1 /*-
2  * Copyright (c) 1992 Terrence R. Lambert.
3  * Copyright (C) 1994, David Greenman
4  * Copyright (c) 1982, 1987, 1990, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * William Jolitz.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
39  * $FreeBSD: src/sys/i386/i386/machdep.c,v 1.385.2.30 2003/05/31 08:48:05 alc Exp $
40  */
41 
42 #include "opt_ddb.h"
43 #include "opt_inet.h"
44 #include "opt_msgbuf.h"
45 #include "opt_swap.h"
46 
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/sysproto.h>
50 #include <sys/signalvar.h>
51 #include <sys/kernel.h>
52 #include <sys/linker.h>
53 #include <sys/malloc.h>
54 #include <sys/proc.h>
55 #include <sys/buf.h>
56 #include <sys/reboot.h>
57 #include <sys/mbuf.h>
58 #include <sys/msgbuf.h>
59 #include <sys/sysent.h>
60 #include <sys/sysctl.h>
61 #include <sys/vmmeter.h>
62 #include <sys/bus.h>
63 #include <sys/usched.h>
64 #include <sys/reg.h>
65 
66 #include <vm/vm.h>
67 #include <vm/vm_param.h>
68 #include <sys/lock.h>
69 #include <vm/vm_kern.h>
70 #include <vm/vm_object.h>
71 #include <vm/vm_page.h>
72 #include <vm/vm_map.h>
73 #include <vm/vm_pager.h>
74 #include <vm/vm_extern.h>
75 
76 #include <sys/thread2.h>
77 #include <sys/mplock2.h>
78 
79 #include <sys/user.h>
80 #include <sys/exec.h>
81 #include <sys/cons.h>
82 
83 #include <ddb/ddb.h>
84 
85 #include <machine/cpu.h>
86 #include <machine/clock.h>
87 #include <machine/specialreg.h>
88 #include <machine/md_var.h>
89 #include <machine/pcb_ext.h>		/* pcb.h included via sys/user.h */
90 #include <machine/globaldata.h>		/* CPU_prvspace */
91 #include <machine/smp.h>
92 #include <machine/cputypes.h>
93 
94 #include <bus/isa/rtc.h>
95 #include <sys/random.h>
96 #include <sys/ptrace.h>
97 #include <machine/sigframe.h>
98 #include <unistd.h>		/* umtx_* functions */
99 #include <pthread.h>		/* pthread_yield() */
100 
101 extern void dblfault_handler (void);
102 
103 static void set_fpregs_xmm (struct save87 *, struct savexmm *);
104 static void fill_fpregs_xmm (struct savexmm *, struct save87 *);
105 
106 int64_t tsc_offsets[MAXCPU];
107 
108 #if defined(SWTCH_OPTIM_STATS)
109 extern int swtch_optim_stats;
110 SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
111 	CTLFLAG_RD, &swtch_optim_stats, 0, "");
112 SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
113 	CTLFLAG_RD, &tlb_flush_count, 0, "");
114 #endif
115 
116 static int
117 sysctl_hw_physmem(SYSCTL_HANDLER_ARGS)
118 {
119 	u_long pmem = ctob(physmem);
120 
121 	int error = sysctl_handle_long(oidp, &pmem, 0, req);
122 	return (error);
123 }
124 
125 SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_ULONG|CTLFLAG_RD,
126 	0, 0, sysctl_hw_physmem, "LU", "Total system memory in bytes (number of pages * page size)");
127 
128 static int
129 sysctl_hw_usermem(SYSCTL_HANDLER_ARGS)
130 {
131 	/* JG */
132 	int error = sysctl_handle_int(oidp, 0,
133 		ctob((int)Maxmem - vmstats.v_wire_count), req);
134 	return (error);
135 }
136 
137 SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
138 	0, 0, sysctl_hw_usermem, "IU", "");
139 
140 SYSCTL_ULONG(_hw, OID_AUTO, availpages, CTLFLAG_RD, &Maxmem, 0, "");
141 
142 /*
143  * Send an interrupt to process.
144  *
145  * Stack is set up to allow sigcode stored
146  * at top to call routine, followed by kcall
147  * to sigreturn routine below.  After sigreturn
148  * resets the signal mask, the stack, and the
149  * frame pointer, it returns to the user
150  * specified pc, psl.
