi, &tp->tf_rdi, sizeof(*regs));
775 	return (0);
776 }
777 
778 #ifndef CPU_DISABLE_SSE
779 static void
780 fill_fpregs_xmm(struct savexmm *sv_xmm, struct save87 *sv_87)
781 {
782 	struct env87 *penv_87 = &sv_87->sv_env;
783 	struct envxmm *penv_xmm = &sv_xmm->sv_env;
784 	int i;
785 
786 	/* FPU control/status */
787 	penv_87->en_cw = penv_xmm->en_cw;
788 	penv_87->en_sw = penv_xmm->en_sw;
789 	penv_87->en_tw = penv_xmm->en_tw;
790 	penv_87->en_fip = penv_xmm->en_fip;
791 	penv_87->en_fcs = penv_xmm->en_fcs;
792 	penv_87->en_opcode = penv_xmm->en_opcode;
793 	penv_87->en_foo = penv_xmm->en_foo;
794 	penv_87->en_fos = penv_xmm->en_fos;
795 
796 	/* FPU registers */
797 	for (i = 0; i < 8; ++i)
798 		sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
799 }
800 
801 static void
802 set_fpregs_xmm(struct save87 *sv_87, struct savexmm *sv_xmm)
803 {
804 	struct env87 *penv_87 = &sv_87->sv_env;
805 	struct envxmm *penv_xmm = &sv_xmm->sv_env;
806 	int i;
807 
808 	/* FPU control/status */
809 	penv_xmm->en_cw = penv_87->en_cw;
810 	penv_xmm->en_sw = penv_87->en_sw;
811 	penv_xmm->en_tw = penv_87->en_tw;
812 	penv_xmm->en_fip = penv_87->en_fip;
813 	penv_xmm->en_fcs = penv_87->en_fcs;
814 	penv_xmm->en_opcode = penv_87->en_opcode;
815 	penv_xmm->en_foo = penv_87->en_foo;
816 	penv_xmm->en_fos = penv_87->en_fos;
817 
818 	/* FPU registers */
819 	for (i = 0; i < 8; ++i)
820 		sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
821 }
822 #endif /* CPU_DISABLE_SSE */
823 
824 int
825 fill_fpregs(struct lwp *lp, struct fpreg *fpregs)
826 {
827 	if (lp->lwp_thread == NULL || lp->lwp_thread->td_pcb == NULL)
828 		return EINVAL;
829 #ifndef CPU_DISABLE_SSE
830 	if (cpu_fxsr) {
831 		fill_fpregs_xmm(&lp->lwp_thread->td_pcb->pcb_save.sv_xmm,
832 				(struct save87 *)fpregs);
833 		return (0);
834 	}
835 #endif /* CPU_DISABLE_SSE */
836 	bcopy(&lp->lwp_thread->td_pcb->pcb_save.sv_87, fpregs, sizeof *fpregs);
837 	return (0);
838 }
839 
840 int
841 set_fpregs(struct lwp *lp, struct fpreg *fpregs)
842 {
843 #ifndef CPU_DISABLE_SSE
844 	if (cpu_fxsr) {
845 		set_fpregs_xmm((struct save87 *)fpregs,
846 			       &lp->lwp_thread->td_pcb->pcb_save.sv_xmm);
847 		return (0);
848 	}
849 #endif /* CPU_DISABLE_SSE */
850 	bcopy(fpregs, &lp->lwp_thread->td_pcb->pcb_save.sv_87, sizeof *fpregs);
851 	return (0);
852 }
853 
854 int
855 fill_dbregs(struct lwp *lp, struct dbreg *dbregs)
856 {
857 	return (ENOSYS);
858 }
859 
860 int
861 set_dbregs(struct lwp *lp, struct dbreg *dbregs)
862 {
863 	return (ENOSYS);
864 }
865 
866 #if 0
867 /*
868  * Return > 0 if a hardware breakpoint has been hit, and the
869  * breakpoint was in user space.  Return 0, otherwise.
870  */
871 int
872 user_dbreg_trap(void)
873 {
874         u_int32_t dr7, dr6; /* debug registers dr6 and dr7 */
875         u_int32_t bp;       /* breakpoint bits extracted from dr6 */
876         int nbp;            /* number of breakpoints that triggered */
877         caddr_t addr[4];    /* breakpoint addresses */
878         int i;
879 
880         dr7 = rdr7();
881         if ((dr7 & 0x000000ff) == 0) {
882                 /*
883                  * all GE and LE bits in the dr7 register are zero,
884                  * thus the trap couldn't have been caused by the
885                  * hardware debug registers
886                  */
887                 return 0;
888         }
889 
890         nbp = 0;
891         dr6 = rdr6();
892         bp = dr6 & 0x0000000f;
893 
894         if (!bp) {
895                 /*
896                  * None of the breakpoint bits are set meaning this
897                  * trap was not caused by any of the debug registers
898                  */
899                 return 0;
900         }
901 
902         /*
903          * at least one of the breakpoints were hit, check to see
904          * which ones and if any of them are user space addresses
905          */
906 
907         if (bp & 0x01) {
908                 addr[nbp++] = (caddr_t)rdr0();
909         }
910         if (bp & 0x02) {
911                 addr[nbp++] = (caddr_t)rdr1();
912         }
913         if (bp & 0x04) {
914                 addr[nbp++] = (caddr_t)rdr2();
915         }
916         if (bp & 0x08) {
917                 addr[nbp++] = (caddr_t)rdr3();
918         }
919 
920         for (i=0; i<nbp; i++) {
921                 if (addr[i] <
922                     (caddr_t)VM_MAX_USER_ADDRESS) {
923                         /*
924                          * addr[i] is in user space
925                          */
926                         return nbp;
927                 }
928         }
929 
930         /*
931          * None of the breakpoints are in user space.
932          */
933         return 0;
934 }
935 
936 #endif
937 
938 void
939 identcpu(void)
940 {
941 	int regs[4];
942 
943 	do_cpuid(1, regs);
944 	cpu_feature = regs[3];
945 }
946 
947 
948 #ifndef DDB
949 void
950 Debugger(const char *msg)
951 {
952 	kprintf("Debugger(\"%s\") called.\n", msg);
953 }
954 #endif /* no DDB */
955