1/*
2 * Copyright (c) 2003,2004,2008 The DragonFly Project.  All rights reserved.
3 * Copyright (c) 2008 Jordan Gordeev.
4 *
5 * This code is derived from software contributed to The DragonFly Project
6 * by Matthew Dillon <dillon@backplane.com>
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in
16 *    the documentation and/or other materials provided with the
17 *    distribution.
18 * 3. Neither the name of The DragonFly Project nor the names of its
19 *    contributors may be used to endorse or promote products derived
20 *    from this software without specific, prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
26 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * Copyright (c) 1990 The Regents of the University of California.
36 * All rights reserved.
37 *
38 * This code is derived from software contributed to Berkeley by
39 * William Jolitz.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 *    notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 *    notice, this list of conditions and the following disclaimer in the
48 *    documentation and/or other materials provided with the distribution.
49 * 3. All advertising materials mentioning features or use of this software
50 *    must display the following acknowledgement:
51 *	This product includes software developed by the University of
52 *	California, Berkeley and its contributors.
53 * 4. Neither the name of the University nor the names of its contributors
54 *    may be used to endorse or promote products derived from this software
55 *    without specific prior written permission.
56 *
57 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
58 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
61 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
62 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
63 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
64 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
65 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
66 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
67 * SUCH DAMAGE.
68 *
69 * $FreeBSD: src/sys/i386/i386/swtch.s,v 1.89.2.10 2003/01/23 03:36:24 ps Exp $
70 */
71
72//#include "use_npx.h"
73
74#include <sys/rtprio.h>
75
76#include <machine/asmacros.h>
77#include <machine/segments.h>
78
79#include <machine/pmap.h>
80#include <machine/lock.h>
81
82#define CHECKNZ(expr, scratch_reg) \
83	movq expr, scratch_reg; testq scratch_reg, scratch_reg; jnz 7f; int $3; 7:
84
85#include "assym.s"
86
87#if defined(SMP)
88#define MPLOCKED        lock ;
89#else
90#define MPLOCKED
91#endif
92
93	.data
94
95	.globl	panic
96	.globl	lwkt_switch_return
97
98#if defined(SWTCH_OPTIM_STATS)
99	.globl	swtch_optim_stats, tlb_flush_count
100swtch_optim_stats:	.long	0		/* number of _swtch_optims */
101tlb_flush_count:	.long	0
102#endif
103
104	.text
105
106
107/*
108 * cpu_heavy_switch(struct thread *next_thread)
109 *
110 *	Switch from the current thread to a new thread.  This entry
111 *	is normally called via the thread->td_switch function, and will
112 *	only be called when the current thread is a heavy weight process.
113 *
114 *	Some instructions have been reordered to reduce pipeline stalls.
115 *
116 *	YYY disable interrupts once giant is removed.
117 */
118ENTRY(cpu_heavy_switch)
119	/*
120	 * Save RIP, RSP and callee-saved registers (RBX, RBP, R12-R15).
121	 */
122	movq	PCPU(curthread),%rcx
123	/* On top of the stack is the return adress. */
124	movq	(%rsp),%rax			/* (reorder optimization) */
125	movq	TD_PCB(%rcx),%rdx		/* RDX = PCB */
126	movq	%rax,PCB_RIP(%rdx)		/* return PC may be modified */
127	movq	%rbx,PCB_RBX(%rdx)
128	movq	%rsp,PCB_RSP(%rdx)
129	movq	%rbp,PCB_RBP(%rdx)
130	movq	%r12,PCB_R12(%rdx)
131	movq	%r13,PCB_R13(%rdx)
132	movq	%r14,PCB_R14(%rdx)
133	movq	%r15,PCB_R15(%rdx)
134
135	movq	%rcx,%rbx			/* RBX = curthread */
136	movq	TD_LWP(%rcx),%rcx
137	movslq	PCPU(cpuid), %rax
138	movq	LWP_VMSPACE(%rcx), %rcx		/* RCX = vmspace */
139	MPLOCKED btrq	%rax, VM_PMAP+PM_ACTIVE(%rcx)
140
141	/*
142	 * Push the LWKT switch restore function, which resumes a heavy
143	 * weight process.  Note that the LWKT switcher is based on
144	 * TD_SP, while the heavy weight process switcher is based on
145	 * PCB_RSP.  TD_SP is usually two ints pushed relative to
146	 * PCB_RSP.  We push the flags for later restore by cpu_heavy_restore.
