xref: /dragonfly/sys/platform/vkernel64/x86_64/trap.c (revision 10cbe914)
1 /*-
2  * Copyright (C) 1994, David Greenman
3  * Copyright (c) 1990, 1993
4  *	The Regents of the University of California.  All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * the University of Utah, and William Jolitz.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed by the University of
20  *	California, Berkeley and its contributors.
21  * 4. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *	from: @(#)trap.c	7.4 (Berkeley) 5/13/91
38  * $FreeBSD: src/sys/i386/i386/trap.c,v 1.147.2.11 2003/02/27 19:09:59 luoqi Exp $
39  */
40 
41 /*
42  * x86_64 Trap and System call handling
43  */
44 
45 #include "use_isa.h"
46 
47 #include "opt_ddb.h"
48 #include "opt_ktrace.h"
49 
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/proc.h>
53 #include <sys/pioctl.h>
54 #include <sys/kernel.h>
55 #include <sys/resourcevar.h>
56 #include <sys/signalvar.h>
57 #include <sys/signal2.h>
58 #include <sys/syscall.h>
59 #include <sys/sysctl.h>
60 #include <sys/sysent.h>
61 #include <sys/uio.h>
62 #include <sys/vmmeter.h>
63 #include <sys/malloc.h>
64 #ifdef KTRACE
65 #include <sys/ktrace.h>
66 #endif
67 #include <sys/ktr.h>
68 #include <sys/upcall.h>
69 #include <sys/vkernel.h>
70 #include <sys/sysproto.h>
71 #include <sys/sysunion.h>
72 #include <sys/vmspace.h>
73 
74 #include <vm/vm.h>
75 #include <vm/vm_param.h>
76 #include <sys/lock.h>
77 #include <vm/pmap.h>
78 #include <vm/vm_kern.h>
79 #include <vm/vm_map.h>
80 #include <vm/vm_page.h>
81 #include <vm/vm_extern.h>
82 
83 #include <machine/cpu.h>
84 #include <machine/md_var.h>
85 #include <machine/pcb.h>
86 #include <machine/smp.h>
87 #include <machine/tss.h>
88 #include <machine/globaldata.h>
89 
90 #include <ddb/ddb.h>
91 
92 #include <sys/msgport2.h>
93 #include <sys/thread2.h>
94 #include <sys/mplock2.h>
95 
96 #ifdef SMP
97 
98 #define MAKEMPSAFE(have_mplock)			\
99 	if (have_mplock == 0) {			\
100 		get_mplock();			\
101 		have_mplock = 1;		\
102 	}
103 
104 #else
105 
106 #define MAKEMPSAFE(have_mplock)
107 
108 #endif
109 
110 int (*pmath_emulate) (struct trapframe *);
111 
112 extern int trapwrite (unsigned addr);
113 
114 static int trap_pfault (struct trapframe *, int, vm_offset_t);
115 static void trap_fatal (struct trapframe *, int, vm_offset_t);
116 void dblfault_handler (void);
117 
118 #if 0
119 extern inthand_t IDTVEC(syscall);
120 #endif
121 
122 #define MAX_TRAP_MSG		30
123 static char *trap_msg[] = {
124 	"",					/*  0 unused */
125 	"privileged instruction fault",		/*  1 T_PRIVINFLT */
126 	"",					/*  2 unused */
127 	"breakpoint instruction fault",		/*  3 T_BPTFLT */
128 	"",					/*  4 unused */
129 	"",					/*  5 unused */
130 	"arithmetic trap",			/*  6 T_ARITHTRAP */
131 	"system forced exception",		/*  7 T_ASTFLT */
132 	"",					/*  8 unused */
133 	"general protection fault",		/*  9 T_PROTFLT */
134 	"trace trap",				/* 10 T_TRCTRAP */
135 	"",					/* 11 unused */
136 	"page fault",				/* 12 T_PAGEFLT */
137 	"",					/* 13 unused */
138 	"alignment fault",			/* 14 T_ALIGNFLT */
139 	"",					/* 15 unused */
140 	"",					/* 16 unused */
141 	"",					/* 17 unused */
142 	"integer divide fault",			/* 18 T_DIVIDE */
143 	"non-maskable interrupt trap",		/* 19 T_NMI */
144 	"overflow trap",			/* 20 T_OFLOW */
145 	"FPU bounds check fault",		/* 21 T_BOUND */
146 	"FPU device not available",		/* 22 T_DNA */
147 	"double fault",				/* 23 T_DOUBLEFLT */
148 	"FPU operand fetch fault",		/* 24 T_FPOPFLT */
149 	"invalid TSS fault",			/* 25 T_TSSFLT */
150 	"segment not present fault",		/* 26 T_SEGNPFLT */
151 	"stack fault",				/* 27 T_STKFLT */
152 	"machine check trap",			/* 28 T_MCHK */
153 	"SIMD floating-point exception",	/* 29 T_XMMFLT */
154 	"reserved (unknown) fault",		/* 30 T_RESERVED */
155 };
156 
157 #ifdef DDB
158 static int ddb_on_nmi = 1;
159 SYSCTL_INT(_machdep, OID_AUTO, ddb_on_nmi, CTLFLAG_RW,
160 	&ddb_on_nmi, 0, "Go to DDB on NMI");
161 #endif
162 static int panic_on_nmi = 1;
163 SYSCTL_INT(_machdep, OID_AUTO, panic_on_nmi, CTLFLAG_RW,
164 	&panic_on_nmi, 0, "Panic on NMI");
165 static int fast_release;
166 SYSCTL_INT(_machdep, OID_AUTO, fast_release, CTLFLAG_RW,
167 	&fast_release, 0, "Passive Release was optimal");
168 static int slow_release;
169 SYSCTL_INT(_machdep, OID_AUTO, slow_release, CTLFLAG_RW,
170 	&slow_release, 0, "Passive Release was nonoptimal");
171 
172 MALLOC_DEFINE(M_SYSMSG, "sysmsg", "sysmsg structure");
173 extern int max_sysmsg;
174 
175 /*
176  * Passively intercepts the thread switch function to increase the thread
177  * priority from a user priority to a kernel priority, reducing
178  * syscall and trap overhead for the case where no switch occurs.
179  *
180  * Synchronizes td_ucred with p_ucred.  This is used by system calls,
181  * signal handling, faults, AST traps, and anything else that enters the
182  * kernel from userland and provides the kernel with a stable read-only
183  * copy of the process ucred.
184  */
185 static __inline void
186 userenter(struct thread *curtd, struct proc *curp)
187 {
188 	struct ucred *ocred;
189 	struct ucred *ncred;
190 
191 	curtd->td_release = lwkt_passive_release;
192 
193 	if (curtd->td_ucred != curp->p_ucred) {
194 		ncred = crhold(curp->p_ucred);
195 		ocred = curtd->td_ucred;
196 		curtd->td_ucred = ncred;
197 		if (ocred)
198 			crfree(ocred);
199 	}
200 }
201 
202 /*
203  * Handle signals, upcalls, profiling, and other AST's and/or tasks that
204  * must be completed before we can return to or try to return to userland.
