1/*
2 * Copyright (c) 2003,2004,2008 The DragonFly Project.  All rights reserved.
3 * Copyright (c) 2008 Jordan Gordeev.
4 *
5 * This code is derived from software contributed to The DragonFly Project
6 * by Matthew Dillon <dillon@backplane.com>
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in
16 *    the documentation and/or other materials provided with the
17 *    distribution.
18 * 3. Neither the name of The DragonFly Project nor the names of its
19 *    contributors may be used to endorse or promote products derived
20 *    from this software without specific, prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
26 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * Copyright (c) 1990 The Regents of the University of California.
36 * All rights reserved.
37 *
38 * This code is derived from software contributed to Berkeley by
39 * William Jolitz.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 *    notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 *    notice, this list of conditions and the following disclaimer in the
48 *    documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 *    may be used to endorse or promote products derived from this software
51 *    without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * $FreeBSD: src/sys/i386/i386/swtch.s,v 1.89.2.10 2003/01/23 03:36:24 ps Exp $
66 */
67
68#include <sys/rtprio.h>
69
70#include <machine/asmacros.h>
71#include <machine/segments.h>
72
73#include <machine/pmap.h>
74#include <machine/lock.h>
75
76#define CHECKNZ(expr, scratch_reg) \
77	movq expr, scratch_reg; testq scratch_reg, scratch_reg; jnz 7f; int $3; 7:
78
79#include "assym.s"
80
81#define	MPLOCKED	lock ;
82
83	.data
84
85	.globl	panic
86	.globl	lwkt_switch_return
87
88#if defined(SWTCH_OPTIM_STATS)
89	.globl	swtch_optim_stats, tlb_flush_count
90swtch_optim_stats:	.long	0		/* number of _swtch_optims */
91tlb_flush_count:	.long	0
92#endif
93
94	.text
95
96
97/*
98 * cpu_heavy_switch(struct thread *next_thread)
99 *
100 *	Switch from the current thread to a new thread.  This entry
101 *	is normally called via the thread->td_switch function, and will
102 *	only be called when the current thread is a heavy weight process.
103 *
104 *	Some instructions have been reordered to reduce pipeline stalls.
105 *
106 *	YYY disable interrupts once giant is removed.
107 */
108ENTRY(cpu_heavy_switch)
109	/*
110	 * Save RIP, RSP and callee-saved registers (RBX, RBP, R12-R15).
111	 */
112	movq	PCPU(curthread),%rcx
113	/* On top of the stack is the return adress. */
114	movq	(%rsp),%rax			/* (reorder optimization) */
115	movq	TD_PCB(%rcx),%rdx		/* RDX = PCB */
116	movq	%rax,PCB_RIP(%rdx)		/* return PC may be modified */
117	movq	%rbx,PCB_RBX(%rdx)
118	movq	%rsp,PCB_RSP(%rdx)
119	movq	%rbp,PCB_RBP(%rdx)
120	movq	%r12,PCB_R12(%rdx)
121	movq	%r13,PCB_R13(%rdx)
122	movq	%r14,PCB_R14(%rdx)
123	movq	%r15,PCB_R15(%rdx)
124
125	/*
126	 * Clear the cpu bit in the pmap active mask.  The restore
127	 * function will set the bit in the pmap active mask.
128	 *
129	 * Special case: when switching between threads sharing the
130	 * same vmspace if we avoid clearing the bit we do not have
131	 * to reload %cr3 (if we clear the bit we could race page
132	 * table ops done by other threads and would have to reload
133	 * %cr3, because those ops will not know to IPI us).
