1/*
2 * Copyright (c) 2003,2004,2008 The DragonFly Project.  All rights reserved.
3 * Copyright (c) 2008 Jordan Gordeev.
4 *
5 * This code is derived from software contributed to The DragonFly Project
6 * by Matthew Dillon <dillon@backplane.com>
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in
16 *    the documentation and/or other materials provided with the
17 *    distribution.
18 * 3. Neither the name of The DragonFly Project nor the names of its
19 *    contributors may be used to endorse or promote products derived
20 *    from this software without specific, prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
26 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * Copyright (c) 1990 The Regents of the University of California.
36 * All rights reserved.
37 *
38 * This code is derived from software contributed to Berkeley by
39 * William Jolitz.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 *    notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 *    notice, this list of conditions and the following disclaimer in the
48 *    documentation and/or other materials provided with the distribution.
49 * 3. All advertising materials mentioning features or use of this software
50 *    must display the following acknowledgement:
51 *	This product includes software developed by the University of
52 *	California, Berkeley and its contributors.
53 * 4. Neither the name of the University nor the names of its contributors
54 *    may be used to endorse or promote products derived from this software
55 *    without specific prior written permission.
56 *
57 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
58 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
61 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
62 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
63 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
64 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
65 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
66 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
67 * SUCH DAMAGE.
68 *
69 * $FreeBSD: src/sys/i386/i386/swtch.s,v 1.89.2.10 2003/01/23 03:36:24 ps Exp $
70 */
71
72//#include "use_npx.h"
73
74#include <sys/rtprio.h>
75
76#include <machine/asmacros.h>
77#include <machine/segments.h>
78
79#include <machine/pmap.h>
80#include <machine/lock.h>
81
82#define CHECKNZ(expr, scratch_reg) \
83	movq expr, scratch_reg; testq scratch_reg, scratch_reg; jnz 7f; int $3; 7:
84
85#include "assym.s"
86
87#define MPLOCKED        lock ;
88
89	.data
90
91	.globl	panic
92	.globl	lwkt_switch_return
93
94#if defined(SWTCH_OPTIM_STATS)
95	.globl	swtch_optim_stats, tlb_flush_count
96swtch_optim_stats:	.long	0		/* number of _swtch_optims */
97tlb_flush_count:	.long	0
98#endif
99
100	.text
101
102
103/*
104 * cpu_heavy_switch(struct thread *next_thread)
105 *
106 *	Switch from the current thread to a new thread.  This entry
107 *	is normally called via the thread->td_switch function, and will
108 *	only be called when the current thread is a heavy weight process.
109 *
110 *	Some instructions have been reordered to reduce pipeline stalls.
111 *
112 *	YYY disable interrupts once giant is removed.
113 */
114ENTRY(cpu_heavy_switch)
115	/*
116	 * Save RIP, RSP and callee-saved registers (RBX, RBP, R12-R15).
117	 */
118	movq	PCPU(curthread),%rcx
119	/* On top of the stack is the return adress. */
120	movq	(%rsp),%rax			/* (reorder optimization) */
121	movq	TD_PCB(%rcx),%rdx		/* RDX = PCB */
122	movq	%rax,PCB_RIP(%rdx)		/* return PC may be modified */
123	movq	%rbx,PCB_RBX(%rdx)
124	movq	%rsp,PCB_RSP(%rdx)
125	movq	%rbp,PCB_RBP(%rdx)
126	movq	%r12,PCB_R12(%rdx)
127	movq	%r13,PCB_R13(%rdx)
128	movq	%r14,PCB_R14(%rdx)
129	movq	%r15,PCB_R15(%rdx)
130
131	/*
132	 * Clear the cpu bit in the pmap active mask.  The restore
133	 * function will set the bit in the pmap active mask.
134	 *
135	 * Special case: when switching between threads sharing the
136	 * same vmspace if we avoid clearing the bit we do not have
137	 * to reload %cr3 (if we clear the bit we could race page
138	 * table ops done by other threads and would have to reload
139	 * %cr3, because those ops will not know to IPI us).
