xref: /dragonfly/sys/platform/vkernel64/x86_64/npx.c (revision feaf0601)
1 /*
2  * Copyright (c) 2006 The DragonFly Project.  All rights reserved.
3  * Copyright (c) 1990 William Jolitz.
4  * Copyright (c) 1991 The Regents of the University of California.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The DragonFly Project
8  * by Matthew Dillon <dillon@backplane.com>
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in
18  *    the documentation and/or other materials provided with the
19  *    distribution.
20  * 3. Neither the name of The DragonFly Project nor the names of its
21  *    contributors may be used to endorse or promote products derived
22  *    from this software without specific, prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
27  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
28  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
29  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
30  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
31  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
32  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
33  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
34  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  * from: @(#)npx.c	7.2 (Berkeley) 5/12/91
38  * $FreeBSD: src/sys/i386/isa/npx.c,v 1.80.2.3 2001/10/20 19:04:38 tegge Exp $
39  */
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/bus.h>
44 #include <sys/kernel.h>
45 #include <sys/malloc.h>
46 #include <sys/module.h>
47 #include <sys/sysctl.h>
48 #include <sys/proc.h>
49 #include <sys/rman.h>
50 #include <sys/signalvar.h>
51 #include <sys/thread2.h>
52 
53 #include <machine/cputypes.h>
54 #include <machine/frame.h>
55 #include <machine/md_var.h>
56 #include <machine/pcb.h>
57 #include <machine/psl.h>
58 #include <machine/specialreg.h>
59 #include <machine/segments.h>
60 #include <machine/globaldata.h>
61 
62 #define	fldcw(addr)		__asm("fldcw %0" : : "m" (*(addr)))
63 #define	fnclex()		__asm("fnclex")
64 #define	fninit()		__asm("fninit")
65 #define	fnop()			__asm("fnop")
66 #define	fnsave(addr)		__asm __volatile("fnsave %0" : "=m" (*(addr)))
67 #define	fnstcw(addr)		__asm __volatile("fnstcw %0" : "=m" (*(addr)))
68 #define	fnstsw(addr)		__asm __volatile("fnstsw %0" : "=m" (*(addr)))
69 #define	frstor(addr)		__asm("frstor %0" : : "m" (*(addr)))
70 #define	fxrstor(addr)		__asm("fxrstor %0" : : "m" (*(addr)))
71 #define	fxsave(addr)		__asm __volatile("fxsave %0" : "=m" (*(addr)))
72 
73 typedef u_char bool_t;
74 static	void	fpu_clean_state(void);
75 #define ldmxcsr(csr)            __asm __volatile("ldmxcsr %0" : : "m" (csr))
76 
77 int cpu_fxsr = 0;
78 
79 static struct krate badfprate = { 1 };
80 
81 /*static	int	npx_attach	(device_t dev);*/
82 
83 uint32_t npx_mxcsr_mask = 0xFFBF;
84 
85 int mmxopt = 1;
86 SYSCTL_INT(_kern, OID_AUTO, mmxopt, CTLFLAG_RD, &mmxopt, 0,
87 	"MMX/XMM optimized bcopy/copyin/copyout support");
88 
89 static int      hw_instruction_sse;
90 SYSCTL_INT(_hw, OID_AUTO, instruction_sse, CTLFLAG_RD,
91     &hw_instruction_sse, 0, "SIMD/MMX2 instructions available in CPU");
92 
93 #if 0
94 /*
95  * Attach routine - announce which it is, and wire into system
96  */
97 int
98 npx_attach(device_t dev)
99 {
100 	npxinit();
101 	return (0);
102 }
103 #endif
104 
105 void
106 init_fpu(int supports_sse)
107 {
108 	cpu_fxsr = hw_instruction_sse = supports_sse;
109 	npxprobemask();
110 }
111 
112 /*
113  * Probe the npx_mxcsr_mask
114  */
115 void npxprobemask(void)
116 {
117         /*64-Byte alignment required for xsave*/
118         static union savefpu dummy __aligned(64);
119 
120         crit_enter();
121 	/*stop_emulating();*/
122         fxsave(&dummy);
123         npx_mxcsr_mask = ((uint32_t *)&dummy)[7];
124 	/*stop_emulating();*/
125         crit_exit();
126 }
127 
128 
129 /*
130  * Initialize the floating point unit.
