1 /*-
2  * Copyright (c) 1992 Terrence R. Lambert.
3  * Copyright (C) 1994, David Greenman
4  * Copyright (c) 1982, 1987, 1990, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * William Jolitz.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
39  * $FreeBSD: src/sys/i386/i386/machdep.c,v 1.385.2.30 2003/05/31 08:48:05 alc Exp $
40  */
41 
42 #include "opt_ddb.h"
43 #include "opt_inet.h"
44 #include "opt_msgbuf.h"
45 #include "opt_swap.h"
46 
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/sysmsg.h>
50 #include <sys/signalvar.h>
51 #include <sys/kernel.h>
52 #include <sys/linker.h>
53 #include <sys/malloc.h>
54 #include <sys/proc.h>
55 #include <sys/buf.h>
56 #include <sys/reboot.h>
57 #include <sys/mbuf.h>
58 #include <sys/msgbuf.h>
59 #include <sys/sysent.h>
60 #include <sys/sysctl.h>
61 #include <sys/vmmeter.h>
62 #include <sys/bus.h>
63 #include <sys/usched.h>
64 #include <sys/reg.h>
65 
66 #include <vm/vm.h>
67 #include <vm/vm_param.h>
68 #include <sys/lock.h>
69 #include <vm/vm_kern.h>
70 #include <vm/vm_object.h>
71 #include <vm/vm_page.h>
72 #include <vm/vm_map.h>
73 #include <vm/vm_pager.h>
74 #include <vm/vm_extern.h>
75 
76 #include <sys/thread2.h>
77 
78 #include <sys/exec.h>
79 #include <sys/cons.h>
80 
81 #include <ddb/ddb.h>
82 
83 #include <machine/cpu.h>
84 #include <machine/clock.h>
85 #include <machine/specialreg.h>
86 #include <machine/md_var.h>
87 #include <machine/pcb.h>
88 #include <machine/pcb_ext.h>
89 #include <machine/globaldata.h>		/* CPU_prvspace */
90 #include <machine/smp.h>
91 #include <machine/cputypes.h>
92 
93 #include <bus/isa/rtc.h>
94 #include <sys/random.h>
95 #include <sys/ptrace.h>
96 #include <machine/sigframe.h>
97 #include <unistd.h>		/* umtx_* functions */
98 
99 extern void dblfault_handler (void);
100 
101 static void set_fpregs_xmm (struct save87 *, struct savexmm *);
102 static void fill_fpregs_xmm (struct savexmm *, struct save87 *);
103 
104 int64_t tsc_offsets[MAXCPU];
105 
106 #if defined(SWTCH_OPTIM_STATS)
107 extern int swtch_optim_stats;
108 SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
109 	CTLFLAG_RD, &swtch_optim_stats, 0, "");
110 SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
111 	CTLFLAG_RD, &tlb_flush_count, 0, "");
112 #endif
113 
114 static int
115 sysctl_hw_physmem(SYSCTL_HANDLER_ARGS)
116 {
117 	u_long pmem = ctob(physmem);
118 	int error;
119 
120 	error = sysctl_handle_long(oidp, &pmem, 0, req);
121 
122 	return (error);
123 }
124 
125 SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_ULONG|CTLFLAG_RD,
126 	0, 0, sysctl_hw_physmem, "LU", "Total system memory in bytes (number of pages * page size)");
127 
128 static int
129 sysctl_hw_usermem(SYSCTL_HANDLER_ARGS)
130 {
131 	u_long usermem = ctob(Maxmem - vmstats.v_wire_count);
132 	int error;
133 
134 	error = sysctl_handle_long(oidp, &usermem, 0, req);
135 
136 	return (error);
137 }
138 
139 SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_ULONG|CTLFLAG_RD,
140 	0, 0, sysctl_hw_usermem, "LU", "");
141 
142 SYSCTL_ULONG(_hw, OID_AUTO, availpages, CTLFLAG_RD, &Maxmem, 0, "");
143 
144 /*
145  * Send an interrupt to process.
146  *
147  * Stack is set up to allow sigcode stored
148  * at top to call routine, followed by kcall
149  * to sigreturn routine below.  After sigreturn
150  * resets the signal mask, the stack, and the
151  * frame pointer, it returns to the user
152  * specified pc, psl.