147	 */
148	pushfq
149	movq	$cpu_heavy_restore, %rax
150	pushq	%rax
151	movq	%rsp,TD_SP(%rbx)
152
153	/*
154	 * Save debug regs if necessary
155	 */
156	movq    PCB_FLAGS(%rdx),%rax
157	andq    $PCB_DBREGS,%rax
158	jz      1f                              /* no, skip over */
159	movq    %dr7,%rax                       /* yes, do the save */
160	movq    %rax,PCB_DR7(%rdx)
161	/* JG correct value? */
162	andq    $0x0000fc00, %rax               /* disable all watchpoints */
163	movq    %rax,%dr7
164	movq    %dr6,%rax
165	movq    %rax,PCB_DR6(%rdx)
166	movq    %dr3,%rax
167	movq    %rax,PCB_DR3(%rdx)
168	movq    %dr2,%rax
169	movq    %rax,PCB_DR2(%rdx)
170	movq    %dr1,%rax
171	movq    %rax,PCB_DR1(%rdx)
172	movq    %dr0,%rax
173	movq    %rax,PCB_DR0(%rdx)
1741:
175
176#if 1
177	/*
178	 * Save the FP state if we have used the FP.  Note that calling
179	 * npxsave will NULL out PCPU(npxthread).
180	 */
181	cmpq	%rbx,PCPU(npxthread)
182	jne	1f
183	movq	%rdi,%r12		/* save %rdi. %r12 is callee-saved */
184	movq	TD_SAVEFPU(%rbx),%rdi
185	call	npxsave			/* do it in a big C function */
186	movq	%r12,%rdi		/* restore %rdi */
1871:
188#endif
189
190	/*
191	 * Switch to the next thread, which was passed as an argument
192	 * to cpu_heavy_switch().  The argument is in %rdi.
193	 * Set the current thread, load the stack pointer,
194	 * and 'ret' into the switch-restore function.
195	 *
196	 * The switch restore function expects the new thread to be in %rax
197	 * and the old one to be in %rbx.
198	 *
199	 * There is a one-instruction window where curthread is the new
200	 * thread but %rsp still points to the old thread's stack, but
201	 * we are protected by a critical section so it is ok.
202	 */
203	movq	%rdi,%rax		/* RAX = newtd, RBX = oldtd */
204	movq	%rax,PCPU(curthread)
205	movq	TD_SP(%rax),%rsp
206	CHECKNZ((%rsp), %r9)
207	ret
208
209/*
210 *  cpu_exit_switch(struct thread *next)
211 *
212 *	The switch function is changed to this when a thread is going away
213 *	for good.  We have to ensure that the MMU state is not cached, and
214 *	we don't bother saving the existing thread state before switching.
215 *
216 *	At this point we are in a critical section and this cpu owns the
217 *	thread's token, which serves as an interlock until the switchout is
218 *	complete.
219 */
220ENTRY(cpu_exit_switch)
221	/*
222	 * Get us out of the vmspace
223	 */
224#if 0
225	movq	KPML4phys,%rcx
226	movq	%cr3,%rax
227	cmpq	%rcx,%rax
228	je	1f
229	/* JG no increment of statistics counters? see cpu_heavy_restore */
230	movq	%rcx,%cr3
2311:
232#endif
233	movq	PCPU(curthread),%rbx
234
235	/*
236	 * If this is a process/lwp, deactivate the pmap after we've
237	 * switched it out.
238	 */
239	movq	TD_LWP(%rbx),%rcx
240	testq	%rcx,%rcx
241	jz	2f
242	movslq	PCPU(cpuid), %rax
243	movq	LWP_VMSPACE(%rcx), %rcx		/* RCX = vmspace */
244	MPLOCKED btrq	%rax, VM_PMAP+PM_ACTIVE(%rcx)
2452:
246	/*
247	 * Switch to the next thread.  RET into the restore function, which
248	 * expects the new thread in RAX and the old in RBX.
249	 *
250	 * There is a one-instruction window where curthread is the new
251	 * thread but %rsp still points to the old thread's stack, but
252	 * we are protected by a critical section so it is ok.
