1/*
2 * Copyright (c) 2003,2004,2008 The DragonFly Project.  All rights reserved.
3 * Copyright (c) 2008 Jordan Gordeev.
4 *
5 * This code is derived from software contributed to The DragonFly Project
6 * by Matthew Dillon <dillon@backplane.com>
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in
16 *    the documentation and/or other materials provided with the
17 *    distribution.
18 * 3. Neither the name of The DragonFly Project nor the names of its
19 *    contributors may be used to endorse or promote products derived
20 *    from this software without specific, prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
26 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * Copyright (c) 1990 The Regents of the University of California.
36 * All rights reserved.
37 *
38 * This code is derived from software contributed to Berkeley by
39 * William Jolitz.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 *    notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 *    notice, this list of conditions and the following disclaimer in the
48 *    documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 *    may be used to endorse or promote products derived from this software
51 *    without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * $FreeBSD: src/sys/i386/i386/swtch.s,v 1.89.2.10 2003/01/23 03:36:24 ps Exp $
66 */
67
68//#include "use_npx.h"
69
70#include <sys/rtprio.h>
71
72#include <machine/asmacros.h>
73#include <machine/segments.h>
74
75#include <machine/pmap.h>
76#include <machine/lock.h>
77
78#define CHECKNZ(expr, scratch_reg) \
79	movq expr, scratch_reg; testq scratch_reg, scratch_reg; jnz 7f; int $3; 7:
80
81#include "assym.s"
82
83#define MPLOCKED        lock ;
84
85	.data
86
87	.globl	panic
88	.globl	lwkt_switch_return
89
90#if defined(SWTCH_OPTIM_STATS)
91	.globl	swtch_optim_stats, tlb_flush_count
92swtch_optim_stats:	.long	0		/* number of _swtch_optims */
93tlb_flush_count:	.long	0
94#endif
95
96	.text
97
98
99/*
100 * cpu_heavy_switch(struct thread *next_thread)
101 *
102 *	Switch from the current thread to a new thread.  This entry
103 *	is normally called via the thread->td_switch function, and will
104 *	only be called when the current thread is a heavy weight process.
105 *
106 *	Some instructions have been reordered to reduce pipeline stalls.
107 *
108 *	YYY disable interrupts once giant is removed.
109 */
110ENTRY(cpu_heavy_switch)
111	/*
112	 * Save RIP, RSP and callee-saved registers (RBX, RBP, R12-R15).
113	 */
114	movq	PCPU(curthread),%rcx
115	/* On top of the stack is the return adress. */
116	movq	(%rsp),%rax			/* (reorder optimization) */
117	movq	TD_PCB(%rcx),%rdx		/* RDX = PCB */
118	movq	%rax,PCB_RIP(%rdx)		/* return PC may be modified */
119	movq	%rbx,PCB_RBX(%rdx)
120	movq	%rsp,PCB_RSP(%rdx)
121	movq	%rbp,PCB_RBP(%rdx)
122	movq	%r12,PCB_R12(%rdx)
123	movq	%r13,PCB_R13(%rdx)
124	movq	%r14,PCB_R14(%rdx)
125	movq	%r15,PCB_R15(%rdx)
126
127	/*
128	 * Clear the cpu bit in the pmap active mask.  The restore
129	 * function will set the bit in the pmap active mask.
130	 *
131	 * Special case: when switching between threads sharing the
132	 * same vmspace if we avoid clearing the bit we do not have
133	 * to reload %cr3 (if we clear the bit we could race page
134	 * table ops done by other threads and would have to reload
135	 * %cr3, because those ops will not know to IPI us).