131  */
132 void npxinit(void)
133 {
134 	static union savefpu dummy __aligned(16);
135 	u_short control = __INITIAL_FPUCW__;
136 	u_int mxcsr = __INITIAL_MXCSR__;
137 
138 	/*
139 	 * fninit has the same h/w bugs as fnsave.  Use the detoxified
140 	 * fnsave to throw away any junk in the fpu.  npxsave() initializes
141 	 * the fpu and sets npxthread = NULL as important side effects.
142 	 */
143 	npxsave(&dummy);
144 	crit_enter();
145 	/*stop_emulating();*/
146 	fldcw(&control);
147 	ldmxcsr(mxcsr);
148 	fpusave(curthread->td_savefpu);
149 	mdcpu->gd_npxthread = NULL;
150 	/*start_emulating();*/
151 	crit_exit();
152 }
153 
154 /*
155  * Free coprocessor (if we have it).
156  */
157 void
158 npxexit(void)
159 {
160 	if (curthread == mdcpu->gd_npxthread)
161 		npxsave(curthread->td_savefpu);
162 }
163 
164 #if 0
165 /*
166  * The following mechanism is used to ensure that the FPE_... value
167  * that is passed as a trapcode to the signal handler of the user
168  * process does not have more than one bit set.
169  *
170  * Multiple bits may be set if the user process modifies the control
171  * word while a status word bit is already set.  While this is a sign
172  * of bad coding, we have no choise than to narrow them down to one
173  * bit, since we must not send a trapcode that is not exactly one of
174  * the FPE_ macros.
175  *
176  * The mechanism has a static table with 127 entries.  Each combination
177  * of the 7 FPU status word exception bits directly translates to a
178  * position in this table, where a single FPE_... value is stored.
179  * This FPE_... value stored there is considered the "most important"
180  * of the exception bits and will be sent as the signal code.  The
181  * precedence of the bits is based upon Intel Document "Numerical
182  * Applications", Chapter "Special Computational Situations".
183  *
184  * The macro to choose one of these values does these steps: 1) Throw
185  * away status word bits that cannot be masked.  2) Throw away the bits
186  * currently masked in the control word, assuming the user isn't
187  * interested in them anymore.  3) Reinsert status word bit 7 (stack
188  * fault) if it is set, which cannot be masked but must be presered.
189  * 4) Use the remaining bits to point into the trapcode table.
190  *
191  * The 6 maskable bits in order of their preference, as stated in the
192  * above referenced Intel manual:
193  * 1  Invalid operation (FP_X_INV)
194  * 1a   Stack underflow
195  * 1b   Stack overflow
196  * 1c   Operand of unsupported format
197  * 1d   SNaN operand.