153  */
154 void
155 sendsig(sig_t catcher, int sig, sigset_t *mask, u_long code)
156 {
157 	struct lwp *lp = curthread->td_lwp;
158 	struct proc *p = lp->lwp_proc;
159 	struct trapframe *regs;
160 	struct sigacts *psp = p->p_sigacts;
161 	struct sigframe sf, *sfp;
162 	int oonstack;
163 	char *sp;
164 
165 	regs = lp->lwp_md.md_regs;
166 	oonstack = (lp->lwp_sigstk.ss_flags & SS_ONSTACK) ? 1 : 0;
167 
168 	/* Save user context */
169 	bzero(&sf, sizeof(struct sigframe));
170 	sf.sf_uc.uc_sigmask = *mask;
171 	sf.sf_uc.uc_stack = lp->lwp_sigstk;
172 	sf.sf_uc.uc_mcontext.mc_onstack = oonstack;
173 	KKASSERT(__offsetof(struct trapframe, tf_rdi) == 0);
174 	/* gcc8 craps out on -Warray-bounds w/ optimized bcopy */
175 	_bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(struct trapframe));
176 
177 	/* Make the size of the saved context visible to userland */
178 	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext);
179 
180 	/* Allocate and validate space for the signal handler context. */
181         if ((lp->lwp_flags & LWP_ALTSTACK) != 0 && !oonstack &&
182 	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
183 		sp = (char *)lp->lwp_sigstk.ss_sp + lp->lwp_sigstk.ss_size -
184 		    sizeof(struct sigframe);
185 		lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
186 	} else {
187 		/* We take red zone into account */
188 		sp = (char *)regs->tf_rsp - sizeof(struct sigframe) - 128;
189 	}
190 
191 	/* Align to 16 bytes */
192 	sfp = (struct sigframe *)((intptr_t)sp & ~0xFUL);
193 
194 	/* Translate the signal is appropriate */
195 	if (p->p_sysent->sv_sigtbl) {
196 		if (sig <= p->p_sysent->sv_sigsize)
197 			sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
198 	}
199 
200 	/*
201 	 * Build the argument list for the signal handler.
202 	 *
203 	 * Arguments are in registers (%rdi, %rsi, %rdx, %rcx)
204 	 */
205 	regs->tf_rdi = sig;				/* argument 1 */
206 	regs->tf_rdx = (register_t)&sfp->sf_uc;		/* argument 3 */
207 
208 	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
209 		/*
210 		 * Signal handler installed with SA_SIGINFO.
211 		 *
212 		 * action(signo, siginfo, ucontext)
213 		 */
214 		regs->tf_rsi = (register_t)&sfp->sf_si;	/* argument 2 */
215 		regs->tf_rcx = (register_t)regs->tf_err; /* argument 4 */
216 		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
217 
218 		/* fill siginfo structure */
219 		sf.sf_si.si_signo = sig;
220 		sf.sf_si.si_pid = psp->ps_frominfo[sig].pid;
221 		sf.sf_si.si_uid = psp->ps_frominfo[sig].uid;
222 		sf.sf_si.si_code = code;
223 		sf.sf_si.si_addr = (void *)regs->tf_addr;
224 	} else {
225 		/*
226 		 * Old FreeBSD-style arguments.
227 		 *
228 		 * handler (signo, code, [uc], addr)
229 		 */
230 		regs->tf_rsi = (register_t)code;	/* argument 2 */
231 		regs->tf_rcx = (register_t)regs->tf_addr; /* argument 4 */
232 		sf.sf_ahu.sf_handler = catcher;
233 	}
234 
235 #if 0
236 	/*
237 	 * If we're a vm86 process, we want to save the segment registers.
238 	 * We also change eflags to be our emulated eflags, not the actual
239 	 * eflags.
240 	 */
241 	if (regs->tf_eflags & PSL_VM) {
242 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
243 		struct vm86_kernel *vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
244 
245 		sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
246 		sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
247 		sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
248 		sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
249 
250 		if (vm86->vm86_has_vme == 0)
251 			sf.sf_uc.uc_mcontext.mc_eflags =
252 			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
253 			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
254 
255 		/*
256 		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
257 		 * syscalls made by the signal handler.  This just avoids
258 		 * wasting time for our lazy fixup of such faults.  PSL_NT
259 		 * does nothing in vm86 mode, but vm86 programs can set it
260 		 * almost legitimately in probes for old cpu types.