205  *
206  * Note that td_sticks is a 64 bit quantity, but there's no point doing 64
207  * arithmatic on the delta calculation so the absolute tick values are
208  * truncated to an integer.
209  */
210 static void
211 userret(struct lwp *lp, struct trapframe *frame, int sticks)
212 {
213 	struct proc *p = lp->lwp_proc;
214 	int sig;
215 
216 	/*
217 	 * Charge system time if profiling.  Note: times are in microseconds.
218 	 * This may do a copyout and block, so do it first even though it
219 	 * means some system time will be charged as user time.
220 	 */
221 	if (p->p_flag & P_PROFIL) {
222 		addupc_task(p, frame->tf_rip,
223 			(u_int)((int)lp->lwp_thread->td_sticks - sticks));
224 	}
225 
226 recheck:
227 	/*
228 	 * If the jungle wants us dead, so be it.
229 	 */
230 	if (lp->lwp_flag & LWP_WEXIT) {
231 		get_mplock();
232 		lwp_exit(0);
233 		rel_mplock(); /* NOT REACHED */
234 	}
235 
236 	/*
237 	 * Block here if we are in a stopped state.
238 	 */
239 	if (p->p_stat == SSTOP) {
240 		get_mplock();
241 		tstop();
242 		rel_mplock();
243 		goto recheck;
244 	}
245 
246 	/*
247 	 * Post any pending upcalls
248 	 */
249 	if (p->p_flag & P_UPCALLPEND) {
250 		get_mplock();
251 		p->p_flag &= ~P_UPCALLPEND;
252 		postupcall(lp);
253 		rel_mplock();
254 		goto recheck;
255 	}
256 
257 	/*
258 	 * Post any pending signals
259 	 *
260 	 * WARNING!  postsig() can exit and not return.
261 	 */
262 	if ((sig = CURSIG_TRACE(lp)) != 0) {
263 		get_mplock();
264 		postsig(sig);
265 		rel_mplock();
266 		goto recheck;
267 	}
268 
269 	/*
270 	 * block here if we are swapped out, but still process signals
271 	 * (such as SIGKILL).  proc0 (the swapin scheduler) is already
272 	 * aware of our situation, we do not have to wake it up.
273 	 */
274 	if (p->p_flag & P_SWAPPEDOUT) {
275 		get_mplock();
276 		p->p_flag |= P_SWAPWAIT;
277 		swapin_request();
278 		if (p->p_flag & P_SWAPWAIT)
279 			tsleep(p, PCATCH, "SWOUT", 0);
280 		p->p_flag &= ~P_SWAPWAIT;
281 		rel_mplock();
282 		goto recheck;
283 	}
284 
285 	/*
286 	 * Make sure postsig() handled request to restore old signal mask after
287 	 * running signal handler.
288 	 */
289 	KKASSERT((lp->lwp_flag & LWP_OLDMASK) == 0);
290 }
291 
292 /*
293  * Cleanup from userenter and any passive release that might have occured.
294  * We must reclaim the current-process designation before we can return
295  * to usermode.  We also handle both LWKT and USER reschedule requests.
296  */
297 static __inline void
298 userexit(struct lwp *lp)
299 {
300 	struct thread *td = lp->lwp_thread;
301 	/* globaldata_t gd = td->td_gd; */
302 
303 	/*
304 	 * Handle stop requests at kernel priority.  Any requests queued
305 	 * after this loop will generate another AST.
306 	 */
307 	while (lp->lwp_proc->p_stat == SSTOP) {
308 		get_mplock();
309 		tstop();
310 		rel_mplock();
311 	}
312 
313 	/*
314 	 * Reduce our priority in preparation for a return to userland.  If
315 	 * our passive release function was still in place, our priority was
316 	 * never raised and does not need to be reduced.
317 	 */
318 	lwkt_passive_recover(td);
319 
320 	/*
321 	 * Become the current user scheduled process if we aren't already,
322 	 * and deal with reschedule requests and other factors.
323 	 */
324 	lp->lwp_proc->p_usched->acquire_curproc(lp);
325 	/* WARNING: we may have migrated cpu's */
326 	/* gd = td->td_gd; */
327 }
328 
329 #if !defined(KTR_KERNENTRY)
330 #define	KTR_KERNENTRY	KTR_ALL
331 #endif
332 KTR_INFO_MASTER(kernentry);
333 KTR_INFO(KTR_KERNENTRY, kernentry, trap, 0, "pid=%d, tid=%d, trapno=%d, eva=%p",
334 	 sizeof(int) + sizeof(int) + sizeof(int) + sizeof(vm_offset_t));
335 KTR_INFO(KTR_KERNENTRY, kernentry, trap_ret, 0, "pid=%d, tid=%d",
336 	 sizeof(int) + sizeof(int));
337 KTR_INFO(KTR_KERNENTRY, kernentry, syscall, 0, "pid=%d, tid=%d, call=%d",
338 	 sizeof(int) + sizeof(int) + sizeof(int));
339 KTR_INFO(KTR_KERNENTRY, kernentry, syscall_ret, 0, "pid=%d, tid=%d, err=%d",
340 	 sizeof(int) + sizeof(int) + sizeof(int));
341 KTR_INFO(KTR_KERNENTRY, kernentry, fork_ret, 0, "pid=%d, tid=%d",
342 	 sizeof(int) + sizeof(int));
343 
344 /*
345  * Exception, fault, and trap interface to the kernel.
346  * This common code is called from assembly language IDT gate entry
347  * routines that prepare a suitable stack frame, and restore this
348  * frame after the exception has been processed.
349  *
350  * This function is also called from doreti in an interlock to handle ASTs.
351  * For example:  hardwareint->INTROUTINE->(set ast)->doreti->trap
352  *
353  * NOTE!  We have to retrieve the fault address prior to obtaining the
354  * MP lock because get_mplock() may switch out.  YYY cr2 really ought
355  * to be retrieved by the assembly code, not here.
356  *
357  * XXX gd_trap_nesting_level currently prevents lwkt_switch() from panicing
358  * if an attempt is made to switch from a fast interrupt or IPI.  This is
359  * necessary to properly take fatal kernel traps on SMP machines if
360  * get_mplock() has to block.
361  */
362 
363 void
364 user_trap(struct trapframe *frame)
365 {
366 	struct globaldata *gd = mycpu;
367 	struct thread *td = gd->gd_curthread;
368 	struct lwp *lp = td->td_lwp;
369 	struct proc *p;
370 	int sticks = 0;
371 	int i = 0, ucode = 0, type, code;
372 #ifdef SMP
373 	int have_mplock = 0;
374 #endif
375 #ifdef INVARIANTS
376 	int crit_count = td->td_critcount;
377 	lwkt_tokref_t curstop = td->td_toks_stop;
378 #endif
379 	vm_offset_t eva;
380 
381 	p = td->td_proc;
382 
383 	if (frame->tf_trapno == T_PAGEFLT)
384 		eva = frame->tf_addr;
385 	else
386 		eva = 0;
387 #if 0
388 	kprintf("USER_TRAP AT %08lx xflags %ld trapno %ld eva %08lx\n",
389 		frame->tf_rip, frame->tf_xflags, frame->tf_trapno, eva);
390 #endif
391 
392 	/*
393 	 * Everything coming from user mode runs through user_trap,
394 	 * including system calls.