253	 */
254	movq	%rdi,%rax
255	movq	%rax,PCPU(curthread)
256	movq	TD_SP(%rax),%rsp
257	CHECKNZ((%rsp), %r9)
258	ret
259
260/*
261 * cpu_heavy_restore()	(current thread in %rax on entry)
262 *
263 *	Restore the thread after an LWKT switch.  This entry is normally
264 *	called via the LWKT switch restore function, which was pulled
265 *	off the thread stack and jumped to.
266 *
267 *	This entry is only called if the thread was previously saved
268 *	using cpu_heavy_switch() (the heavy weight process thread switcher),
269 *	or when a new process is initially scheduled.
270 *
271 *	NOTE: The lwp may be in any state, not necessarily LSRUN, because
272 *	a preemption switch may interrupt the process and then return via
273 *	cpu_heavy_restore.
274 *
275 *	YYY theoretically we do not have to restore everything here, a lot
276 *	of this junk can wait until we return to usermode.  But for now
277 *	we restore everything.
278 *
279 *	YYY the PCB crap is really crap, it makes startup a bitch because
280 *	we can't switch away.
281 *
282 *	YYY note: spl check is done in mi_switch when it splx()'s.
283 */
284
285ENTRY(cpu_heavy_restore)
286	popfq
287	movq	TD_PCB(%rax),%rdx		/* RDX = PCB */
288	movq	TD_LWP(%rax),%rcx
289
290#if defined(SWTCH_OPTIM_STATS)
291	incl	_swtch_optim_stats
292#endif
293	/*
294	 * Tell the pmap that our cpu is using the VMSPACE now.  We cannot
295	 * safely test/reload %cr3 until after we have set the bit in the
296	 * pmap (remember, we do not hold the MP lock in the switch code).
297	 */
298	movq	LWP_VMSPACE(%rcx), %rcx		/* RCX = vmspace */
299	movslq	PCPU(cpuid), %rsi
300	MPLOCKED btsq	%rsi, VM_PMAP+PM_ACTIVE(%rcx)
301
302	/*
303	 * Restore the MMU address space.  If it is the same as the last
304	 * thread we don't have to invalidate the tlb (i.e. reload cr3).
305	 * YYY which naturally also means that the PM_ACTIVE bit had better
306	 * already have been set before we set it above, check? YYY
307	 */
308#if 0
309	movq	%cr3,%rsi
310	movq	PCB_CR3(%rdx),%rcx
311	cmpq	%rsi,%rcx
312	je	4f
313#if defined(SWTCH_OPTIM_STATS)
314	decl	_swtch_optim_stats
315	incl	_tlb_flush_count
316#endif
317	movq	%rcx,%cr3
3184:
319#endif
320	/*
321	 * NOTE: %rbx is the previous thread and %eax is the new thread.
322	 *	 %rbx is retained throughout so we can return it.
323	 *
324	 *	 lwkt_switch[_return] is responsible for handling TDF_RUNNING.
325	 */
326
327#if 0
328	/*
329	 * Deal with the PCB extension, restore the private tss
330	 */
331	movq	PCB_EXT(%rdx),%rdi	/* check for a PCB extension */
332	movq	$1,%rcx			/* maybe mark use of a private tss */
333	testq	%rdi,%rdi
334#if JG
335	jnz	2f
336#endif
337
338	/* JG
339	 * Going back to the common_tss.  We may need to update TSS_ESP0
340	 * which sets the top of the supervisor stack when entering from
341	 * usermode.  The PCB is at the top of the stack but we need another
342	 * 16 bytes to take vm86 into account.
343	 */
344	leaq	-16(%rdx),%rcx
345	movq	%rcx, PCPU(common_tss) + TSS_RSP0
346	movq	%rcx, PCPU(rsp0)
347
348#if JG
349	cmpl	$0,PCPU(private_tss)	/* don't have to reload if      */
350	je	3f			/* already using the common TSS */
351
352	/* JG? */
353	subq	%rcx,%rcx		/* unmark use of private tss */
354
355	/*
356	 * Get the address of the common TSS descriptor for the ltr.