198  * 2  QNaN operand (not an exception, irrelavant here)
199  * 3  Any other invalid-operation not mentioned above or zero divide
200  *      (FP_X_INV, FP_X_DZ)
201  * 4  Denormal operand (FP_X_DNML)
202  * 5  Numeric over/underflow (FP_X_OFL, FP_X_UFL)
203  * 6  Inexact result (FP_X_IMP)
204  */
205 static char fpetable[128] = {
206 	0,
207 	FPE_FLTINV,	/*  1 - INV */
208 	FPE_FLTUND,	/*  2 - DNML */
209 	FPE_FLTINV,	/*  3 - INV | DNML */
210 	FPE_FLTDIV,	/*  4 - DZ */
211 	FPE_FLTINV,	/*  5 - INV | DZ */
212 	FPE_FLTDIV,	/*  6 - DNML | DZ */
213 	FPE_FLTINV,	/*  7 - INV | DNML | DZ */
214 	FPE_FLTOVF,	/*  8 - OFL */
215 	FPE_FLTINV,	/*  9 - INV | OFL */
216 	FPE_FLTUND,	/*  A - DNML | OFL */
217 	FPE_FLTINV,	/*  B - INV | DNML | OFL */
218 	FPE_FLTDIV,	/*  C - DZ | OFL */
219 	FPE_FLTINV,	/*  D - INV | DZ | OFL */
220 	FPE_FLTDIV,	/*  E - DNML | DZ | OFL */
221 	FPE_FLTINV,	/*  F - INV | DNML | DZ | OFL */
222 	FPE_FLTUND,	/* 10 - UFL */
223 	FPE_FLTINV,	/* 11 - INV | UFL */
224 	FPE_FLTUND,	/* 12 - DNML | UFL */
225 	FPE_FLTINV,	/* 13 - INV | DNML | UFL */
226 	FPE_FLTDIV,	/* 14 - DZ | UFL */
227 	FPE_FLTINV,	/* 15 - INV | DZ | UFL */
228 	FPE_FLTDIV,	/* 16 - DNML | DZ | UFL */
229 	FPE_FLTINV,	/* 17 - INV | DNML | DZ | UFL */
230 	FPE_FLTOVF,	/* 18 - OFL | UFL */
231 	FPE_FLTINV,	/* 19 - INV | OFL | UFL */
232 	FPE_FLTUND,	/* 1A - DNML | OFL | UFL */
233 	FPE_FLTINV,	/* 1B - INV | DNML | OFL | UFL */
234 	FPE_FLTDIV,	/* 1C - DZ | OFL | UFL */
235 	FPE_FLTINV,	/* 1D - INV | DZ | OFL | UFL */
236 	FPE_FLTDIV,	/* 1E - DNML | DZ | OFL | UFL */
237 	FPE_FLTINV,	/* 1F - INV | DNML | DZ | OFL | UFL */
238 	FPE_FLTRES,	/* 20 - IMP */
239 	FPE_FLTINV,	/* 21 - INV | IMP */
240 	FPE_FLTUND,	/* 22 - DNML | IMP */
241 	FPE_FLTINV,	/* 23 - INV | DNML | IMP */
242 	FPE_FLTDIV,	/* 24 - DZ | IMP */
243 	FPE_FLTINV,	/* 25 - INV | DZ | IMP */
244 	FPE_FLTDIV,	/* 26 - DNML | DZ | IMP */
245 	FPE_FLTINV,	/* 27 - INV | DNML | DZ | IMP */
246 	FPE_FLTOVF,	/* 28 - OFL | IMP */
247 	FPE_FLTINV,	/* 29 - INV | OFL | IMP */
248 	FPE_FLTUND,	/* 2A - DNML | OFL | IMP */
249 	FPE_FLTINV,	/* 2B - INV | DNML | OFL | IMP */
250 	FPE_FLTDIV,	/* 2C - DZ | OFL | IMP */
251 	FPE_FLTINV,	/* 2D - INV | DZ | OFL | IMP */
252 	FPE_FLTDIV,	/* 2E - DNML | DZ | OFL | IMP */
253 	FPE_FLTINV,	/* 2F - INV | DNML | DZ | OFL | IMP */
254 	FPE_FLTUND,	/* 30 - UFL | IMP */
255 	FPE_FLTINV,	/* 31 - INV | UFL | IMP */
256 	FPE_FLTUND,	/* 32 - DNML | UFL | IMP */
257 	FPE_FLTINV,	/* 33 - INV | DNML | UFL | IMP */
258 	FPE_FLTDIV,	/* 34 - DZ | UFL | IMP */
259 	FPE_FLTINV,	/* 35 - INV | DZ | UFL | IMP */