261 		 */
262 		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
263 	}
264 #endif
265 
266 	/*
267 	 * Save the FPU state and reinit the FP unit
268 	 */
269 	npxpush(&sf.sf_uc.uc_mcontext);
270 
271 	/*
272 	 * Copy the sigframe out to the user's stack.
273 	 */
274 	if (copyout(&sf, sfp, sizeof(struct sigframe)) != 0) {
275 		/*
276 		 * Something is wrong with the stack pointer.
277 		 * ...Kill the process.
278 		 */
279 		sigexit(lp, SIGILL);
280 	}
281 
282 	regs->tf_rsp = (register_t)sfp;
283 	regs->tf_rip = trunc_page64(PS_STRINGS - *(p->p_sysent->sv_szsigcode));
284 	regs->tf_rip -= SZSIGCODE_EXTRA_BYTES;
285 
286 	/*
287 	 * x86 abi specifies that the direction flag must be cleared
288 	 * on function entry
289 	 */
290 	regs->tf_rflags &= ~(PSL_T|PSL_D);
291 
292 	/*
293 	 * 64 bit mode has a code and stack selector but
294 	 * no data or extra selector.  %fs and %gs are not
295 	 * stored in-context.
296 	 */
297 	regs->tf_cs = _ucodesel;
298 	regs->tf_ss = _udatasel;
299 }
300 
301 /*
302  * Sanitize the trapframe for a virtual kernel passing control to a custom
303  * VM context.  Remove any items that would otherwise create a privilage
304  * issue.
305  *
306  * XXX at the moment we allow userland to set the resume flag.  Is this a
307  * bad idea?
308  */
309 int
310 cpu_sanitize_frame(struct trapframe *frame)
311 {
312 	frame->tf_cs = _ucodesel;
313 	frame->tf_ss = _udatasel;
314 	/* XXX VM (8086) mode not supported? */
315 	frame->tf_rflags &= (PSL_RF | PSL_USERCHANGE | PSL_VM_UNSUPP);
316 	frame->tf_rflags |= PSL_RESERVED_DEFAULT | PSL_I;
317 
318 	return(0);
319 }
320 
321 /*
322  * Sanitize the tls so loading the descriptor does not blow up
323  * on us.  For x86_64 we don't have to do anything.
324  */
325 int
326 cpu_sanitize_tls(struct savetls *tls)
327 {
328 	return(0);
329 }
330 
331 /*
332  * sigreturn(ucontext_t *sigcntxp)
333  *
334  * System call to cleanup state after a signal
335  * has been taken.  Reset signal mask and
336  * stack state from context left by sendsig (above).
337  * Return to previous pc and psl as specified by
338  * context left by sendsig. Check carefully to
339  * make sure that the user has not modified the
340  * state to gain improper privileges.
341  */
342 #define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
343 #define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
344 
345 int
346 sys_sigreturn(struct sysmsg *sysmsg, const struct sigreturn_args *uap)
347 {
348 	struct lwp *lp = curthread->td_lwp;
349 	struct trapframe *regs;
350 	ucontext_t uc;
351 	ucontext_t *ucp;
352 	register_t rflags;
353 	int cs;
354 	int error;
355 
356 	/*
357 	 * We have to copy the information into kernel space so userland
358 	 * can't modify it while we are sniffing it.
359 	 */
360 	regs = lp->lwp_md.md_regs;
361 	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
362 	if (error)
363 		return (error);
364 	ucp = &uc;
365 	rflags = ucp->uc_mcontext.mc_rflags;
366 
367 	/* VM (8086) mode not supported */
368 	rflags &= ~PSL_VM_UNSUPP;
369 
370 #if 0
371 	if (eflags & PSL_VM) {
372 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
373 		struct vm86_kernel *vm86;
374 
375 		/*
376 		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
377 		 * set up the vm86 area, and we can't enter vm86 mode.