140	 */
141	movq	%rcx,%rbx			/* RBX = oldthread */
142	movq	TD_LWP(%rcx),%rcx		/* RCX = oldlwp	*/
143	movq	TD_LWP(%rdi),%r13		/* R13 = newlwp */
144	movq	LWP_VMSPACE(%rcx), %rcx		/* RCX = oldvmspace */
145	testq	%r13,%r13			/* might not be a heavy */
146	jz	1f
147	cmpq	LWP_VMSPACE(%r13),%rcx		/* same vmspace? */
148	je	2f
1491:
150	movslq	PCPU(cpuid), %rax
151	MPLOCKED btrq	%rax, VM_PMAP+PM_ACTIVE(%rcx)
1522:
153
154	/*
155	 * Push the LWKT switch restore function, which resumes a heavy
156	 * weight process.  Note that the LWKT switcher is based on
157	 * TD_SP, while the heavy weight process switcher is based on
158	 * PCB_RSP.  TD_SP is usually two ints pushed relative to
159	 * PCB_RSP.  We push the flags for later restore by cpu_heavy_restore.
160	 */
161	pushfq
162	movq	$cpu_heavy_restore, %rax
163	pushq	%rax
164	movq	%rsp,TD_SP(%rbx)
165
166	/*
167	 * Save debug regs if necessary
168	 */
169	movq    PCB_FLAGS(%rdx),%rax
170	andq    $PCB_DBREGS,%rax
171	jz      1f                              /* no, skip over */
172	movq    %dr7,%rax                       /* yes, do the save */
173	movq    %rax,PCB_DR7(%rdx)
174	/* JG correct value? */
175	andq    $0x0000fc00, %rax               /* disable all watchpoints */
176	movq    %rax,%dr7
177	movq    %dr6,%rax
178	movq    %rax,PCB_DR6(%rdx)
179	movq    %dr3,%rax
180	movq    %rax,PCB_DR3(%rdx)
181	movq    %dr2,%rax
182	movq    %rax,PCB_DR2(%rdx)
183	movq    %dr1,%rax
184	movq    %rax,PCB_DR1(%rdx)
185	movq    %dr0,%rax
186	movq    %rax,PCB_DR0(%rdx)
1871:
188
189#if 1
190	/*
191	 * Save the FP state if we have used the FP.  Note that calling
192	 * npxsave will NULL out PCPU(npxthread).
193	 */
194	cmpq	%rbx,PCPU(npxthread)
195	jne	1f
196	movq	%rdi,%r12		/* save %rdi. %r12 is callee-saved */
197	movq	TD_SAVEFPU(%rbx),%rdi
198	call	npxsave			/* do it in a big C function */
199	movq	%r12,%rdi		/* restore %rdi */
2001:
201#endif
202
203	/*
204	 * Switch to the next thread, which was passed as an argument
205	 * to cpu_heavy_switch().  The argument is in %rdi.
206	 * Set the current thread, load the stack pointer,
207	 * and 'ret' into the switch-restore function.
208	 *
209	 * The switch restore function expects the new thread to be in %rax
210	 * and the old one to be in %rbx.
211	 *
212	 * There is a one-instruction window where curthread is the new
213	 * thread but %rsp still points to the old thread's stack, but
214	 * we are protected by a critical section so it is ok.
215	 */
216	movq	%rdi,%rax		/* RAX = newtd, RBX = oldtd */
217	movq	%rax,PCPU(curthread)
218	movq	TD_SP(%rax),%rsp
219	CHECKNZ((%rsp), %r9)
220	ret
221
222/*
223 *  cpu_exit_switch(struct thread *next)
224 *
225 *	The switch function is changed to this when a thread is going away
226 *	for good.  We have to ensure that the MMU state is not cached, and
227 *	we don't bother saving the existing thread state before switching.
228 *
229 *	At this point we are in a critical section and this cpu owns the
230 *	thread's token, which serves as an interlock until the switchout is
231 *	complete.
232 */
233ENTRY(cpu_exit_switch)
234	/*
235	 * Get us out of the vmspace
236	 */
237#if 0
238	movq	KPML4phys,%rcx
239	movq	%cr3,%rax
240	cmpq	%rcx,%rax
241	je	1f
242	/* JG no increment of statistics counters? see cpu_heavy_restore */
243	movq	%rcx,%cr3
2441:
245#endif
246	movq	PCPU(curthread),%rbx
247
248	/*
249	 * If this is a process/lwp, deactivate the pmap after we've
250	 * switched it out.
251	 */
252	movq	TD_LWP(%rbx),%rcx
253	testq	%rcx,%rcx
254	jz	2f
255	movslq	PCPU(cpuid), %rax
256	movq	LWP_VMSPACE(%rcx), %rcx		/* RCX = vmspace */
257	MPLOCKED btrq	%rax, VM_PMAP+PM_ACTIVE(%rcx)
2582:
259	/*
260	 * Switch to the next thread.  RET into the restore function, which
261	 * expects the new thread in RAX and the old in RBX.