395 	 */
396 	if (frame->tf_trapno == T_FAST_SYSCALL) {
397 		syscall2(frame);
398 		return;
399 	}
400 
401 	KTR_LOG(kernentry_trap, lp->lwp_proc->p_pid, lp->lwp_tid,
402 		frame->tf_trapno, eva);
403 
404 #ifdef DDB
405 	if (db_active) {
406 		eva = (frame->tf_trapno == T_PAGEFLT ? rcr2() : 0);
407 		++gd->gd_trap_nesting_level;
408 		MAKEMPSAFE(have_mplock);
409 		trap_fatal(frame, TRUE, eva);
410 		--gd->gd_trap_nesting_level;
411 		goto out2;
412 	}
413 #endif
414 
415 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
416 restart:
417 #endif
418 	type = frame->tf_trapno;
419 	code = frame->tf_err;
420 
421 	userenter(td, p);
422 
423 	sticks = (int)td->td_sticks;
424 	lp->lwp_md.md_regs = frame;
425 
426 	switch (type) {
427 	case T_PRIVINFLT:	/* privileged instruction fault */
428 		ucode = type;
429 		i = SIGILL;
430 		break;
431 
432 	case T_BPTFLT:		/* bpt instruction fault */
433 	case T_TRCTRAP:		/* trace trap */
434 		frame->tf_rflags &= ~PSL_T;
435 		i = SIGTRAP;
436 		break;
437 
438 	case T_ARITHTRAP:	/* arithmetic trap */
439 		ucode = code;
440 		i = SIGFPE;
441 		break;
442 
443 	case T_ASTFLT:		/* Allow process switch */
444 		mycpu->gd_cnt.v_soft++;
445 		if (mycpu->gd_reqflags & RQF_AST_OWEUPC) {
446 			atomic_clear_int(&mycpu->gd_reqflags, RQF_AST_OWEUPC);
447 			addupc_task(p, p->p_prof.pr_addr, p->p_prof.pr_ticks);
448 		}
449 		goto out;
450 
451 		/*
452 		 * The following two traps can happen in
453 		 * vm86 mode, and, if so, we want to handle
454 		 * them specially.
455 		 */
456 	case T_PROTFLT:		/* general protection fault */
457 	case T_STKFLT:		/* stack fault */
458 #if 0
459 		if (frame->tf_eflags & PSL_VM) {
460 			i = vm86_emulate((struct vm86frame *)frame);
461 			if (i == 0)
462 				goto out;
463 			break;
464 		}
465 #endif
466 		/* FALL THROUGH */
467 
468 	case T_SEGNPFLT:	/* segment not present fault */
469 	case T_TSSFLT:		/* invalid TSS fault */
470 	case T_DOUBLEFLT:	/* double fault */
471 	default:
472 		ucode = code + BUS_SEGM_FAULT ;
473 		i = SIGBUS;
474 		break;
475 
476 	case T_PAGEFLT:		/* page fault */
477 		MAKEMPSAFE(have_mplock);
478 		i = trap_pfault(frame, TRUE, eva);
479 		if (i == -1)
480 			goto out;
481 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
482 		if (i == -2)
483 			goto restart;
484 #endif
485 		if (i == 0)
486 			goto out;
487 
488 		ucode = T_PAGEFLT;
489 		break;
490 
491 	case T_DIVIDE:		/* integer divide fault */
492 		ucode = FPE_INTDIV;
493 		i = SIGFPE;
494 		break;
495 
496 #if NISA > 0
497 	case T_NMI:
498 		MAKEMPSAFE(have_mplock);
499 		/* machine/parity/power fail/"kitchen sink" faults */
500 		if (isa_nmi(code) == 0) {
501 #ifdef DDB
502 			/*
503 			 * NMI can be hooked up to a pushbutton
504 			 * for debugging.
505 			 */
506 			if (ddb_on_nmi) {
507 				kprintf ("NMI ... going to debugger\n");
508 				kdb_trap (type, 0, frame);
509 			}
510 #endif /* DDB */
511 			goto out2;
512 		} else if (panic_on_nmi)
513 			panic("NMI indicates hardware failure");
514 		break;
515 #endif /* NISA > 0 */
516 
517 	case T_OFLOW:		/* integer overflow fault */
518 		ucode = FPE_INTOVF;
519 		i = SIGFPE;
520 		break;
521 
522 	case T_BOUND:		/* bounds check fault */
523 		ucode = FPE_FLTSUB;
524 		i = SIGFPE;
525 		break;
526 
527 	case T_DNA:
528 		/*
529 		 * Virtual kernel intercept - pass the DNA exception
530 		 * to the (emulated) virtual kernel if it asked to handle
531 		 * it.  This occurs when the virtual kernel is holding
532 		 * onto the FP context for a different emulated
533 		 * process then the one currently running.
534 		 *
535 		 * We must still call npxdna() since we may have
536 		 * saved FP state that the (emulated) virtual kernel
537 		 * needs to hand over to a different emulated process.
538 		 */
539 		if (lp->lwp_vkernel && lp->lwp_vkernel->ve &&
540 		    (td->td_pcb->pcb_flags & FP_VIRTFP)
541 		) {
542 			npxdna(frame);
543 			break;
544 		}
545 		/*
546 		 * The kernel may have switched out the FP unit's
547 		 * state, causing the user process to take a fault
548 		 * when it tries to use the FP unit.  Restore the
549 		 * state here
550 		 */
551 		if (npxdna(frame))
552 			goto out;
553 		if (!pmath_emulate) {
554 			i = SIGFPE;
555 			ucode = FPE_FPU_NP_TRAP;
556 			break;
557 		}
558 		i = (*pmath_emulate)(frame);
559 		if (i == 0) {
560 			if (!(frame->tf_rflags & PSL_T))
561 				goto out2;
562 			frame->tf_rflags &= ~PSL_T;
563 			i = SIGTRAP;
564 		}
565 		/* else ucode = emulator_only_knows() XXX */
566 		break;
567 
568 	case T_FPOPFLT:		/* FPU operand fetch fault */
569 		ucode = T_FPOPFLT;
570 		i = SIGILL;
571 		break;
572 
573 	case T_XMMFLT:		/* SIMD floating-point exception */
574 		ucode = 0; /* XXX */
575 		i = SIGFPE;
576 		break;
577 	}
578 
579 	/*
580 	 * Virtual kernel intercept - if the fault is directly related to a
581 	 * VM context managed by a virtual kernel then let the virtual kernel
582 	 * handle it.
