xref: /dragonfly/sys/platform/vkernel64/x86_64/mp.c (revision 2983445f)
1 /*
2  * Copyright (c) 2007 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 
36 #include <sys/interrupt.h>
37 #include <sys/kernel.h>
38 #include <sys/memrange.h>
39 #include <sys/tls.h>
40 #include <sys/types.h>
41 
42 #include <vm/vm_extern.h>
43 #include <vm/vm_kern.h>
44 #include <vm/vm_object.h>
45 #include <vm/vm_page.h>
46 
47 #include <sys/mplock2.h>
48 
49 #include <machine/cpu.h>
50 #include <machine/cpufunc.h>
51 #include <machine/globaldata.h>
52 #include <machine/md_var.h>
53 #include <machine/pmap.h>
54 #include <machine/smp.h>
55 #include <machine/tls.h>
56 
57 #include <unistd.h>
58 #include <pthread.h>
59 #include <signal.h>
60 #include <stdio.h>
61 
62 extern pt_entry_t *KPTphys;
63 
64 volatile cpumask_t stopped_cpus;
65 cpumask_t	smp_active_mask = 1;  /* which cpus are ready for IPIs etc? */
66 static int	boot_address;
67 static cpumask_t smp_startup_mask = 1;  /* which cpus have been started */
68 int		mp_naps;                /* # of Applications processors */
69 static int  mp_finish;
70 
71 /* function prototypes XXX these should go elsewhere */
72 void bootstrap_idle(void);
73 void single_cpu_ipi(int, int, int);
74 void selected_cpu_ipi(cpumask_t, int, int);
75 #if 0
76 void ipi_handler(int);
77 #endif
78 
79 pt_entry_t *SMPpt;
80 
81 /* AP uses this during bootstrap.  Do not staticize.  */
82 char *bootSTK;
83 static int bootAP;
84 
85 
86 /* XXX these need to go into the appropriate header file */
87 static int start_all_aps(u_int);
88 void init_secondary(void);
89 void *start_ap(void *);
90 
91 /*
92  * Get SMP fully working before we start initializing devices.
93  */
94 static
95 void
96 ap_finish(void)
97 {
98 	int i;
99 	cpumask_t ncpus_mask = 0;
100 
101 	for (i = 1; i <= ncpus; i++)
102 		ncpus_mask |= CPUMASK(i);
103 
104         mp_finish = 1;
105         if (bootverbose)
106                 kprintf("Finish MP startup\n");
107 
108 	/* build our map of 'other' CPUs */
109 	mycpu->gd_other_cpus = smp_startup_mask & ~CPUMASK(mycpu->gd_cpuid);
110 
111 	/*
112 	 * Let the other cpu's finish initializing and build their map
113 	 * of 'other' CPUs.
114 	 */
115         rel_mplock();
116         while (smp_active_mask != smp_startup_mask) {
117 		DELAY(100000);
118                 cpu_lfence();
119 	}
120 
121         while (try_mplock() == 0)
122 		DELAY(100000);
123         if (bootverbose)
124                 kprintf("Active CPU Mask: %08x\n", smp_active_mask);
125 }
126 
127 SYSINIT(finishsmp, SI_BOOT2_FINISH_SMP, SI_ORDER_FIRST, ap_finish, NULL)
128 
129 
130 void *
131 start_ap(void *arg __unused)
132 {
133 	init_secondary();
134 	setrealcpu();
135 	bootstrap_idle();
136 
137 	return(NULL); /* NOTREACHED */
138 }
139 
140 /* storage for AP thread IDs */
141 pthread_t ap_tids[MAXCPU];
142 
143 void
144 mp_start(void)
145 {
146 	int shift;
147 
148 	ncpus = optcpus;
149 
150 	mp_naps = ncpus - 1;
151 
152 	/* ncpus2 -- ncpus rounded down to the nearest power of 2 */
153 	for (shift = 0; (1 << shift) <= ncpus; ++shift)
154 		;
155 	--shift;
156 	ncpus2_shift = shift;
157 	ncpus2 = 1 << shift;
158 	ncpus2_mask = ncpus2 - 1;
159 
160         /* ncpus_fit -- ncpus rounded up to the nearest power of 2 */
161         if ((1 << shift) < ncpus)
162                 ++shift;
163         ncpus_fit = 1 << shift;
164         ncpus_fit_mask = ncpus_fit - 1;
165 
166 	/*
167 	 * cpu0 initialization
168 	 */
169 	mycpu->gd_ipiq = (void *)kmem_alloc(&kernel_map,
170 					    sizeof(lwkt_ipiq) * ncpus);
171 	bzero(mycpu->gd_ipiq, sizeof(lwkt_ipiq) * ncpus);
172 
173 	/*
174 	 * cpu 1-(n-1)
175 	 */
176 	start_all_aps(boot_address);
177 
178 }
179 
180 void
181 mp_announce(void)
182 {
183 	int x;
184 
185 	kprintf("DragonFly/MP: Multiprocessor\n");
186 	kprintf(" cpu0 (BSP)\n");
187 
188 	for (x = 1; x <= mp_naps; ++x)
189 		kprintf(" cpu%d (AP)\n", x);
190 }
191 
192 void
193 cpu_send_ipiq(int dcpu)
194 {
195 	if (CPUMASK(dcpu) & smp_active_mask)
196 		if (pthread_kill(ap_tids[dcpu], SIGUSR1) != 0)
197 			panic("pthread_kill failed in cpu_send_ipiq");
198 #if 0
199 	panic("XXX cpu_send_ipiq()");
200 #endif
201 }
202 
203 void
204 smp_invltlb(void)
205 {
206 #ifdef SMP
207 #endif
208 }
209 
210 void
211 single_cpu_ipi(int cpu, int vector, int delivery_mode)
212 {