262	 *
263	 * There is a one-instruction window where curthread is the new
264	 * thread but %rsp still points to the old thread's stack, but
265	 * we are protected by a critical section so it is ok.
266	 */
267	movq	%rdi,%rax
268	movq	%rax,PCPU(curthread)
269	movq	TD_SP(%rax),%rsp
270	CHECKNZ((%rsp), %r9)
271	ret
272
273/*
274 * cpu_heavy_restore()	(current thread in %rax on entry)
275 *
276 *	Restore the thread after an LWKT switch.  This entry is normally
277 *	called via the LWKT switch restore function, which was pulled
278 *	off the thread stack and jumped to.
279 *
280 *	This entry is only called if the thread was previously saved
281 *	using cpu_heavy_switch() (the heavy weight process thread switcher),
282 *	or when a new process is initially scheduled.
283 *
284 *	NOTE: The lwp may be in any state, not necessarily LSRUN, because
285 *	a preemption switch may interrupt the process and then return via
286 *	cpu_heavy_restore.
287 *
288 *	YYY theoretically we do not have to restore everything here, a lot
289 *	of this junk can wait until we return to usermode.  But for now
290 *	we restore everything.
291 *
292 *	YYY the PCB crap is really crap, it makes startup a bitch because
293 *	we can't switch away.
294 *
295 *	YYY note: spl check is done in mi_switch when it splx()'s.
296 */
297
298ENTRY(cpu_heavy_restore)
299	popfq
300	movq	TD_PCB(%rax),%rdx		/* RDX = PCB */
301
302#if defined(SWTCH_OPTIM_STATS)
303	incl	_swtch_optim_stats
304#endif
305	/*
306	 * Tell the pmap that our cpu is using the VMSPACE now.  We cannot
307	 * safely test/reload %cr3 until after we have set the bit in the
308	 * pmap (remember, we do not hold the MP lock in the switch code).
309	 */
310	movq	TD_LWP(%rax),%rcx
311	movq	LWP_VMSPACE(%rcx), %rcx		/* RCX = vmspace */
312	movq    %rax,%r12                       /* save newthread ptr */
3131:
314	movq    VM_PMAP+PM_ACTIVE(%rcx),%rax    /* old contents */
315	movq    PCPU(cpumask),%rsi              /* new contents */
316	orq     %rax,%rsi
317	MPLOCKED cmpxchgq %rsi,VM_PMAP+PM_ACTIVE(%rcx)
318	jnz     1b
319
320	btq	$CPUMASK_BIT,%rax
321	jnc	2f
322
323	movq    %rcx,%rdi               /* (found to be set) */
324	call    pmap_interlock_wait     /* pmap_interlock_wait(%rdi:vm) */
325	movq    %r12,%rax
326	movq    TD_PCB(%rax),%rdx       /* RDX = PCB */
3272:
328	movq	%r12,%rax
329	/*
330	 * Restore the MMU address space.  If it is the same as the last
331	 * thread we don't have to invalidate the tlb (i.e. reload cr3).
332	 * YYY which naturally also means that the PM_ACTIVE bit had better
333	 * already have been set before we set it above, check? YYY
334	 */
335#if 0
336	movq	%cr3,%rsi
337	movq	PCB_CR3(%rdx),%rcx
338	cmpq	%rsi,%rcx
339	je	4f
340#if defined(SWTCH_OPTIM_STATS)
341	decl	_swtch_optim_stats
342	incl	_tlb_flush_count
343#endif
344	movq	%rcx,%cr3
3454:
346#endif
347	/*
348	 * NOTE: %rbx is the previous thread and %eax is the new thread.
349	 *	 %rbx is retained throughout so we can return it.
350	 *
351	 *	 lwkt_switch[_return] is responsible for handling TDF_RUNNING.
352	 */
353
354#if 0
355	/*
356	 * Deal with the PCB extension, restore the private tss
357	 */
358	movq	PCB_EXT(%rdx),%rdi	/* check for a PCB extension */
359	movq	$1,%rcx			/* maybe mark use of a private tss */
360	testq	%rdi,%rdi
361#if JG
362	jnz	2f
363#endif
364
365	/* JG
366	 * Going back to the common_tss.  We may need to update TSS_ESP0
367	 * which sets the top of the supervisor stack when entering from
368	 * usermode.  The PCB is at the top of the stack but we need another
369	 * 16 bytes to take vm86 into account.