134	 */
135	movq	%rcx,%rbx			/* RBX = oldthread */
136	movq	TD_LWP(%rcx),%rcx		/* RCX = oldlwp	*/
137	movq	TD_LWP(%rdi),%r13		/* R13 = newlwp */
138	movq	LWP_VMSPACE(%rcx), %rcx		/* RCX = oldvmspace */
139	testq	%r13,%r13			/* might not be a heavy */
140	jz	1f
141	cmpq	LWP_VMSPACE(%r13),%rcx		/* same vmspace? */
142	je	2f
1431:
144	movq	PCPU(other_cpus)+0, %rax
145	MPLOCKED andq	%rax, VM_PMAP+PM_ACTIVE+0(%rcx)
146	movq	PCPU(other_cpus)+8, %rax
147	MPLOCKED andq	%rax, VM_PMAP+PM_ACTIVE+8(%rcx)
148	movq	PCPU(other_cpus)+16, %rax
149	MPLOCKED andq	%rax, VM_PMAP+PM_ACTIVE+16(%rcx)
150	movq	PCPU(other_cpus)+24, %rax
151	MPLOCKED andq	%rax, VM_PMAP+PM_ACTIVE+24(%rcx)
1522:
153
154	/*
155	 * Push the LWKT switch restore function, which resumes a heavy
156	 * weight process.  Note that the LWKT switcher is based on
157	 * TD_SP, while the heavy weight process switcher is based on
158	 * PCB_RSP.  TD_SP is usually two ints pushed relative to
159	 * PCB_RSP.  We push the flags for later restore by cpu_heavy_restore.
160	 */
161	pushfq
162	movq	$cpu_heavy_restore, %rax
163	pushq	%rax
164	movq	%rsp,TD_SP(%rbx)
165
166	/*
167	 * Save debug regs if necessary
168	 */
169	movq	PCB_FLAGS(%rdx),%rax
170	andq	$PCB_DBREGS,%rax
171	jz	1f				/* no, skip over */
172	movq	%dr7,%rax			/* yes, do the save */
173	movq	%rax,PCB_DR7(%rdx)
174	/* JG correct value? */
175	andq	$0x0000fc00, %rax		/* disable all watchpoints */
176	movq	%rax,%dr7
177	movq	%dr6,%rax
178	movq	%rax,PCB_DR6(%rdx)
179	movq	%dr3,%rax
180	movq	%rax,PCB_DR3(%rdx)
181	movq	%dr2,%rax
182	movq	%rax,PCB_DR2(%rdx)
183	movq	%dr1,%rax
184	movq	%rax,PCB_DR1(%rdx)
185	movq	%dr0,%rax
186	movq	%rax,PCB_DR0(%rdx)
1871:
188
189#if 1
190	/*
191	 * Save the FP state if we have used the FP.  Note that calling
192	 * npxsave will NULL out PCPU(npxthread).
193	 */
194	cmpq	%rbx,PCPU(npxthread)
195	jne	1f
196	movq	%rdi,%r12		/* save %rdi. %r12 is callee-saved */
197	movq	TD_SAVEFPU(%rbx),%rdi
198	call	npxsave			/* do it in a big C function */
199	movq	%r12,%rdi		/* restore %rdi */
2001:
201#endif
202
203	/*
204	 * Switch to the next thread, which was passed as an argument
205	 * to cpu_heavy_switch().  The argument is in %rdi.
206	 * Set the current thread, load the stack pointer,
207	 * and 'ret' into the switch-restore function.
208	 *
209	 * The switch restore function expects the new thread to be in %rax
210	 * and the old one to be in %rbx.
211	 *
212	 * There is a one-instruction window where curthread is the new
213	 * thread but %rsp still points to the old thread's stack, but
214	 * we are protected by a critical section so it is ok.
215	 */
216	movq	%rdi,%rax		/* RAX = newtd, RBX = oldtd */
217	movq	%rax,PCPU(curthread)
218	movq	TD_SP(%rax),%rsp
219	CHECKNZ((%rsp), %r9)
220	ret
221END(cpu_heavy_switch)
222
223/*
224 *  cpu_exit_switch(struct thread *next)
225 *
226 *	The switch function is changed to this when a thread is going away
227 *	for good.  We have to ensure that the MMU state is not cached, and
228 *	we don't bother saving the existing thread state before switching.
229 *
230 *	At this point we are in a critical section and this cpu owns the
231 *	thread's token, which serves as an interlock until the switchout is
232 *	complete.