378 		 */
379 		if (lp->lwp_thread->td_pcb->pcb_ext == 0)
380 			return (EINVAL);
381 		vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
382 		if (vm86->vm86_inited == 0)
383 			return (EINVAL);
384 
385 		/* go back to user mode if both flags are set */
386 		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
387 			trapsignal(lp->lwp_proc, SIGBUS, 0);
388 
389 		if (vm86->vm86_has_vme) {
390 			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
391 			    (eflags & VME_USERCHANGE) | PSL_VM;
392 		} else {
393 			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
394 			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |					    (eflags & VM_USERCHANGE) | PSL_VM;
395 		}
396 		bcopy(&ucp.uc_mcontext.mc_gs, tf, sizeof(struct trapframe));
397 		tf->tf_eflags = eflags;
398 		tf->tf_vm86_ds = tf->tf_ds;
399 		tf->tf_vm86_es = tf->tf_es;
400 		tf->tf_vm86_fs = tf->tf_fs;
401 		tf->tf_vm86_gs = tf->tf_gs;
402 		tf->tf_ds = _udatasel;
403 		tf->tf_es = _udatasel;
404 #if 0
405 		tf->tf_fs = _udatasel;
406 		tf->tf_gs = _udatasel;
407 #endif
408 	} else
409 #endif
410 	{
411 		/*
412 		 * Don't allow users to change privileged or reserved flags.
413 		 */
414 		/*
415 		 * XXX do allow users to change the privileged flag PSL_RF.
416 		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
417 		 * should sometimes set it there too.  tf_eflags is kept in
418 		 * the signal context during signal handling and there is no
419 		 * other place to remember it, so the PSL_RF bit may be
420 		 * corrupted by the signal handler without us knowing.
421 		 * Corruption of the PSL_RF bit at worst causes one more or
422 		 * one less debugger trap, so allowing it is fairly harmless.
423 		 */
424 		if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
425 			kprintf("sigreturn: rflags = 0x%lx\n", (long)rflags);
426 			return(EINVAL);
427 		}
428 
429 		/*
430 		 * Don't allow users to load a valid privileged %cs.  Let the
431 		 * hardware check for invalid selectors, excess privilege in
432 		 * other selectors, invalid %eip's and invalid %esp's.
433 		 */
434 		cs = ucp->uc_mcontext.mc_cs;
435 		if (!CS_SECURE(cs)) {
436 			kprintf("sigreturn: cs = 0x%x\n", cs);
437 			trapsignal(lp, SIGBUS, T_PROTFLT);
438 			return(EINVAL);
439 		}
440 		bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(struct trapframe));
441 	}
442 
443 	/*
444 	 * Restore the FPU state from the frame
445 	 */
446 	npxpop(&ucp->uc_mcontext);
447 
448 	if (ucp->uc_mcontext.mc_onstack & 1)
449 		lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
450 	else
451 		lp->lwp_sigstk.ss_flags &= ~SS_ONSTACK;
452 
453 	lp->lwp_sigmask = ucp->uc_sigmask;
454 	SIG_CANTMASK(lp->lwp_sigmask);
455 	return(EJUSTRETURN);
456 }
457 
458 /*
459  * cpu_idle() represents the idle LWKT.  You cannot return from this function
460  * (unless you want to blow things up!).  Instead we look for runnable threads
461  * and loop or halt as appropriate.  Giant is not held on entry to the thread.
462  *
463  * The main loop is entered with a critical section held, we must release
464  * the critical section before doing anything else.  lwkt_switch() will
465  * check for pending interrupts due to entering and exiting its own
466  * critical section.
467  *
468  * Note on cpu_idle_hlt:  On an SMP system we rely on a scheduler IPI
469  * to wake a HLTed cpu up.
470  */
471 __read_mostly static int	cpu_idle_hlt = 1;
472 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
473     &cpu_idle_hlt, 0, "Idle loop HLT enable");
474 
475 void
476 cpu_idle(void)
477 {
478 	struct thread *td = curthread;
479 	struct mdglobaldata *gd = mdcpu;
480 	int reqflags;
481 
482 	crit_exit();
483 	KKASSERT(td->td_critcount == 0);
484 	cpu_enable_intr();
485 
486 	for (;;) {
487 		/*
488 		 * See if there are any LWKTs ready to go.
489 		 */
490 		lwkt_switch();
491 
492 		/*
493 		 * The idle loop halts only if no threads are scheduleable
494 		 * and no signals have occured.
