1 /*-
2  * Copyright (c) 1992 Terrence R. Lambert.
3  * Copyright (C) 1994, David Greenman
4  * Copyright (c) 1982, 1987, 1990, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * William Jolitz.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
39  * $FreeBSD: src/sys/i386/i386/machdep.c,v 1.385.2.30 2003/05/31 08:48:05 alc Exp $
40  */
41 
42 #include "use_ether.h"
43 #include "use_isa.h"
44 #include "opt_atalk.h"
45 #include "opt_compat.h"
46 #include "opt_ddb.h"
47 #include "opt_directio.h"
48 #include "opt_inet.h"
49 #include "opt_ipx.h"
50 #include "opt_msgbuf.h"
51 #include "opt_swap.h"
52 
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/sysproto.h>
56 #include <sys/signalvar.h>
57 #include <sys/kernel.h>
58 #include <sys/linker.h>
59 #include <sys/malloc.h>
60 #include <sys/proc.h>
61 #include <sys/buf.h>
62 #include <sys/reboot.h>
63 #include <sys/mbuf.h>
64 #include <sys/msgbuf.h>
65 #include <sys/sysent.h>
66 #include <sys/sysctl.h>
67 #include <sys/vmmeter.h>
68 #include <sys/bus.h>
69 #include <sys/upcall.h>
70 #include <sys/usched.h>
71 #include <sys/reg.h>
72 
73 #include <vm/vm.h>
74 #include <vm/vm_param.h>
75 #include <sys/lock.h>
76 #include <vm/vm_kern.h>
77 #include <vm/vm_object.h>
78 #include <vm/vm_page.h>
79 #include <vm/vm_map.h>
80 #include <vm/vm_pager.h>
81 #include <vm/vm_extern.h>
82 
83 #include <sys/thread2.h>
84 #include <sys/mplock2.h>
85 
86 #include <sys/user.h>
87 #include <sys/exec.h>
88 #include <sys/cons.h>
89 
90 #include <ddb/ddb.h>
91 
92 #include <machine/cpu.h>
93 #include <machine/clock.h>
94 #include <machine/specialreg.h>
95 #include <machine/md_var.h>
96 #include <machine/pcb_ext.h>		/* pcb.h included via sys/user.h */
97 #include <machine/globaldata.h>		/* CPU_prvspace */
98 #include <machine/smp.h>
99 #ifdef PERFMON
100 #include <machine/perfmon.h>
101 #endif
102 #include <machine/cputypes.h>
103 
104 #include <bus/isa/rtc.h>
105 #include <sys/random.h>
106 #include <sys/ptrace.h>
107 #include <machine/sigframe.h>
108 #include <unistd.h>		/* umtx_* functions */
109 
110 extern void dblfault_handler (void);
111 
112 #ifndef CPU_DISABLE_SSE
113 static void set_fpregs_xmm (struct save87 *, struct savexmm *);
114 static void fill_fpregs_xmm (struct savexmm *, struct save87 *);
115 #endif /* CPU_DISABLE_SSE */
116 #ifdef DIRECTIO
117 extern void ffs_rawread_setup(void);
118 #endif /* DIRECTIO */
119 
120 #ifdef SMP
121 int64_t tsc_offsets[MAXCPU];
122 #else
123 int64_t tsc_offsets[1];
124 #endif
125 
126 #if defined(SWTCH_OPTIM_STATS)
127 extern int swtch_optim_stats;
128 SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
129 	CTLFLAG_RD, &swtch_optim_stats, 0, "");
130 SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
131 	CTLFLAG_RD, &tlb_flush_count, 0, "");
132 #endif
133 
134 static int
135 sysctl_hw_physmem(SYSCTL_HANDLER_ARGS)
136 {
137 	/* JG */
138 	int error = sysctl_handle_int(oidp, 0, ctob((int)Maxmem), req);
139 	return (error);
140 }
141 
142 SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_INT|CTLFLAG_RD,
143 	0, 0, sysctl_hw_physmem, "IU", "");
144 
145 static int
146 sysctl_hw_usermem(SYSCTL_HANDLER_ARGS)
147 {
148 	/* JG */
149 	int error = sysctl_handle_int(oidp, 0,
150 		ctob((int)Maxmem - vmstats.v_wire_count), req);
151 	return (error);
152 }
153 
154 SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
155 	0, 0, sysctl_hw_usermem, "IU", "");
156 
157 SYSCTL_ULONG(_hw, OID_AUTO, availpages, CTLFLAG_RD, &Maxmem, 0, "");
158 
159 #if 0
160 
161 static int
162 sysctl_machdep_msgbuf(SYSCTL_HANDLER_ARGS)
163 {
164 	int error;
165 
166 	/* Unwind the buffer, so that it's linear (possibly starting with
167 	 * some initial nulls).