151  */
152 void
153 sendsig(sig_t catcher, int sig, sigset_t *mask, u_long code)
154 {
155 	struct lwp *lp = curthread->td_lwp;
156 	struct proc *p = lp->lwp_proc;
157 	struct trapframe *regs;
158 	struct sigacts *psp = p->p_sigacts;
159 	struct sigframe sf, *sfp;
160 	int oonstack;
161 	char *sp;
162 
163 	regs = lp->lwp_md.md_regs;
164 	oonstack = (lp->lwp_sigstk.ss_flags & SS_ONSTACK) ? 1 : 0;
165 
166 	/* Save user context */
167 	bzero(&sf, sizeof(struct sigframe));
168 	sf.sf_uc.uc_sigmask = *mask;
169 	sf.sf_uc.uc_stack = lp->lwp_sigstk;
170 	sf.sf_uc.uc_mcontext.mc_onstack = oonstack;
171 	KKASSERT(__offsetof(struct trapframe, tf_rdi) == 0);
172 	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(struct trapframe));
173 
174 	/* Make the size of the saved context visible to userland */
175 	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext);
176 
177 	/* Allocate and validate space for the signal handler context. */
178         if ((lp->lwp_flags & LWP_ALTSTACK) != 0 && !oonstack &&
179 	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
180 		sp = (char *)(lp->lwp_sigstk.ss_sp + lp->lwp_sigstk.ss_size -
181 			      sizeof(struct sigframe));
182 		lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
183 	} else {
184 		/* We take red zone into account */
185 		sp = (char *)regs->tf_rsp - sizeof(struct sigframe) - 128;
186 	}
187 
188 	/* Align to 16 bytes */
189 	sfp = (struct sigframe *)((intptr_t)sp & ~0xFUL);
190 
191 	/* Translate the signal is appropriate */
192 	if (p->p_sysent->sv_sigtbl) {
193 		if (sig <= p->p_sysent->sv_sigsize)
194 			sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
195 	}
196 
197 	/*
198 	 * Build the argument list for the signal handler.
199 	 *
200 	 * Arguments are in registers (%rdi, %rsi, %rdx, %rcx)
201 	 */
202 	regs->tf_rdi = sig;				/* argument 1 */
203 	regs->tf_rdx = (register_t)&sfp->sf_uc;		/* argument 3 */
204 
205 	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
206 		/*
207 		 * Signal handler installed with SA_SIGINFO.
208 		 *
209 		 * action(signo, siginfo, ucontext)
210 		 */
211 		regs->tf_rsi = (register_t)&sfp->sf_si;	/* argument 2 */
212 		regs->tf_rcx = (register_t)regs->tf_err; /* argument 4 */
213 		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
214 
215 		/* fill siginfo structure */
216 		sf.sf_si.si_signo = sig;
217 		sf.sf_si.si_code = code;
218 		sf.sf_si.si_addr = (void *)regs->tf_addr;
219 	} else {
220 		/*
221 		 * Old FreeBSD-style arguments.
222 		 *
223 		 * handler (signo, code, [uc], addr)
224 		 */
225 		regs->tf_rsi = (register_t)code;	/* argument 2 */
226 		regs->tf_rcx = (register_t)regs->tf_addr; /* argument 4 */
227 		sf.sf_ahu.sf_handler = catcher;
228 	}
229 
230 #if 0
231 	/*
232 	 * If we're a vm86 process, we want to save the segment registers.
233 	 * We also change eflags to be our emulated eflags, not the actual
234 	 * eflags.
235 	 */
236 	if (regs->tf_eflags & PSL_VM) {
237 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
238 		struct vm86_kernel *vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
239 
240 		sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
241 		sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
242 		sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
243 		sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
244 
245 		if (vm86->vm86_has_vme == 0)
246 			sf.sf_uc.uc_mcontext.mc_eflags =
247 			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
248 			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
249 
250 		/*
251 		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
252 		 * syscalls made by the signal handler.  This just avoids
253 		 * wasting time for our lazy fixup of such faults.  PSL_NT
254 		 * does nothing in vm86 mode, but vm86 programs can set it
255 		 * almost legitimately in probes for old cpu types.
256 		 */
257 		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
258 	}
259 #endif
260 
261 	/*
262 	 * Save the FPU state and reinit the FP unit
263 	 */
264 	npxpush(&sf.sf_uc.uc_mcontext);
265 
266 	/*
267 	 * Copy the sigframe out to the user's stack.