357	 * There is no way to get the address of a segment-accessed variable
358	 * so we store a self-referential pointer at the base of the per-cpu
359	 * data area and add the appropriate offset.
360	 */
361	/* JG movl? */
362	movq	$gd_common_tssd, %rdi
363	/* JG name for "%gs:0"? */
364	addq	%gs:0, %rdi
365
366	/*
367	 * Move the correct TSS descriptor into the GDT slot, then reload
368	 * ltr.
369	 */
3702:
371	/* JG */
372	movl	%rcx,PCPU(private_tss)		/* mark/unmark private tss */
373	movq	PCPU(tss_gdt), %rcx		/* entry in GDT */
374	movq	0(%rdi), %rax
375	movq	%rax, 0(%rcx)
376	movl	$GPROC0_SEL*8, %esi		/* GSEL(entry, SEL_KPL) */
377	ltr	%si
378#endif
379
3803:
381#endif
382#if 0
383	/*
384	 * Restore the user %gs and %fs
385	 */
386	movq	PCB_FSBASE(%rdx),%r9
387	cmpq	PCPU(user_fs),%r9
388	je	4f
389	movq	%rdx,%r10
390	movq	%r9,PCPU(user_fs)
391	movl	$MSR_FSBASE,%ecx
392	movl	PCB_FSBASE(%r10),%eax
393	movl	PCB_FSBASE+4(%r10),%edx
394	wrmsr
395	movq	%r10,%rdx
3964:
397	movq	PCB_GSBASE(%rdx),%r9
398	cmpq	PCPU(user_gs),%r9
399	je	5f
400	movq	%rdx,%r10
401	movq	%r9,PCPU(user_gs)
402	movl	$MSR_KGSBASE,%ecx	/* later swapgs moves it to GSBASE */
403	movl	PCB_GSBASE(%r10),%eax
404	movl	PCB_GSBASE+4(%r10),%edx
405	wrmsr
406	movq	%r10,%rdx
4075:
408#endif
409
410	/*
411	 * Restore general registers.  %rbx is restored later.
412	 */
413	movq	PCB_RSP(%rdx), %rsp
414	movq	PCB_RBP(%rdx), %rbp
415	movq	PCB_R12(%rdx), %r12
416	movq	PCB_R13(%rdx), %r13
417	movq	PCB_R14(%rdx), %r14
418	movq	PCB_R15(%rdx), %r15
419	movq	PCB_RIP(%rdx), %rax
420	movq	%rax, (%rsp)
421
422#if 0
423	/*
424	 * Restore the user LDT if we have one
425	 */
426	cmpl	$0, PCB_USERLDT(%edx)
427	jnz	1f
428	movl	_default_ldt,%eax
429	cmpl	PCPU(currentldt),%eax
430	je	2f
431	lldt	_default_ldt
432	movl	%eax,PCPU(currentldt)
433	jmp	2f
4341:	pushl	%edx
435	call	set_user_ldt
436	popl	%edx
4372:
438#endif
439#if 0
440	/*
441	 * Restore the user TLS if we have one
442	 */
443	pushl	%edx
444	call	set_user_TLS
445	popl	%edx
446#endif
447
448	/*
449	 * Restore the DEBUG register state if necessary.
450	 */
451	movq    PCB_FLAGS(%rdx),%rax
452	andq    $PCB_DBREGS,%rax
453	jz      1f                              /* no, skip over */
454	movq    PCB_DR6(%rdx),%rax              /* yes, do the restore */
455	movq    %rax,%dr6
456	movq    PCB_DR3(%rdx),%rax
457	movq    %rax,%dr3
458	movq    PCB_DR2(%rdx),%rax
459	movq    %rax,%dr2
460	movq    PCB_DR1(%rdx),%rax
461	movq    %rax,%dr1
462	movq    PCB_DR0(%rdx),%rax
463	movq    %rax,%dr0
464	movq	%dr7,%rax                /* load dr7 so as not to disturb */
465	/* JG correct value? */
466	andq    $0x0000fc00,%rax         /*   reserved bits               */
467	/* JG we've got more registers on x86_64 */
468	movq    PCB_DR7(%rdx),%rcx
469	/* JG correct value? */
470	andq	$~0x0000fc00,%rcx
471	orq     %rcx,%rax
472	movq    %rax,%dr7
4731:
474	movq	%rbx,%rax
475	movq	PCB_RBX(%rdx),%rbx
476
477	CHECKNZ((%rsp), %r9)
478	ret
479
480/*
481 * savectx(struct pcb *pcb)
482 *
483 * Update pcb, saving current processor state.