583 	 */
584 	if (lp->lwp_vkernel && lp->lwp_vkernel->ve) {
585 		vkernel_trap(lp, frame);
586 		goto out;
587 	}
588 
589 	/*
590 	 * Translate fault for emulators (e.g. Linux)
591 	 */
592 	if (*p->p_sysent->sv_transtrap)
593 		i = (*p->p_sysent->sv_transtrap)(i, type);
594 
595 	MAKEMPSAFE(have_mplock);
596 	trapsignal(lp, i, ucode);
597 
598 #ifdef DEBUG
599 	if (type <= MAX_TRAP_MSG) {
600 		uprintf("fatal process exception: %s",
601 			trap_msg[type]);
602 		if ((type == T_PAGEFLT) || (type == T_PROTFLT))
603 			uprintf(", fault VA = 0x%lx", (u_long)eva);
604 		uprintf("\n");
605 	}
606 #endif
607 
608 out:
609 	userret(lp, frame, sticks);
610 	userexit(lp);
611 out2:	;
612 #ifdef SMP
613 	if (have_mplock)
614 		rel_mplock();
615 #endif
616 	KTR_LOG(kernentry_trap_ret, lp->lwp_proc->p_pid, lp->lwp_tid);
617 #ifdef INVARIANTS
618 	KASSERT(crit_count == td->td_critcount,
619 		("trap: critical section count mismatch! %d/%d",
620 		crit_count, td->td_pri));
621 	KASSERT(curstop == td->td_toks_stop,
622 		("trap: extra tokens held after trap! %ld/%ld",
623 		curstop - &td->td_toks_base,
624 		td->td_toks_stop - &td->td_toks_base));
625 #endif
626 }
627 
628 void
629 kern_trap(struct trapframe *frame)
630 {
631 	struct globaldata *gd = mycpu;
632 	struct thread *td = gd->gd_curthread;
633 	struct lwp *lp;
634 	struct proc *p;
635 	int i = 0, ucode = 0, type, code;
636 #ifdef SMP
637 	int have_mplock = 0;
638 #endif
639 #ifdef INVARIANTS
640 	int crit_count = td->td_critcount;
641 	lwkt_tokref_t curstop = td->td_toks_stop;
642 #endif
643 	vm_offset_t eva;
644 
645 	lp = td->td_lwp;
646 	p = td->td_proc;
647 
648 	if (frame->tf_trapno == T_PAGEFLT)
649 		eva = frame->tf_addr;
650 	else
651 		eva = 0;
652 
653 #ifdef DDB
654 	if (db_active) {
655 		++gd->gd_trap_nesting_level;
656 		MAKEMPSAFE(have_mplock);
657 		trap_fatal(frame, FALSE, eva);
658 		--gd->gd_trap_nesting_level;
659 		goto out2;
660 	}
661 #endif
662 
663 	type = frame->tf_trapno;
664 	code = frame->tf_err;
665 
666 #if 0
667 kernel_trap:
668 #endif
669 	/* kernel trap */
670 
671 	switch (type) {
672 	case T_PAGEFLT:			/* page fault */
673 		MAKEMPSAFE(have_mplock);
674 		trap_pfault(frame, FALSE, eva);
675 		goto out2;
676 
677 	case T_DNA:
678 		/*
679 		 * The kernel may be using npx for copying or other
680 		 * purposes.
681 		 */
682 		panic("kernel NPX should not happen");
683 		if (npxdna(frame))
684 			goto out2;
685 		break;
686 
687 	case T_PROTFLT:		/* general protection fault */
688 	case T_SEGNPFLT:	/* segment not present fault */
689 		/*
690 		 * Invalid segment selectors and out of bounds
691 		 * %eip's and %esp's can be set up in user mode.
692 		 * This causes a fault in kernel mode when the
693 		 * kernel tries to return to user mode.  We want
694 		 * to get this fault so that we can fix the
695 		 * problem here and not have to check all the
696 		 * selectors and pointers when the user changes
697 		 * them.
698 		 */
699 		if (mycpu->gd_intr_nesting_level == 0) {
700 			if (td->td_pcb->pcb_onfault) {
701 				frame->tf_rip =
702 				    (register_t)td->td_pcb->pcb_onfault;
703 				goto out2;
704 			}
705 		}
706 		break;
707 
708 	case T_TSSFLT:
709 		/*
710 		 * PSL_NT can be set in user mode and isn't cleared
711 		 * automatically when the kernel is entered.  This
712 		 * causes a TSS fault when the kernel attempts to
713 		 * `iret' because the TSS link is uninitialized.  We
714 		 * want to get this fault so that we can fix the
715 		 * problem here and not every time the kernel is
716 		 * entered.
717 		 */
718 		if (frame->tf_rflags & PSL_NT) {
719 			frame->tf_rflags &= ~PSL_NT;
720 			goto out2;
721 		}
722 		break;
723 
724 	case T_TRCTRAP:	 /* trace trap */
725 #if 0
726 		if (frame->tf_eip == (int)IDTVEC(syscall)) {
727 			/*
728 			 * We've just entered system mode via the
729 			 * syscall lcall.  Continue single stepping
730 			 * silently until the syscall handler has
731 			 * saved the flags.
732 			 */
733 			goto out2;
734 		}
735 		if (frame->tf_eip == (int)IDTVEC(syscall) + 1) {
736 			/*
737 			 * The syscall handler has now saved the
738 			 * flags.  Stop single stepping it.
739 			 */
740 			frame->tf_eflags &= ~PSL_T;
741 			goto out2;
742 		}
743 #endif
744 #if 0
745 		/*
746 		 * Ignore debug register trace traps due to
747 		 * accesses in the user's address space, which
748 		 * can happen under several conditions such as
749 		 * if a user sets a watchpoint on a buffer and
750 		 * then passes that buffer to a system call.
751 		 * We still want to get TRCTRAPS for addresses
752 		 * in kernel space because that is useful when
753 		 * debugging the kernel.
754 		 */
755 		if (user_dbreg_trap()) {
756 			/*
757 			 * Reset breakpoint bits because the
758 			 * processor doesn't
759 			 */
760 			load_dr6(rdr6() & 0xfffffff0);
761 			goto out2;
762 		}
763 #endif
764 		/*
765 		 * Fall through (TRCTRAP kernel mode, kernel address)
766 		 */
767 	case T_BPTFLT:
768 		/*
769 		 * If DDB is enabled, let it handle the debugger trap.
770 		 * Otherwise, debugger traps "can't happen".
771 		 */
772 #ifdef DDB
773 		MAKEMPSAFE(have_mplock);
774 		if (kdb_trap (type, 0, frame))
775 			goto out2;
776 #endif
777 		break;
778 	case T_DIVIDE:
779 		MAKEMPSAFE(have_mplock);
780 		trap_fatal(frame, FALSE, eva);
781 		goto out2;
782 	case T_NMI:
783 		MAKEMPSAFE(have_mplock);
784 		trap_fatal(frame, FALSE, eva);
785 		goto out2;
786 	case T_SYSCALL80:
787 	case T_FAST_SYSCALL:
788 		/*
789 		 * Ignore this trap generated from a spurious SIGTRAP.