260 	FPE_FLTDIV,	/* 36 - DNML | DZ | UFL | IMP */
261 	FPE_FLTINV,	/* 37 - INV | DNML | DZ | UFL | IMP */
262 	FPE_FLTOVF,	/* 38 - OFL | UFL | IMP */
263 	FPE_FLTINV,	/* 39 - INV | OFL | UFL | IMP */
264 	FPE_FLTUND,	/* 3A - DNML | OFL | UFL | IMP */
265 	FPE_FLTINV,	/* 3B - INV | DNML | OFL | UFL | IMP */
266 	FPE_FLTDIV,	/* 3C - DZ | OFL | UFL | IMP */
267 	FPE_FLTINV,	/* 3D - INV | DZ | OFL | UFL | IMP */
268 	FPE_FLTDIV,	/* 3E - DNML | DZ | OFL | UFL | IMP */
269 	FPE_FLTINV,	/* 3F - INV | DNML | DZ | OFL | UFL | IMP */
270 	FPE_FLTSUB,	/* 40 - STK */
271 	FPE_FLTSUB,	/* 41 - INV | STK */
272 	FPE_FLTUND,	/* 42 - DNML | STK */
273 	FPE_FLTSUB,	/* 43 - INV | DNML | STK */
274 	FPE_FLTDIV,	/* 44 - DZ | STK */
275 	FPE_FLTSUB,	/* 45 - INV | DZ | STK */
276 	FPE_FLTDIV,	/* 46 - DNML | DZ | STK */
277 	FPE_FLTSUB,	/* 47 - INV | DNML | DZ | STK */
278 	FPE_FLTOVF,	/* 48 - OFL | STK */
279 	FPE_FLTSUB,	/* 49 - INV | OFL | STK */
280 	FPE_FLTUND,	/* 4A - DNML | OFL | STK */
281 	FPE_FLTSUB,	/* 4B - INV | DNML | OFL | STK */
282 	FPE_FLTDIV,	/* 4C - DZ | OFL | STK */
283 	FPE_FLTSUB,	/* 4D - INV | DZ | OFL | STK */
284 	FPE_FLTDIV,	/* 4E - DNML | DZ | OFL | STK */
285 	FPE_FLTSUB,	/* 4F - INV | DNML | DZ | OFL | STK */
286 	FPE_FLTUND,	/* 50 - UFL | STK */
287 	FPE_FLTSUB,	/* 51 - INV | UFL | STK */
288 	FPE_FLTUND,	/* 52 - DNML | UFL | STK */
289 	FPE_FLTSUB,	/* 53 - INV | DNML | UFL | STK */
290 	FPE_FLTDIV,	/* 54 - DZ | UFL | STK */
291 	FPE_FLTSUB,	/* 55 - INV | DZ | UFL | STK */
292 	FPE_FLTDIV,	/* 56 - DNML | DZ | UFL | STK */
293 	FPE_FLTSUB,	/* 57 - INV | DNML | DZ | UFL | STK */
294 	FPE_FLTOVF,	/* 58 - OFL | UFL | STK */
295 	FPE_FLTSUB,	/* 59 - INV | OFL | UFL | STK */
296 	FPE_FLTUND,	/* 5A - DNML | OFL | UFL | STK */
297 	FPE_FLTSUB,	/* 5B - INV | DNML | OFL | UFL | STK */
298 	FPE_FLTDIV,	/* 5C - DZ | OFL | UFL | STK */
299 	FPE_FLTSUB,	/* 5D - INV | DZ | OFL | UFL | STK */
300 	FPE_FLTDIV,	/* 5E - DNML | DZ | OFL | UFL | STK */
301 	FPE_FLTSUB,	/* 5F - INV | DNML | DZ | OFL | UFL | STK */
302 	FPE_FLTRES,	/* 60 - IMP | STK */
303 	FPE_FLTSUB,	/* 61 - INV | IMP | STK */
304 	FPE_FLTUND,	/* 62 - DNML | IMP | STK */
305 	FPE_FLTSUB,	/* 63 - INV | DNML | IMP | STK */
306 	FPE_FLTDIV,	/* 64 - DZ | IMP | STK */
307 	FPE_FLTSUB,	/* 65 - INV | DZ | IMP | STK */
308 	FPE_FLTDIV,	/* 66 - DNML | DZ | IMP | STK */
309 	FPE_FLTSUB,	/* 67 - INV | DNML | DZ | IMP | STK */
310 	FPE_FLTOVF,	/* 68 - OFL | IMP | STK */
311 	FPE_FLTSUB,	/* 69 - INV | OFL | IMP | STK */
312 	FPE_FLTUND,	/* 6A - DNML | OFL | IMP | STK */