484 */
485ENTRY(savectx)
486	/* fetch PCB */
487	/* JG use %rdi instead of %rcx everywhere? */
488	movq	%rdi,%rcx
489
490	/* caller's return address - child won't execute this routine */
491	movq	(%rsp),%rax
492	movq	%rax,PCB_RIP(%rcx)
493	movq	%rbx,PCB_RBX(%rcx)
494	movq	%rsp,PCB_RSP(%rcx)
495	movq	%rbp,PCB_RBP(%rcx)
496	movq	%r12,PCB_R12(%rcx)
497	movq	%r13,PCB_R13(%rcx)
498	movq	%r14,PCB_R14(%rcx)
499	movq	%r15,PCB_R15(%rcx)
500
501#if 1
502	/*
503	 * If npxthread == NULL, then the npx h/w state is irrelevant and the
504	 * state had better already be in the pcb.  This is true for forks
505	 * but not for dumps (the old book-keeping with FP flags in the pcb
506	 * always lost for dumps because the dump pcb has 0 flags).
507	 *
508	 * If npxthread != NULL, then we have to save the npx h/w state to
509	 * npxthread's pcb and copy it to the requested pcb, or save to the
510	 * requested pcb and reload.  Copying is easier because we would
511	 * have to handle h/w bugs for reloading.  We used to lose the
512	 * parent's npx state for forks by forgetting to reload.
513	 */
514	movq	PCPU(npxthread),%rax
515	testq	%rax,%rax
516	jz	1f
517
518	pushq	%rcx			/* target pcb */
519	movq	TD_SAVEFPU(%rax),%rax	/* originating savefpu area */
520	pushq	%rax
521
522	movq	%rax,%rdi
523	call	npxsave
524
525	popq	%rax
526	popq	%rcx
527
528	movq	$PCB_SAVEFPU_SIZE,%rdx
529	leaq    PCB_SAVEFPU(%rcx),%rcx
530	movq	%rcx,%rsi
531	movq	%rax,%rdi
532	call	bcopy
533#endif
534
5351:
536	CHECKNZ((%rsp), %r9)
537	ret
538
539/*
540 * cpu_idle_restore()	(current thread in %rax on entry) (one-time execution)
541 *
542 *	Don't bother setting up any regs other than %rbp so backtraces
543 *	don't die.  This restore function is used to bootstrap into the
544 *	cpu_idle() LWKT only, after that cpu_lwkt_*() will be used for
545 *	switching.
546 *
547 *	Clear TDF_RUNNING in old thread only after we've cleaned up %cr3.
548 *	This only occurs during system boot so no special handling is
549 *	required for migration.
550 *
551 *	If we are an AP we have to call ap_init() before jumping to
552 *	cpu_idle().  ap_init() will synchronize with the BP and finish
553 *	setting up various ncpu-dependant globaldata fields.  This may
554 *	happen on UP as well as SMP if we happen to be simulating multiple
555 *	cpus.
556 */
557ENTRY(cpu_idle_restore)
558	/* cli */
559	/* JG xor? */
560	movl	$0,%ebp
561	/* JG push RBP? */
562	pushq	$0
563	andl	$~TDF_RUNNING,TD_FLAGS(%rbx)
564	orl	$TDF_RUNNING,TD_FLAGS(%rax)	/* manual, no switch_return */
565#ifdef SMP
566	cmpl	$0,PCPU(cpuid)
567	je	1f
568	call	ap_init
5691:
570#endif
571	/* sti */
572	jmp	cpu_idle
573
574/*
575 * cpu_kthread_restore() (current thread is %rax on entry) (one-time execution)
576 *
577 *	Don't bother setting up any regs other then %rbp so backtraces
578 *	don't die.  This restore function is used to bootstrap into an
579 *	LWKT based kernel thread only.  cpu_lwkt_switch() will be used
580 *	after this.
581 *
582 *	Because this switch target does not 'return' to lwkt_switch()
583 *	we have to call lwkt_switch_return(otd) to clean up otd.
