1/*
2 * Copyright (c) 2003,2004,2008 The DragonFly Project.  All rights reserved.
3 * Copyright (c) 2008 Jordan Gordeev.
4 *
5 * This code is derived from software contributed to The DragonFly Project
6 * by Matthew Dillon <dillon@backplane.com>
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in
16 *    the documentation and/or other materials provided with the
17 *    distribution.
18 * 3. Neither the name of The DragonFly Project nor the names of its
19 *    contributors may be used to endorse or promote products derived
20 *    from this software without specific, prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
26 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * Copyright (c) 1990 The Regents of the University of California.
36 * All rights reserved.
37 *
38 * This code is derived from software contributed to Berkeley by
39 * William Jolitz.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 *    notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 *    notice, this list of conditions and the following disclaimer in the
48 *    documentation and/or other materials provided with the distribution.
49 * 3. All advertising materials mentioning features or use of this software
50 *    must display the following acknowledgement:
51 *	This product includes software developed by the University of
52 *	California, Berkeley and its contributors.
53 * 4. Neither the name of the University nor the names of its contributors
54 *    may be used to endorse or promote products derived from this software
55 *    without specific prior written permission.
56 *
57 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
58 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
61 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
62 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
63 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
64 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
65 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
66 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
67 * SUCH DAMAGE.
68 *
69 * $FreeBSD: src/sys/i386/i386/swtch.s,v 1.89.2.10 2003/01/23 03:36:24 ps Exp $
70 */
71
72//#include "use_npx.h"
73
74#include <sys/rtprio.h>
75
76#include <machine/asmacros.h>
77#include <machine/segments.h>
78
79#include <machine/pmap.h>
80#include <machine/lock.h>
81
82#define CHECKNZ(expr, scratch_reg) \
83	movq expr, scratch_reg; testq scratch_reg, scratch_reg; jnz 7f; int $3; 7:
84
85#include "assym.s"
86
87#define MPLOCKED        lock ;
88
89	.data
90
91	.globl	panic
92	.globl	lwkt_switch_return
93
94#if defined(SWTCH_OPTIM_STATS)
95	.globl	swtch_optim_stats, tlb_flush_count
96swtch_optim_stats:	.long	0		/* number of _swtch_optims */
97tlb_flush_count:	.long	0
98#endif
99
100	.text
101
102
103/*
104 * cpu_heavy_switch(struct thread *next_thread)
105 *
106 *	Switch from the current thread to a new thread.  This entry
107 *	is normally called via the thread->td_switch function, and will
108 *	only be called when the current thread is a heavy weight process.
109 *
110 *	Some instructions have been reordered to reduce pipeline stalls.
111 *
112 *	YYY disable interrupts once giant is removed.
113 */
114ENTRY(cpu_heavy_switch)
115	/*
116	 * Save RIP, RSP and callee-saved registers (RBX, RBP, R12-R15).
117	 */
118	movq	PCPU(curthread),%rcx
119	/* On top of the stack is the return adress. */
120	movq	(%rsp),%rax			/* (reorder optimization) */
121	movq	TD_PCB(%rcx),%rdx		/* RDX = PCB */
122	movq	%rax,PCB_RIP(%rdx)		/* return PC may be modified */
123	movq	%rbx,PCB_RBX(%rdx)
124	movq	%rsp,PCB_RSP(%rdx)
125	movq	%rbp,PCB_RBP(%rdx)
126	movq	%r12,PCB_R12(%rdx)
127	movq	%r13,PCB_R13(%rdx)
128	movq	%r14,PCB_R14(%rdx)
129	movq	%r15,PCB_R15(%rdx)
130
131	/*
132	 * Clear the cpu bit in the pmap active mask.  The restore
133	 * function will set the bit in the pmap active mask.
134	 *
135	 * Special case: when switching between threads sharing the
136	 * same vmspace if we avoid clearing the bit we do not have
137	 * to reload %cr3 (if we clear the bit we could race page
138	 * table ops done by other threads and would have to reload
139	 * %cr3, because those ops will not know to IPI us).