268 	 */
269 	if (copyout(&sf, sfp, sizeof(struct sigframe)) != 0) {
270 		/*
271 		 * Something is wrong with the stack pointer.
272 		 * ...Kill the process.
273 		 */
274 		sigexit(lp, SIGILL);
275 	}
276 
277 	regs->tf_rsp = (register_t)sfp;
278 	regs->tf_rip = trunc_page64(PS_STRINGS - *(p->p_sysent->sv_szsigcode));
279 
280 	/*
281 	 * i386 abi specifies that the direction flag must be cleared
282 	 * on function entry
283 	 */
284 	regs->tf_rflags &= ~(PSL_T|PSL_D);
285 
286 	/*
287 	 * 64 bit mode has a code and stack selector but
288 	 * no data or extra selector.  %fs and %gs are not
289 	 * stored in-context.
290 	 */
291 	regs->tf_cs = _ucodesel;
292 	regs->tf_ss = _udatasel;
293 }
294 
295 /*
296  * Sanitize the trapframe for a virtual kernel passing control to a custom
297  * VM context.  Remove any items that would otherwise create a privilage
298  * issue.
299  *
300  * XXX at the moment we allow userland to set the resume flag.  Is this a
301  * bad idea?
302  */
303 int
304 cpu_sanitize_frame(struct trapframe *frame)
305 {
306 	frame->tf_cs = _ucodesel;
307 	frame->tf_ss = _udatasel;
308 	/* XXX VM (8086) mode not supported? */
309 	frame->tf_rflags &= (PSL_RF | PSL_USERCHANGE | PSL_VM_UNSUPP);
310 	frame->tf_rflags |= PSL_RESERVED_DEFAULT | PSL_I;
311 
312 	return(0);
313 }
314 
315 /*
316  * Sanitize the tls so loading the descriptor does not blow up
317  * on us.  For x86_64 we don't have to do anything.
318  */
319 int
320 cpu_sanitize_tls(struct savetls *tls)
321 {
322 	return(0);
323 }
324 
325 /*
326  * sigreturn(ucontext_t *sigcntxp)
327  *
328  * System call to cleanup state after a signal
329  * has been taken.  Reset signal mask and
330  * stack state from context left by sendsig (above).
331  * Return to previous pc and psl as specified by
332  * context left by sendsig. Check carefully to
333  * make sure that the user has not modified the
334  * state to gain improper privileges.
335  */
336 #define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
337 #define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
338 
339 int
340 sys_sigreturn(struct sigreturn_args *uap)
341 {
342 	struct lwp *lp = curthread->td_lwp;
343 	struct trapframe *regs;
344 	ucontext_t uc;
345 	ucontext_t *ucp;
346 	register_t rflags;
347 	int cs;
348 	int error;
349 
350 	/*
351 	 * We have to copy the information into kernel space so userland
352 	 * can't modify it while we are sniffing it.
353 	 */
354 	regs = lp->lwp_md.md_regs;
355 	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
356 	if (error)
357 		return (error);
358 	ucp = &uc;
359 	rflags = ucp->uc_mcontext.mc_rflags;
360 
361 	/* VM (8086) mode not supported */
362 	rflags &= ~PSL_VM_UNSUPP;
363 
364 #if 0
365 	if (eflags & PSL_VM) {
366 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
367 		struct vm86_kernel *vm86;
368 
369 		/*
370 		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
371 		 * set up the vm86 area, and we can't enter vm86 mode.
372 		 */
373 		if (lp->lwp_thread->td_pcb->pcb_ext == 0)
374 			return (EINVAL);
375 		vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
376 		if (vm86->vm86_inited == 0)
377 			return (EINVAL);
378 
379 		/* go back to user mode if both flags are set */
380 		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
381 			trapsignal(lp->lwp_proc, SIGBUS, 0);
382 
383 		if (vm86->vm86_has_vme) {
384 			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
385 			    (eflags & VME_USERCHANGE) | PSL_VM;
386 		} else {
387 			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
388 			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |					    (eflags & VM_USERCHANGE) | PSL_VM;
389 		}
390 		bcopy(&ucp.uc_mcontext.mc_gs, tf, sizeof(struct trapframe));
391 		tf->tf_eflags = eflags;
392 		tf->tf_vm86_ds = tf->tf_ds;
393 		tf->tf_vm86_es = tf->tf_es;
394 		tf->tf_vm86_fs = tf->tf_fs;
395 		tf->tf_vm86_gs = tf->tf_gs;
396 		tf->tf_ds = _udatasel;
397 		tf->tf_es = _udatasel;
398 #if 0
399 		tf->tf_fs = _udatasel;
400 		tf->tf_gs = _udatasel;
401 #endif
402 	} else
403 #endif
404 	{
405 		/*
406 		 * Don't allow users to change privileged or reserved flags.