168 	 */
169 	error=sysctl_handle_opaque(oidp,msgbufp->msg_ptr+msgbufp->msg_bufr,
170 		msgbufp->msg_size-msgbufp->msg_bufr,req);
171 	if(error) return(error);
172 	if(msgbufp->msg_bufr>0) {
173 		error=sysctl_handle_opaque(oidp,msgbufp->msg_ptr,
174 			msgbufp->msg_bufr,req);
175 	}
176 	return(error);
177 }
178 
179 SYSCTL_PROC(_machdep, OID_AUTO, msgbuf, CTLTYPE_STRING|CTLFLAG_RD,
180 	0, 0, sysctl_machdep_msgbuf, "A","Contents of kernel message buffer");
181 
182 static int msgbuf_clear;
183 
184 static int
185 sysctl_machdep_msgbuf_clear(SYSCTL_HANDLER_ARGS)
186 {
187 	int error;
188 	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
189 		req);
190 	if (!error && req->newptr) {
191 		/* Clear the buffer and reset write pointer */
192 		bzero(msgbufp->msg_ptr,msgbufp->msg_size);
193 		msgbufp->msg_bufr=msgbufp->msg_bufx=0;
194 		msgbuf_clear=0;
195 	}
196 	return (error);
197 }
198 
199 SYSCTL_PROC(_machdep, OID_AUTO, msgbuf_clear, CTLTYPE_INT|CTLFLAG_RW,
200 	&msgbuf_clear, 0, sysctl_machdep_msgbuf_clear, "I",
201 	"Clear kernel message buffer");
202 
203 #endif
204 
205 /*
206  * Send an interrupt to process.
207  *
208  * Stack is set up to allow sigcode stored
209  * at top to call routine, followed by kcall
210  * to sigreturn routine below.  After sigreturn
211  * resets the signal mask, the stack, and the
212  * frame pointer, it returns to the user
213  * specified pc, psl.
214  */
215 void
216 sendsig(sig_t catcher, int sig, sigset_t *mask, u_long code)
217 {
218 	struct lwp *lp = curthread->td_lwp;
219 	struct proc *p = lp->lwp_proc;
220 	struct trapframe *regs;
221 	struct sigacts *psp = p->p_sigacts;
222 	struct sigframe sf, *sfp;
223 	int oonstack;
224 	char *sp;
225 
226 	regs = lp->lwp_md.md_regs;
227 	oonstack = (lp->lwp_sigstk.ss_flags & SS_ONSTACK) ? 1 : 0;
228 
229 	/* Save user context */
230 	bzero(&sf, sizeof(struct sigframe));
231 	sf.sf_uc.uc_sigmask = *mask;
232 	sf.sf_uc.uc_stack = lp->lwp_sigstk;
233 	sf.sf_uc.uc_mcontext.mc_onstack = oonstack;
234 	KKASSERT(__offsetof(struct trapframe, tf_rdi) == 0);
235 	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(struct trapframe));
236 
237 	/* Make the size of the saved context visible to userland */
238 	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext);
239 
240 	/* Save mailbox pending state for syscall interlock semantics */
241 	if (p->p_flag & P_MAILBOX)
242 		sf.sf_uc.uc_mcontext.mc_xflags |= PGEX_MAILBOX;
243 
244 	/* Allocate and validate space for the signal handler context. */
245         if ((lp->lwp_flag & LWP_ALTSTACK) != 0 && !oonstack &&
246 	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
247 		sp = (char *)(lp->lwp_sigstk.ss_sp + lp->lwp_sigstk.ss_size -
248 			      sizeof(struct sigframe));
249 		lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
250 	} else {
251 		/* We take red zone into account */
252 		sp = (char *)regs->tf_rsp - sizeof(struct sigframe) - 128;
253 	}
254 
255 	/* Align to 16 bytes */
256 	sfp = (struct sigframe *)((intptr_t)sp & ~0xFUL);
257 
258 	/* Translate the signal is appropriate */
259 	if (p->p_sysent->sv_sigtbl) {
260 		if (sig <= p->p_sysent->sv_sigsize)
261 			sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
262 	}
263 
264 	/*
265 	 * Build the argument list for the signal handler.
266 	 *
267 	 * Arguments are in registers (%rdi, %rsi, %rdx, %rcx)
268 	 */
269 	regs->tf_rdi = sig;				/* argument 1 */
270 	regs->tf_rdx = (register_t)&sfp->sf_uc;		/* argument 3 */
271 
272 	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
273 		/*
274 		 * Signal handler installed with SA_SIGINFO.
275 		 *
276 		 * action(signo, siginfo, ucontext)
277 		 */
278 		regs->tf_rsi = (register_t)&sfp->sf_si;	/* argument 2 */
279 		regs->tf_rcx = (register_t)regs->tf_err; /* argument 4 */
280 		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
281 
282 		/* fill siginfo structure */
283 		sf.sf_si.si_signo = sig;
284 		sf.sf_si.si_code = code;
285 		sf.sf_si.si_addr = (void *)regs->tf_err;
286 	} else {
287 		/*
288 		 * Old FreeBSD-style arguments.
289 		 *
290 		 * handler (signo, code, [uc], addr)
291 		 */
292 		regs->tf_rsi = (register_t)code;	/* argument 2 */
293 		regs->tf_rcx = (register_t)regs->tf_err; /* argument 4 */
294 		sf.sf_ahu.sf_handler = catcher;
295 	}
296 
297 #if 0
298 	/*
299 	 * If we're a vm86 process, we want to save the segment registers.