790 		 *
791 		 * single stepping in / syscalls leads to spurious / SIGTRAP
792 		 * so ignore
793 		 *
794 		 * Haiku (c) 2007 Simon 'corecode' Schubert
795 		 */
796 		goto out2;
797 	}
798 
799 	/*
800 	 * Translate fault for emulators (e.g. Linux)
801 	 */
802 	if (*p->p_sysent->sv_transtrap)
803 		i = (*p->p_sysent->sv_transtrap)(i, type);
804 
805 	MAKEMPSAFE(have_mplock);
806 	trapsignal(lp, i, ucode);
807 
808 #ifdef DEBUG
809 	if (type <= MAX_TRAP_MSG) {
810 		uprintf("fatal process exception: %s",
811 			trap_msg[type]);
812 		if ((type == T_PAGEFLT) || (type == T_PROTFLT))
813 			uprintf(", fault VA = 0x%lx", (u_long)eva);
814 		uprintf("\n");
815 	}
816 #endif
817 
818 out2:
819 	;
820 #ifdef SMP
821 	if (have_mplock)
822 		rel_mplock();
823 #endif
824 #ifdef INVARIANTS
825 	KASSERT(crit_count == td->td_critcount,
826 		("trap: critical section count mismatch! %d/%d",
827 		crit_count, td->td_pri));
828 	KASSERT(curstop == td->td_toks_stop,
829 		("trap: extra tokens held after trap! %ld/%ld",
830 		curstop - &td->td_toks_base,
831 		td->td_toks_stop - &td->td_toks_base));
832 #endif
833 }
834 
835 int
836 trap_pfault(struct trapframe *frame, int usermode, vm_offset_t eva)
837 {
838 	vm_offset_t va;
839 	struct vmspace *vm = NULL;
840 	vm_map_t map = 0;
841 	int rv = 0;
842 	vm_prot_t ftype;
843 	thread_t td = curthread;
844 	struct lwp *lp = td->td_lwp;
845 
846 	va = trunc_page(eva);
847 	if (usermode == FALSE) {
848 		/*
849 		 * This is a fault on kernel virtual memory.
850 		 */
851 		map = &kernel_map;
852 	} else {
853 		/*
854 		 * This is a fault on non-kernel virtual memory.
855 		 * vm is initialized above to NULL. If curproc is NULL
856 		 * or curproc->p_vmspace is NULL the fault is fatal.
857 		 */
858 		if (lp != NULL)
859 			vm = lp->lwp_vmspace;
860 
861 		if (vm == NULL)
862 			goto nogo;
863 
864 		map = &vm->vm_map;
865 	}
866 
867 	if (frame->tf_err & PGEX_W)
868 		ftype = VM_PROT_READ | VM_PROT_WRITE;
869 	else
870 		ftype = VM_PROT_READ;
871 
872 	if (map != &kernel_map) {
873 		/*
874 		 * Keep swapout from messing with us during this
875 		 *	critical time.
876 		 */
877 		PHOLD(lp->lwp_proc);
878 
879 		/*
880 		 * Grow the stack if necessary
881 		 */
882 		/* grow_stack returns false only if va falls into
883 		 * a growable stack region and the stack growth
884 		 * fails.  It returns true if va was not within
885 		 * a growable stack region, or if the stack
886 		 * growth succeeded.
887 		 */
888 		if (!grow_stack (lp->lwp_proc, va)) {
889 			rv = KERN_FAILURE;
890 			PRELE(lp->lwp_proc);
891 			goto nogo;
892 		}
893 
894 		/* Fault in the user page: */
895 		rv = vm_fault(map, va, ftype,
896 			      (ftype & VM_PROT_WRITE) ? VM_FAULT_DIRTY
897 						      : VM_FAULT_NORMAL);
898 
899 		PRELE(lp->lwp_proc);
900 	} else {
901 		/*
902 		 * Don't have to worry about process locking or stacks in the kernel.
903 		 */
904 		rv = vm_fault(map, va, ftype, VM_FAULT_NORMAL);
905 	}
906 
907 	if (rv == KERN_SUCCESS)
908 		return (0);
909 nogo:
910 	if (!usermode) {
911 		if (td->td_gd->gd_intr_nesting_level == 0 &&
912 		    td->td_pcb->pcb_onfault) {
913 			frame->tf_rip = (register_t)td->td_pcb->pcb_onfault;
914 			return (0);
915 		}
916 		trap_fatal(frame, usermode, eva);
917 		return (-1);
918 	}
919 
920 	/*
921 	 * NOTE: on x86_64 we have a tf_addr field in the trapframe, no
922 	 * kludge is needed to pass the fault address to signal handlers.
923 	 */
924 	struct proc *p = td->td_proc;
925 	kprintf("seg-fault accessing address %p rip=%p pid=%d p_comm=%s\n",
926 		(void *)va, (void *)frame->tf_rip, p->p_pid, p->p_comm);
927 	/* Debugger("seg-fault"); */
928 
929 	return((rv == KERN_PROTECTION_FAILURE) ? SIGBUS : SIGSEGV);
930 }
931 
932 static void
933 trap_fatal(struct trapframe *frame, int usermode, vm_offset_t eva)
934 {
935 	int code, type, ss;
936 	long rsp;
937 
938 	code = frame->tf_xflags;
939 	type = frame->tf_trapno;
940 
941 	if (type <= MAX_TRAP_MSG) {
942 		kprintf("\n\nFatal trap %d: %s while in %s mode\n",
943 			type, trap_msg[type],
944 			(usermode ? "user" : "kernel"));
945 	}
946 #ifdef SMP
947 	/* two separate prints in case of a trap on an unmapped page */
948 	kprintf("cpuid = %d\n", mycpu->gd_cpuid);
949 #endif
950 	if (type == T_PAGEFLT) {
951 		kprintf("fault virtual address	= %p\n", (void *)eva);
952 		kprintf("fault code		= %s %s, %s\n",
953 			usermode ? "user" : "supervisor",
954 			code & PGEX_W ? "write" : "read",
955 			code & PGEX_P ? "protection violation" : "page not present");
956 	}
957 	kprintf("instruction pointer	= 0x%lx:0x%lx\n",
958 	       frame->tf_cs & 0xffff, frame->tf_rip);
959 	if (usermode) {
960 		ss = frame->tf_ss & 0xffff;
961 		rsp = frame->tf_rsp;
962 	} else {
963 		ss = GSEL(GDATA_SEL, SEL_KPL);
964 		rsp = (long)&frame->tf_rsp;
965 	}
966 	kprintf("stack pointer	        = 0x%x:0x%lx\n", ss, rsp);
967 	kprintf("frame pointer	        = 0x%x:0x%lx\n", ss, frame->tf_rbp);
968 	kprintf("processor eflags	= ");
969 	if (frame->tf_rflags & PSL_T)
970 		kprintf("trace trap, ");
971 	if (frame->tf_rflags & PSL_I)
972 		kprintf("interrupt enabled, ");
973 	if (frame->tf_rflags & PSL_NT)
974 		kprintf("nested task, ");
975 	if (frame->tf_rflags & PSL_RF)
976 		kprintf("resume, ");
977 #if 0
978 	if (frame->tf_eflags & PSL_VM)
979 		kprintf("vm86, ");
980 #endif
981 	kprintf("IOPL = %jd\n", (intmax_t)((frame->tf_rflags & PSL_IOPL) >> 12));
982 	kprintf("current process		= ");
983 	if (curproc) {
984 		kprintf("%lu (%s)\n",
985 		    (u_long)curproc->p_pid, curproc->p_comm ?