407 		 */
408 		/*
409 		 * XXX do allow users to change the privileged flag PSL_RF.
410 		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
411 		 * should sometimes set it there too.  tf_eflags is kept in
412 		 * the signal context during signal handling and there is no
413 		 * other place to remember it, so the PSL_RF bit may be
414 		 * corrupted by the signal handler without us knowing.
415 		 * Corruption of the PSL_RF bit at worst causes one more or
416 		 * one less debugger trap, so allowing it is fairly harmless.
417 		 */
418 		if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
419 			kprintf("sigreturn: rflags = 0x%lx\n", (long)rflags);
420 			return(EINVAL);
421 		}
422 
423 		/*
424 		 * Don't allow users to load a valid privileged %cs.  Let the
425 		 * hardware check for invalid selectors, excess privilege in
426 		 * other selectors, invalid %eip's and invalid %esp's.
427 		 */
428 		cs = ucp->uc_mcontext.mc_cs;
429 		if (!CS_SECURE(cs)) {
430 			kprintf("sigreturn: cs = 0x%x\n", cs);
431 			trapsignal(lp, SIGBUS, T_PROTFLT);
432 			return(EINVAL);
433 		}
434 		bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(struct trapframe));
435 	}
436 
437 	/*
438 	 * Restore the FPU state from the frame
439 	 */
440 	npxpop(&ucp->uc_mcontext);
441 
442 	if (ucp->uc_mcontext.mc_onstack & 1)
443 		lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
444 	else
445 		lp->lwp_sigstk.ss_flags &= ~SS_ONSTACK;
446 
447 	lp->lwp_sigmask = ucp->uc_sigmask;
448 	SIG_CANTMASK(lp->lwp_sigmask);
449 	return(EJUSTRETURN);
450 }
451 
452 /*
453  * cpu_idle() represents the idle LWKT.  You cannot return from this function
454  * (unless you want to blow things up!).  Instead we look for runnable threads
455  * and loop or halt as appropriate.  Giant is not held on entry to the thread.
456  *
457  * The main loop is entered with a critical section held, we must release
458  * the critical section before doing anything else.  lwkt_switch() will
459  * check for pending interrupts due to entering and exiting its own
460  * critical section.
461  *
462  * Note on cpu_idle_hlt:  On an SMP system we rely on a scheduler IPI
463  * to wake a HLTed cpu up.
464  */
465 static int	cpu_idle_hlt = 1;
466 static int	cpu_idle_hltcnt;
467 static int	cpu_idle_spincnt;
468 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
469     &cpu_idle_hlt, 0, "Idle loop HLT enable");
470 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hltcnt, CTLFLAG_RW,
471     &cpu_idle_hltcnt, 0, "Idle loop entry halts");
472 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_spincnt, CTLFLAG_RW,
473     &cpu_idle_spincnt, 0, "Idle loop entry spins");
474 
475 void
476 cpu_idle(void)
477 {
478 	struct thread *td = curthread;
479 	struct mdglobaldata *gd = mdcpu;
480 	int reqflags;
481 
482 	crit_exit();
483 	KKASSERT(td->td_critcount == 0);
484 	cpu_enable_intr();
485 
486 	for (;;) {
487 		/*
488 		 * See if there are any LWKTs ready to go.
489 		 */
490 		lwkt_switch();
491 
492 		/*
493 		 * The idle loop halts only if no threads are scheduleable
494 		 * and no signals have occured.