370	 */
371	leaq	-16(%rdx),%rcx
372	movq	%rcx, PCPU(common_tss) + TSS_RSP0
373	movq	%rcx, PCPU(rsp0)
374
375#if JG
376	cmpl	$0,PCPU(private_tss)	/* don't have to reload if      */
377	je	3f			/* already using the common TSS */
378
379	/* JG? */
380	subq	%rcx,%rcx		/* unmark use of private tss */
381
382	/*
383	 * Get the address of the common TSS descriptor for the ltr.
384	 * There is no way to get the address of a segment-accessed variable
385	 * so we store a self-referential pointer at the base of the per-cpu
386	 * data area and add the appropriate offset.
387	 */
388	/* JG movl? */
389	movq	$gd_common_tssd, %rdi
390	/* JG name for "%gs:0"? */
391	addq	%gs:0, %rdi
392
393	/*
394	 * Move the correct TSS descriptor into the GDT slot, then reload
395	 * ltr.
396	 */
3972:
398	/* JG */
399	movl	%rcx,PCPU(private_tss)		/* mark/unmark private tss */
400	movq	PCPU(tss_gdt), %rcx		/* entry in GDT */
401	movq	0(%rdi), %rax
402	movq	%rax, 0(%rcx)
403	movl	$GPROC0_SEL*8, %esi		/* GSEL(entry, SEL_KPL) */
404	ltr	%si
405#endif
406
4073:
408#endif
409#if 0
410	/*
411	 * Restore the user %gs and %fs
412	 */
413	movq	PCB_FSBASE(%rdx),%r9
414	cmpq	PCPU(user_fs),%r9
415	je	4f
416	movq	%rdx,%r10
417	movq	%r9,PCPU(user_fs)
418	movl	$MSR_FSBASE,%ecx
419	movl	PCB_FSBASE(%r10),%eax
420	movl	PCB_FSBASE+4(%r10),%edx
421	wrmsr
422	movq	%r10,%rdx
4234:
424	movq	PCB_GSBASE(%rdx),%r9
425	cmpq	PCPU(user_gs),%r9
426	je	5f
427	movq	%rdx,%r10
428	movq	%r9,PCPU(user_gs)
429	movl	$MSR_KGSBASE,%ecx	/* later swapgs moves it to GSBASE */
430	movl	PCB_GSBASE(%r10),%eax
431	movl	PCB_GSBASE+4(%r10),%edx
432	wrmsr
433	movq	%r10,%rdx
4345:
435#endif
436
437	/*
438	 * Restore general registers.  %rbx is restored later.
439	 */
440	movq	PCB_RSP(%rdx), %rsp
441	movq	PCB_RBP(%rdx), %rbp
442	movq	PCB_R12(%rdx), %r12
443	movq	PCB_R13(%rdx), %r13
444	movq	PCB_R14(%rdx), %r14
445	movq	PCB_R15(%rdx), %r15
446	movq	PCB_RIP(%rdx), %rax
447	movq	%rax, (%rsp)
448
449#if 0
450	/*
451	 * Restore the user LDT if we have one
452	 */
453	cmpl	$0, PCB_USERLDT(%edx)
454	jnz	1f
455	movl	_default_ldt,%eax
456	cmpl	PCPU(currentldt),%eax
457	je	2f
458	lldt	_default_ldt
459	movl	%eax,PCPU(currentldt)
460	jmp	2f
4611:	pushl	%edx
462	call	set_user_ldt
463	popl	%edx
4642:
465#endif
466#if 0
467	/*
468	 * Restore the user TLS if we have one
469	 */
470	pushl	%edx
471	call	set_user_TLS
472	popl	%edx
473#endif
474
475	/*
476	 * Restore the DEBUG register state if necessary.