584 *	otd is in %ebx.
585 *
586 *	Since all of our context is on the stack we are reentrant and
587 *	we can release our critical section and enable interrupts early.
588 */
589ENTRY(cpu_kthread_restore)
590	/*sti*/
591	movq	TD_PCB(%rax),%r13
592	movq	$0,%rbp
593
594	/*
595	 * rax and rbx come from the switchout code.  Call
596	 * lwkt_switch_return(otd).
597	 *
598	 * NOTE: unlike i386, %rsi and %rdi are not call-saved regs.
599	 */
600	pushq	%rax
601	movq	%rbx,%rdi
602	call	lwkt_switch_return
603	popq	%rax
604	decl	TD_CRITCOUNT(%rax)
605	movq	PCB_R12(%r13),%rdi	/* argument to RBX function */
606	movq	PCB_RBX(%r13),%rax	/* thread function */
607	/* note: top of stack return address inherited by function */
608	CHECKNZ(%rax, %r9)
609	jmp	*%rax
610
611/*
612 * cpu_lwkt_switch(struct thread *)
613 *
614 *	Standard LWKT switching function.  Only non-scratch registers are
615 *	saved and we don't bother with the MMU state or anything else.
616 *
617 *	This function is always called while in a critical section.
618 *
619 *	There is a one-instruction window where curthread is the new
620 *	thread but %rsp still points to the old thread's stack, but
621 *	we are protected by a critical section so it is ok.
622 *
623 *	YYY BGL, SPL
624 */
625ENTRY(cpu_lwkt_switch)
626	pushq	%rbp	/* JG note: GDB hacked to locate ebp relative to td_sp */
627	/* JG we've got more registers on x86_64 */
628	pushq	%rbx
629	movq	PCPU(curthread),%rbx
630	pushq	%r12
631	pushq	%r13
632	pushq	%r14
633	pushq	%r15
634	pushfq
635
636#if 1
637	/*
638	 * Save the FP state if we have used the FP.  Note that calling
639	 * npxsave will NULL out PCPU(npxthread).
640	 *
641	 * We have to deal with the FP state for LWKT threads in case they
642	 * happen to get preempted or block while doing an optimized
643	 * bzero/bcopy/memcpy.
644	 */
645	cmpq	%rbx,PCPU(npxthread)
646	jne	1f
647	movq	%rdi,%r12		/* save %rdi. %r12 is callee-saved */
648	movq	TD_SAVEFPU(%rbx),%rdi
649	call	npxsave			/* do it in a big C function */
650	movq	%r12,%rdi		/* restore %rdi */
6511:
652#endif
653
654	movq	%rdi,%rax		/* switch to this thread */
655	pushq	$cpu_lwkt_restore
656	movq	%rsp,TD_SP(%rbx)
657	movq	%rax,PCPU(curthread)
658	movq	TD_SP(%rax),%rsp
659
660	/*
661	 * %rax contains new thread, %rbx contains old thread.
662	 */
663	CHECKNZ((%rsp), %r9)
664	ret
665
666/*
667 * cpu_lwkt_restore()	(current thread in %rax on entry)
668 *
669 *	Standard LWKT restore function.  This function is always called
670 *	while in a critical section.
671 *
672 *	Warning: due to preemption the restore function can be used to
673 *	'return' to the original thread.  Interrupt disablement must be
674 *	protected through the switch so we cannot run splz here.
675 */
676ENTRY(cpu_lwkt_restore)
677	/*
678	 * NOTE: %rbx is the previous thread and %eax is the new thread.
679	 *	 %rbx is retained throughout so we can return it.
680	 *
681	 *	 lwkt_switch[_return] is responsible for handling TDF_RUNNING.
682	 */
683	movq	%rbx,%rax
684	popfq
685	popq	%r15
686	popq	%r14
687	popq	%r13
688	popq	%r12
689	popq	%rbx
690	popq	%rbp
691	ret
692
693/*
694 * bootstrap_idle()
695 *
696 * Make AP become the idle loop.
697 */
698ENTRY(bootstrap_idle)
699	movq	PCPU(curthread),%rax
700	movq	%rax,%rbx
701	movq	TD_SP(%rax),%rsp
702	ret
703