233 */
234ENTRY(cpu_exit_switch)
235	/*
236	 * Get us out of the vmspace
237	 */
238#if 0
239	movq	KPML4phys,%rcx
240	movq	%cr3,%rax
241	cmpq	%rcx,%rax
242	je	1f
243	/* JG no increment of statistics counters? see cpu_heavy_restore */
244	movq	%rcx,%cr3
2451:
246#endif
247	movq	PCPU(curthread),%rbx
248
249	/*
250	 * If this is a process/lwp, deactivate the pmap after we've
251	 * switched it out.
252	 */
253	movq	TD_LWP(%rbx),%rcx
254	testq	%rcx,%rcx
255	jz	2f
256	movq	LWP_VMSPACE(%rcx), %rcx		/* RCX = vmspace */
257	movq	PCPU(other_cpus)+0, %rax
258	MPLOCKED andq	%rax, VM_PMAP+PM_ACTIVE+0(%rcx)
259	movq	PCPU(other_cpus)+8, %rax
260	MPLOCKED andq	%rax, VM_PMAP+PM_ACTIVE+8(%rcx)
261	movq	PCPU(other_cpus)+16, %rax
262	MPLOCKED andq	%rax, VM_PMAP+PM_ACTIVE+16(%rcx)
263	movq	PCPU(other_cpus)+24, %rax
264	MPLOCKED andq	%rax, VM_PMAP+PM_ACTIVE+24(%rcx)
2652:
266	/*
267	 * Switch to the next thread.  RET into the restore function, which
268	 * expects the new thread in RAX and the old in RBX.
269	 *
270	 * There is a one-instruction window where curthread is the new
271	 * thread but %rsp still points to the old thread's stack, but
272	 * we are protected by a critical section so it is ok.
273	 */
274	movq	%rdi,%rax
275	movq	%rax,PCPU(curthread)
276	movq	TD_SP(%rax),%rsp
277	CHECKNZ((%rsp), %r9)
278	ret
279END(cpu_exit_switch)
280
281/*
282 * cpu_heavy_restore()	(current thread in %rax on entry, %rbx is old thread)
283 *
284 *	Restore the thread after an LWKT switch.  This entry is normally
285 *	called via the LWKT switch restore function, which was pulled
286 *	off the thread stack and jumped to.
287 *
288 *	This entry is only called if the thread was previously saved
289 *	using cpu_heavy_switch() (the heavy weight process thread switcher),
290 *	or when a new process is initially scheduled.
291 *
292 *	NOTE: The lwp may be in any state, not necessarily LSRUN, because
293 *	a preemption switch may interrupt the process and then return via
294 *	cpu_heavy_restore.
295 *
296 *	YYY theoretically we do not have to restore everything here, a lot
297 *	of this junk can wait until we return to usermode.  But for now
298 *	we restore everything.
299 *
300 *	YYY the PCB crap is really crap, it makes startup a bitch because
301 *	we can't switch away.
302 *
303 *	YYY note: spl check is done in mi_switch when it splx()'s.
304 */
305
306ENTRY(cpu_heavy_restore)
307	popfq
308	movq	TD_PCB(%rax),%rdx		/* RDX = PCB */
309
310#if defined(SWTCH_OPTIM_STATS)
311	incl	_swtch_optim_stats
312#endif
313	/*
314	 * Tell the pmap that our cpu is using the VMSPACE now.  We cannot
315	 * safely test/reload %cr3 until after we have set the bit in the
316	 * pmap (remember, we do not hold the MP lock in the switch code).