136	 */
137	movq	%rcx,%rbx			/* RBX = oldthread */
138	movq	TD_LWP(%rcx),%rcx		/* RCX = oldlwp	*/
139	movq	TD_LWP(%rdi),%r13		/* R13 = newlwp */
140	movq	LWP_VMSPACE(%rcx), %rcx		/* RCX = oldvmspace */
141	testq	%r13,%r13			/* might not be a heavy */
142	jz	1f
143	cmpq	LWP_VMSPACE(%r13),%rcx		/* same vmspace? */
144	je	2f
1451:
146	movq	PCPU(other_cpus)+0, %rax
147	MPLOCKED andq	%rax, VM_PMAP+PM_ACTIVE+0(%rcx)
148	movq	PCPU(other_cpus)+8, %rax
149	MPLOCKED andq	%rax, VM_PMAP+PM_ACTIVE+8(%rcx)
150	movq	PCPU(other_cpus)+16, %rax
151	MPLOCKED andq	%rax, VM_PMAP+PM_ACTIVE+16(%rcx)
152	movq	PCPU(other_cpus)+24, %rax
153	MPLOCKED andq	%rax, VM_PMAP+PM_ACTIVE+24(%rcx)
1542:
155
156	/*
157	 * Push the LWKT switch restore function, which resumes a heavy
158	 * weight process.  Note that the LWKT switcher is based on
159	 * TD_SP, while the heavy weight process switcher is based on
160	 * PCB_RSP.  TD_SP is usually two ints pushed relative to
161	 * PCB_RSP.  We push the flags for later restore by cpu_heavy_restore.
162	 */
163	pushfq
164	movq	$cpu_heavy_restore, %rax
165	pushq	%rax
166	movq	%rsp,TD_SP(%rbx)
167
168	/*
169	 * Save debug regs if necessary
170	 */
171	movq    PCB_FLAGS(%rdx),%rax
172	andq    $PCB_DBREGS,%rax
173	jz      1f                              /* no, skip over */
174	movq    %dr7,%rax                       /* yes, do the save */
175	movq    %rax,PCB_DR7(%rdx)
176	/* JG correct value? */
177	andq    $0x0000fc00, %rax               /* disable all watchpoints */
178	movq    %rax,%dr7
179	movq    %dr6,%rax
180	movq    %rax,PCB_DR6(%rdx)
181	movq    %dr3,%rax
182	movq    %rax,PCB_DR3(%rdx)
183	movq    %dr2,%rax
184	movq    %rax,PCB_DR2(%rdx)
185	movq    %dr1,%rax
186	movq    %rax,PCB_DR1(%rdx)
187	movq    %dr0,%rax
188	movq    %rax,PCB_DR0(%rdx)
1891:
190
191#if 1
192	/*
193	 * Save the FP state if we have used the FP.  Note that calling
194	 * npxsave will NULL out PCPU(npxthread).
195	 */
196	cmpq	%rbx,PCPU(npxthread)
197	jne	1f
198	movq	%rdi,%r12		/* save %rdi. %r12 is callee-saved */
199	movq	TD_SAVEFPU(%rbx),%rdi
200	call	npxsave			/* do it in a big C function */
201	movq	%r12,%rdi		/* restore %rdi */
2021:
203#endif
204
205	/*
206	 * Switch to the next thread, which was passed as an argument
207	 * to cpu_heavy_switch().  The argument is in %rdi.
208	 * Set the current thread, load the stack pointer,
209	 * and 'ret' into the switch-restore function.
210	 *
211	 * The switch restore function expects the new thread to be in %rax
212	 * and the old one to be in %rbx.
213	 *
214	 * There is a one-instruction window where curthread is the new
215	 * thread but %rsp still points to the old thread's stack, but
216	 * we are protected by a critical section so it is ok.
217	 */
218	movq	%rdi,%rax		/* RAX = newtd, RBX = oldtd */
219	movq	%rax,PCPU(curthread)
220	movq	TD_SP(%rax),%rsp
221	CHECKNZ((%rsp), %r9)
222	ret
223
224/*
225 *  cpu_exit_switch(struct thread *next)
226 *
227 *	The switch function is changed to this when a thread is going away
228 *	for good.  We have to ensure that the MMU state is not cached, and
229 *	we don't bother saving the existing thread state before switching.
230 *
231 *	At this point we are in a critical section and this cpu owns the
232 *	thread's token, which serves as an interlock until the switchout is
233 *	complete.