140	 */
141	movq	%rcx,%rbx			/* RBX = oldthread */
142	movq	TD_LWP(%rcx),%rcx		/* RCX = oldlwp	*/
143	movq	TD_LWP(%rdi),%r13		/* R13 = newlwp */
144	movq	LWP_VMSPACE(%rcx), %rcx		/* RCX = oldvmspace */
145	testq	%r13,%r13			/* might not be a heavy */
146	jz	1f
147	cmpq	LWP_VMSPACE(%r13),%rcx		/* same vmspace? */
148	je	2f
1491:
150	movq	PCPU(other_cpus)+0, %rax
151	MPLOCKED andq	%rax, VM_PMAP+PM_ACTIVE+0(%rcx)
152	movq	PCPU(other_cpus)+8, %rax
153	MPLOCKED andq	%rax, VM_PMAP+PM_ACTIVE+8(%rcx)
154	movq	PCPU(other_cpus)+16, %rax
155	MPLOCKED andq	%rax, VM_PMAP+PM_ACTIVE+16(%rcx)
156	movq	PCPU(other_cpus)+24, %rax
157	MPLOCKED andq	%rax, VM_PMAP+PM_ACTIVE+24(%rcx)
1582:
159
160	/*
161	 * Push the LWKT switch restore function, which resumes a heavy
162	 * weight process.  Note that the LWKT switcher is based on
163	 * TD_SP, while the heavy weight process switcher is based on
164	 * PCB_RSP.  TD_SP is usually two ints pushed relative to
165	 * PCB_RSP.  We push the flags for later restore by cpu_heavy_restore.
166	 */
167	pushfq
168	movq	$cpu_heavy_restore, %rax
169	pushq	%rax
170	movq	%rsp,TD_SP(%rbx)
171
172	/*
173	 * Save debug regs if necessary
174	 */
175	movq    PCB_FLAGS(%rdx),%rax
176	andq    $PCB_DBREGS,%rax
177	jz      1f                              /* no, skip over */
178	movq    %dr7,%rax                       /* yes, do the save */
179	movq    %rax,PCB_DR7(%rdx)
180	/* JG correct value? */
181	andq    $0x0000fc00, %rax               /* disable all watchpoints */
182	movq    %rax,%dr7
183	movq    %dr6,%rax
184	movq    %rax,PCB_DR6(%rdx)
185	movq    %dr3,%rax
186	movq    %rax,PCB_DR3(%rdx)
187	movq    %dr2,%rax
188	movq    %rax,PCB_DR2(%rdx)
189	movq    %dr1,%rax
190	movq    %rax,PCB_DR1(%rdx)
191	movq    %dr0,%rax
192	movq    %rax,PCB_DR0(%rdx)
1931:
194
195#if 1
196	/*
197	 * Save the FP state if we have used the FP.  Note that calling
198	 * npxsave will NULL out PCPU(npxthread).
199	 */
200	cmpq	%rbx,PCPU(npxthread)
201	jne	1f
202	movq	%rdi,%r12		/* save %rdi. %r12 is callee-saved */
203	movq	TD_SAVEFPU(%rbx),%rdi
204	call	npxsave			/* do it in a big C function */
205	movq	%r12,%rdi		/* restore %rdi */
2061:
207#endif
208
209	/*
210	 * Switch to the next thread, which was passed as an argument
211	 * to cpu_heavy_switch().  The argument is in %rdi.
212	 * Set the current thread, load the stack pointer,
213	 * and 'ret' into the switch-restore function.
214	 *
215	 * The switch restore function expects the new thread to be in %rax
216	 * and the old one to be in %rbx.
217	 *
218	 * There is a one-instruction window where curthread is the new
219	 * thread but %rsp still points to the old thread's stack, but
220	 * we are protected by a critical section so it is ok.
221	 */
222	movq	%rdi,%rax		/* RAX = newtd, RBX = oldtd */
223	movq	%rax,PCPU(curthread)
224	movq	TD_SP(%rax),%rsp
225	CHECKNZ((%rsp), %r9)
226	ret
227
228/*
229 *  cpu_exit_switch(struct thread *next)
230 *
231 *	The switch function is changed to this when a thread is going away
232 *	for good.  We have to ensure that the MMU state is not cached, and
233 *	we don't bother saving the existing thread state before switching.