317	 */
318	movq	TD_LWP(%rax),%rcx
319	movq	LWP_VMSPACE(%rcx), %rcx		/* RCX = vmspace */
320
321	movq	PCPU(cpumask)+0, %rsi
322	MPLOCKED orq	%rsi, VM_PMAP+PM_ACTIVE+0(%rcx)
323	movq	PCPU(cpumask)+8, %rsi
324	MPLOCKED orq	%rsi, VM_PMAP+PM_ACTIVE+8(%rcx)
325	movq	PCPU(cpumask)+16, %rsi
326	MPLOCKED orq	%rsi, VM_PMAP+PM_ACTIVE+16(%rcx)
327	movq	PCPU(cpumask)+24, %rsi
328	MPLOCKED orq	%rsi, VM_PMAP+PM_ACTIVE+24(%rcx)
329
330	movl	VM_PMAP+PM_ACTIVE_LOCK(%rcx),%esi
331	testl	$CPULOCK_EXCL,%esi
332	jz	1f
333
334	movq	%rax,%r12		/* save newthread ptr */
335	movq	%rcx,%rdi		/* (found to be set) */
336	call	pmap_interlock_wait	/* pmap_interlock_wait(%rdi:vm) */
337	movq	%r12,%rax
338	movq	TD_PCB(%rax),%rdx	/* RDX = PCB */
3391:
340	/*
341	 * Restore the MMU address space.  If it is the same as the last
342	 * thread we don't have to invalidate the tlb (i.e. reload cr3).
343	 * YYY which naturally also means that the PM_ACTIVE bit had better
344	 * already have been set before we set it above, check? YYY
345	 */
346#if 0
347	movq	%cr3,%rsi
348	movq	PCB_CR3(%rdx),%rcx
349	cmpq	%rsi,%rcx
350	je	4f
351#if defined(SWTCH_OPTIM_STATS)
352	decl	_swtch_optim_stats
353	incl	_tlb_flush_count
354#endif
355	movq	%rcx,%cr3
3564:
357#endif
358	/*
359	 * NOTE: %rbx is the previous thread and %rax is the new thread.
360	 *	 %rbx is retained throughout so we can return it.
361	 *
362	 *	 lwkt_switch[_return] is responsible for handling TDF_RUNNING.
363	 */
364
365#if 0
366	/*
367	 * Deal with the PCB extension, restore the private tss
368	 */
369	movq	PCB_EXT(%rdx),%rdi	/* check for a PCB extension */
370	movq	$1,%rcx			/* maybe mark use of a private tss */
371	testq	%rdi,%rdi
372#if 0 /* JG */
373	jnz	2f
374#endif
375
376	/* JG
377	 * Going back to the common_tss.  We may need to update TSS_ESP0
378	 * which sets the top of the supervisor stack when entering from
379	 * usermode.  The PCB is at the top of the stack but we need another
380	 * 16 bytes to take vm86 into account.
381	 */
382	leaq	-16(%rdx),%rcx
383	movq	%rcx, PCPU(common_tss) + TSS_RSP0
384	movq	%rcx, PCPU(rsp0)
385
386#if 0 /* JG */
387	cmpl	$0,PCPU(private_tss)	/* don't have to reload if      */
388	je	3f			/* already using the common TSS */
389
390	/* JG? */
391	subq	%rcx,%rcx		/* unmark use of private tss */
392
393	/*
394	 * Get the address of the common TSS descriptor for the ltr.
395	 * There is no way to get the address of a segment-accessed variable
396	 * so we store a self-referential pointer at the base of the per-cpu
397	 * data area and add the appropriate offset.
398	 */
399	/* JG movl? */
400	movq	$gd_common_tssd, %rdi
401	/* JG name for "%gs:0"? */
402	addq	%gs:0, %rdi
403
404	/*
405	 * Move the correct TSS descriptor into the GDT slot, then reload
406	 * ltr.
