xref: /dragonfly/sys/platform/vkernel64/x86_64/mp.c (revision d8d5b238)
1 /*
2  * Copyright (c) 2007 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 
36 #include <sys/interrupt.h>
37 #include <sys/kernel.h>
38 #include <sys/memrange.h>
39 #include <sys/tls.h>
40 #include <sys/types.h>
41 #include <sys/vmm.h>
42 
43 #include <vm/vm_extern.h>
44 #include <vm/vm_kern.h>
45 #include <vm/vm_object.h>
46 #include <vm/vm_page.h>
47 
48 #include <sys/mplock2.h>
49 #include <sys/thread2.h>
50 
51 #include <machine/cpu.h>
52 #include <machine/cpufunc.h>
53 #include <machine/cpumask.h>
54 #include <machine/globaldata.h>
55 #include <machine/md_var.h>
56 #include <machine/pmap.h>
57 #include <machine/smp.h>
58 #include <machine/tls.h>
59 #include <machine/param.h>
60 
61 #include <unistd.h>
62 #include <pthread.h>
63 #include <signal.h>
64 #include <stdio.h>
65 
66 extern pt_entry_t *KPTphys;
67 
68 extern int vmm_enabled;
69 
70 volatile cpumask_t stopped_cpus;
71 /* which cpus are ready for IPIs etc? */
72 cpumask_t	smp_active_mask = CPUMASK_INITIALIZER_ONLYONE;
73 static int	boot_address;
74 /* which cpus have been started */
75 static cpumask_t smp_startup_mask = CPUMASK_INITIALIZER_ONLYONE;
76 static int  mp_finish;
77 
78 /* Local data for detecting CPU TOPOLOGY */
79 static int core_bits = 0;
80 static int logical_CPU_bits = 0;
81 
82 /* function prototypes XXX these should go elsewhere */
83 void bootstrap_idle(void);
84 void single_cpu_ipi(int, int, int);
85 void selected_cpu_ipi(cpumask_t, int, int);
86 #if 0
87 void ipi_handler(int);
88 #endif
89 
90 pt_entry_t *SMPpt;
91 
92 /* AP uses this during bootstrap.  Do not staticize.  */
93 char *bootSTK;
94 static int bootAP;
95 
96 
97 /* XXX these need to go into the appropriate header file */
98 static int start_all_aps(u_int);
99 void init_secondary(void);
100 void *start_ap(void *);
101 
102 /*
103  * Get SMP fully working before we start initializing devices.
104  */
105 static
106 void
107 ap_finish(void)
108 {
109         mp_finish = 1;
110         if (bootverbose)
111                 kprintf("Finish MP startup\n");
112 
113 	/* build our map of 'other' CPUs */
114 	mycpu->gd_other_cpus = smp_startup_mask;
115 	CPUMASK_NANDBIT(mycpu->gd_other_cpus, mycpu->gd_cpuid);
116 
117 	/*
118 	 * Let the other cpu's finish initializing and build their map
119 	 * of 'other' CPUs.
120 	 */
121         rel_mplock();
122         while (CPUMASK_CMPMASKNEQ(smp_active_mask,smp_startup_mask)) {
123 		DELAY(100000);
124                 cpu_lfence();
125 	}
126 
127         while (try_mplock() == 0)
128 		DELAY(100000);
129         if (bootverbose)
130                 kprintf("Active CPU Mask: %08lx\n",
131 			(long)CPUMASK_LOWMASK(smp_active_mask));
132 }
133 
134 SYSINIT(finishsmp, SI_BOOT2_FINISH_SMP, SI_ORDER_FIRST, ap_finish, NULL);
135 
136 void *
137 start_ap(void *arg __unused)
138 {
139 	init_secondary();
140 	setrealcpu();
141 	bootstrap_idle();
142 
143 	return(NULL); /* NOTREACHED */
144 }
145 
146 /* storage for AP thread IDs */
147 pthread_t ap_tids[MAXCPU];
148 
149 int naps;
150 
151 void
152 mp_start(void)
153 {
154 	size_t ipiq_size;
155 	int shift;
156 
157 	ncpus = optcpus;
158 	naps = ncpus - 1;
159 
160 	for (shift = 0; (1 << shift) <= ncpus; ++shift)
161 		;
162 	--shift;
163 
164         /* ncpus_fit -- ncpus rounded up to the nearest power of 2 */
165         if ((1 << shift) < ncpus)