234 *
235 *	At this point we are in a critical section and this cpu owns the
236 *	thread's token, which serves as an interlock until the switchout is
237 *	complete.
238 */
239ENTRY(cpu_exit_switch)
240	/*
241	 * Get us out of the vmspace
242	 */
243#if 0
244	movq	KPML4phys,%rcx
245	movq	%cr3,%rax
246	cmpq	%rcx,%rax
247	je	1f
248	/* JG no increment of statistics counters? see cpu_heavy_restore */
249	movq	%rcx,%cr3
2501:
251#endif
252	movq	PCPU(curthread),%rbx
253
254	/*
255	 * If this is a process/lwp, deactivate the pmap after we've
256	 * switched it out.
257	 */
258	movq	TD_LWP(%rbx),%rcx
259	testq	%rcx,%rcx
260	jz	2f
261	movq	LWP_VMSPACE(%rcx), %rcx		/* RCX = vmspace */
262	movq	PCPU(other_cpus)+0, %rax
263	MPLOCKED andq	%rax, VM_PMAP+PM_ACTIVE+0(%rcx)
264	movq	PCPU(other_cpus)+8, %rax
265	MPLOCKED andq	%rax, VM_PMAP+PM_ACTIVE+8(%rcx)
266	movq	PCPU(other_cpus)+16, %rax
267	MPLOCKED andq	%rax, VM_PMAP+PM_ACTIVE+16(%rcx)
268	movq	PCPU(other_cpus)+24, %rax
269	MPLOCKED andq	%rax, VM_PMAP+PM_ACTIVE+24(%rcx)
2702:
271	/*
272	 * Switch to the next thread.  RET into the restore function, which
273	 * expects the new thread in RAX and the old in RBX.
274	 *
275	 * There is a one-instruction window where curthread is the new
276	 * thread but %rsp still points to the old thread's stack, but
277	 * we are protected by a critical section so it is ok.
278	 */
279	movq	%rdi,%rax
280	movq	%rax,PCPU(curthread)
281	movq	TD_SP(%rax),%rsp
282	CHECKNZ((%rsp), %r9)
283	ret
284
285/*
286 * cpu_heavy_restore()	(current thread in %rax on entry, %rbx is old thread)
287 *
288 *	Restore the thread after an LWKT switch.  This entry is normally
289 *	called via the LWKT switch restore function, which was pulled
290 *	off the thread stack and jumped to.
291 *
292 *	This entry is only called if the thread was previously saved
293 *	using cpu_heavy_switch() (the heavy weight process thread switcher),
294 *	or when a new process is initially scheduled.
295 *
296 *	NOTE: The lwp may be in any state, not necessarily LSRUN, because
297 *	a preemption switch may interrupt the process and then return via
298 *	cpu_heavy_restore.
299 *
300 *	YYY theoretically we do not have to restore everything here, a lot
301 *	of this junk can wait until we return to usermode.  But for now
302 *	we restore everything.
303 *
304 *	YYY the PCB crap is really crap, it makes startup a bitch because
305 *	we can't switch away.
306 *
307 *	YYY note: spl check is done in mi_switch when it splx()'s.
308 */
309
310ENTRY(cpu_heavy_restore)
311	popfq
312	movq	TD_PCB(%rax),%rdx		/* RDX = PCB */
313
314#if defined(SWTCH_OPTIM_STATS)
315	incl	_swtch_optim_stats
316#endif
317	/*
318	 * Tell the pmap that our cpu is using the VMSPACE now.  We cannot
319	 * safely test/reload %cr3 until after we have set the bit in the
320	 * pmap (remember, we do not hold the MP lock in the switch code).