213 	kprintf("XXX single_cpu_ipi\n");
214 }
215 
216 void
217 selected_cpu_ipi(cpumask_t target, int vector, int delivery_mode)
218 {
219 	crit_enter();
220 	while (target) {
221 		int n = BSFCPUMASK(target);
222 		target &= ~CPUMASK(n);
223 		single_cpu_ipi(n, vector, delivery_mode);
224 	}
225 	crit_exit();
226 }
227 
228 int
229 stop_cpus(cpumask_t map)
230 {
231 	map &= smp_active_mask;
232 
233 	crit_enter();
234 	while (map) {
235 		int n = BSFCPUMASK(map);
236 		map &= ~CPUMASK(n);
237 		stopped_cpus |= CPUMASK(n);
238 		if (pthread_kill(ap_tids[n], SIGXCPU) != 0)
239 			panic("stop_cpus: pthread_kill failed");
240 	}
241 	crit_exit();
242 #if 0
243 	panic("XXX stop_cpus()");
244 #endif
245 
246 	return(1);
247 }
248 
249 int
250 restart_cpus(cpumask_t map)
251 {
252 	map &= smp_active_mask;
253 
254 	crit_enter();
255 	while (map) {
256 		int n = BSFCPUMASK(map);
257 		map &= ~CPUMASK(n);
258 		stopped_cpus &= ~CPUMASK(n);
259 		if (pthread_kill(ap_tids[n], SIGXCPU) != 0)
260 			panic("restart_cpus: pthread_kill failed");
261 	}
262 	crit_exit();
263 #if 0
264 	panic("XXX restart_cpus()");
265 #endif
266 
267 	return(1);
268 }
269 
270 void
271 ap_init(void)
272 {
273         /*
274          * Adjust smp_startup_mask to signal the BSP that we have started
275          * up successfully.  Note that we do not yet hold the BGL.  The BSP
276          * is waiting for our signal.
277          *
278          * We can't set our bit in smp_active_mask yet because we are holding
279          * interrupts physically disabled and remote cpus could deadlock
280          * trying to send us an IPI.
281          */
282 	smp_startup_mask |= CPUMASK(mycpu->gd_cpuid);
283 	cpu_mfence();
284 
285         /*
286          * Interlock for finalization.  Wait until mp_finish is non-zero,
287          * then get the MP lock.
288          *
289          * Note: We are in a critical section.
290          *
291          * Note: we are the idle thread, we can only spin.
292          *
293          * Note: The load fence is memory volatile and prevents the compiler
294          * from improperly caching mp_finish, and the cpu from improperly
295          * caching it.
296          */
297 
298 	while (mp_finish == 0) {
299 		cpu_lfence();
300 		DELAY(500000);
301 	}
302         while (try_mplock() == 0)
303 		DELAY(100000);
304 
305         /* BSP may have changed PTD while we're waiting for the lock */
306         cpu_invltlb();
307 
308         /* Build our map of 'other' CPUs. */
309         mycpu->gd_other_cpus = smp_startup_mask & ~CPUMASK(mycpu->gd_cpuid);
310 
311         kprintf("SMP: AP CPU #%d Launched!\n", mycpu->gd_cpuid);
312 
313 
314         /* Set memory range attributes for this CPU to match the BSP */
315         mem_range_AP_init();
316         /*
317          * Once we go active we must process any IPIQ messages that may
318          * have been queued, because no actual IPI will occur until we
319          * set our bit in the smp_active_mask.  If we don't the IPI
320          * message interlock could be left set which would also prevent
321          * further IPIs.
322          *
323          * The idle loop doesn't expect the BGL to be held and while
324          * lwkt_switch() normally cleans things up this is a special case
325          * because we returning almost directly into the idle loop.
326          *
327          * The idle thread is never placed on the runq, make sure
328          * nothing we've done put it there.
329          */
330 	KKASSERT(get_mplock_count(curthread) == 1);
331         smp_active_mask |= CPUMASK(mycpu->gd_cpuid);
332 
333 	mdcpu->gd_fpending = 0;
334 	mdcpu->gd_ipending = 0;
335 	initclocks_pcpu();	/* clock interrupts (via IPIs) */
336 	lwkt_process_ipiq();
337 
338         /*
339          * Releasing the mp lock lets the BSP finish up the SMP init
340          */
341         rel_mplock();
342         KKASSERT((curthread->td_flags & TDF_RUNQ) == 0);
343 }
344 
345 void
346 init_secondary(void)
347 {
348         int     myid = bootAP;
349         struct mdglobaldata *md;
350         struct privatespace *ps;
351 
352         ps = &CPU_prvspace[myid];
353 
354 	KKASSERT(ps->mdglobaldata.mi.gd_prvspace == ps);
355 
356 	/*
357 	 * Setup the %gs for cpu #n.  The mycpu macro works after this
358 	 * point.  Note that %fs is used by pthreads.