166                 ++shift;
167         ncpus_fit = 1 << shift;
168         ncpus_fit_mask = ncpus_fit - 1;
169 
170 	/*
171 	 * cpu0 initialization
172 	 */
173 	ipiq_size = sizeof(struct lwkt_ipiq) * ncpus;
174 	mycpu->gd_ipiq = (void *)kmem_alloc(&kernel_map, ipiq_size,
175 					    VM_SUBSYS_IPIQ);
176 	bzero(mycpu->gd_ipiq, ipiq_size);
177 
178 	/* initialize arc4random. */
179 	arc4_init_pcpu(0);
180 
181 	/*
182 	 * cpu 1-(n-1)
183 	 */
184 	start_all_aps(boot_address);
185 
186 }
187 
188 void
189 mp_announce(void)
190 {
191 	int x;
192 
193 	kprintf("DragonFly/MP: Multiprocessor\n");
194 	kprintf(" cpu0 (BSP)\n");
195 
196 	for (x = 1; x <= naps; ++x)
197 		kprintf(" cpu%d (AP)\n", x);
198 }
199 
200 void
201 cpu_send_ipiq(int dcpu)
202 {
203 	if (CPUMASK_TESTBIT(smp_active_mask, dcpu)) {
204 		if (pthread_kill(ap_tids[dcpu], SIGUSR1) != 0)
205 			panic("pthread_kill failed in cpu_send_ipiq");
206 	}
207 #if 0
208 	panic("XXX cpu_send_ipiq()");
209 #endif
210 }
211 
212 void
213 single_cpu_ipi(int cpu, int vector, int delivery_mode)
214 {
215 	kprintf("XXX single_cpu_ipi\n");
216 }
217 
218 void
219 selected_cpu_ipi(cpumask_t target, int vector, int delivery_mode)
220 {
221 	crit_enter();
222 	while (CPUMASK_TESTNZERO(target)) {
223 		int n = BSFCPUMASK(target);
224 		CPUMASK_NANDBIT(target, n);
225 		single_cpu_ipi(n, vector, delivery_mode);
226 	}
227 	crit_exit();
228 }
229 
230 int
231 stop_cpus(cpumask_t map)
232 {
233 	CPUMASK_ANDMASK(map, smp_active_mask);
234 
235 	crit_enter();
236 	while (CPUMASK_TESTNZERO(map)) {
237 		int n = BSFCPUMASK(map);
238 		CPUMASK_NANDBIT(map, n);
239 		ATOMIC_CPUMASK_ORBIT(stopped_cpus, n);
240 		if (pthread_kill(ap_tids[n], SIGXCPU) != 0)
241 			panic("stop_cpus: pthread_kill failed");
242 	}
243 	crit_exit();
244 #if 0
245 	panic("XXX stop_cpus()");
246 #endif
247 
248 	return(1);
249 }
250 
251 int
252 restart_cpus(cpumask_t map)
253 {
254 	CPUMASK_ANDMASK(map, smp_active_mask);
255 
256 	crit_enter();
257 	while (CPUMASK_TESTNZERO(map)) {
258 		int n = BSFCPUMASK(map);
259 		CPUMASK_NANDBIT(map, n);
260 		ATOMIC_CPUMASK_NANDBIT(stopped_cpus, n);
261 		if (pthread_kill(ap_tids[n], SIGXCPU) != 0)
262 			panic("restart_cpus: pthread_kill failed");
263 	}
264 	crit_exit();
265 #if 0
266 	panic("XXX restart_cpus()");
267 #endif
268 
269 	return(1);
270 }
271 void
272 ap_init(void)
273 {
274         /*
275          * Adjust smp_startup_mask to signal the BSP that we have started
276          * up successfully.  Note that we do not yet hold the BGL.  The BSP
277          * is waiting for our signal.
278          *
279          * We can't set our bit in smp_active_mask yet because we are holding
280          * interrupts physically disabled and remote cpus could deadlock
281          * trying to send us an IPI.
282          */
283 	ATOMIC_CPUMASK_ORBIT(smp_startup_mask, mycpu->gd_cpuid);
284 	cpu_mfence();
285 
286         /*
287          * Interlock for finalization.  Wait until mp_finish is non-zero,
288          * then get the MP lock.
289          *
290          * Note: We are in a critical section.
291          *
292          * Note: we are the idle thread, we can only spin.
293          *
294          * Note: The load fence is memory volatile and prevents the compiler
295          * from improperly caching mp_finish, and the cpu from improperly
296          * caching it.