321	 */
322	movq	TD_LWP(%rax),%rcx
323	movq	LWP_VMSPACE(%rcx), %rcx		/* RCX = vmspace */
324
325	movq	PCPU(cpumask)+0, %rsi
326	MPLOCKED orq	%rsi, VM_PMAP+PM_ACTIVE+0(%rcx)
327	movq	PCPU(cpumask)+8, %rsi
328	MPLOCKED orq	%rsi, VM_PMAP+PM_ACTIVE+8(%rcx)
329	movq	PCPU(cpumask)+16, %rsi
330	MPLOCKED orq	%rsi, VM_PMAP+PM_ACTIVE+16(%rcx)
331	movq	PCPU(cpumask)+24, %rsi
332	MPLOCKED orq	%rsi, VM_PMAP+PM_ACTIVE+24(%rcx)
333
334	movl    VM_PMAP+PM_ACTIVE_LOCK(%rcx),%esi
335	testl	$CPULOCK_EXCL,%esi
336	jz	1f
337
338	movq    %rax,%r12		/* save newthread ptr */
339	movq    %rcx,%rdi               /* (found to be set) */
340	call    pmap_interlock_wait     /* pmap_interlock_wait(%rdi:vm) */
341	movq    %r12,%rax
342	movq    TD_PCB(%rax),%rdx       /* RDX = PCB */
3431:
344	/*
345	 * Restore the MMU address space.  If it is the same as the last
346	 * thread we don't have to invalidate the tlb (i.e. reload cr3).
347	 * YYY which naturally also means that the PM_ACTIVE bit had better
348	 * already have been set before we set it above, check? YYY
349	 */
350#if 0
351	movq	%cr3,%rsi
352	movq	PCB_CR3(%rdx),%rcx
353	cmpq	%rsi,%rcx
354	je	4f
355#if defined(SWTCH_OPTIM_STATS)
356	decl	_swtch_optim_stats
357	incl	_tlb_flush_count
358#endif
359	movq	%rcx,%cr3
3604:
361#endif
362	/*
363	 * NOTE: %rbx is the previous thread and %rax is the new thread.
364	 *	 %rbx is retained throughout so we can return it.
365	 *
366	 *	 lwkt_switch[_return] is responsible for handling TDF_RUNNING.
367	 */
368
369#if 0
370	/*
371	 * Deal with the PCB extension, restore the private tss
372	 */
373	movq	PCB_EXT(%rdx),%rdi	/* check for a PCB extension */
374	movq	$1,%rcx			/* maybe mark use of a private tss */
375	testq	%rdi,%rdi
376#if JG
377	jnz	2f
378#endif
379
380	/* JG
381	 * Going back to the common_tss.  We may need to update TSS_ESP0
382	 * which sets the top of the supervisor stack when entering from
383	 * usermode.  The PCB is at the top of the stack but we need another
384	 * 16 bytes to take vm86 into account.
385	 */
386	leaq	-16(%rdx),%rcx
387	movq	%rcx, PCPU(common_tss) + TSS_RSP0
388	movq	%rcx, PCPU(rsp0)
389
390#if JG
391	cmpl	$0,PCPU(private_tss)	/* don't have to reload if      */
392	je	3f			/* already using the common TSS */
393
394	/* JG? */
395	subq	%rcx,%rcx		/* unmark use of private tss */
396
397	/*
398	 * Get the address of the common TSS descriptor for the ltr.
399	 * There is no way to get the address of a segment-accessed variable
400	 * so we store a self-referential pointer at the base of the per-cpu
401	 * data area and add the appropriate offset.
402	 */
403	/* JG movl? */
404	movq	$gd_common_tssd, %rdi
405	/* JG name for "%gs:0"? */
406	addq	%gs:0, %rdi
407
408	/*
409	 * Move the correct TSS descriptor into the GDT slot, then reload
410	 * ltr.