300 	 * We also change eflags to be our emulated eflags, not the actual
301 	 * eflags.
302 	 */
303 	if (regs->tf_eflags & PSL_VM) {
304 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
305 		struct vm86_kernel *vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
306 
307 		sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
308 		sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
309 		sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
310 		sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
311 
312 		if (vm86->vm86_has_vme == 0)
313 			sf.sf_uc.uc_mcontext.mc_eflags =
314 			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
315 			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
316 
317 		/*
318 		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
319 		 * syscalls made by the signal handler.  This just avoids
320 		 * wasting time for our lazy fixup of such faults.  PSL_NT
321 		 * does nothing in vm86 mode, but vm86 programs can set it
322 		 * almost legitimately in probes for old cpu types.
323 		 */
324 		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
325 	}
326 #endif
327 
328 	/*
329 	 * Save the FPU state and reinit the FP unit
330 	 */
331 	npxpush(&sf.sf_uc.uc_mcontext);
332 
333 	/*
334 	 * Copy the sigframe out to the user's stack.
335 	 */
336 	if (copyout(&sf, sfp, sizeof(struct sigframe)) != 0) {
337 		/*
338 		 * Something is wrong with the stack pointer.
339 		 * ...Kill the process.
340 		 */
341 		sigexit(lp, SIGILL);
342 	}
343 
344 	regs->tf_rsp = (register_t)sfp;
345 	regs->tf_rip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
346 
347 	/*
348 	 * i386 abi specifies that the direction flag must be cleared
349 	 * on function entry
350 	 */
351 	regs->tf_rflags &= ~(PSL_T|PSL_D);
352 
353 	/*
354 	 * 64 bit mode has a code and stack selector but
355 	 * no data or extra selector.  %fs and %gs are not
356 	 * stored in-context.
357 	 */
358 	regs->tf_cs = _ucodesel;
359 	regs->tf_ss = _udatasel;
360 }
361 
362 /*
363  * Sanitize the trapframe for a virtual kernel passing control to a custom
364  * VM context.  Remove any items that would otherwise create a privilage
365  * issue.
366  *
367  * XXX at the moment we allow userland to set the resume flag.  Is this a
368  * bad idea?
369  */
370 int
371 cpu_sanitize_frame(struct trapframe *frame)
372 {
373 	frame->tf_cs = _ucodesel;
374 	frame->tf_ss = _udatasel;
375 	/* XXX VM (8086) mode not supported? */
376 	frame->tf_rflags &= (PSL_RF | PSL_USERCHANGE | PSL_VM_UNSUPP);
377 	frame->tf_rflags |= PSL_RESERVED_DEFAULT | PSL_I;
378 
379 	return(0);
380 }
381 
382 /*
383  * Sanitize the tls so loading the descriptor does not blow up
384  * on us.  For x86_64 we don't have to do anything.
385  */
386 int
387 cpu_sanitize_tls(struct savetls *tls)
388 {
389 	return(0);
390 }
391 
392 /*
393  * sigreturn(ucontext_t *sigcntxp)
394  *
395  * System call to cleanup state after a signal
396  * has been taken.  Reset signal mask and
397  * stack state from context left by sendsig (above).
398  * Return to previous pc and psl as specified by
399  * context left by sendsig. Check carefully to
400  * make sure that the user has not modified the
401  * state to gain improper privileges.
402  */
403 #define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
404 #define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
405 
406 int
407 sys_sigreturn(struct sigreturn_args *uap)
408 {
409 	struct lwp *lp = curthread->td_lwp;
410 	struct proc *p = lp->lwp_proc;
411 	struct trapframe *regs;
412 	ucontext_t uc;
413 	ucontext_t *ucp;
414 	register_t rflags;
415 	int cs;
416 	int error;
417 
418 	/*
419 	 * We have to copy the information into kernel space so userland
420 	 * can't modify it while we are sniffing it.
421 	 */
422 	regs = lp->lwp_md.md_regs;
423 	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
424 	if (error)
425 		return (error);
426 	ucp = &uc;
427 	rflags = ucp->uc_mcontext.mc_rflags;
428 
429 	/* VM (8086) mode not supported */
430 	rflags &= ~PSL_VM_UNSUPP;
431 
432 #if 0
433 	if (eflags & PSL_VM) {
434 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
435 		struct vm86_kernel *vm86;
436 
437 		/*
438 		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
439 		 * set up the vm86 area, and we can't enter vm86 mode.
440 		 */
441 		if (lp->lwp_thread->td_pcb->pcb_ext == 0)
442 			return (EINVAL);
443 		vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
444 		if (vm86->vm86_inited == 0)
445 			return (EINVAL);
446 
447 		/* go back to user mode if both flags are set */
448 		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
449 			trapsignal(lp->lwp_proc, SIGBUS, 0);
450 
451 		if (vm86->vm86_has_vme) {
452 			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
453 			    (eflags & VME_USERCHANGE) | PSL_VM;
454 		} else {
455 			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
456 			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |					    (eflags & VM_USERCHANGE) | PSL_VM;
457 		}
458 		bcopy(&ucp.uc_mcontext.mc_gs, tf, sizeof(struct trapframe));
459 		tf->tf_eflags = eflags;
460 		tf->tf_vm86_ds = tf->tf_ds;
461 		tf->tf_vm86_es = tf->tf_es;
462 		tf->tf_vm86_fs = tf->tf_fs;
463 		tf->tf_vm86_gs = tf->tf_gs;
464 		tf->tf_ds = _udatasel;
465 		tf->tf_es = _udatasel;
466 #if 0
467 		tf->tf_fs = _udatasel;
468 		tf->tf_gs = _udatasel;
469 #endif
470 	} else
471 #endif
472 	{
473 		/*
474 		 * Don't allow users to change privileged or reserved flags.