407	 */
4082:
409	/* JG */
410	movl	%rcx,PCPU(private_tss)		/* mark/unmark private tss */
411	movq	PCPU(tss_gdt), %rcx		/* entry in GDT */
412	movq	0(%rdi), %rax
413	movq	%rax, 0(%rcx)
414	movl	$GPROC0_SEL*8, %esi		/* GSEL(entry, SEL_KPL) */
415	ltr	%si
416#endif
417
4183:
419#endif
420#if 0
421	/*
422	 * Restore the user %gs and %fs
423	 */
424	movq	PCB_FSBASE(%rdx),%r9
425	cmpq	PCPU(user_fs),%r9
426	je	4f
427	movq	%rdx,%r10
428	movq	%r9,PCPU(user_fs)
429	movl	$MSR_FSBASE,%ecx
430	movl	PCB_FSBASE(%r10),%eax
431	movl	PCB_FSBASE+4(%r10),%edx
432	wrmsr
433	movq	%r10,%rdx
4344:
435	movq	PCB_GSBASE(%rdx),%r9
436	cmpq	PCPU(user_gs),%r9
437	je	5f
438	movq	%rdx,%r10
439	movq	%r9,PCPU(user_gs)
440	movl	$MSR_KGSBASE,%ecx	/* later swapgs moves it to GSBASE */
441	movl	PCB_GSBASE(%r10),%eax
442	movl	PCB_GSBASE+4(%r10),%edx
443	wrmsr
444	movq	%r10,%rdx
4455:
446#endif
447
448	/*
449	 * Restore general registers.  %rbx is restored later.
450	 */
451	movq	PCB_RSP(%rdx), %rsp
452	movq	PCB_RBP(%rdx), %rbp
453	movq	PCB_R12(%rdx), %r12
454	movq	PCB_R13(%rdx), %r13
455	movq	PCB_R14(%rdx), %r14
456	movq	PCB_R15(%rdx), %r15
457	movq	PCB_RIP(%rdx), %rax
458	movq	%rax, (%rsp)
459
460#if 0
461	/*
462	 * Restore the user LDT if we have one
463	 */
464	cmpl	$0, PCB_USERLDT(%edx)
465	jnz	1f
466	movl	_default_ldt,%eax
467	cmpl	PCPU(currentldt),%eax
468	je	2f
469	lldt	_default_ldt
470	movl	%eax,PCPU(currentldt)
471	jmp	2f
4721:	pushl	%edx
473	call	set_user_ldt
474	popl	%edx
4752:
476#endif
477#if 0
478	/*
479	 * Restore the user TLS if we have one
480	 */
481	pushl	%edx
482	call	set_user_TLS
483	popl	%edx
484#endif
485
486	/*
487	 * Restore the DEBUG register state if necessary.
488	 */
489	movq	PCB_FLAGS(%rdx),%rax
490	andq	$PCB_DBREGS,%rax
491	jz	1f				/* no, skip over */
492	movq	PCB_DR6(%rdx),%rax		/* yes, do the restore */
493	movq	%rax,%dr6
494	movq	PCB_DR3(%rdx),%rax
495	movq	%rax,%dr3
496	movq	PCB_DR2(%rdx),%rax
497	movq	%rax,%dr2
498	movq	PCB_DR1(%rdx),%rax
499	movq	%rax,%dr1
500	movq	PCB_DR0(%rdx),%rax
501	movq	%rax,%dr0
502	movq	%dr7,%rax		/* load dr7 so as not to disturb */
503	/* JG correct value? */
504	andq	$0x0000fc00,%rax	/*   reserved bits               */
505	/* JG we've got more registers on x86_64 */
506	movq    PCB_DR7(%rdx),%rcx
507	/* JG correct value? */
508	andq	$~0x0000fc00,%rcx
509	orq	%rcx,%rax
510	movq	%rax,%dr7
5111:
512	movq	%rbx,%rax
513	movq	PCB_RBX(%rdx),%rbx
514
515	CHECKNZ((%rsp), %r9)
516	ret
517END(cpu_heavy_restore)
518
519/*
520 * savectx(struct pcb *pcb)
521 *
522 * Update pcb, saving current processor state.
523 */
524ENTRY(savectx)
525	/* fetch PCB */
526	/* JG use %rdi instead of %rcx everywhere? */
527	movq	%rdi,%rcx
528
529	/* caller's return address - child won't execute this routine */
530	movq	(%rsp),%rax
531	movq	%rax,PCB_RIP(%rcx)
532	movq	%rbx,PCB_RBX(%rcx)
533	movq	%rsp,PCB_RSP(%rcx)
534	movq	%rbp,PCB_RBP(%rcx)
535	movq	%r12,PCB_R12(%rcx)
536	movq	%r13,PCB_R13(%rcx)
537	movq	%r14,PCB_R14(%rcx)
538	movq	%r15,PCB_R15(%rcx)
539
540#if 1
541	/*
542	 * If npxthread == NULL, then the npx h/w state is irrelevant and the
543	 * state had better already be in the pcb.  This is true for forks
544	 * but not for dumps (the old book-keeping with FP flags in the pcb
545	 * always lost for dumps because the dump pcb has 0 flags).