411	 */
4122:
413	/* JG */
414	movl	%rcx,PCPU(private_tss)		/* mark/unmark private tss */
415	movq	PCPU(tss_gdt), %rcx		/* entry in GDT */
416	movq	0(%rdi), %rax
417	movq	%rax, 0(%rcx)
418	movl	$GPROC0_SEL*8, %esi		/* GSEL(entry, SEL_KPL) */
419	ltr	%si
420#endif
421
4223:
423#endif
424#if 0
425	/*
426	 * Restore the user %gs and %fs
427	 */
428	movq	PCB_FSBASE(%rdx),%r9
429	cmpq	PCPU(user_fs),%r9
430	je	4f
431	movq	%rdx,%r10
432	movq	%r9,PCPU(user_fs)
433	movl	$MSR_FSBASE,%ecx
434	movl	PCB_FSBASE(%r10),%eax
435	movl	PCB_FSBASE+4(%r10),%edx
436	wrmsr
437	movq	%r10,%rdx
4384:
439	movq	PCB_GSBASE(%rdx),%r9
440	cmpq	PCPU(user_gs),%r9
441	je	5f
442	movq	%rdx,%r10
443	movq	%r9,PCPU(user_gs)
444	movl	$MSR_KGSBASE,%ecx	/* later swapgs moves it to GSBASE */
445	movl	PCB_GSBASE(%r10),%eax
446	movl	PCB_GSBASE+4(%r10),%edx
447	wrmsr
448	movq	%r10,%rdx
4495:
450#endif
451
452	/*
453	 * Restore general registers.  %rbx is restored later.
454	 */
455	movq	PCB_RSP(%rdx), %rsp
456	movq	PCB_RBP(%rdx), %rbp
457	movq	PCB_R12(%rdx), %r12
458	movq	PCB_R13(%rdx), %r13
459	movq	PCB_R14(%rdx), %r14
460	movq	PCB_R15(%rdx), %r15
461	movq	PCB_RIP(%rdx), %rax
462	movq	%rax, (%rsp)
463
464#if 0
465	/*
466	 * Restore the user LDT if we have one
467	 */
468	cmpl	$0, PCB_USERLDT(%edx)
469	jnz	1f
470	movl	_default_ldt,%eax
471	cmpl	PCPU(currentldt),%eax
472	je	2f
473	lldt	_default_ldt
474	movl	%eax,PCPU(currentldt)
475	jmp	2f
4761:	pushl	%edx
477	call	set_user_ldt
478	popl	%edx
4792:
480#endif
481#if 0
482	/*
483	 * Restore the user TLS if we have one
484	 */
485	pushl	%edx
486	call	set_user_TLS
487	popl	%edx
488#endif
489
490	/*
491	 * Restore the DEBUG register state if necessary.
492	 */
493	movq    PCB_FLAGS(%rdx),%rax
494	andq    $PCB_DBREGS,%rax
495	jz      1f                              /* no, skip over */
496	movq    PCB_DR6(%rdx),%rax              /* yes, do the restore */
497	movq    %rax,%dr6
498	movq    PCB_DR3(%rdx),%rax
499	movq    %rax,%dr3
500	movq    PCB_DR2(%rdx),%rax
501	movq    %rax,%dr2
502	movq    PCB_DR1(%rdx),%rax
503	movq    %rax,%dr1
504	movq    PCB_DR0(%rdx),%rax
505	movq    %rax,%dr0
506	movq	%dr7,%rax                /* load dr7 so as not to disturb */
507	/* JG correct value? */
508	andq    $0x0000fc00,%rax         /*   reserved bits               */
509	/* JG we've got more registers on x86_64 */
510	movq    PCB_DR7(%rdx),%rcx
511	/* JG correct value? */
512	andq	$~0x0000fc00,%rcx
513	orq     %rcx,%rax
514	movq    %rax,%dr7
5151:
516	movq	%rbx,%rax
517	movq	PCB_RBX(%rdx),%rbx
518
519	CHECKNZ((%rsp), %r9)
520	ret
521
522/*
523 * savectx(struct pcb *pcb)
524 *
525 * Update pcb, saving current processor state.