313 	FPE_FLTSUB,	/* 6B - INV | DNML | OFL | IMP | STK */
314 	FPE_FLTDIV,	/* 6C - DZ | OFL | IMP | STK */
315 	FPE_FLTSUB,	/* 6D - INV | DZ | OFL | IMP | STK */
316 	FPE_FLTDIV,	/* 6E - DNML | DZ | OFL | IMP | STK */
317 	FPE_FLTSUB,	/* 6F - INV | DNML | DZ | OFL | IMP | STK */
318 	FPE_FLTUND,	/* 70 - UFL | IMP | STK */
319 	FPE_FLTSUB,	/* 71 - INV | UFL | IMP | STK */
320 	FPE_FLTUND,	/* 72 - DNML | UFL | IMP | STK */
321 	FPE_FLTSUB,	/* 73 - INV | DNML | UFL | IMP | STK */
322 	FPE_FLTDIV,	/* 74 - DZ | UFL | IMP | STK */
323 	FPE_FLTSUB,	/* 75 - INV | DZ | UFL | IMP | STK */
324 	FPE_FLTDIV,	/* 76 - DNML | DZ | UFL | IMP | STK */
325 	FPE_FLTSUB,	/* 77 - INV | DNML | DZ | UFL | IMP | STK */
326 	FPE_FLTOVF,	/* 78 - OFL | UFL | IMP | STK */
327 	FPE_FLTSUB,	/* 79 - INV | OFL | UFL | IMP | STK */
328 	FPE_FLTUND,	/* 7A - DNML | OFL | UFL | IMP | STK */
329 	FPE_FLTSUB,	/* 7B - INV | DNML | OFL | UFL | IMP | STK */
330 	FPE_FLTDIV,	/* 7C - DZ | OFL | UFL | IMP | STK */
331 	FPE_FLTSUB,	/* 7D - INV | DZ | OFL | UFL | IMP | STK */
332 	FPE_FLTDIV,	/* 7E - DNML | DZ | OFL | UFL | IMP | STK */
333 	FPE_FLTSUB,	/* 7F - INV | DNML | DZ | OFL | UFL | IMP | STK */
334 };
335 #endif
336 
337 /*
338  * Implement the device not available (DNA) exception.  gd_npxthread had
339  * better be NULL.  Restore the current thread's FP state and set gd_npxthread
340  * to curthread.
341  *
342  * Interrupts are enabled and preemption can occur.  Enter a critical
343  * section to stabilize the FP state.
344  */
345 int
346 npxdna(struct trapframe *frame)
347 {
348 	thread_t td = curthread;
349 	int didinit = 0;
350 
351 	if (mdcpu->gd_npxthread != NULL) {
352 		kprintf("npxdna: npxthread = %p, curthread = %p\n",
353 		       mdcpu->gd_npxthread, td);
354 		panic("npxdna");
355 	}
356 
357 	/*
358 	 * Setup the initial saved state if the thread has never before
359 	 * used the FP unit.  This also occurs when a thread pushes a
360 	 * signal handler and uses FP in the handler.
361 	 */
362 	if ((curthread->td_flags & TDF_USINGFP) == 0) {
363 		curthread->td_flags |= TDF_USINGFP;
364 		npxinit();
365 		didinit = 1;
366 	}
367 
368 	/*
369 	 * The setting of gd_npxthread and the call to fpurstor() must not
370 	 * be preempted by an interrupt thread or we will take an npxdna
371 	 * trap and potentially save our current fpstate (which is garbage)
372 	 * and then restore the garbage rather then the originally saved
373 	 * fpstate.
374 	 */
375 	crit_enter();
376 	/*stop_emulating();*/
377 	/*
378 	 * Record new context early in case frstor causes an IRQ13.