297          */
298 
299 	while (mp_finish == 0) {
300 		cpu_lfence();
301 		DELAY(500000);
302 	}
303         while (try_mplock() == 0)
304 		DELAY(100000);
305 
306         /* BSP may have changed PTD while we're waiting for the lock */
307         cpu_invltlb();
308 
309         /* Build our map of 'other' CPUs. */
310         mycpu->gd_other_cpus = smp_startup_mask;
311 	CPUMASK_NANDBIT(mycpu->gd_other_cpus, mycpu->gd_cpuid);
312 
313         kprintf("SMP: AP CPU #%d Launched!\n", mycpu->gd_cpuid);
314 
315 
316         /* Set memory range attributes for this CPU to match the BSP */
317         mem_range_AP_init();
318         /*
319          * Once we go active we must process any IPIQ messages that may
320          * have been queued, because no actual IPI will occur until we
321          * set our bit in the smp_active_mask.  If we don't the IPI
322          * message interlock could be left set which would also prevent
323          * further IPIs.
324          *
325          * The idle loop doesn't expect the BGL to be held and while
326          * lwkt_switch() normally cleans things up this is a special case
327          * because we returning almost directly into the idle loop.
328          *
329          * The idle thread is never placed on the runq, make sure
330          * nothing we've done put it there.
331          */
332 	KKASSERT(get_mplock_count(curthread) == 1);
333 	ATOMIC_CPUMASK_ORBIT(smp_active_mask, mycpu->gd_cpuid);
334 
335 	mdcpu->gd_fpending = 0;
336 	mdcpu->gd_ipending = 0;
337 	initclocks_pcpu();	/* clock interrupts (via IPIs) */
338 
339 	/*
340 	 * Since we may have cleaned up the interrupt triggers, manually
341 	 * process any pending IPIs before exiting our critical section.
342 	 * Once the critical section has exited, normal interrupt processing
343 	 * may occur.
344 	 */
345 	atomic_swap_int(&mycpu->gd_npoll, 0);
346 	lwkt_process_ipiq();
347 
348         /*
349          * Releasing the mp lock lets the BSP finish up the SMP init
350          */
351         rel_mplock();
352         KKASSERT((curthread->td_flags & TDF_RUNQ) == 0);
353 }
354 
355 void
356 init_secondary(void)
357 {
358         int     myid = bootAP;
359         struct mdglobaldata *md;
360         struct privatespace *ps;
361 
362         ps = &CPU_prvspace[myid];
363 
364 	KKASSERT(ps->mdglobaldata.mi.gd_prvspace == ps);
365 
366 	/*
367 	 * Setup the %gs for cpu #n.  The mycpu macro works after this
368 	 * point.  Note that %fs is used by pthreads.
369 	 */
370 	tls_set_gs(&CPU_prvspace[myid], sizeof(struct privatespace));
371 
372         md = mdcpu;     /* loaded through %gs:0 (mdglobaldata.mi.gd_prvspace)*/
373 
374 	/* JG */
375         md->gd_common_tss.tss_rsp0 = 0; /* not used until after switch */
376         //md->gd_common_tss.tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
377         //md->gd_common_tss.tss_ioopt = (sizeof md->gd_common_tss) << 16;
378 
379         /*
380          * Set to a known state:
381          * Set by mpboot.s: CR0_PG, CR0_PE
382          * Set by cpu_setregs: CR0_NE, CR0_MP, CR0_TS, CR0_WP, CR0_AM
383          */
384 }
385 
386 static int
387 start_all_aps(u_int boot_addr)
388 {
389 	int x, i;
390 	struct mdglobaldata *gd;
391 	struct privatespace *ps;
392 	vm_page_t m;
393 	vm_offset_t va;
394 	void *stack;
395 	pthread_attr_t attr;
396 	size_t ipiq_size;
397 #if 0
398 	struct lwp_params params;
399 #endif
400 
401 	/*
402 	 * needed for ipis to initial thread
403 	 * FIXME: rename ap_tids?