986 		    curproc->p_comm : "");
987 	} else {
988 		kprintf("Idle\n");
989 	}
990 	kprintf("current thread          = pri %d ", curthread->td_pri);
991 	if (curthread->td_critcount)
992 		kprintf("(CRIT)");
993 	kprintf("\n");
994 #ifdef SMP
995 /**
996  *  XXX FIXME:
997  *	we probably SHOULD have stopped the other CPUs before now!
998  *	another CPU COULD have been touching cpl at this moment...
999  */
1000 	kprintf(" <- SMP: XXX");
1001 #endif
1002 	kprintf("\n");
1003 
1004 #ifdef KDB
1005 	if (kdb_trap(&psl))
1006 		return;
1007 #endif
1008 #ifdef DDB
1009 	if ((debugger_on_panic || db_active) && kdb_trap(type, code, frame))
1010 		return;
1011 #endif
1012 	kprintf("trap number		= %d\n", type);
1013 	if (type <= MAX_TRAP_MSG)
1014 		panic("%s", trap_msg[type]);
1015 	else
1016 		panic("unknown/reserved trap");
1017 }
1018 
1019 /*
1020  * Double fault handler. Called when a fault occurs while writing
1021  * a frame for a trap/exception onto the stack. This usually occurs
1022  * when the stack overflows (such is the case with infinite recursion,
1023  * for example).
1024  *
1025  * XXX Note that the current PTD gets replaced by IdlePTD when the
1026  * task switch occurs. This means that the stack that was active at
1027  * the time of the double fault is not available at <kstack> unless
1028  * the machine was idle when the double fault occurred. The downside
1029  * of this is that "trace <ebp>" in ddb won't work.
1030  */
1031 void
1032 dblfault_handler(void)
1033 {
1034 #if JG
1035 	struct mdglobaldata *gd = mdcpu;
1036 #endif
1037 
1038 	kprintf("\nFatal double fault:\n");
1039 #if JG
1040 	kprintf("rip = 0x%lx\n", gd->gd_common_tss.tss_rip);
1041 	kprintf("rsp = 0x%lx\n", gd->gd_common_tss.tss_rsp);
1042 	kprintf("rbp = 0x%lx\n", gd->gd_common_tss.tss_rbp);
1043 #endif
1044 #ifdef SMP
1045 	/* two separate prints in case of a trap on an unmapped page */
1046 	kprintf("cpuid = %d\n", mycpu->gd_cpuid);
1047 #endif
1048 	panic("double fault");
1049 }
1050 
1051 /*
1052  * Compensate for 386 brain damage (missing URKR).
1053  * This is a little simpler than the pagefault handler in trap() because
1054  * it the page tables have already been faulted in and high addresses
1055  * are thrown out early for other reasons.
1056  */
1057 int
1058 trapwrite(unsigned addr)
1059 {
1060 	struct lwp *lp;
1061 	vm_offset_t va;
1062 	struct vmspace *vm;
1063 	int rv;
1064 
1065 	va = trunc_page((vm_offset_t)addr);
1066 	/*
1067 	 * XXX - MAX is END.  Changed > to >= for temp. fix.
1068 	 */
1069 	if (va >= VM_MAX_USER_ADDRESS)
1070 		return (1);
1071 
1072 	lp = curthread->td_lwp;
1073 	vm = lp->lwp_vmspace;
1074 
1075 	PHOLD(lp->lwp_proc);
1076 
1077 	if (!grow_stack (lp->lwp_proc, va)) {
1078 		PRELE(lp->lwp_proc);
1079 		return (1);
1080 	}
1081 
1082 	/*
1083 	 * fault the data page
1084 	 */
1085 	rv = vm_fault(&vm->vm_map, va, VM_PROT_WRITE, VM_FAULT_DIRTY);
1086 
1087 	PRELE(lp->lwp_proc);
1088 
1089 	if (rv != KERN_SUCCESS)
1090 		return 1;
1091 
1092 	return (0);
1093 }
1094 
1095 /*
1096  *	syscall2 -	MP aware system call request C handler
1097  *
1098  *	A system call is essentially treated as a trap except that the
1099  *	MP lock is not held on entry or return.  We are responsible for
1100  *	obtaining the MP lock if necessary and for handling ASTs
1101  *	(e.g. a task switch) prior to return.
1102  *
1103  *	In general, only simple access and manipulation of curproc and
1104  *	the current stack is allowed without having to hold MP lock.
1105  *
1106  *	MPSAFE - note that large sections of this routine are run without
1107  *		 the MP lock.
1108  */
1109 void
1110 syscall2(struct trapframe *frame)
1111 {
1112 	struct thread *td = curthread;
1113 	struct proc *p = td->td_proc;
1114 	struct lwp *lp = td->td_lwp;
1115 	caddr_t params;
1116 	struct sysent *callp;
1117 	register_t orig_tf_rflags;
1118 	int sticks;
1119 	int error;
1120 	int narg;
1121 #ifdef INVARIANTS
1122 	int crit_count = td->td_critcount;
1123 	lwkt_tokref_t curstop = td->td_toks_stop;
1124 #endif
1125 #ifdef SMP
1126 	int have_mplock = 0;
1127 #endif
1128 	register_t *argp;
1129 	u_int code;
1130 	int reg, regcnt;
1131 	union sysunion args;
1132 	register_t *argsdst;
1133 
1134 	mycpu->gd_cnt.v_syscall++;
1135 
1136 	KTR_LOG(kernentry_syscall, lp->lwp_proc->p_pid, lp->lwp_tid,
1137 		frame->tf_eax);
1138 
1139 	userenter(td, p);	/* lazy raise our priority */
1140 
1141 	reg = 0;
1142 	regcnt = 6;
1143 	/*
1144 	 * Misc
1145 	 */
1146 	sticks = (int)td->td_sticks;
1147 	orig_tf_rflags = frame->tf_rflags;
1148 
1149 	/*
1150 	 * Virtual kernel intercept - if a VM context managed by a virtual
1151 	 * kernel issues a system call the virtual kernel handles it, not us.