475 		 */
476 		/*
477 		 * XXX do allow users to change the privileged flag PSL_RF.
478 		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
479 		 * should sometimes set it there too.  tf_eflags is kept in
480 		 * the signal context during signal handling and there is no
481 		 * other place to remember it, so the PSL_RF bit may be
482 		 * corrupted by the signal handler without us knowing.
483 		 * Corruption of the PSL_RF bit at worst causes one more or
484 		 * one less debugger trap, so allowing it is fairly harmless.
485 		 */
486 		if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
487 			kprintf("sigreturn: rflags = 0x%lx\n", (long)rflags);
488 			return(EINVAL);
489 		}
490 
491 		/*
492 		 * Don't allow users to load a valid privileged %cs.  Let the
493 		 * hardware check for invalid selectors, excess privilege in
494 		 * other selectors, invalid %eip's and invalid %esp's.
495 		 */
496 		cs = ucp->uc_mcontext.mc_cs;
497 		if (!CS_SECURE(cs)) {
498 			kprintf("sigreturn: cs = 0x%x\n", cs);
499 			trapsignal(lp, SIGBUS, T_PROTFLT);
500 			return(EINVAL);
501 		}
502 		bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(struct trapframe));
503 	}
504 
505 	/*
506 	 * Restore the FPU state from the frame
507 	 */
508 	npxpop(&ucp->uc_mcontext);
509 
510 	/*
511 	 * Merge saved signal mailbox pending flag to maintain interlock
512 	 * semantics against system calls.
513 	 */
514 	if (ucp->uc_mcontext.mc_xflags & PGEX_MAILBOX)
515 		p->p_flag |= P_MAILBOX;
516 
517 	if (ucp->uc_mcontext.mc_onstack & 1)
518 		lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
519 	else
520 		lp->lwp_sigstk.ss_flags &= ~SS_ONSTACK;
521 
522 	lp->lwp_sigmask = ucp->uc_sigmask;
523 	SIG_CANTMASK(lp->lwp_sigmask);
524 	return(EJUSTRETURN);
525 }
526 
527 /*
528  * Stack frame on entry to function.  %rax will contain the function vector,
529  * %rcx will contain the function data.  flags, rcx, and rax will have
530  * already been pushed on the stack.
531  */
532 struct upc_frame {
533 	register_t	rax;
534 	register_t	rcx;
535 	register_t	rdx;
536 	register_t	flags;
537 	register_t	oldip;
538 };
539 
540 void
541 sendupcall(struct vmupcall *vu, int morepending)
542 {
543 	struct lwp *lp = curthread->td_lwp;
544 	struct trapframe *regs;
545 	struct upcall upcall;
546 	struct upc_frame upc_frame;
547 	int	crit_count = 0;
548 
549 	/*
550 	 * If we are a virtual kernel running an emulated user process
551 	 * context, switch back to the virtual kernel context before
552 	 * trying to post the signal.
553 	 */
554 	if (lp->lwp_vkernel && lp->lwp_vkernel->ve) {
555 		lp->lwp_md.md_regs->tf_trapno = 0;
556 		vkernel_trap(lp, lp->lwp_md.md_regs);
557 	}
558 
559 	/*
560 	 * Get the upcall data structure
561 	 */
562 	if (copyin(lp->lwp_upcall, &upcall, sizeof(upcall)) ||
563 	    copyin((char *)upcall.upc_uthread + upcall.upc_critoff, &crit_count, sizeof(int))
564 	) {
565 		vu->vu_pending = 0;
566 		kprintf("bad upcall address\n");
567 		return;
568 	}
569 
570 	/*
571 	 * If the data structure is already marked pending or has a critical
572 	 * section count, mark the data structure as pending and return
573 	 * without doing an upcall.  vu_pending is left set.
574 	 */
575 	if (upcall.upc_pending || crit_count >= vu->vu_pending) {
576 		if (upcall.upc_pending < vu->vu_pending) {
577 			upcall.upc_pending = vu->vu_pending;
578 			copyout(&upcall.upc_pending, &lp->lwp_upcall->upc_pending,
579 				sizeof(upcall.upc_pending));
580 		}
581 		return;
582 	}
583 
584 	/*
585 	 * We can run this upcall now, clear vu_pending.
586 	 *
587 	 * Bump our critical section count and set or clear the
588 	 * user pending flag depending on whether more upcalls are
589 	 * pending.  The user will be responsible for calling
590 	 * upc_dispatch(-1) to process remaining upcalls.