234 */
235ENTRY(cpu_exit_switch)
236	/*
237	 * Get us out of the vmspace
238	 */
239#if 0
240	movq	KPML4phys,%rcx
241	movq	%cr3,%rax
242	cmpq	%rcx,%rax
243	je	1f
244	/* JG no increment of statistics counters? see cpu_heavy_restore */
245	movq	%rcx,%cr3
2461:
247#endif
248	movq	PCPU(curthread),%rbx
249
250	/*
251	 * If this is a process/lwp, deactivate the pmap after we've
252	 * switched it out.
253	 */
254	movq	TD_LWP(%rbx),%rcx
255	testq	%rcx,%rcx
256	jz	2f
257	movq	LWP_VMSPACE(%rcx), %rcx		/* RCX = vmspace */
258	movq	PCPU(other_cpus)+0, %rax
259	MPLOCKED andq	%rax, VM_PMAP+PM_ACTIVE+0(%rcx)
260	movq	PCPU(other_cpus)+8, %rax
261	MPLOCKED andq	%rax, VM_PMAP+PM_ACTIVE+8(%rcx)
262	movq	PCPU(other_cpus)+16, %rax
263	MPLOCKED andq	%rax, VM_PMAP+PM_ACTIVE+16(%rcx)
264	movq	PCPU(other_cpus)+24, %rax
265	MPLOCKED andq	%rax, VM_PMAP+PM_ACTIVE+24(%rcx)
2662:
267	/*
268	 * Switch to the next thread.  RET into the restore function, which
269	 * expects the new thread in RAX and the old in RBX.
270	 *
271	 * There is a one-instruction window where curthread is the new
272	 * thread but %rsp still points to the old thread's stack, but
273	 * we are protected by a critical section so it is ok.
274	 */
275	movq	%rdi,%rax
276	movq	%rax,PCPU(curthread)
277	movq	TD_SP(%rax),%rsp
278	CHECKNZ((%rsp), %r9)
279	ret
280
281/*
282 * cpu_heavy_restore()	(current thread in %rax on entry, %rbx is old thread)
283 *
284 *	Restore the thread after an LWKT switch.  This entry is normally
285 *	called via the LWKT switch restore function, which was pulled
286 *	off the thread stack and jumped to.
287 *
288 *	This entry is only called if the thread was previously saved
289 *	using cpu_heavy_switch() (the heavy weight process thread switcher),
290 *	or when a new process is initially scheduled.
291 *
292 *	NOTE: The lwp may be in any state, not necessarily LSRUN, because
293 *	a preemption switch may interrupt the process and then return via
294 *	cpu_heavy_restore.
295 *
296 *	YYY theoretically we do not have to restore everything here, a lot
297 *	of this junk can wait until we return to usermode.  But for now
298 *	we restore everything.
299 *
300 *	YYY the PCB crap is really crap, it makes startup a bitch because
301 *	we can't switch away.
302 *
303 *	YYY note: spl check is done in mi_switch when it splx()'s.
304 */
305
306ENTRY(cpu_heavy_restore)
307	popfq
308	movq	TD_PCB(%rax),%rdx		/* RDX = PCB */
309
310#if defined(SWTCH_OPTIM_STATS)
311	incl	_swtch_optim_stats
312#endif
313	/*
314	 * Tell the pmap that our cpu is using the VMSPACE now.  We cannot
315	 * safely test/reload %cr3 until after we have set the bit in the
316	 * pmap (remember, we do not hold the MP lock in the switch code).