1152 	 * Restore the virtual kernel context and return from its system
1153 	 * call.  The current frame is copied out to the virtual kernel.
1154 	 */
1155 	if (lp->lwp_vkernel && lp->lwp_vkernel->ve) {
1156 		vkernel_trap(lp, frame);
1157 		error = EJUSTRETURN;
1158 		goto out;
1159 	}
1160 
1161 	/*
1162 	 * Get the system call parameters and account for time
1163 	 */
1164 	lp->lwp_md.md_regs = frame;
1165 	params = (caddr_t)frame->tf_rsp + sizeof(register_t);
1166 	code = frame->tf_rax;
1167 
1168 	if (p->p_sysent->sv_prepsyscall) {
1169 		(*p->p_sysent->sv_prepsyscall)(
1170 			frame, (int *)(&args.nosys.sysmsg + 1),
1171 			&code, &params);
1172 	} else {
1173 		if (code == SYS_syscall || code == SYS___syscall) {
1174 			code = frame->tf_rdi;
1175 			reg++;
1176 			regcnt--;
1177 		}
1178 	}
1179 
1180 	if (p->p_sysent->sv_mask)
1181 		code &= p->p_sysent->sv_mask;
1182 
1183 	if (code >= p->p_sysent->sv_size)
1184 		callp = &p->p_sysent->sv_table[0];
1185 	else
1186 		callp = &p->p_sysent->sv_table[code];
1187 
1188 	narg = callp->sy_narg & SYF_ARGMASK;
1189 
1190 	/*
1191 	 * On x86_64 we get up to six arguments in registers. The rest are
1192 	 * on the stack. The first six members of 'struct trapframe' happen
1193 	 * to be the registers used to pass arguments, in exactly the right
1194 	 * order.
1195 	 */
1196 	argp = &frame->tf_rdi;
1197 	argp += reg;
1198 	argsdst = (register_t *)(&args.nosys.sysmsg + 1);
1199 	/*
1200 	 * JG can we overflow the space pointed to by 'argsdst'
1201 	 * either with 'bcopy' or with 'copyin'?
1202 	 */
1203 	bcopy(argp, argsdst, sizeof(register_t) * regcnt);
1204 	/*
1205 	 * copyin is MP aware, but the tracing code is not
1206 	 */
1207 	if (narg > regcnt) {
1208 		KASSERT(params != NULL, ("copyin args with no params!"));
1209 		error = copyin(params, &argsdst[regcnt],
1210 			(narg - regcnt) * sizeof(register_t));
1211 		if (error) {
1212 #ifdef KTRACE
1213 			if (KTRPOINT(td, KTR_SYSCALL)) {
1214 				MAKEMPSAFE(have_mplock);
1215 
1216 				ktrsyscall(lp, code, narg,
1217 					(void *)(&args.nosys.sysmsg + 1));
1218 			}
1219 #endif
1220 			goto bad;
1221 		}
1222 	}
1223 
1224 #ifdef KTRACE
1225 	if (KTRPOINT(td, KTR_SYSCALL)) {
1226 		MAKEMPSAFE(have_mplock);
1227 		ktrsyscall(lp, code, narg, (void *)(&args.nosys.sysmsg + 1));
1228 	}
1229 #endif
1230 
1231 	/*
1232 	 * Default return value is 0 (will be copied to %rax).  Double-value
1233 	 * returns use %rax and %rdx.  %rdx is left unchanged for system
1234 	 * calls which return only one result.
1235 	 */
1236 	args.sysmsg_fds[0] = 0;
1237 	args.sysmsg_fds[1] = frame->tf_rdx;
1238 
1239 	/*
1240 	 * The syscall might manipulate the trap frame. If it does it
1241 	 * will probably return EJUSTRETURN.
1242 	 */
1243 	args.sysmsg_frame = frame;
1244 
1245 	STOPEVENT(p, S_SCE, narg);	/* MP aware */
1246 
1247 	/*
1248 	 * NOTE: All system calls run MPSAFE now.  The system call itself
1249 	 *	 is responsible for getting the MP lock.
1250 	 */
1251 	error = (*callp->sy_call)(&args);
1252 
1253 #if 0
1254 	kprintf("system call %d returned %d\n", code, error);
1255 #endif
1256 
1257 out:
1258 	/*
1259 	 * MP SAFE (we may or may not have the MP lock at this point)
1260 	 */
1261 	switch (error) {
1262 	case 0:
1263 		/*
1264 		 * Reinitialize proc pointer `p' as it may be different
1265 		 * if this is a child returning from fork syscall.
1266 		 */
1267 		p = curproc;
1268 		lp = curthread->td_lwp;
1269 		frame->tf_rax = args.sysmsg_fds[0];
1270 		frame->tf_rdx = args.sysmsg_fds[1];
1271 		frame->tf_rflags &= ~PSL_C;
1272 		break;
1273 	case ERESTART:
1274 		/*
1275 		 * Reconstruct pc, we know that 'syscall' is 2 bytes.
1276 		 * We have to do a full context restore so that %r10
1277 		 * (which was holding the value of %rcx) is restored for
1278 		 * the next iteration.
1279 		 */
1280 		frame->tf_rip -= frame->tf_err;
1281 		frame->tf_r10 = frame->tf_rcx;
1282 		break;
1283 	case EJUSTRETURN:
1284 		break;
1285 	case EASYNC:
1286 		panic("Unexpected EASYNC return value (for now)");
1287 	default:
1288 bad:
1289 		if (p->p_sysent->sv_errsize) {
1290 			if (error >= p->p_sysent->sv_errsize)
1291 				error = -1;	/* XXX */
1292 			else
1293 				error = p->p_sysent->sv_errtbl[error];
1294 		}
1295 		frame->tf_rax = error;
1296 		frame->tf_rflags |= PSL_C;
1297 		break;
1298 	}
1299 
1300 	/*
1301 	 * Traced syscall.  trapsignal() is not MP aware.
1302 	 */
1303 	if (orig_tf_rflags & PSL_T) {
1304 		MAKEMPSAFE(have_mplock);
1305 		frame->tf_rflags &= ~PSL_T;
1306 		trapsignal(lp, SIGTRAP, 0);
1307 	}
1308 
1309 	/*
1310 	 * Handle reschedule and other end-of-syscall issues
1311 	 */
1312 	userret(lp, frame, sticks);
1313 
1314 #ifdef KTRACE
1315 	if (KTRPOINT(td, KTR_SYSRET)) {
1316 		MAKEMPSAFE(have_mplock);
1317 		ktrsysret(lp, code, error, args.sysmsg_result);
1318 	}
1319 #endif
1320 
1321 	/*
1322 	 * This works because errno is findable through the
1323 	 * register set.  If we ever support an emulation where this
1324 	 * is not the case, this code will need to be revisited.