477	 */
478	movq    PCB_FLAGS(%rdx),%rax
479	andq    $PCB_DBREGS,%rax
480	jz      1f                              /* no, skip over */
481	movq    PCB_DR6(%rdx),%rax              /* yes, do the restore */
482	movq    %rax,%dr6
483	movq    PCB_DR3(%rdx),%rax
484	movq    %rax,%dr3
485	movq    PCB_DR2(%rdx),%rax
486	movq    %rax,%dr2
487	movq    PCB_DR1(%rdx),%rax
488	movq    %rax,%dr1
489	movq    PCB_DR0(%rdx),%rax
490	movq    %rax,%dr0
491	movq	%dr7,%rax                /* load dr7 so as not to disturb */
492	/* JG correct value? */
493	andq    $0x0000fc00,%rax         /*   reserved bits               */
494	/* JG we've got more registers on x86_64 */
495	movq    PCB_DR7(%rdx),%rcx
496	/* JG correct value? */
497	andq	$~0x0000fc00,%rcx
498	orq     %rcx,%rax
499	movq    %rax,%dr7
5001:
501	movq	%rbx,%rax
502	movq	PCB_RBX(%rdx),%rbx
503
504	CHECKNZ((%rsp), %r9)
505	ret
506
507/*
508 * savectx(struct pcb *pcb)
509 *
510 * Update pcb, saving current processor state.
511 */
512ENTRY(savectx)
513	/* fetch PCB */
514	/* JG use %rdi instead of %rcx everywhere? */
515	movq	%rdi,%rcx
516
517	/* caller's return address - child won't execute this routine */
518	movq	(%rsp),%rax
519	movq	%rax,PCB_RIP(%rcx)
520	movq	%rbx,PCB_RBX(%rcx)
521	movq	%rsp,PCB_RSP(%rcx)
522	movq	%rbp,PCB_RBP(%rcx)
523	movq	%r12,PCB_R12(%rcx)
524	movq	%r13,PCB_R13(%rcx)
525	movq	%r14,PCB_R14(%rcx)
526	movq	%r15,PCB_R15(%rcx)
527
528#if 1
529	/*
530	 * If npxthread == NULL, then the npx h/w state is irrelevant and the
531	 * state had better already be in the pcb.  This is true for forks
532	 * but not for dumps (the old book-keeping with FP flags in the pcb
533	 * always lost for dumps because the dump pcb has 0 flags).
534	 *
535	 * If npxthread != NULL, then we have to save the npx h/w state to
536	 * npxthread's pcb and copy it to the requested pcb, or save to the
537	 * requested pcb and reload.  Copying is easier because we would
538	 * have to handle h/w bugs for reloading.  We used to lose the
539	 * parent's npx state for forks by forgetting to reload.
540	 */
541	movq	PCPU(npxthread),%rax
542	testq	%rax,%rax
543	jz	1f
544
545	pushq	%rcx			/* target pcb */
546	movq	TD_SAVEFPU(%rax),%rax	/* originating savefpu area */
547	pushq	%rax
548
549	movq	%rax,%rdi
550	call	npxsave
551
552	popq	%rax
553	popq	%rcx
554
555	movq	$PCB_SAVEFPU_SIZE,%rdx
556	leaq    PCB_SAVEFPU(%rcx),%rcx
557	movq	%rcx,%rsi
558	movq	%rax,%rdi
559	call	bcopy
560#endif
561
5621:
563	CHECKNZ((%rsp), %r9)
564	ret
565
566/*
567 * cpu_idle_restore()	(current thread in %rax on entry) (one-time execution)
568 *
569 *	Don't bother setting up any regs other than %rbp so backtraces
570 *	don't die.  This restore function is used to bootstrap into the
571 *	cpu_idle() LWKT only, after that cpu_lwkt_*() will be used for
572 *	switching.
573 *
574 *	Clear TDF_RUNNING in old thread only after we've cleaned up %cr3.
575 *	This only occurs during system boot so no special handling is
576 *	required for migration.
577 *
578 *	If we are an AP we have to call ap_init() before jumping to
579 *	cpu_idle().  ap_init() will synchronize with the BP and finish
580 *	setting up various ncpu-dependant globaldata fields.  This may
581 *	happen on UP as well as SMP if we happen to be simulating multiple
582 *	cpus.
583 */
584ENTRY(cpu_idle_restore)
585	/* cli */
586	/* JG xor? */
587	movl	$0,%ebp
588	/* JG push RBP? */
589	pushq	$0
590	andl	$~TDF_RUNNING,TD_FLAGS(%rbx)
591	orl	$TDF_RUNNING,TD_FLAGS(%rax)	/* manual, no switch_return */
592	cmpl	$0,PCPU(cpuid)
593	je	1f
594	call	ap_init
5951:
596	/* sti */
597	jmp	cpu_idle
598
599/*
600 * cpu_kthread_restore() (current thread is %rax on entry) (one-time execution)
601 *
602 *	Don't bother setting up any regs other then %rbp so backtraces
603 *	don't die.  This restore function is used to bootstrap into an
604 *	LWKT based kernel thread only.  cpu_lwkt_switch() will be used
605 *	after this.