526 */
527ENTRY(savectx)
528	/* fetch PCB */
529	/* JG use %rdi instead of %rcx everywhere? */
530	movq	%rdi,%rcx
531
532	/* caller's return address - child won't execute this routine */
533	movq	(%rsp),%rax
534	movq	%rax,PCB_RIP(%rcx)
535	movq	%rbx,PCB_RBX(%rcx)
536	movq	%rsp,PCB_RSP(%rcx)
537	movq	%rbp,PCB_RBP(%rcx)
538	movq	%r12,PCB_R12(%rcx)
539	movq	%r13,PCB_R13(%rcx)
540	movq	%r14,PCB_R14(%rcx)
541	movq	%r15,PCB_R15(%rcx)
542
543#if 1
544	/*
545	 * If npxthread == NULL, then the npx h/w state is irrelevant and the
546	 * state had better already be in the pcb.  This is true for forks
547	 * but not for dumps (the old book-keeping with FP flags in the pcb
548	 * always lost for dumps because the dump pcb has 0 flags).
549	 *
550	 * If npxthread != NULL, then we have to save the npx h/w state to
551	 * npxthread's pcb and copy it to the requested pcb, or save to the
552	 * requested pcb and reload.  Copying is easier because we would
553	 * have to handle h/w bugs for reloading.  We used to lose the
554	 * parent's npx state for forks by forgetting to reload.
555	 */
556	movq	PCPU(npxthread),%rax
557	testq	%rax,%rax
558	jz	1f
559
560	pushq	%rcx			/* target pcb */
561	movq	TD_SAVEFPU(%rax),%rax	/* originating savefpu area */
562	pushq	%rax
563
564	movq	%rax,%rdi
565	call	npxsave
566
567	popq	%rax
568	popq	%rcx
569
570	movq	$PCB_SAVEFPU_SIZE,%rdx
571	leaq    PCB_SAVEFPU(%rcx),%rcx
572	movq	%rcx,%rsi
573	movq	%rax,%rdi
574	call	bcopy
575#endif
576
5771:
578	CHECKNZ((%rsp), %r9)
579	ret
580
581/*
582 * cpu_idle_restore()	(current thread in %rax on entry) (one-time execution)
583 *			(old thread is %rbx on entry)
584 *
585 *	Don't bother setting up any regs other than %rbp so backtraces
586 *	don't die.  This restore function is used to bootstrap into the
587 *	cpu_idle() LWKT only, after that cpu_lwkt_*() will be used for
588 *	switching.
589 *
590 *	Clear TDF_RUNNING in old thread only after we've cleaned up %cr3.
591 *	This only occurs during system boot so no special handling is
592 *	required for migration.
593 *
594 *	If we are an AP we have to call ap_init() before jumping to
595 *	cpu_idle().  ap_init() will synchronize with the BP and finish
596 *	setting up various ncpu-dependant globaldata fields.  This may
597 *	happen on UP as well as SMP if we happen to be simulating multiple
598 *	cpus.
599 */
600ENTRY(cpu_idle_restore)
601	/* cli */
602	/* JG xor? */
603	movl	$0,%ebp
604	/* JG push RBP? */
605	pushq	$0
606	cmpl    $0,PCPU(cpuid)
607	je      1f
608	andl	$~TDF_RUNNING,TD_FLAGS(%rbx)
609	orl	$TDF_RUNNING,TD_FLAGS(%rax)	/* manual, no switch_return */
610	call	ap_init
611	/* sti */
612	jmp	cpu_idle
613
614	/*
615	 * cpu 0's idle thread entry for the first time must use normal
616	 * lwkt_switch_return() semantics or a pending cpu migration on
617	 * thread0 will deadlock.
618	 */
6191:
620	pushq	%rax
621	movq	%rbx,%rdi
622	call	lwkt_switch_return
623	popq	%rax
624	jmp	cpu_idle
625
626/*
627 * cpu_kthread_restore() (current thread is %rax on entry) (one-time execution)
628 *			 (old thread is %rbx on entry)
629 *
630 *	Don't bother setting up any regs other then %rbp so backtraces
631 *	don't die.  This restore function is used to bootstrap into an
632 *	LWKT based kernel thread only.  cpu_lwkt_switch() will be used
633 *	after this.
634 *
635 *	Because this switch target does not 'return' to lwkt_switch()
636 *	we have to call lwkt_switch_return(otd) to clean up otd.
637 *	otd is in %ebx.
638 *
639 *	Since all of our context is on the stack we are reentrant and
640 *	we can release our critical section and enable interrupts early.