591 	 */
592 	vu->vu_pending = 0;
593 	upcall.upc_pending = morepending;
594 	crit_count += TDPRI_CRIT;
595 	copyout(&upcall.upc_pending, &lp->lwp_upcall->upc_pending,
596 		sizeof(upcall.upc_pending));
597 	copyout(&crit_count, (char *)upcall.upc_uthread + upcall.upc_critoff,
598 		sizeof(int));
599 
600 	/*
601 	 * Construct a stack frame and issue the upcall
602 	 */
603 	regs = lp->lwp_md.md_regs;
604 	upc_frame.rax = regs->tf_rax;
605 	upc_frame.rcx = regs->tf_rcx;
606 	upc_frame.rdx = regs->tf_rdx;
607 	upc_frame.flags = regs->tf_rflags;
608 	upc_frame.oldip = regs->tf_rip;
609 	if (copyout(&upc_frame, (void *)(regs->tf_rsp - sizeof(upc_frame)),
610 	    sizeof(upc_frame)) != 0) {
611 		kprintf("bad stack on upcall\n");
612 	} else {
613 		regs->tf_rax = (register_t)vu->vu_func;
614 		regs->tf_rcx = (register_t)vu->vu_data;
615 		regs->tf_rdx = (register_t)lp->lwp_upcall;
616 		regs->tf_rip = (register_t)vu->vu_ctx;
617 		regs->tf_rsp -= sizeof(upc_frame);
618 	}
619 }
620 
621 /*
622  * fetchupcall occurs in the context of a system call, which means that
623  * we have to return EJUSTRETURN in order to prevent eax and edx from
624  * being overwritten by the syscall return value.
625  *
626  * if vu is not NULL we return the new context in %edx, the new data in %ecx,
627  * and the function pointer in %eax.
628  */
629 int
630 fetchupcall(struct vmupcall *vu, int morepending, void *rsp)
631 {
632 	struct upc_frame upc_frame;
633 	struct lwp *lp = curthread->td_lwp;
634 	struct trapframe *regs;
635 	int error;
636 	struct upcall upcall;
637 	int crit_count;
638 
639 	regs = lp->lwp_md.md_regs;
640 
641 	error = copyout(&morepending, &lp->lwp_upcall->upc_pending, sizeof(int));
642 	if (error == 0) {
643 	    if (vu) {
644 		/*
645 		 * This jumps us to the next ready context.
646 		 */
647 		vu->vu_pending = 0;
648 		error = copyin(lp->lwp_upcall, &upcall, sizeof(upcall));
649 		crit_count = 0;
650 		if (error == 0)
651 			error = copyin((char *)upcall.upc_uthread + upcall.upc_critoff, &crit_count, sizeof(int));
652 		crit_count += TDPRI_CRIT;
653 		if (error == 0)
654 			error = copyout(&crit_count, (char *)upcall.upc_uthread + upcall.upc_critoff, sizeof(int));
655 		regs->tf_rax = (register_t)vu->vu_func;
656 		regs->tf_rcx = (register_t)vu->vu_data;
657 		regs->tf_rdx = (register_t)lp->lwp_upcall;
658 		regs->tf_rip = (register_t)vu->vu_ctx;
659 		regs->tf_rsp = (register_t)rsp;
660 	    } else {
661 		/*
662 		 * This returns us to the originally interrupted code.
663 		 */
664 		error = copyin(rsp, &upc_frame, sizeof(upc_frame));
665 		regs->tf_rax = upc_frame.rax;
666 		regs->tf_rcx = upc_frame.rcx;
667 		regs->tf_rdx = upc_frame.rdx;
668 		regs->tf_rflags = (regs->tf_rflags & ~PSL_USERCHANGE) |
669 				(upc_frame.flags & PSL_USERCHANGE);
670 		regs->tf_rip = upc_frame.oldip;
671 		regs->tf_rsp = (register_t)((char *)rsp + sizeof(upc_frame));
672 	    }
673 	}
674 	if (error == 0)
675 		error = EJUSTRETURN;
676 	return(error);
677 }
678 
679 /*
680  * cpu_idle() represents the idle LWKT.  You cannot return from this function
681  * (unless you want to blow things up!).  Instead we look for runnable threads
682  * and loop or halt as appropriate.  Giant is not held on entry to the thread.
683  *
684  * The main loop is entered with a critical section held, we must release
685  * the critical section before doing anything else.  lwkt_switch() will
686  * check for pending interrupts due to entering and exiting its own
687  * critical section.
688  *
689  * Note on cpu_idle_hlt:  On an SMP system we rely on a scheduler IPI
690  * to wake a HLTed cpu up.  However, there are cases where the idlethread
691  * will be entered with the possibility that no IPI will occur and in such
692  * cases lwkt_switch() sets TDF_IDLE_NOHLT.