495 		 */
496 		if (cpu_idle_hlt &&
497 		    (td->td_gd->gd_reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
498 			splz();
499 			if ((td->td_gd->gd_reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
500 #ifdef DEBUGIDLE
501 				struct timeval tv1, tv2;
502 				gettimeofday(&tv1, NULL);
503 #endif
504 				reqflags = gd->mi.gd_reqflags &
505 					   ~RQF_IDLECHECK_WK_MASK;
506 				KKASSERT(gd->mi.gd_processing_ipiq == 0);
507 				umtx_sleep(&gd->mi.gd_reqflags, reqflags,
508 					   1000000);
509 #ifdef DEBUGIDLE
510 				gettimeofday(&tv2, NULL);
511 				if (tv2.tv_usec - tv1.tv_usec +
512 				    (tv2.tv_sec - tv1.tv_sec) * 1000000
513 				    > 500000) {
514 					kprintf("cpu %d idlelock %08x %08x\n",
515 						gd->mi.gd_cpuid,
516 						gd->mi.gd_reqflags,
517 						gd->gd_fpending);
518 				}
519 #endif
520 			}
521 		} else {
522 			splz();
523 			__asm __volatile("pause");
524 		}
525 	}
526 }
527 
528 /*
529  * Called by the spinlock code with or without a critical section held
530  * when a spinlock is found to be seriously constested.
531  *
532  * We need to enter a critical section to prevent signals from recursing
533  * into pthreads.
534  */
535 void
536 cpu_spinlock_contested(void)
537 {
538 	cpu_pause();
539 }
540 
541 /*
542  * Clear registers on exec
543  */
544 void
545 exec_setregs(u_long entry, u_long stack, u_long ps_strings)
546 {
547 	struct thread *td = curthread;
548 	struct lwp *lp = td->td_lwp;
549 	struct pcb *pcb = td->td_pcb;
550 	struct trapframe *regs = lp->lwp_md.md_regs;
551 
552 	user_ldt_free(pcb);
553 
554 	bzero((char *)regs, sizeof(struct trapframe));
555 	regs->tf_rip = entry;
556 	regs->tf_rsp = ((stack - 8) & ~0xFul) + 8; /* align the stack */
557 	regs->tf_rdi = stack;		/* argv */
558 	regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
559 	regs->tf_ss = _udatasel;
560 	regs->tf_cs = _ucodesel;
561 	regs->tf_rbx = ps_strings;
562 
563 	/*
564 	 * Reset the hardware debug registers if they were in use.
565 	 * They won't have any meaning for the newly exec'd process.
566 	 */
567 	if (pcb->pcb_flags & PCB_DBREGS) {
568 		pcb->pcb_dr0 = 0;
569 		pcb->pcb_dr1 = 0;
570 		pcb->pcb_dr2 = 0;
571 		pcb->pcb_dr3 = 0;
572 		pcb->pcb_dr6 = 0;
573 		pcb->pcb_dr7 = 0; /* JG set bit 10? */
574 		if (pcb == td->td_pcb) {
575 			/*
576 			 * Clear the debug registers on the running
577 			 * CPU, otherwise they will end up affecting
578 			 * the next process we switch to.
579 			 */
580 			reset_dbregs();
581 		}
582 		pcb->pcb_flags &= ~PCB_DBREGS;
583 	}
584 
585 	/*
586 	 * Initialize the math emulator (if any) for the current process.
587 	 * Actually, just clear the bit that says that the emulator has
588 	 * been initialized.  Initialization is delayed until the process
589 	 * traps to the emulator (if it is done at all) mainly because
590 	 * emulators don't provide an entry point for initialization.
591 	 */
592 	pcb->pcb_flags &= ~FP_SOFTFP;
593 
594 	/*
595 	 * NOTE: do not set CR0_TS here.  npxinit() must do it after clearing
596 	 *	 gd_npxthread.  Otherwise a preemptive interrupt thread
597 	 *	 may panic in npxdna().
598 	 */
599 	crit_enter();
600 #if 0
601 	load_cr0(rcr0() | CR0_MP);
602 #endif
603 
604 	/*
605 	 * NOTE: The MSR values must be correct so we can return to
606 	 *	 userland.  gd_user_fs/gs must be correct so the switch
607 	 *	 code knows what the current MSR values are.