641 */
642ENTRY(cpu_kthread_restore)
643	/*sti*/
644	movq	TD_PCB(%rax),%r13
645	movq	$0,%rbp
646
647	/*
648	 * rax and rbx come from the switchout code.  Call
649	 * lwkt_switch_return(otd).
650	 *
651	 * NOTE: unlike i386, %rsi and %rdi are not call-saved regs.
652	 */
653	pushq	%rax
654	movq	%rbx,%rdi
655	call	lwkt_switch_return
656	popq	%rax
657	decl	TD_CRITCOUNT(%rax)
658	movq	PCB_R12(%r13),%rdi	/* argument to RBX function */
659	movq	PCB_RBX(%r13),%rax	/* thread function */
660	/* note: top of stack return address inherited by function */
661	CHECKNZ(%rax, %r9)
662	jmp	*%rax
663
664/*
665 * cpu_lwkt_switch(struct thread *)
666 *
667 *	Standard LWKT switching function.  Only non-scratch registers are
668 *	saved and we don't bother with the MMU state or anything else.
669 *
670 *	This function is always called while in a critical section.
671 *
672 *	There is a one-instruction window where curthread is the new
673 *	thread but %rsp still points to the old thread's stack, but
674 *	we are protected by a critical section so it is ok.
675 *
676 *	YYY BGL, SPL
677 */
678ENTRY(cpu_lwkt_switch)
679	pushq	%rbp	/* JG note: GDB hacked to locate ebp relative to td_sp */
680	/* JG we've got more registers on x86_64 */
681	pushq	%rbx
682	movq	PCPU(curthread),%rbx
683	pushq	%r12
684	pushq	%r13
685	pushq	%r14
686	pushq	%r15
687	pushfq
688
689#if 1
690	/*
691	 * Save the FP state if we have used the FP.  Note that calling
692	 * npxsave will NULL out PCPU(npxthread).
693	 *
694	 * We have to deal with the FP state for LWKT threads in case they
695	 * happen to get preempted or block while doing an optimized
696	 * bzero/bcopy/memcpy.
697	 */
698	cmpq	%rbx,PCPU(npxthread)
699	jne	1f
700	movq	%rdi,%r12		/* save %rdi. %r12 is callee-saved */
701	movq	TD_SAVEFPU(%rbx),%rdi
702	call	npxsave			/* do it in a big C function */
703	movq	%r12,%rdi		/* restore %rdi */
7041:
705#endif
706
707	movq	%rdi,%rax		/* switch to this thread */
708	pushq	$cpu_lwkt_restore
709	movq	%rsp,TD_SP(%rbx)
710	movq	%rax,PCPU(curthread)
711	movq	TD_SP(%rax),%rsp
712
713	/*
714	 * %rax contains new thread, %rbx contains old thread.
715	 */
716	CHECKNZ((%rsp), %r9)
717	ret
718
719/*
720 * cpu_lwkt_restore()	(current thread in %rax on entry)
721 *
722 *	Standard LWKT restore function.  This function is always called
723 *	while in a critical section.
724 *
725 *	Warning: due to preemption the restore function can be used to
726 *	'return' to the original thread.  Interrupt disablement must be
727 *	protected through the switch so we cannot run splz here.
728 */
729ENTRY(cpu_lwkt_restore)
730	/*
731	 * NOTE: %rbx is the previous thread and %eax is the new thread.
732	 *	 %rbx is retained throughout so we can return it.
733	 *
734	 *	 lwkt_switch[_return] is responsible for handling TDF_RUNNING.
735	 */
736	movq	%rbx,%rax
737	popfq
738	popq	%r15
739	popq	%r14
740	popq	%r13
741	popq	%r12
742	popq	%rbx
743	popq	%rbp
744	ret
745
746/*
747 * bootstrap_idle()
748 *
749 * Make AP become the idle loop.
750 */
751ENTRY(bootstrap_idle)
752	movq	PCPU(curthread),%rax
753	movq	%rax,%rbx
754	movq	TD_SP(%rax),%rsp
755	ret
756