495 		 */
496 		if (cpu_idle_hlt &&
497 		    (td->td_gd->gd_reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
498 			splz();
499 			if ((td->td_gd->gd_reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
500 #ifdef DEBUGIDLE
501 				struct timeval tv1, tv2;
502 				gettimeofday(&tv1, NULL);
503 #endif
504 				reqflags = gd->mi.gd_reqflags &
505 					   ~RQF_IDLECHECK_WK_MASK;
506 				KKASSERT(gd->mi.gd_processing_ipiq == 0);
507 				umtx_sleep(&gd->mi.gd_reqflags, reqflags,
508 					   1000000);
509 #ifdef DEBUGIDLE
510 				gettimeofday(&tv2, NULL);
511 				if (tv2.tv_usec - tv1.tv_usec +
512 				    (tv2.tv_sec - tv1.tv_sec) * 1000000
513 				    > 500000) {
514 					kprintf("cpu %d idlelock %08x %08x\n",
515 						gd->mi.gd_cpuid,
516 						gd->mi.gd_reqflags,
517 						gd->gd_fpending);
518 				}
519 #endif
520 			}
521 			++cpu_idle_hltcnt;
522 		} else {
523 			splz();
524 			__asm __volatile("pause");
525 			++cpu_idle_spincnt;
526 		}
527 	}
528 }
529 
530 /*
531  * Called by the spinlock code with or without a critical section held
532  * when a spinlock is found to be seriously constested.
533  *
534  * We need to enter a critical section to prevent signals from recursing
535  * into pthreads.
536  */
537 void
538 cpu_spinlock_contested(void)
539 {
540 	cpu_pause();
541 }
542 
543 /*
544  * Clear registers on exec
545  */
546 void
547 exec_setregs(u_long entry, u_long stack, u_long ps_strings)
548 {
549 	struct thread *td = curthread;
550 	struct lwp *lp = td->td_lwp;
551 	struct pcb *pcb = td->td_pcb;
552 	struct trapframe *regs = lp->lwp_md.md_regs;
553 
554 	/* was i386_user_cleanup() in NetBSD */
555 	user_ldt_free(pcb);
556 
557 	bzero((char *)regs, sizeof(struct trapframe));
558 	regs->tf_rip = entry;
559 	regs->tf_rsp = ((stack - 8) & ~0xFul) + 8; /* align the stack */
560 	regs->tf_rdi = stack;		/* argv */
561 	regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
562 	regs->tf_ss = _udatasel;
563 	regs->tf_cs = _ucodesel;
564 	regs->tf_rbx = ps_strings;
565 
566 	/*
567 	 * Reset the hardware debug registers if they were in use.
568 	 * They won't have any meaning for the newly exec'd process.
569 	 */
570 	if (pcb->pcb_flags & PCB_DBREGS) {
571 		pcb->pcb_dr0 = 0;
572 		pcb->pcb_dr1 = 0;
573 		pcb->pcb_dr2 = 0;
574 		pcb->pcb_dr3 = 0;
575 		pcb->pcb_dr6 = 0;
576 		pcb->pcb_dr7 = 0; /* JG set bit 10? */
577 		if (pcb == td->td_pcb) {
578 			/*
579 			 * Clear the debug registers on the running
580 			 * CPU, otherwise they will end up affecting
581 			 * the next process we switch to.
582 			 */
583 			reset_dbregs();
584 		}
585 		pcb->pcb_flags &= ~PCB_DBREGS;
586 	}
587 
588 	/*
589 	 * Initialize the math emulator (if any) for the current process.
590 	 * Actually, just clear the bit that says that the emulator has
591 	 * been initialized.  Initialization is delayed until the process
592 	 * traps to the emulator (if it is done at all) mainly because
593 	 * emulators don't provide an entry point for initialization.
594 	 */
595 	pcb->pcb_flags &= ~FP_SOFTFP;
596 
597 	/*
598 	 * NOTE: do not set CR0_TS here.  npxinit() must do it after clearing
599 	 *	 gd_npxthread.  Otherwise a preemptive interrupt thread
600 	 *	 may panic in npxdna().
601 	 */
602 	crit_enter();
603 #if 0
604 	load_cr0(rcr0() | CR0_MP);
605 #endif
606 
607 	/*
608 	 * NOTE: The MSR values must be correct so we can return to
609 	 * 	 userland.  gd_user_fs/gs must be correct so the switch
610 	 *	 code knows what the current MSR values are.