693  */
694 static int	cpu_idle_hlt = 1;
695 static int	cpu_idle_hltcnt;
696 static int	cpu_idle_spincnt;
697 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
698     &cpu_idle_hlt, 0, "Idle loop HLT enable");
699 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hltcnt, CTLFLAG_RW,
700     &cpu_idle_hltcnt, 0, "Idle loop entry halts");
701 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_spincnt, CTLFLAG_RW,
702     &cpu_idle_spincnt, 0, "Idle loop entry spins");
703 
704 void
705 cpu_idle(void)
706 {
707 	struct thread *td = curthread;
708 	struct mdglobaldata *gd = mdcpu;
709 
710 	crit_exit();
711 	KKASSERT(td->td_pri < TDPRI_CRIT);
712 	cpu_enable_intr();
713 	for (;;) {
714 		/*
715 		 * See if there are any LWKTs ready to go.
716 		 */
717 		lwkt_switch();
718 
719 		/*
720 		 * The idle loop halts only if no threads are scheduleable
721 		 * and no signals have occured.
722 		 */
723 		if (cpu_idle_hlt && !lwkt_runnable() &&
724 		    (td->td_flags & TDF_IDLE_NOHLT) == 0) {
725 			splz();
726 			if (!lwkt_runnable()) {
727 #ifdef DEBUGIDLE
728 				struct timeval tv1, tv2;
729 				gettimeofday(&tv1, NULL);
730 #endif
731 				umtx_sleep(&gd->mi.gd_runqmask, 0, 1000000);
732 #ifdef DEBUGIDLE
733 				gettimeofday(&tv2, NULL);
734 				if (tv2.tv_usec - tv1.tv_usec +
735 				    (tv2.tv_sec - tv1.tv_sec) * 1000000
736 				    > 500000) {
737 					kprintf("cpu %d idlelock %08x %08x\n",
738 						gd->mi.gd_cpuid,
739 						gd->mi.gd_runqmask,
740 						gd->gd_fpending);
741 				}
742 #endif
743 			}
744 #ifdef SMP
745 			else {
746 			    __asm __volatile("pause");
747 			}
748 #endif
749 			++cpu_idle_hltcnt;
750 		} else {
751 			td->td_flags &= ~TDF_IDLE_NOHLT;
752 			splz();
753 #ifdef SMP
754 			/*__asm __volatile("sti; pause");*/
755 			__asm __volatile("pause");
756 #else
757 			/*__asm __volatile("sti");*/
758 #endif
759 			++cpu_idle_spincnt;
760 		}
761 	}
762 }
763 
764 #ifdef SMP
765 
766 /*
767  * Called by the LWKT switch core with a critical section held if the only
768  * schedulable thread needs the MP lock and we couldn't get it.  On
769  * a real cpu we just spin in the scheduler.  In the virtual kernel
770  * we sleep for a bit.
771  */
772 void
773 cpu_mplock_contested(void)
774 {
775 	usleep(1000);
776 }
777 
778 /*
779  * Called by the spinlock code with or without a critical section held
780  * when a spinlock is found to be seriously constested.
781  *
782  * We need to enter a critical section to prevent signals from recursing
783  * into pthreads.
784  */
785 void
786 cpu_spinlock_contested(void)
787 {
788 	crit_enter();
789 	usleep(1000);
790 	crit_exit();
791 }
792 
793 #endif
794 
795 /*
796  * Clear registers on exec
797  */
798 void
799 exec_setregs(u_long entry, u_long stack, u_long ps_strings)
800 {
801 	struct thread *td = curthread;
802 	struct lwp *lp = td->td_lwp;
803 	struct pcb *pcb = td->td_pcb;
804 	struct trapframe *regs = lp->lwp_md.md_regs;
805 
806 	/* was i386_user_cleanup() in NetBSD */
807 	user_ldt_free(pcb);
808 
809 	bzero((char *)regs, sizeof(struct trapframe));
810 	regs->tf_rip = entry;
811 	regs->tf_rsp = ((stack - 8) & ~0xFul) + 8; /* align the stack */
812 	regs->tf_rdi = stack;		/* argv */
813 	regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
814 	regs->tf_ss = _udatasel;
815 	regs->tf_cs = _ucodesel;
816 	regs->tf_rbx = ps_strings;
817 
818 	/*
819 	 * Reset the hardware debug registers if they were in use.
820 	 * They won't have any meaning for the newly exec'd process.
821 	 */
822 	if (pcb->pcb_flags & PCB_DBREGS) {
823 		pcb->pcb_dr0 = 0;
824 		pcb->pcb_dr1 = 0;
825 		pcb->pcb_dr2 = 0;
826 		pcb->pcb_dr3 = 0;
827 		pcb->pcb_dr6 = 0;
828 		pcb->pcb_dr7 = 0; /* JG set bit 10? */
829 		if (pcb == td->td_pcb) {
830 			/*
831 			 * Clear the debug registers on the running
832 			 * CPU, otherwise they will end up affecting
833 			 * the next process we switch to.
834 			 */
835 			reset_dbregs();
836 		}
837 		pcb->pcb_flags &= ~PCB_DBREGS;
838 	}
839 
840 	/*
841 	 * Initialize the math emulator (if any) for the current process.
842 	 * Actually, just clear the bit that says that the emulator has
843 	 * been initialized.  Initialization is delayed until the process
844 	 * traps to the emulator (if it is done at all) mainly because
845 	 * emulators don't provide an entry point for initialization.