606 *
607 *	Because this switch target does not 'return' to lwkt_switch()
608 *	we have to call lwkt_switch_return(otd) to clean up otd.
609 *	otd is in %ebx.
610 *
611 *	Since all of our context is on the stack we are reentrant and
612 *	we can release our critical section and enable interrupts early.
613 */
614ENTRY(cpu_kthread_restore)
615	/*sti*/
616	movq	TD_PCB(%rax),%r13
617	movq	$0,%rbp
618
619	/*
620	 * rax and rbx come from the switchout code.  Call
621	 * lwkt_switch_return(otd).
622	 *
623	 * NOTE: unlike i386, %rsi and %rdi are not call-saved regs.
624	 */
625	pushq	%rax
626	movq	%rbx,%rdi
627	call	lwkt_switch_return
628	popq	%rax
629	decl	TD_CRITCOUNT(%rax)
630	movq	PCB_R12(%r13),%rdi	/* argument to RBX function */
631	movq	PCB_RBX(%r13),%rax	/* thread function */
632	/* note: top of stack return address inherited by function */
633	CHECKNZ(%rax, %r9)
634	jmp	*%rax
635
636/*
637 * cpu_lwkt_switch(struct thread *)
638 *
639 *	Standard LWKT switching function.  Only non-scratch registers are
640 *	saved and we don't bother with the MMU state or anything else.
641 *
642 *	This function is always called while in a critical section.
643 *
644 *	There is a one-instruction window where curthread is the new
645 *	thread but %rsp still points to the old thread's stack, but
646 *	we are protected by a critical section so it is ok.
647 *
648 *	YYY BGL, SPL
649 */
650ENTRY(cpu_lwkt_switch)
651	pushq	%rbp	/* JG note: GDB hacked to locate ebp relative to td_sp */
652	/* JG we've got more registers on x86_64 */
653	pushq	%rbx
654	movq	PCPU(curthread),%rbx
655	pushq	%r12
656	pushq	%r13
657	pushq	%r14
658	pushq	%r15
659	pushfq
660
661#if 1
662	/*
663	 * Save the FP state if we have used the FP.  Note that calling
664	 * npxsave will NULL out PCPU(npxthread).
665	 *
666	 * We have to deal with the FP state for LWKT threads in case they
667	 * happen to get preempted or block while doing an optimized
668	 * bzero/bcopy/memcpy.
669	 */
670	cmpq	%rbx,PCPU(npxthread)
671	jne	1f
672	movq	%rdi,%r12		/* save %rdi. %r12 is callee-saved */
673	movq	TD_SAVEFPU(%rbx),%rdi
674	call	npxsave			/* do it in a big C function */
675	movq	%r12,%rdi		/* restore %rdi */
6761:
677#endif
678
679	movq	%rdi,%rax		/* switch to this thread */
680	pushq	$cpu_lwkt_restore
681	movq	%rsp,TD_SP(%rbx)
682	movq	%rax,PCPU(curthread)
683	movq	TD_SP(%rax),%rsp
684
685	/*
686	 * %rax contains new thread, %rbx contains old thread.
687	 */
688	CHECKNZ((%rsp), %r9)
689	ret
690
691/*
692 * cpu_lwkt_restore()	(current thread in %rax on entry)
693 *
694 *	Standard LWKT restore function.  This function is always called
695 *	while in a critical section.
696 *
697 *	Warning: due to preemption the restore function can be used to
698 *	'return' to the original thread.  Interrupt disablement must be
699 *	protected through the switch so we cannot run splz here.
700 */
701ENTRY(cpu_lwkt_restore)
702	/*
703	 * NOTE: %rbx is the previous thread and %eax is the new thread.
704	 *	 %rbx is retained throughout so we can return it.
705	 *
706	 *	 lwkt_switch[_return] is responsible for handling TDF_RUNNING.
707	 */
708	movq	%rbx,%rax
709	popfq
710	popq	%r15
711	popq	%r14
712	popq	%r13
713	popq	%r12
714	popq	%rbx
715	popq	%rbp
716	ret
717
718/*
719 * bootstrap_idle()
720 *
721 * Make AP become the idle loop.
722 */
723ENTRY(bootstrap_idle)
724	movq	PCPU(curthread),%rax
725	movq	%rax,%rbx
726	movq	TD_SP(%rax),%rsp
727	ret
728