611 	 */
612 	pcb->pcb_fsbase = 0;	/* Values loaded from PCB on switch */
613 	pcb->pcb_gsbase = 0;
614 	/* Initialize the npx (if any) for the current process. */
615 	npxinit();
616 	crit_exit();
617 
618 	/*
619 	 * note: linux emulator needs edx to be 0x0 on entry, which is
620 	 * handled in execve simply by setting the 64 bit syscall
621 	 * return value to 0.
622 	 */
623 }
624 
625 void
626 cpu_setregs(void)
627 {
628 #if 0
629 	unsigned int cr0;
630 
631 	cr0 = rcr0();
632 	cr0 |= CR0_NE;			/* Done by npxinit() */
633 	cr0 |= CR0_MP | CR0_TS;		/* Done at every execve() too. */
634 	cr0 |= CR0_WP | CR0_AM;
635 	load_cr0(cr0);
636 	load_gs(_udatasel);
637 #endif
638 }
639 
640 static int
641 sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
642 {
643 	int error;
644 	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
645 		req);
646 	if (!error && req->newptr)
647 		resettodr();
648 	return (error);
649 }
650 
651 SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
652 	&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
653 
654 extern u_long bootdev;		/* not a cdev_t - encoding is different */
655 SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
656 	CTLFLAG_RD, &bootdev, 0, "Boot device (not in cdev_t format)");
657 
658 /*
659  * Initialize 386 and configure to run kernel
660  */
661 
662 /*
663  * Initialize segments & interrupt table
664  */
665 
666 extern  struct user *proc0paddr;
667 
668 #if 0
669 
670 extern inthand_t
671 	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
672 	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
673 	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
674 	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
675 	IDTVEC(xmm), IDTVEC(dblfault),
676 	IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
677 #endif
678 
679 int
680 ptrace_set_pc(struct lwp *lp, unsigned long addr)
681 {
682 	lp->lwp_md.md_regs->tf_rip = addr;
683 	return (0);
684 }
685 
686 int
687 ptrace_single_step(struct lwp *lp)
688 {
689 	lp->lwp_md.md_regs->tf_rflags |= PSL_T;
690 	return (0);
691 }
692 
693 int
694 fill_regs(struct lwp *lp, struct reg *regs)
695 {
696 	struct trapframe *tp;
697 
698 	if ((tp = lp->lwp_md.md_regs) == NULL)
699 		return EINVAL;
700 	bcopy(&tp->tf_rdi, &regs->r_rdi, sizeof(*regs));
701 	return (0);
702 }
703 
704 int
705 set_regs(struct lwp *lp, struct reg *regs)
706 {
707 	struct trapframe *tp;
708 
709 	tp = lp->lwp_md.md_regs;
710 	if (!EFL_SECURE(regs->r_rflags, tp->tf_rflags) ||
711 	    !CS_SECURE(regs->r_cs))
712 		return (EINVAL);
713 	bcopy(&regs->r_rdi, &tp->tf_rdi, sizeof(*regs));
714 	return (0);
715 }
716 
717 static void
718 fill_fpregs_xmm(struct savexmm *sv_xmm, struct save87 *sv_87)
719 {
720 	struct env87 *penv_87 = &sv_87->sv_env;
721 	struct envxmm *penv_xmm = &sv_xmm->sv_env;
722 	int i;
723 
724 	/* FPU control/status */
725 	penv_87->en_cw = penv_xmm->en_cw;
726 	penv_87->en_sw = penv_xmm->en_sw;
727 	penv_87->en_tw = penv_xmm->en_tw;
728 	penv_87->en_fip = penv_xmm->en_fip;
729 	penv_87->en_fcs = penv_xmm->en_fcs;
730 	penv_87->en_opcode = penv_xmm->en_opcode;
731 	penv_87->en_foo = penv_xmm->en_foo;
732 	penv_87->en_fos = penv_xmm->en_fos;
733 
734 	/* FPU registers */
735 	for (i = 0; i < 8; ++i)
736 		sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
737 }
738 
739 static void
740 set_fpregs_xmm(struct save87 *sv_87, struct savexmm *sv_xmm)
741 {
742 	struct env87 *penv_87 = &sv_87->sv_env;
743 	struct envxmm *penv_xmm = &sv_xmm->sv_env;
744 	int i;
745 
746 	/* FPU control/status */
747 	penv_xmm->en_cw = penv_87->en_cw;
748 	penv_xmm->en_sw = penv_87->en_sw;
749 	penv_xmm->en_tw = penv_87->en_tw;
750 	penv_xmm->en_fip = penv_87->en_fip;