846 	 */
847 	pcb->pcb_flags &= ~FP_SOFTFP;
848 
849 	/*
850 	 * NOTE: do not set CR0_TS here.  npxinit() must do it after clearing
851 	 *	 gd_npxthread.  Otherwise a preemptive interrupt thread
852 	 *	 may panic in npxdna().
853 	 */
854 	crit_enter();
855 #if 0
856 	load_cr0(rcr0() | CR0_MP);
857 #endif
858 
859 	/*
860 	 * NOTE: The MSR values must be correct so we can return to
861 	 * 	 userland.  gd_user_fs/gs must be correct so the switch
862 	 *	 code knows what the current MSR values are.
863 	 */
864 	pcb->pcb_fsbase = 0;	/* Values loaded from PCB on switch */
865 	pcb->pcb_gsbase = 0;
866 	/* Initialize the npx (if any) for the current process. */
867 	npxinit(__INITIAL_NPXCW__);
868 	crit_exit();
869 
870 	/*
871 	 * note: linux emulator needs edx to be 0x0 on entry, which is
872 	 * handled in execve simply by setting the 64 bit syscall
873 	 * return value to 0.
874 	 */
875 }
876 
877 void
878 cpu_setregs(void)
879 {
880 #if 0
881 	unsigned int cr0;
882 
883 	cr0 = rcr0();
884 	cr0 |= CR0_NE;			/* Done by npxinit() */
885 	cr0 |= CR0_MP | CR0_TS;		/* Done at every execve() too. */
886 	cr0 |= CR0_WP | CR0_AM;
887 	load_cr0(cr0);
888 	load_gs(_udatasel);
889 #endif
890 }
891 
892 static int
893 sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
894 {
895 	int error;
896 	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
897 		req);
898 	if (!error && req->newptr)
899 		resettodr();
900 	return (error);
901 }
902 
903 SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
904 	&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
905 
906 extern u_long bootdev;		/* not a cdev_t - encoding is different */
907 SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
908 	CTLFLAG_RD, &bootdev, 0, "Boot device (not in cdev_t format)");
909 
910 /*
911  * Initialize 386 and configure to run kernel
912  */
913 
914 /*
915  * Initialize segments & interrupt table
916  */
917 
918 extern  struct user *proc0paddr;
919 
920 #if 0
921 
922 extern inthand_t
923 	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
924 	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
925 	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
926 	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
927 	IDTVEC(xmm), IDTVEC(dblfault),
928 	IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
929 #endif
930 
931 #ifdef DEBUG_INTERRUPTS
932 extern inthand_t *Xrsvdary[256];
933 #endif
934 
935 int
936 ptrace_set_pc(struct lwp *lp, unsigned long addr)
937 {
938 	lp->lwp_md.md_regs->tf_rip = addr;
939 	return (0);
940 }
941 
942 int
943 ptrace_single_step(struct lwp *lp)
944 {
945 	lp->lwp_md.md_regs->tf_rflags |= PSL_T;
946 	return (0);
947 }
948 
949 int
950 fill_regs(struct lwp *lp, struct reg *regs)
951 {
952 	struct trapframe *tp;
953 
954 	tp = lp->lwp_md.md_regs;
955 	bcopy(&tp->tf_rdi, &regs->r_rdi, sizeof(*regs));
956 	return (0);
957 }
958 
959 int
960 set_regs(struct lwp *lp, struct reg *regs)
961 {
962 	struct trapframe *tp;
963 
964 	tp = lp->lwp_md.md_regs;
965 	if (!EFL_SECURE(regs->r_rflags, tp->tf_rflags) ||
966 	    !CS_SECURE(regs->r_cs))
967 		return (EINVAL);
968 	bcopy(&regs->r_rdi, &tp->tf_rdi, sizeof(*regs));
969 	return (0);
970 }
971 
972 #ifndef CPU_DISABLE_SSE
973 static void
974 fill_fpregs_xmm(struct savexmm *sv_xmm, struct save87 *sv_87)
975 {
976 	struct env87 *penv_87 = &sv_87->sv_env;
977 	struct envxmm *penv_xmm = &sv_xmm->sv_env;
978 	int i;
979 
980 	/* FPU control/status */
981 	penv_87->en_cw = penv_xmm->en_cw;
982 	penv_87->en_sw = penv_xmm->en_sw;
983 	penv_87->en_tw = penv_xmm->en_tw;
984 	penv_87->en_fip = penv_xmm->en_fip;
985 	penv_87->en_fcs = penv_xmm->en_fcs;
986 	penv_87->en_opcode = penv_xmm->en_opcode;
987 	penv_87->en_foo = penv_xmm->en_foo;
988 	penv_87->en_fos = penv_xmm->en_fos;
989 
990 	/* FPU registers */
991 	for (i = 0; i < 8; ++i)
992 		sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
993 
994 	sv_87->sv_ex_sw = sv_xmm->sv_ex_sw;
995 }
996 
997 static void
998 set_fpregs_xmm(struct save87 *sv_87, struct savexmm *sv_xmm)
999 {
1000 	struct env87 *penv_87 = &sv_87->sv_env;
1001 	struct envxmm *penv_xmm = &sv_xmm->sv_env;
1002 	int i;