379 	 */
380 	mdcpu->gd_npxthread = td;
381 	/*
382 	 * The following frstor may cause an IRQ13 when the state being
383 	 * restored has a pending error.  The error will appear to have been
384 	 * triggered by the current (npx) user instruction even when that
385 	 * instruction is a no-wait instruction that should not trigger an
386 	 * error (e.g., fnclex).  On at least one 486 system all of the
387 	 * no-wait instructions are broken the same as frstor, so our
388 	 * treatment does not amplify the breakage.  On at least one
389 	 * 386/Cyrix 387 system, fnclex works correctly while frstor and
390 	 * fnsave are broken, so our treatment breaks fnclex if it is the
391 	 * first FPU instruction after a context switch.
392 	 */
393 	if ((td->td_savefpu->sv_xmm.sv_env.en_mxcsr & ~0xFFBF) && cpu_fxsr) {
394 		krateprintf(&badfprate,
395 			    "FXRSTR: illegal FP MXCSR %08x didinit = %d\n",
396 			    td->td_savefpu->sv_xmm.sv_env.en_mxcsr, didinit);
397 		td->td_savefpu->sv_xmm.sv_env.en_mxcsr &= 0xFFBF;
398 		lwpsignal(curproc, curthread->td_lwp, SIGFPE);
399 	}
400 	fpurstor(curthread->td_savefpu);
401 	crit_exit();
402 
403 	return (1);
404 }
405 
406 /*
407  * Wrapper for the fnsave instruction to handle h/w bugs.  If there is an error
408  * pending, then fnsave generates a bogus IRQ13 on some systems.  Force
409  * any IRQ13 to be handled immediately, and then ignore it.  This routine is
410  * often called at splhigh so it must not use many system services.  In
411  * particular, it's much easier to install a special handler than to
412  * guarantee that it's safe to use npxintr() and its supporting code.
413  *
414  * WARNING!  This call is made during a switch and the MP lock will be
415  * setup for the new target thread rather then the current thread, so we
416  * cannot do anything here that depends on the *_mplock() functions as
417  * we may trip over their assertions.
418  *
419  * WARNING!  When using fxsave we MUST fninit after saving the FP state.  The
420  * kernel will always assume that the FP state is 'safe' (will not cause
421  * exceptions) for mmx/xmm use if npxthread is NULL.  The kernel must still
422  * setup a custom save area before actually using the FP unit, but it will
423  * not bother calling fninit.  This greatly improves kernel performance when
424  * it wishes to use the FP unit.
425  */
426 void
427 npxsave(union savefpu *addr)
428 {
429 	crit_enter();
430 	/*stop_emulating();*/
431 	fpusave(addr);
432 	mdcpu->gd_npxthread = NULL;
433 	fninit();
434 	/*start_emulating();*/
435 	crit_exit();
436 }
437 
438 void
439 fpusave(union savefpu *addr)
440 {
441 	if (cpu_fxsr)
442 		fxsave(addr);
443 	else
444 		fnsave(addr);
445 }
446 
447 /*
448  * Save the FP state to the mcontext structure.
449  *
450  * WARNING: If you want to try to npxsave() directly to mctx->mc_fpregs,
451  * then it MUST be 16-byte aligned.  Currently this is not guarenteed.
452  */
453 void
454 npxpush(mcontext_t *mctx)
455 {
456 	thread_t td = curthread;
457 
458 	if (td->td_flags & TDF_USINGFP) {
459 		if (mdcpu->gd_npxthread == td) {
460 			/*
461 			 * XXX Note: This is a bit inefficient if the signal
462 			 * handler uses floating point, extra faults will
463 			 * occur.
464 			 */
465 			mctx->mc_ownedfp = _MC_FPOWNED_FPU;
466 			npxsave(td->td_savefpu);
467 		} else {
468 			mctx->mc_ownedfp = _MC_FPOWNED_PCB;
469 		}
470 		bcopy(td->td_savefpu, mctx->mc_fpregs, sizeof(mctx->mc_fpregs));
471 		td->td_flags &= ~TDF_USINGFP;
472 		mctx->mc_fpformat = cpu_fxsr ? _MC_FPFMT_XMM : _MC_FPFMT_387;
473 	} else {
474 		mctx->mc_ownedfp = _MC_FPOWNED_NONE;
475 		mctx->mc_fpformat = _MC_FPFMT_NODEV;
476 	}
477 }
478 
479 /*
480  * Restore the FP state from the mcontext structure.