751 	penv_xmm->en_fcs = penv_87->en_fcs;
752 	penv_xmm->en_opcode = penv_87->en_opcode;
753 	penv_xmm->en_foo = penv_87->en_foo;
754 	penv_xmm->en_fos = penv_87->en_fos;
755 
756 	/* FPU registers */
757 	for (i = 0; i < 8; ++i)
758 		sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
759 }
760 
761 int
762 fill_fpregs(struct lwp *lp, struct fpreg *fpregs)
763 {
764 	if (lp->lwp_thread == NULL || lp->lwp_thread->td_pcb == NULL)
765 		return EINVAL;
766 	if (cpu_fxsr) {
767 		fill_fpregs_xmm(&lp->lwp_thread->td_pcb->pcb_save.sv_xmm,
768 				(struct save87 *)fpregs);
769 		return (0);
770 	}
771 	bcopy(&lp->lwp_thread->td_pcb->pcb_save.sv_87, fpregs, sizeof *fpregs);
772 	return (0);
773 }
774 
775 int
776 set_fpregs(struct lwp *lp, struct fpreg *fpregs)
777 {
778 	if (cpu_fxsr) {
779 		set_fpregs_xmm((struct save87 *)fpregs,
780 			       &lp->lwp_thread->td_pcb->pcb_save.sv_xmm);
781 		return (0);
782 	}
783 	bcopy(fpregs, &lp->lwp_thread->td_pcb->pcb_save.sv_87, sizeof *fpregs);
784 	return (0);
785 }
786 
787 int
788 fill_dbregs(struct lwp *lp, struct dbreg *dbregs)
789 {
790 	return (ENOSYS);
791 }
792 
793 int
794 set_dbregs(struct lwp *lp, struct dbreg *dbregs)
795 {
796 	return (ENOSYS);
797 }
798 
799 #if 0
800 /*
801  * Return > 0 if a hardware breakpoint has been hit, and the
802  * breakpoint was in user space.  Return 0, otherwise.
803  */
804 int
805 user_dbreg_trap(void)
806 {
807         u_int32_t dr7, dr6; /* debug registers dr6 and dr7 */
808         u_int32_t bp;       /* breakpoint bits extracted from dr6 */
809         int nbp;            /* number of breakpoints that triggered */
810         caddr_t addr[4];    /* breakpoint addresses */
811         int i;
812 
813         dr7 = rdr7();
814         if ((dr7 & 0x000000ff) == 0) {
815                 /*
816                  * all GE and LE bits in the dr7 register are zero,
817                  * thus the trap couldn't have been caused by the
818                  * hardware debug registers
819                  */
820                 return 0;
821         }
822 
823         nbp = 0;
824         dr6 = rdr6();
825         bp = dr6 & 0x0000000f;
826 
827         if (!bp) {
828                 /*
829                  * None of the breakpoint bits are set meaning this
830                  * trap was not caused by any of the debug registers
831                  */
832                 return 0;
833         }
834 
835         /*
836          * at least one of the breakpoints were hit, check to see
837          * which ones and if any of them are user space addresses
838          */
839 
840         if (bp & 0x01) {
841                 addr[nbp++] = (caddr_t)rdr0();
842         }
843         if (bp & 0x02) {
844                 addr[nbp++] = (caddr_t)rdr1();
845         }
846         if (bp & 0x04) {
847                 addr[nbp++] = (caddr_t)rdr2();
848         }
849         if (bp & 0x08) {
850                 addr[nbp++] = (caddr_t)rdr3();
851         }
852 
853         for (i=0; i<nbp; i++) {
854                 if (addr[i] <
855                     (caddr_t)VM_MAX_USER_ADDRESS) {
856                         /*
857                          * addr[i] is in user space
858                          */
859                         return nbp;
860                 }
861         }
862 
863         /*
864          * None of the breakpoints are in user space.
865          */
866         return 0;
867 }
868 
869 #endif
870 
871 void
872 identcpu(void)
873 {
874 	int regs[4];
875 
876 	do_cpuid(1, regs);
877 	cpu_feature = regs[3];
878 }
879 
880 
881 #ifndef DDB
882 void
883 Debugger(const char *msg)
884 {
885 	kprintf("Debugger(\"%s\") called.\n", msg);
886 }
887 #endif /* no DDB */
888