1003 
1004 	/* FPU control/status */
1005 	penv_xmm->en_cw = penv_87->en_cw;
1006 	penv_xmm->en_sw = penv_87->en_sw;
1007 	penv_xmm->en_tw = penv_87->en_tw;
1008 	penv_xmm->en_fip = penv_87->en_fip;
1009 	penv_xmm->en_fcs = penv_87->en_fcs;
1010 	penv_xmm->en_opcode = penv_87->en_opcode;
1011 	penv_xmm->en_foo = penv_87->en_foo;
1012 	penv_xmm->en_fos = penv_87->en_fos;
1013 
1014 	/* FPU registers */
1015 	for (i = 0; i < 8; ++i)
1016 		sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
1017 
1018 	sv_xmm->sv_ex_sw = sv_87->sv_ex_sw;
1019 }
1020 #endif /* CPU_DISABLE_SSE */
1021 
1022 int
1023 fill_fpregs(struct lwp *lp, struct fpreg *fpregs)
1024 {
1025 #ifndef CPU_DISABLE_SSE
1026 	if (cpu_fxsr) {
1027 		fill_fpregs_xmm(&lp->lwp_thread->td_pcb->pcb_save.sv_xmm,
1028 				(struct save87 *)fpregs);
1029 		return (0);
1030 	}
1031 #endif /* CPU_DISABLE_SSE */
1032 	bcopy(&lp->lwp_thread->td_pcb->pcb_save.sv_87, fpregs, sizeof *fpregs);
1033 	return (0);
1034 }
1035 
1036 int
1037 set_fpregs(struct lwp *lp, struct fpreg *fpregs)
1038 {
1039 #ifndef CPU_DISABLE_SSE
1040 	if (cpu_fxsr) {
1041 		set_fpregs_xmm((struct save87 *)fpregs,
1042 			       &lp->lwp_thread->td_pcb->pcb_save.sv_xmm);
1043 		return (0);
1044 	}
1045 #endif /* CPU_DISABLE_SSE */
1046 	bcopy(fpregs, &lp->lwp_thread->td_pcb->pcb_save.sv_87, sizeof *fpregs);
1047 	return (0);
1048 }
1049 
1050 int
1051 fill_dbregs(struct lwp *lp, struct dbreg *dbregs)
1052 {
1053 	return (ENOSYS);
1054 }
1055 
1056 int
1057 set_dbregs(struct lwp *lp, struct dbreg *dbregs)
1058 {
1059 	return (ENOSYS);
1060 }
1061 
1062 #if 0
1063 /*
1064  * Return > 0 if a hardware breakpoint has been hit, and the
1065  * breakpoint was in user space.  Return 0, otherwise.
1066  */
1067 int
1068 user_dbreg_trap(void)
1069 {
1070         u_int32_t dr7, dr6; /* debug registers dr6 and dr7 */
1071         u_int32_t bp;       /* breakpoint bits extracted from dr6 */
1072         int nbp;            /* number of breakpoints that triggered */
1073         caddr_t addr[4];    /* breakpoint addresses */
1074         int i;
1075 
1076         dr7 = rdr7();
1077         if ((dr7 & 0x000000ff) == 0) {
1078                 /*
1079                  * all GE and LE bits in the dr7 register are zero,
1080                  * thus the trap couldn't have been caused by the
1081                  * hardware debug registers
1082                  */
1083                 return 0;
1084         }
1085 
1086         nbp = 0;
1087         dr6 = rdr6();
1088         bp = dr6 & 0x0000000f;
1089 
1090         if (!bp) {
1091                 /*
1092                  * None of the breakpoint bits are set meaning this
1093                  * trap was not caused by any of the debug registers
1094                  */
1095                 return 0;
1096         }
1097 
1098         /*
1099          * at least one of the breakpoints were hit, check to see
1100          * which ones and if any of them are user space addresses
1101          */
1102 
1103         if (bp & 0x01) {
1104                 addr[nbp++] = (caddr_t)rdr0();
1105         }
1106         if (bp & 0x02) {
1107                 addr[nbp++] = (caddr_t)rdr1();
1108         }
1109         if (bp & 0x04) {
1110                 addr[nbp++] = (caddr_t)rdr2();
1111         }
1112         if (bp & 0x08) {
1113                 addr[nbp++] = (caddr_t)rdr3();
1114         }
1115 
1116         for (i=0; i<nbp; i++) {
1117                 if (addr[i] <
1118                     (caddr_t)VM_MAX_USER_ADDRESS) {
1119                         /*
1120                          * addr[i] is in user space
1121                          */
1122                         return nbp;
1123                 }
1124         }
1125 
1126         /*
1127          * None of the breakpoints are in user space.
1128          */
1129         return 0;
1130 }
1131 
1132 #endif
1133 
1134 void
1135 identcpu(void)
1136 {
1137 	int regs[4];
1138 
1139 	do_cpuid(1, regs);
1140 	cpu_feature = regs[3];
1141 }
1142 
1143 
1144 #ifndef DDB
1145 void
1146 Debugger(const char *msg)
1147 {
1148 	kprintf("Debugger(\"%s\") called.\n", msg);
1149 }
1150 #endif /* no DDB */
1151