608 	 */
609 	pcb->pcb_fsbase = 0;	/* Values loaded from PCB on switch */
610 	pcb->pcb_gsbase = 0;
611 	/* Initialize the npx (if any) for the current process. */
612 	npxinit();
613 	crit_exit();
614 
615 	/*
616 	 * note: linux emulator needs edx to be 0x0 on entry, which is
617 	 * handled in execve simply by setting the 64 bit syscall
618 	 * return value to 0.
619 	 */
620 }
621 
622 void
623 cpu_setregs(void)
624 {
625 #if 0
626 	unsigned int cr0;
627 
628 	cr0 = rcr0();
629 	cr0 |= CR0_NE;			/* Done by npxinit() */
630 	cr0 |= CR0_MP | CR0_TS;		/* Done at every execve() too. */
631 	cr0 |= CR0_WP | CR0_AM;
632 	load_cr0(cr0);
633 	load_gs(_udatasel);
634 #endif
635 }
636 
637 static int
638 sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
639 {
640 	int error;
641 	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
642 		req);
643 	if (!error && req->newptr)
644 		resettodr();
645 	return (error);
646 }
647 
648 SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
649 	&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
650 
651 /*
652  * Initialize x86 and configure to run kernel
653  */
654 
655 /*
656  * Initialize segments & interrupt table
657  */
658 
659 extern  struct user *proc0paddr;
660 
661 #if 0
662 
663 extern inthand_t
664 	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
665 	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
666 	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
667 	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
668 	IDTVEC(xmm), IDTVEC(dblfault),
669 	IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
670 #endif
671 
672 int
673 ptrace_set_pc(struct lwp *lp, unsigned long addr)
674 {
675 	lp->lwp_md.md_regs->tf_rip = addr;
676 	return (0);
677 }
678 
679 int
680 ptrace_single_step(struct lwp *lp)
681 {
682 	lp->lwp_md.md_regs->tf_rflags |= PSL_T;
683 	return (0);
684 }
685 
686 int
687 fill_regs(struct lwp *lp, struct reg *regs)
688 {
689 	struct trapframe *tp;
690 
691 	if ((tp = lp->lwp_md.md_regs) == NULL)
692 		return EINVAL;
693 	bcopy(&tp->tf_rdi, &regs->r_rdi, sizeof(*regs));
694 	return (0);
695 }
696 
697 int
698 set_regs(struct lwp *lp, struct reg *regs)
699 {
700 	struct trapframe *tp;
701 
702 	tp = lp->lwp_md.md_regs;
703 	if (!EFL_SECURE(regs->r_rflags, tp->tf_rflags) ||
704 	    !CS_SECURE(regs->r_cs))
705 		return (EINVAL);
706 	bcopy(&regs->r_rdi, &tp->tf_rdi, sizeof(*regs));
707 	return (0);
708 }
709 
710 static void
711 fill_fpregs_xmm(struct savexmm *sv_xmm, struct save87 *sv_87)
712 {
713 	struct env87 *penv_87 = &sv_87->sv_env;
714 	struct envxmm *penv_xmm = &sv_xmm->sv_env;
715 	int i;
716 
717 	/* FPU control/status */
718 	penv_87->en_cw = penv_xmm->en_cw;
719 	penv_87->en_sw = penv_xmm->en_sw;
720 	penv_87->en_tw = penv_xmm->en_tw;
721 	penv_87->en_fip = penv_xmm->en_fip;
722 	penv_87->en_fcs = penv_xmm->en_fcs;
723 	penv_87->en_opcode = penv_xmm->en_opcode;
724 	penv_87->en_foo = penv_xmm->en_foo;
725 	penv_87->en_fos = penv_xmm->en_fos;
726 
727 	/* FPU registers */
728 	for (i = 0; i < 8; ++i)
729 		sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
730 }
731 
732 static void
733 set_fpregs_xmm(struct save87 *sv_87, struct savexmm *sv_xmm)
734 {
735 	struct env87 *penv_87 = &sv_87->sv_env;
736 	struct envxmm *penv_xmm = &sv_xmm->sv_env;
737 	int i;
738 
739 	/* FPU control/status */
740 	penv_xmm->en_cw = penv_87->en_cw;
741 	penv_xmm->en_sw = penv_87->en_sw;
742 	penv_xmm->en_tw = penv_87->en_tw;
743 	penv_xmm->en_fip = penv_87->en_fip;
744 	penv_xmm->en_fcs = penv_87->en_fcs;
745 	penv_xmm->en_opcode = penv_87->en_opcode;