359 	 */
360 	tls_set_gs(&CPU_prvspace[myid], sizeof(struct privatespace));
361 
362         md = mdcpu;     /* loaded through %gs:0 (mdglobaldata.mi.gd_prvspace)*/
363 
364 	/* JG */
365         md->gd_common_tss.tss_rsp0 = 0; /* not used until after switch */
366         //md->gd_common_tss.tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
367         //md->gd_common_tss.tss_ioopt = (sizeof md->gd_common_tss) << 16;
368 
369         /*
370          * Set to a known state:
371          * Set by mpboot.s: CR0_PG, CR0_PE
372          * Set by cpu_setregs: CR0_NE, CR0_MP, CR0_TS, CR0_WP, CR0_AM
373          */
374 }
375 
376 static int
377 start_all_aps(u_int boot_addr)
378 {
379 	int x, i;
380 	struct mdglobaldata *gd;
381 	struct privatespace *ps;
382 	vm_page_t m;
383 	vm_offset_t va;
384 #if 0
385 	struct lwp_params params;
386 #endif
387 
388 	/*
389 	 * needed for ipis to initial thread
390 	 * FIXME: rename ap_tids?
391 	 */
392 	ap_tids[0] = pthread_self();
393 
394 	for (x = 1; x <= mp_naps; x++)
395 	{
396 		/* Allocate space for the CPU's private space. */
397 		for (i = 0; i < sizeof(struct mdglobaldata); i += PAGE_SIZE) {
398 			va =(vm_offset_t)&CPU_prvspace[x].mdglobaldata + i;
399 			m = vm_page_alloc(&kernel_object, va, VM_ALLOC_SYSTEM);
400 			pmap_kenter_quick(va, m->phys_addr);
401 		}
402 
403 		for (i = 0; i < sizeof(CPU_prvspace[x].idlestack); i += PAGE_SIZE) {
404 			va =(vm_offset_t)&CPU_prvspace[x].idlestack + i;
405 			m = vm_page_alloc(&kernel_object, va, VM_ALLOC_SYSTEM);
406 			pmap_kenter_quick(va, m->phys_addr);
407 		}
408 
409                 gd = &CPU_prvspace[x].mdglobaldata;     /* official location */
410                 bzero(gd, sizeof(*gd));
411                 gd->mi.gd_prvspace = ps = &CPU_prvspace[x];
412 
413                 /* prime data page for it to use */
414                 mi_gdinit(&gd->mi, x);
415                 cpu_gdinit(gd, x);
416 
417 #if 0
418                 gd->gd_CMAP1 = pmap_kpte((vm_offset_t)CPU_prvspace[x].CPAGE1);
419                 gd->gd_CMAP2 = pmap_kpte((vm_offset_t)CPU_prvspace[x].CPAGE2);
420                 gd->gd_CMAP3 = pmap_kpte((vm_offset_t)CPU_prvspace[x].CPAGE3);
421                 gd->gd_PMAP1 = pmap_kpte((vm_offset_t)CPU_prvspace[x].PPAGE1);
422                 gd->gd_CADDR1 = ps->CPAGE1;
423                 gd->gd_CADDR2 = ps->CPAGE2;
424                 gd->gd_CADDR3 = ps->CPAGE3;
425                 gd->gd_PADDR1 = (vpte_t *)ps->PPAGE1;
426 #endif
427 
428                 gd->mi.gd_ipiq = (void *)kmem_alloc(&kernel_map, sizeof(lwkt_ipiq) * (mp_naps + 1));
429                 bzero(gd->mi.gd_ipiq, sizeof(lwkt_ipiq) * (mp_naps + 1));
430 
431                 /*
432                  * Setup the AP boot stack
433                  */
434                 bootSTK = &ps->idlestack[UPAGES*PAGE_SIZE/2];
435                 bootAP = x;
436 
437 		/*
438 		 * Setup the AP's lwp, this is the 'cpu'
439 		 *
440 		 * We have to make sure our signals are masked or the new LWP
441 		 * may pick up a signal that it isn't ready for yet.  SMP
442 		 * startup occurs after SI_BOOT2_LEAVE_CRIT so interrupts
443 		 * have already been enabled.
444 		 */
445 		cpu_disable_intr();
446 		pthread_create(&ap_tids[x], NULL, start_ap, NULL);
447 		cpu_enable_intr();
448 
449 		while((smp_startup_mask & CPUMASK(x)) == 0) {
450 			cpu_lfence(); /* XXX spin until the AP has started */
451 			DELAY(1000);
452 		}
453 	}
454 
455 	return(ncpus - 1);
456 }
457