317	 */
318	movq	TD_LWP(%rax),%rcx
319	movq	LWP_VMSPACE(%rcx), %rcx		/* RCX = vmspace */
320
321	movq	PCPU(cpumask)+0, %rsi
322	MPLOCKED orq	%rsi, VM_PMAP+PM_ACTIVE+0(%rcx)
323	movq	PCPU(cpumask)+8, %rsi
324	MPLOCKED orq	%rsi, VM_PMAP+PM_ACTIVE+8(%rcx)
325	movq	PCPU(cpumask)+16, %rsi
326	MPLOCKED orq	%rsi, VM_PMAP+PM_ACTIVE+16(%rcx)
327	movq	PCPU(cpumask)+24, %rsi
328	MPLOCKED orq	%rsi, VM_PMAP+PM_ACTIVE+24(%rcx)
329
330	movl    VM_PMAP+PM_ACTIVE_LOCK(%rcx),%esi
331	testl	$CPULOCK_EXCL,%esi
332	jz	1f
333
334	movq    %rax,%r12		/* save newthread ptr */
335	movq    %rcx,%rdi               /* (found to be set) */
336	call    pmap_interlock_wait     /* pmap_interlock_wait(%rdi:vm) */
337	movq    %r12,%rax
338	movq    TD_PCB(%rax),%rdx       /* RDX = PCB */
3391:
340	/*
341	 * Restore the MMU address space.  If it is the same as the last
342	 * thread we don't have to invalidate the tlb (i.e. reload cr3).
343	 * YYY which naturally also means that the PM_ACTIVE bit had better
344	 * already have been set before we set it above, check? YYY
345	 */
346#if 0
347	movq	%cr3,%rsi
348	movq	PCB_CR3(%rdx),%rcx
349	cmpq	%rsi,%rcx
350	je	4f
351#if defined(SWTCH_OPTIM_STATS)
352	decl	_swtch_optim_stats
353	incl	_tlb_flush_count
354#endif
355	movq	%rcx,%cr3
3564:
357#endif
358	/*
359	 * NOTE: %rbx is the previous thread and %rax is the new thread.
360	 *	 %rbx is retained throughout so we can return it.
361	 *
362	 *	 lwkt_switch[_return] is responsible for handling TDF_RUNNING.
363	 */
364
365#if 0
366	/*
367	 * Deal with the PCB extension, restore the private tss
368	 */
369	movq	PCB_EXT(%rdx),%rdi	/* check for a PCB extension */
370	movq	$1,%rcx			/* maybe mark use of a private tss */
371	testq	%rdi,%rdi
372#if JG
373	jnz	2f
374#endif
375
376	/* JG
377	 * Going back to the common_tss.  We may need to update TSS_ESP0
378	 * which sets the top of the supervisor stack when entering from
379	 * usermode.  The PCB is at the top of the stack but we need another
380	 * 16 bytes to take vm86 into account.
381	 */
382	leaq	-16(%rdx),%rcx
383	movq	%rcx, PCPU(common_tss) + TSS_RSP0
384	movq	%rcx, PCPU(rsp0)
385
386#if JG
387	cmpl	$0,PCPU(private_tss)	/* don't have to reload if      */
388	je	3f			/* already using the common TSS */
389
390	/* JG? */
391	subq	%rcx,%rcx		/* unmark use of private tss */
392
393	/*
394	 * Get the address of the common TSS descriptor for the ltr.
395	 * There is no way to get the address of a segment-accessed variable
396	 * so we store a self-referential pointer at the base of the per-cpu
397	 * data area and add the appropriate offset.
398	 */
399	/* JG movl? */
400	movq	$gd_common_tssd, %rdi
401	/* JG name for "%gs:0"? */
402	addq	%gs:0, %rdi
403
404	/*
405	 * Move the correct TSS descriptor into the GDT slot, then reload
406	 * ltr.