481  */
482 void
483 npxpop(mcontext_t *mctx)
484 {
485 	thread_t td = curthread;
486 
487 	switch(mctx->mc_ownedfp) {
488 	case _MC_FPOWNED_NONE:
489 		/*
490 		 * If the signal handler used the FP unit but the interrupted
491 		 * code did not, release the FP unit.  Clear TDF_USINGFP will
492 		 * force the FP unit to reinit so the interrupted code sees
493 		 * a clean slate.
494 		 */
495 		if (td->td_flags & TDF_USINGFP) {
496 			if (td == mdcpu->gd_npxthread)
497 				npxsave(td->td_savefpu);
498 			td->td_flags &= ~TDF_USINGFP;
499 		}
500 		break;
501 	case _MC_FPOWNED_FPU:
502 	case _MC_FPOWNED_PCB:
503 		/*
504 		 * Clear ownership of the FP unit and restore our saved state.
505 		 *
506 		 * NOTE: The signal handler may have set-up some FP state and
507 		 * enabled the FP unit, so we have to restore no matter what.
508 		 *
509 		 * XXX: This is bit inefficient, if the code being returned
510 		 * to is actively using the FP this results in multiple
511 		 * kernel faults.
512 		 *
513 		 * WARNING: The saved state was exposed to userland and may
514 		 * have to be sanitized to avoid a GP fault in the kernel.
515 		 */
516 		if (td == mdcpu->gd_npxthread)
517 			npxsave(td->td_savefpu);
518 		bcopy(mctx->mc_fpregs, td->td_savefpu, sizeof(*td->td_savefpu));
519 		if ((td->td_savefpu->sv_xmm.sv_env.en_mxcsr & ~0xFFBF) &&
520 		    cpu_fxsr) {
521 			krateprintf(&badfprate,
522 				    "pid %d (%s) signal return from user: "
523 				    "illegal FP MXCSR %08x\n",
524 				    td->td_proc->p_pid,
525 				    td->td_proc->p_comm,
526 				    td->td_savefpu->sv_xmm.sv_env.en_mxcsr);
527 			td->td_savefpu->sv_xmm.sv_env.en_mxcsr &= 0xFFBF;
528 		}
529 		td->td_flags |= TDF_USINGFP;
530 		break;
531 	}
532 }
533 
534 /*
535  * On AuthenticAMD processors, the fxrstor instruction does not restore
536  * the x87's stored last instruction pointer, last data pointer, and last
537  * opcode values, except in the rare case in which the exception summary
538  * (ES) bit in the x87 status word is set to 1.
539  *
540  * In order to avoid leaking this information across processes, we clean
541  * these values by performing a dummy load before executing fxrstor().
542  */
543 static	double	dummy_variable = 0.0;
544 static void
545 fpu_clean_state(void)
546 {
547 	u_short status;
548 
549 	/*
550 	 * Clear the ES bit in the x87 status word if it is currently
551 	 * set, in order to avoid causing a fault in the upcoming load.
552 	 */
553 	fnstsw(&status);
554 	if (status & 0x80)
555 		fnclex();
556 
557 	/*
558 	 * Load the dummy variable into the x87 stack.  This mangles
559 	 * the x87 stack, but we don't care since we're about to call
560 	 * fxrstor() anyway.
561 	 */
562 	__asm __volatile("ffree %%st(7); fldl %0" : : "m" (dummy_variable));
563 }
564 
565 void
566 fpurstor(union savefpu *addr)
567 {
568 	if (cpu_fxsr) {
569 		fpu_clean_state();
570 		fxrstor(addr);
571 	} else {
572 		frstor(addr);
573 	}
574 }
575