546	 *
547	 * If npxthread != NULL, then we have to save the npx h/w state to
548	 * npxthread's pcb and copy it to the requested pcb, or save to the
549	 * requested pcb and reload.  Copying is easier because we would
550	 * have to handle h/w bugs for reloading.  We used to lose the
551	 * parent's npx state for forks by forgetting to reload.
552	 */
553	movq	PCPU(npxthread),%rax
554	testq	%rax,%rax
555	jz	1f
556
557	pushq	%rcx			/* target pcb */
558	movq	TD_SAVEFPU(%rax),%rax	/* originating savefpu area */
559	pushq	%rax
560
561	movq	%rax,%rdi
562	call	npxsave
563
564	popq	%rax
565	popq	%rcx
566
567	movq	$PCB_SAVEFPU_SIZE,%rdx
568	leaq	PCB_SAVEFPU(%rcx),%rcx
569	movq	%rcx,%rsi
570	movq	%rax,%rdi
571	call	bcopy
572#endif
573
5741:
575	CHECKNZ((%rsp), %r9)
576	ret
577END(savectx)
578
579/*
580 * cpu_idle_restore()	(current thread in %rax on entry) (one-time execution)
581 *			(old thread is %rbx on entry)
582 *
583 *	Don't bother setting up any regs other than %rbp so backtraces
584 *	don't die.  This restore function is used to bootstrap into the
585 *	cpu_idle() LWKT only, after that cpu_lwkt_*() will be used for
586 *	switching.
587 *
588 *	Clear TDF_RUNNING in old thread only after we've cleaned up %cr3.
589 *	This only occurs during system boot so no special handling is
590 *	required for migration.
591 *
592 *	If we are an AP we have to call ap_init() before jumping to
593 *	cpu_idle().  ap_init() will synchronize with the BP and finish
594 *	setting up various ncpu-dependant globaldata fields.  This may
595 *	happen on UP as well as SMP if we happen to be simulating multiple
596 *	cpus.
597 */
598ENTRY(cpu_idle_restore)
599	/* cli */
600	/* JG xor? */
601	movl	$0,%ebp
602	/* JG push RBP? */
603	pushq	$0
604	cmpl	$0,PCPU(cpuid)
605	je	1f
606	andl	$~TDF_RUNNING,TD_FLAGS(%rbx)
607	orl	$TDF_RUNNING,TD_FLAGS(%rax)	/* manual, no switch_return */
608	call	ap_init
609	/* sti */
610	jmp	cpu_idle
611
612	/*
613	 * cpu 0's idle thread entry for the first time must use normal
614	 * lwkt_switch_return() semantics or a pending cpu migration on
615	 * thread0 will deadlock.
616	 */
6171:
618	pushq	%rax
619	movq	%rbx,%rdi
620	call	lwkt_switch_return
621	popq	%rax
622	jmp	cpu_idle
623END(cpu_idle_restore)
624
625/*
626 * cpu_kthread_restore() (current thread is %rax on entry) (one-time execution)
627 *			 (old thread is %rbx on entry)
628 *
629 *	Don't bother setting up any regs other then %rbp so backtraces
630 *	don't die.  This restore function is used to bootstrap into an
631 *	LWKT based kernel thread only.  cpu_lwkt_switch() will be used
632 *	after this.
633 *
634 *	Because this switch target does not 'return' to lwkt_switch()
635 *	we have to call lwkt_switch_return(otd) to clean up otd.
636 *	otd is in %ebx.
637 *
638 *	Since all of our context is on the stack we are reentrant and
639 *	we can release our critical section and enable interrupts early.