407	 */
4082:
409	/* JG */
410	movl	%rcx,PCPU(private_tss)		/* mark/unmark private tss */
411	movq	PCPU(tss_gdt), %rcx		/* entry in GDT */
412	movq	0(%rdi), %rax
413	movq	%rax, 0(%rcx)
414	movl	$GPROC0_SEL*8, %esi		/* GSEL(entry, SEL_KPL) */
415	ltr	%si
416#endif
417
4183:
419#endif
420#if 0
421	/*
422	 * Restore the user %gs and %fs
423	 */
424	movq	PCB_FSBASE(%rdx),%r9
425	cmpq	PCPU(user_fs),%r9
426	je	4f
427	movq	%rdx,%r10
428	movq	%r9,PCPU(user_fs)
429	movl	$MSR_FSBASE,%ecx
430	movl	PCB_FSBASE(%r10),%eax
431	movl	PCB_FSBASE+4(%r10),%edx
432	wrmsr
433	movq	%r10,%rdx
4344:
435	movq	PCB_GSBASE(%rdx),%r9
436	cmpq	PCPU(user_gs),%r9
437	je	5f
438	movq	%rdx,%r10
439	movq	%r9,PCPU(user_gs)
440	movl	$MSR_KGSBASE,%ecx	/* later swapgs moves it to GSBASE */
441	movl	PCB_GSBASE(%r10),%eax
442	movl	PCB_GSBASE+4(%r10),%edx
443	wrmsr
444	movq	%r10,%rdx
4455:
446#endif
447
448	/*
449	 * Restore general registers.  %rbx is restored later.
450	 */
451	movq	PCB_RSP(%rdx), %rsp
452	movq	PCB_RBP(%rdx), %rbp
453	movq	PCB_R12(%rdx), %r12
454	movq	PCB_R13(%rdx), %r13
455	movq	PCB_R14(%rdx), %r14
456	movq	PCB_R15(%rdx), %r15
457	movq	PCB_RIP(%rdx), %rax
458	movq	%rax, (%rsp)
459
460#if 0
461	/*
462	 * Restore the user LDT if we have one
463	 */
464	cmpl	$0, PCB_USERLDT(%edx)
465	jnz	1f
466	movl	_default_ldt,%eax
467	cmpl	PCPU(currentldt),%eax
468	je	2f
469	lldt	_default_ldt
470	movl	%eax,PCPU(currentldt)
471	jmp	2f
4721:	pushl	%edx
473	call	set_user_ldt
474	popl	%edx
4752:
476#endif
477#if 0
478	/*
479	 * Restore the user TLS if we have one
480	 */
481	pushl	%edx
482	call	set_user_TLS
483	popl	%edx
484#endif
485
486	/*
487	 * Restore the DEBUG register state if necessary.
488	 */
489	movq    PCB_FLAGS(%rdx),%rax
490	andq    $PCB_DBREGS,%rax
491	jz      1f                              /* no, skip over */
492	movq    PCB_DR6(%rdx),%rax              /* yes, do the restore */
493	movq    %rax,%dr6
494	movq    PCB_DR3(%rdx),%rax
495	movq    %rax,%dr3
496	movq    PCB_DR2(%rdx),%rax
497	movq    %rax,%dr2
498	movq    PCB_DR1(%rdx),%rax
499	movq    %rax,%dr1
500	movq    PCB_DR0(%rdx),%rax
501	movq    %rax,%dr0
502	movq	%dr7,%rax                /* load dr7 so as not to disturb */
503	/* JG correct value? */
504	andq    $0x0000fc00,%rax         /*   reserved bits               */
505	/* JG we've got more registers on x86_64 */
506	movq    PCB_DR7(%rdx),%rcx
507	/* JG correct value? */
508	andq	$~0x0000fc00,%rcx
509	orq     %rcx,%rax
510	movq    %rax,%dr7
5111:
512	movq	%rbx,%rax
513	movq	PCB_RBX(%rdx),%rbx
514
515	CHECKNZ((%rsp), %r9)
516	ret
517
518/*
519 * savectx(struct pcb *pcb)
520 *
521 * Update pcb, saving current processor state.
522 */
523ENTRY(savectx)
524	/* fetch PCB */
525	/* JG use %rdi instead of %rcx everywhere? */
526	movq	%rdi,%rcx
527
528	/* caller's return address - child won't execute this routine */
529	movq	(%rsp),%rax
530	movq	%rax,PCB_RIP(%rcx)
531	movq	%rbx,PCB_RBX(%rcx)
532	movq	%rsp,PCB_RSP(%rcx)
533	movq	%rbp,PCB_RBP(%rcx)
534	movq	%r12,PCB_R12(%rcx)
535	movq	%r13,PCB_R13(%rcx)
536	movq	%r14,PCB_R14(%rcx)
537	movq	%r15,PCB_R15(%rcx)
538
539#if 1
540	/*
541	 * If npxthread == NULL, then the npx h/w state is irrelevant and the
542	 * state had better already be in the pcb.  This is true for forks
543	 * but not for dumps (the old book-keeping with FP flags in the pcb
544	 * always lost for dumps because the dump pcb has 0 flags).