746 	penv_xmm->en_foo = penv_87->en_foo;
747 	penv_xmm->en_fos = penv_87->en_fos;
748 
749 	/* FPU registers */
750 	for (i = 0; i < 8; ++i)
751 		sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
752 }
753 
754 int
755 fill_fpregs(struct lwp *lp, struct fpreg *fpregs)
756 {
757 	if (lp->lwp_thread == NULL || lp->lwp_thread->td_pcb == NULL)
758 		return EINVAL;
759 	if (cpu_fxsr) {
760 		fill_fpregs_xmm(&lp->lwp_thread->td_pcb->pcb_save.sv_xmm,
761 				(struct save87 *)fpregs);
762 		return (0);
763 	}
764 	bcopy(&lp->lwp_thread->td_pcb->pcb_save.sv_87, fpregs, sizeof *fpregs);
765 	return (0);
766 }
767 
768 int
769 set_fpregs(struct lwp *lp, struct fpreg *fpregs)
770 {
771 	if (cpu_fxsr) {
772 		set_fpregs_xmm((struct save87 *)fpregs,
773 			       &lp->lwp_thread->td_pcb->pcb_save.sv_xmm);
774 		return (0);
775 	}
776 	bcopy(fpregs, &lp->lwp_thread->td_pcb->pcb_save.sv_87, sizeof *fpregs);
777 	return (0);
778 }
779 
780 int
781 fill_dbregs(struct lwp *lp, struct dbreg *dbregs)
782 {
783 	return (ENOSYS);
784 }
785 
786 int
787 set_dbregs(struct lwp *lp, struct dbreg *dbregs)
788 {
789 	return (ENOSYS);
790 }
791 
792 #if 0
793 /*
794  * Return > 0 if a hardware breakpoint has been hit, and the
795  * breakpoint was in user space.  Return 0, otherwise.
796  */
797 int
798 user_dbreg_trap(void)
799 {
800         u_int32_t dr7, dr6; /* debug registers dr6 and dr7 */
801         u_int32_t bp;       /* breakpoint bits extracted from dr6 */
802         int nbp;            /* number of breakpoints that triggered */
803         caddr_t addr[4];    /* breakpoint addresses */
804         int i;
805 
806         dr7 = rdr7();
807         if ((dr7 & 0x000000ff) == 0) {
808                 /*
809                  * all GE and LE bits in the dr7 register are zero,
810                  * thus the trap couldn't have been caused by the
811                  * hardware debug registers
812                  */
813                 return 0;
814         }
815 
816         nbp = 0;
817         dr6 = rdr6();
818         bp = dr6 & 0x0000000f;
819 
820         if (!bp) {
821                 /*
822                  * None of the breakpoint bits are set meaning this
823                  * trap was not caused by any of the debug registers
824                  */
825                 return 0;
826         }
827 
828         /*
829          * at least one of the breakpoints were hit, check to see
830          * which ones and if any of them are user space addresses
831          */
832 
833         if (bp & 0x01) {
834                 addr[nbp++] = (caddr_t)rdr0();
835         }
836         if (bp & 0x02) {
837                 addr[nbp++] = (caddr_t)rdr1();
838         }
839         if (bp & 0x04) {
840                 addr[nbp++] = (caddr_t)rdr2();
841         }
842         if (bp & 0x08) {
843                 addr[nbp++] = (caddr_t)rdr3();
844         }
845 
846         for (i=0; i<nbp; i++) {
847                 if (addr[i] <
848                     (caddr_t)VM_MAX_USER_ADDRESS) {
849                         /*
850                          * addr[i] is in user space
851                          */
852                         return nbp;
853                 }
854         }
855 
856         /*
857          * None of the breakpoints are in user space.
858          */
859         return 0;
860 }
861 
862 #endif
863 
864 void
865 identcpu(void)
866 {
867 	int regs[4];
868 
869 	do_cpuid(1, regs);
870 	cpu_feature = regs[3];
871 }
872 
873 
874 #ifndef DDB
875 void
876 Debugger(const char *msg)
877 {
878 	kprintf("Debugger(\"%s\") called.\n", msg);
879 }
880 #endif /* no DDB */
881