404 	 */
405 	ap_tids[0] = pthread_self();
406 	pthread_attr_init(&attr);
407 
408 	vm_object_hold(&kernel_object);
409 	for (x = 1; x <= naps; ++x) {
410 		/* Allocate space for the CPU's private space. */
411 		for (i = 0; i < sizeof(struct mdglobaldata); i += PAGE_SIZE) {
412 			va =(vm_offset_t)&CPU_prvspace[x].mdglobaldata + i;
413 			m = vm_page_alloc(&kernel_object, va, VM_ALLOC_SYSTEM);
414 			pmap_kenter_quick(va, m->phys_addr);
415 		}
416 
417 		for (i = 0; i < sizeof(CPU_prvspace[x].idlestack); i += PAGE_SIZE) {
418 			va =(vm_offset_t)&CPU_prvspace[x].idlestack + i;
419 			m = vm_page_alloc(&kernel_object, va, VM_ALLOC_SYSTEM);
420 			pmap_kenter_quick(va, m->phys_addr);
421 		}
422 
423                 gd = &CPU_prvspace[x].mdglobaldata;     /* official location */
424                 bzero(gd, sizeof(*gd));
425                 gd->mi.gd_prvspace = ps = &CPU_prvspace[x];
426 
427                 /* prime data page for it to use */
428                 mi_gdinit(&gd->mi, x);
429                 cpu_gdinit(gd, x);
430 
431 #if 0
432                 gd->gd_CMAP1 = pmap_kpte((vm_offset_t)CPU_prvspace[x].CPAGE1);
433                 gd->gd_CMAP2 = pmap_kpte((vm_offset_t)CPU_prvspace[x].CPAGE2);
434                 gd->gd_CMAP3 = pmap_kpte((vm_offset_t)CPU_prvspace[x].CPAGE3);
435                 gd->gd_PMAP1 = pmap_kpte((vm_offset_t)CPU_prvspace[x].PPAGE1);
436                 gd->gd_CADDR1 = ps->CPAGE1;
437                 gd->gd_CADDR2 = ps->CPAGE2;
438                 gd->gd_CADDR3 = ps->CPAGE3;
439                 gd->gd_PADDR1 = (vpte_t *)ps->PPAGE1;
440 #endif
441 
442 		ipiq_size = sizeof(struct lwkt_ipiq) * (naps + 1);
443                 gd->mi.gd_ipiq = (void *)kmem_alloc(&kernel_map, ipiq_size,
444 						    VM_SUBSYS_IPIQ);
445                 bzero(gd->mi.gd_ipiq, ipiq_size);
446 
447 		/* initialize arc4random. */
448 		arc4_init_pcpu(x);
449 
450                 /*
451                  * Setup the AP boot stack
452                  */
453                 bootSTK = &ps->idlestack[UPAGES*PAGE_SIZE/2];
454                 bootAP = x;
455 
456 		/*
457 		 * Setup the AP's lwp, this is the 'cpu'
458 		 *
459 		 * We have to make sure our signals are masked or the new LWP
460 		 * may pick up a signal that it isn't ready for yet.  SMP
461 		 * startup occurs after SI_BOOT2_LEAVE_CRIT so interrupts
462 		 * have already been enabled.
463 		 */
464 		cpu_disable_intr();
465 
466 		if (vmm_enabled) {
467 			stack = mmap(NULL, KERNEL_STACK_SIZE,
468 				     PROT_READ|PROT_WRITE|PROT_EXEC,
469 				     MAP_ANON, -1, 0);
470 			if (stack == MAP_FAILED) {
471 				panic("Unable to allocate stack for thread %d\n", x);
472 			}
473 			pthread_attr_setstack(&attr, stack, KERNEL_STACK_SIZE);
474 		}
475 
476 		pthread_create(&ap_tids[x], &attr, start_ap, NULL);
477 		cpu_enable_intr();
478 
479 		while (CPUMASK_TESTBIT(smp_startup_mask, x) == 0) {
480 			cpu_lfence(); /* XXX spin until the AP has started */
481 			DELAY(1000);
482 		}
483 	}
484 	vm_object_drop(&kernel_object);
485 	pthread_attr_destroy(&attr);
486 
487 	return(ncpus - 1);
488 }
489 
490 /*
491  * CPU TOPOLOGY DETECTION FUNCTIONS.
492  */
493 void
494 detect_cpu_topology(void)
495 {
496 	logical_CPU_bits = vkernel_b_arg;
497 	core_bits = vkernel_B_arg;
498 }
499 
500 int
501 get_chip_ID(int cpuid)
502 {
503 	return get_apicid_from_cpuid(cpuid) >>
504 	    (logical_CPU_bits + core_bits);
505 }
506 
507 int
508 get_chip_ID_from_APICID(int apicid)
509 {
510         return apicid >> (logical_CPU_bits + core_bits);
511 }
512 
513 int
514 get_core_number_within_chip(int cpuid)
515 {
516 	return ((get_apicid_from_cpuid(cpuid) >> logical_CPU_bits) &
517 		((1 << core_bits) - 1));
518 }
519 
520 int
521 get_logical_CPU_number_within_core(int cpuid)
522 {
523 	return (get_apicid_from_cpuid(cpuid) &
524 		((1 << logical_CPU_bits) - 1));
525 }
526