545	 *
546	 * If npxthread != NULL, then we have to save the npx h/w state to
547	 * npxthread's pcb and copy it to the requested pcb, or save to the
548	 * requested pcb and reload.  Copying is easier because we would
549	 * have to handle h/w bugs for reloading.  We used to lose the
550	 * parent's npx state for forks by forgetting to reload.
551	 */
552	movq	PCPU(npxthread),%rax
553	testq	%rax,%rax
554	jz	1f
555
556	pushq	%rcx			/* target pcb */
557	movq	TD_SAVEFPU(%rax),%rax	/* originating savefpu area */
558	pushq	%rax
559
560	movq	%rax,%rdi
561	call	npxsave
562
563	popq	%rax
564	popq	%rcx
565
566	movq	$PCB_SAVEFPU_SIZE,%rdx
567	leaq    PCB_SAVEFPU(%rcx),%rcx
568	movq	%rcx,%rsi
569	movq	%rax,%rdi
570	call	bcopy
571#endif
572
5731:
574	CHECKNZ((%rsp), %r9)
575	ret
576
577/*
578 * cpu_idle_restore()	(current thread in %rax on entry) (one-time execution)
579 *			(old thread is %rbx on entry)
580 *
581 *	Don't bother setting up any regs other than %rbp so backtraces
582 *	don't die.  This restore function is used to bootstrap into the
583 *	cpu_idle() LWKT only, after that cpu_lwkt_*() will be used for
584 *	switching.
585 *
586 *	Clear TDF_RUNNING in old thread only after we've cleaned up %cr3.
587 *	This only occurs during system boot so no special handling is
588 *	required for migration.
589 *
590 *	If we are an AP we have to call ap_init() before jumping to
591 *	cpu_idle().  ap_init() will synchronize with the BP and finish
592 *	setting up various ncpu-dependant globaldata fields.  This may
593 *	happen on UP as well as SMP if we happen to be simulating multiple
594 *	cpus.
595 */
596ENTRY(cpu_idle_restore)
597	/* cli */
598	/* JG xor? */
599	movl	$0,%ebp
600	/* JG push RBP? */
601	pushq	$0
602	cmpl    $0,PCPU(cpuid)
603	je      1f
604	andl	$~TDF_RUNNING,TD_FLAGS(%rbx)
605	orl	$TDF_RUNNING,TD_FLAGS(%rax)	/* manual, no switch_return */
606	call	ap_init
607	/* sti */
608	jmp	cpu_idle
609
610	/*
611	 * cpu 0's idle thread entry for the first time must use normal
612	 * lwkt_switch_return() semantics or a pending cpu migration on
613	 * thread0 will deadlock.
614	 */
6151:
616	pushq	%rax
617	movq	%rbx,%rdi
618	call	lwkt_switch_return
619	popq	%rax
620	jmp	cpu_idle
621
622/*
623 * cpu_kthread_restore() (current thread is %rax on entry) (one-time execution)
624 *			 (old thread is %rbx on entry)
625 *
626 *	Don't bother setting up any regs other then %rbp so backtraces
627 *	don't die.  This restore function is used to bootstrap into an
628 *	LWKT based kernel thread only.  cpu_lwkt_switch() will be used
629 *	after this.
630 *
631 *	Because this switch target does not 'return' to lwkt_switch()
632 *	we have to call lwkt_switch_return(otd) to clean up otd.
633 *	otd is in %ebx.
634 *
635 *	Since all of our context is on the stack we are reentrant and
636 *	we can release our critical section and enable interrupts early.