1325 	 */
1326 	STOPEVENT(p, S_SCX, code);
1327 
1328 	userexit(lp);
1329 #ifdef SMP
1330 	/*
1331 	 * Release the MP lock if we had to get it
1332 	 */
1333 	if (have_mplock)
1334 		rel_mplock();
1335 #endif
1336 	KTR_LOG(kernentry_syscall_ret, lp->lwp_proc->p_pid, lp->lwp_tid, error);
1337 #ifdef INVARIANTS
1338 	KASSERT(&td->td_toks_base == td->td_toks_stop,
1339 		("syscall: critical section count mismatch! %d/%d",
1340 		crit_count, td->td_pri));
1341 	KASSERT(curstop == td->td_toks_stop,
1342 		("syscall: extra tokens held after trap! %ld",
1343 		td->td_toks_stop - &td->td_toks_base));
1344 #endif
1345 }
1346 
1347 /*
1348  * NOTE: mplock not held at any point
1349  */
1350 void
1351 fork_return(struct lwp *lp, struct trapframe *frame)
1352 {
1353 	frame->tf_rax = 0;		/* Child returns zero */
1354 	frame->tf_rflags &= ~PSL_C;	/* success */
1355 	frame->tf_rdx = 1;
1356 
1357 	generic_lwp_return(lp, frame);
1358 	KTR_LOG(kernentry_fork_ret, lp->lwp_proc->p_pid, lp->lwp_tid);
1359 }
1360 
1361 /*
1362  * Simplified back end of syscall(), used when returning from fork()
1363  * directly into user mode.
1364  *
1365  * This code will return back into the fork trampoline code which then
1366  * runs doreti.
1367  *
1368  * NOTE: The mplock is not held at any point.
1369  */
1370 void
1371 generic_lwp_return(struct lwp *lp, struct trapframe *frame)
1372 {
1373 	struct proc *p = lp->lwp_proc;
1374 
1375 	/*
1376 	 * Newly forked processes are given a kernel priority.  We have to
1377 	 * adjust the priority to a normal user priority and fake entry
1378 	 * into the kernel (call userenter()) to install a passive release
1379 	 * function just in case userret() decides to stop the process.  This
1380 	 * can occur when ^Z races a fork.  If we do not install the passive
1381 	 * release function the current process designation will not be
1382 	 * released when the thread goes to sleep.
1383 	 */
1384 	lwkt_setpri_self(TDPRI_USER_NORM);
1385 	userenter(lp->lwp_thread, p);
1386 	userret(lp, frame, 0);
1387 #ifdef KTRACE
1388 	if (KTRPOINT(lp->lwp_thread, KTR_SYSRET))
1389 		ktrsysret(lp, SYS_fork, 0, 0);
1390 #endif
1391 	p->p_flag |= P_PASSIVE_ACQ;
1392 	userexit(lp);
1393 	p->p_flag &= ~P_PASSIVE_ACQ;
1394 }
1395 
1396 /*
1397  * doreti has turned into this.  The frame is directly on the stack.  We
1398  * pull everything else we need (fpu and tls context) from the current
1399  * thread.
1400  *
1401  * Note on fpu interactions: In a virtual kernel, the fpu context for
1402  * an emulated user mode process is not shared with the virtual kernel's
1403  * fpu context, so we only have to 'stack' fpu contexts within the virtual
1404  * kernel itself, and not even then since the signal() contexts that we care
1405  * about save and restore the FPU state (I think anyhow).
1406  *
1407  * vmspace_ctl() returns an error only if it had problems instaling the
1408  * context we supplied or problems copying data to/from our VM space.
1409  */
1410 void
1411 go_user(struct intrframe *frame)
1412 {
1413 	struct trapframe *tf = (void *)&frame->if_rdi;
1414 	int r;
1415 
1416 	/*
1417 	 * Interrupts may be disabled on entry, make sure all signals
1418 	 * can be received before beginning our loop.
1419 	 */
1420 	sigsetmask(0);
1421 
1422 	/*
1423 	 * Switch to the current simulated user process, then call
1424 	 * user_trap() when we break out of it (usually due to a signal).
1425 	 */
1426 	for (;;) {
1427 		/*
1428 		 * Tell the real kernel whether it is ok to use the FP
1429 		 * unit or not.
1430 		 */
1431 		if (mdcpu->gd_npxthread == curthread) {
1432 			tf->tf_xflags &= ~PGEX_FPFAULT;
1433 		} else {
1434 			tf->tf_xflags |= PGEX_FPFAULT;
1435 		}
1436 
1437 		/*
1438 		 * Run emulated user process context.  This call interlocks
1439 		 * with new mailbox signals.
1440 		 *
1441 		 * Set PGEX_U unconditionally, indicating a user frame (the
1442 		 * bit is normally set only by T_PAGEFLT).
1443 		 */
1444 		r = vmspace_ctl(&curproc->p_vmspace->vm_pmap, VMSPACE_CTL_RUN,
1445 				tf, &curthread->td_savevext);
1446 		frame->if_xflags |= PGEX_U;
1447 #if 0
1448 		kprintf("GO USER %d trap %ld EVA %08lx RIP %08lx RSP %08lx XFLAGS %02lx/%02lx\n",
1449 			r, tf->tf_trapno, tf->tf_addr, tf->tf_rip, tf->tf_rsp,
1450 			tf->tf_xflags, frame->if_xflags);
1451 #endif
1452 		if (r < 0) {
1453 			if (errno != EINTR)
1454 				panic("vmspace_ctl failed error %d", errno);
1455 		} else {
1456 			if (tf->tf_trapno) {
1457 				user_trap(tf);
1458 			}
1459 		}
1460 		if (mycpu->gd_reqflags & RQF_AST_MASK) {
1461 			tf->tf_trapno = T_ASTFLT;
1462 			user_trap(tf);
1463 		}
1464 		tf->tf_trapno = 0;
1465 	}
1466 }
1467 
1468 /*
1469  * If PGEX_FPFAULT is set then set FP_VIRTFP in the PCB to force a T_DNA
1470  * fault (which is then passed back to the virtual kernel) if an attempt is
1471  * made to use the FP unit.
1472  *
1473  * XXX this is a fairly big hack.
1474  */
1475 void
1476 set_vkernel_fp(struct trapframe *frame)
1477 {
1478 	struct thread *td = curthread;
1479 
1480 	if (frame->tf_xflags & PGEX_FPFAULT) {
1481 		td->td_pcb->pcb_flags |= FP_VIRTFP;
1482 		if (mdcpu->gd_npxthread == td)
1483 			npxexit();
1484 	} else {
1485 		td->td_pcb->pcb_flags &= ~FP_VIRTFP;
1486 	}
1487 }
1488 
1489 /*
1490  * Called from vkernel_trap() to fixup the vkernel's syscall
1491  * frame for vmspace_ctl() return.
1492  */
1493 void
1494 cpu_vkernel_trap(struct trapframe *frame, int error)
1495 {
1496 	frame->tf_rax = error;
1497 	if (error)
1498 		frame->tf_rflags |= PSL_C;
1499 	else
1500 		frame->tf_rflags &= ~PSL_C;
1501 }
1502