640 */
641ENTRY(cpu_kthread_restore)
642	/*sti*/
643	movq	TD_PCB(%rax),%r13
644	movq	$0,%rbp
645
646	/*
647	 * rax and rbx come from the switchout code.  Call
648	 * lwkt_switch_return(otd).
649	 *
650	 * NOTE: unlike i386, the %rsi and %rdi are not call-saved regs.
651	 */
652	pushq	%rax
653	movq	%rbx,%rdi
654	call	lwkt_switch_return
655	popq	%rax
656	decl	TD_CRITCOUNT(%rax)
657	movq	PCB_R12(%r13),%rdi	/* argument to RBX function */
658	movq	PCB_RBX(%r13),%rax	/* thread function */
659	/* note: top of stack return address inherited by function */
660	CHECKNZ(%rax, %r9)
661	jmp	*%rax
662END(cpu_kthread_restore)
663
664/*
665 * cpu_lwkt_switch(struct thread *)
666 *
667 *	Standard LWKT switching function.  Only non-scratch registers are
668 *	saved and we don't bother with the MMU state or anything else.
669 *
670 *	This function is always called while in a critical section.
671 *
672 *	There is a one-instruction window where curthread is the new
673 *	thread but %rsp still points to the old thread's stack, but
674 *	we are protected by a critical section so it is ok.
675 *
676 *	YYY BGL, SPL
677 */
678ENTRY(cpu_lwkt_switch)
679	pushq	%rbp	/* JG note: GDB hacked to locate ebp relative to td_sp */
680	/* JG we've got more registers on x86_64 */
681	pushq	%rbx
682	movq	PCPU(curthread),%rbx
683	pushq	%r12
684	pushq	%r13
685	pushq	%r14
686	pushq	%r15
687	pushfq
688
689#if 1
690	/*
691	 * Save the FP state if we have used the FP.  Note that calling
692	 * npxsave will NULL out PCPU(npxthread).
693	 *
694	 * We have to deal with the FP state for LWKT threads in case they
695	 * happen to get preempted or block while doing an optimized
696	 * bzero/bcopy/memcpy.
697	 */
698	cmpq	%rbx,PCPU(npxthread)
699	jne	1f
700	movq	%rdi,%r12		/* save %rdi. %r12 is callee-saved */
701	movq	TD_SAVEFPU(%rbx),%rdi
702	call	npxsave			/* do it in a big C function */
703	movq	%r12,%rdi		/* restore %rdi */
7041:
705#endif
706
707	movq	%rdi,%rax		/* switch to this thread */
708	pushq	$cpu_lwkt_restore
709	movq	%rsp,TD_SP(%rbx)
710	movq	%rax,PCPU(curthread)
711	movq	TD_SP(%rax),%rsp
712
713	/*
714	 * %rax contains new thread, %rbx contains old thread.
715	 */
716	CHECKNZ((%rsp), %r9)
717	ret
718END(cpu_lwkt_switch)
719
720/*
721 * cpu_lwkt_restore()	(current thread in %rax on entry)
722 *
723 *	Standard LWKT restore function.  This function is always called
724 *	while in a critical section.
725 *
726 *	Warning: due to preemption the restore function can be used to
727 *	'return' to the original thread.  Interrupt disablement must be
728 *	protected through the switch so we cannot run splz here.
729 */
730ENTRY(cpu_lwkt_restore)
731	/*
732	 * NOTE: %rbx is the previous thread and %eax is the new thread.
733	 *	 %rbx is retained throughout so we can return it.
734	 *
735	 *	 lwkt_switch[_return] is responsible for handling TDF_RUNNING.
736	 */
737	movq	%rbx,%rax
738	popfq
739	popq	%r15
740	popq	%r14
741	popq	%r13
742	popq	%r12
743	popq	%rbx
744	popq	%rbp
745	ret
746END(cpu_lwkt_restore)
747
748/*
749 * bootstrap_idle()
750 *
751 * Make AP become the idle loop.
752 */
753ENTRY(bootstrap_idle)
754	movq	PCPU(curthread),%rax
755	movq	%rax,%rbx
756	movq	TD_SP(%rax),%rsp
757	ret
758END(bootstrap_idle)
759