637 */
638ENTRY(cpu_kthread_restore)
639	/*sti*/
640	movq	TD_PCB(%rax),%r13
641	movq	$0,%rbp
642
643	/*
644	 * rax and rbx come from the switchout code.  Call
645	 * lwkt_switch_return(otd).
646	 *
647	 * NOTE: unlike i386, %rsi and %rdi are not call-saved regs.
648	 */
649	pushq	%rax
650	movq	%rbx,%rdi
651	call	lwkt_switch_return
652	popq	%rax
653	decl	TD_CRITCOUNT(%rax)
654	movq	PCB_R12(%r13),%rdi	/* argument to RBX function */
655	movq	PCB_RBX(%r13),%rax	/* thread function */
656	/* note: top of stack return address inherited by function */
657	CHECKNZ(%rax, %r9)
658	jmp	*%rax
659
660/*
661 * cpu_lwkt_switch(struct thread *)
662 *
663 *	Standard LWKT switching function.  Only non-scratch registers are
664 *	saved and we don't bother with the MMU state or anything else.
665 *
666 *	This function is always called while in a critical section.
667 *
668 *	There is a one-instruction window where curthread is the new
669 *	thread but %rsp still points to the old thread's stack, but
670 *	we are protected by a critical section so it is ok.
671 *
672 *	YYY BGL, SPL
673 */
674ENTRY(cpu_lwkt_switch)
675	pushq	%rbp	/* JG note: GDB hacked to locate ebp relative to td_sp */
676	/* JG we've got more registers on x86_64 */
677	pushq	%rbx
678	movq	PCPU(curthread),%rbx
679	pushq	%r12
680	pushq	%r13
681	pushq	%r14
682	pushq	%r15
683	pushfq
684
685#if 1
686	/*
687	 * Save the FP state if we have used the FP.  Note that calling
688	 * npxsave will NULL out PCPU(npxthread).
689	 *
690	 * We have to deal with the FP state for LWKT threads in case they
691	 * happen to get preempted or block while doing an optimized
692	 * bzero/bcopy/memcpy.
693	 */
694	cmpq	%rbx,PCPU(npxthread)
695	jne	1f
696	movq	%rdi,%r12		/* save %rdi. %r12 is callee-saved */
697	movq	TD_SAVEFPU(%rbx),%rdi
698	call	npxsave			/* do it in a big C function */
699	movq	%r12,%rdi		/* restore %rdi */
7001:
701#endif
702
703	movq	%rdi,%rax		/* switch to this thread */
704	pushq	$cpu_lwkt_restore
705	movq	%rsp,TD_SP(%rbx)
706	movq	%rax,PCPU(curthread)
707	movq	TD_SP(%rax),%rsp
708
709	/*
710	 * %rax contains new thread, %rbx contains old thread.
711	 */
712	CHECKNZ((%rsp), %r9)
713	ret
714
715/*
716 * cpu_lwkt_restore()	(current thread in %rax on entry)
717 *
718 *	Standard LWKT restore function.  This function is always called
719 *	while in a critical section.
720 *
721 *	Warning: due to preemption the restore function can be used to
722 *	'return' to the original thread.  Interrupt disablement must be
723 *	protected through the switch so we cannot run splz here.
724 */
725ENTRY(cpu_lwkt_restore)
726	/*
727	 * NOTE: %rbx is the previous thread and %eax is the new thread.
728	 *	 %rbx is retained throughout so we can return it.
729	 *
730	 *	 lwkt_switch[_return] is responsible for handling TDF_RUNNING.
731	 */
732	movq	%rbx,%rax
733	popfq
734	popq	%r15
735	popq	%r14
736	popq	%r13
737	popq	%r12
738	popq	%rbx
739	popq	%rbp
740	ret
741
742/*
743 * bootstrap_idle()
744 *
745 * Make AP become the idle loop.
746 */
747ENTRY(bootstrap_idle)
748	movq	PCPU(curthread),%rax
749	movq	%rax,%rbx
750	movq	TD_SP(%rax),%rsp
751	ret
752