xref: /dragonfly/sys/platform/vkernel64/x86_64/trap.c (revision 49837aef)
1 /*-
2  * Copyright (C) 1994, David Greenman
3  * Copyright (c) 1990, 1993
4  *	The Regents of the University of California.  All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * the University of Utah, and William Jolitz.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed by the University of
20  *	California, Berkeley and its contributors.
21  * 4. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *	from: @(#)trap.c	7.4 (Berkeley) 5/13/91
38  * $FreeBSD: src/sys/i386/i386/trap.c,v 1.147.2.11 2003/02/27 19:09:59 luoqi Exp $
39  */
40 
41 /*
42  * x86_64 Trap and System call handling
43  */
44 
45 #include "use_isa.h"
46 
47 #include "opt_ddb.h"
48 #include "opt_ktrace.h"
49 
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/proc.h>
53 #include <sys/pioctl.h>
54 #include <sys/kernel.h>
55 #include <sys/resourcevar.h>
56 #include <sys/signalvar.h>
57 #include <sys/signal2.h>
58 #include <sys/syscall.h>
59 #include <sys/sysctl.h>
60 #include <sys/sysent.h>
61 #include <sys/vmmeter.h>
62 #include <sys/malloc.h>
63 #ifdef KTRACE
64 #include <sys/ktrace.h>
65 #endif
66 #include <sys/ktr.h>
67 #include <sys/vkernel.h>
68 #include <sys/sysproto.h>
69 #include <sys/sysunion.h>
70 #include <sys/vmspace.h>
71 
72 #include <vm/vm.h>
73 #include <vm/vm_param.h>
74 #include <sys/lock.h>
75 #include <vm/pmap.h>
76 #include <vm/vm_kern.h>
77 #include <vm/vm_map.h>
78 #include <vm/vm_page.h>
79 #include <vm/vm_extern.h>
80 
81 #include <machine/cpu.h>
82 #include <machine/md_var.h>
83 #include <machine/pcb.h>
84 #include <machine/smp.h>
85 #include <machine/tss.h>
86 #include <machine/globaldata.h>
87 
88 #include <ddb/ddb.h>
89 
90 #include <sys/msgport2.h>
91 #include <sys/thread2.h>
92 #include <sys/mplock2.h>
93 
94 int (*pmath_emulate) (struct trapframe *);
95 
96 static int trap_pfault (struct trapframe *, int, vm_offset_t);
97 static void trap_fatal (struct trapframe *, int, vm_offset_t);
98 void dblfault_handler (void);
99 extern int vmm_enabled;
100 
101 static struct krate segfltrate = { 1 };
102 
103 #if 0
104 extern inthand_t IDTVEC(syscall);
105 #endif
106 
107 #define MAX_TRAP_MSG		30
108 static char *trap_msg[] = {
109 	"",					/*  0 unused */
110 	"privileged instruction fault",		/*  1 T_PRIVINFLT */
111 	"",					/*  2 unused */
112 	"breakpoint instruction fault",		/*  3 T_BPTFLT */
113 	"",					/*  4 unused */
114 	"",					/*  5 unused */
115 	"arithmetic trap",			/*  6 T_ARITHTRAP */
116 	"system forced exception",		/*  7 T_ASTFLT */
117 	"",					/*  8 unused */
118 	"general protection fault",		/*  9 T_PROTFLT */
119 	"trace trap",				/* 10 T_TRCTRAP */
120 	"",					/* 11 unused */
121 	"page fault",				/* 12 T_PAGEFLT */
122 	"",					/* 13 unused */
123 	"alignment fault",			/* 14 T_ALIGNFLT */
124 	"",					/* 15 unused */
125 	"",					/* 16 unused */
126 	"",					/* 17 unused */
127 	"integer divide fault",			/* 18 T_DIVIDE */
128 	"non-maskable interrupt trap",		/* 19 T_NMI */
129 	"overflow trap",			/* 20 T_OFLOW */
130 	"FPU bounds check fault",		/* 21 T_BOUND */
131 	"FPU device not available",		/* 22 T_DNA */
132 	"double fault",				/* 23 T_DOUBLEFLT */
133 	"FPU operand fetch fault",		/* 24 T_FPOPFLT */
134 	"invalid TSS fault",			/* 25 T_TSSFLT */
135 	"segment not present fault",		/* 26 T_SEGNPFLT */
136 	"stack fault",				/* 27 T_STKFLT */
137 	"machine check trap",			/* 28 T_MCHK */
138 	"SIMD floating-point exception",	/* 29 T_XMMFLT */
139 	"reserved (unknown) fault",		/* 30 T_RESERVED */
140 };
141 
142 #ifdef DDB
143 static int ddb_on_nmi = 1;
144 SYSCTL_INT(_machdep, OID_AUTO, ddb_on_nmi, CTLFLAG_RW,
145 	&ddb_on_nmi, 0, "Go to DDB on NMI");
146 #endif
147 static int panic_on_nmi = 1;
148 SYSCTL_INT(_machdep, OID_AUTO, panic_on_nmi, CTLFLAG_RW,
149 	&panic_on_nmi, 0, "Panic on NMI");
150 static int fast_release;
151 SYSCTL_INT(_machdep, OID_AUTO, fast_release, CTLFLAG_RW,
152 	&fast_release, 0, "Passive Release was optimal");
153 static int slow_release;
154 SYSCTL_INT(_machdep, OID_AUTO, slow_release, CTLFLAG_RW,
155 	&slow_release, 0, "Passive Release was nonoptimal");
156 
157 /*
158  * Passively intercepts the thread switch function to increase
159  * the thread priority from a user priority to a kernel priority, reducing
160  * syscall and trap overhead for the case where no switch occurs.
161  *
162  * Synchronizes td_ucred with p_ucred.  This is used by system calls,
163  * signal handling, faults, AST traps, and anything else that enters the
164  * kernel from userland and provides the kernel with a stable read-only
165  * copy of the process ucred.
166  */
167 static __inline void
168 userenter(struct thread *curtd, struct proc *curp)
169 {
170 	struct ucred *ocred;
171 	struct ucred *ncred;
172 
173 	curtd->td_release = lwkt_passive_release;
174 
175 	if (curtd->td_ucred != curp->p_ucred) {
176 		ncred = crhold(curp->p_ucred);
177 		ocred = curtd->td_ucred;
178 		curtd->td_ucred = ncred;
179 		if (ocred)
180 			crfree(ocred);
181 	}
182 }
183 
184 /*
185  * Handle signals, profiling, and other AST's and/or tasks that
186  * must be completed before we can return to or try to return to userland.
187  *
188  * Note that td_sticks is a 64 bit quantity, but there's no point doing 64
189  * arithmatic on the delta calculation so the absolute tick values are
190  * truncated to an integer.
191  */
192 static void
193 userret(struct lwp *lp, struct trapframe *frame, int sticks)
194 {
195 	struct proc *p = lp->lwp_proc;
196 	int sig;
197 	int ptok;
198 
199 	/*
200 	 * Charge system time if profiling.  Note: times are in microseconds.
201 	 * This may do a copyout and block, so do it first even though it
202 	 * means some system time will be charged as user time.
203 	 */
204 	if (p->p_flags & P_PROFIL) {
205 		addupc_task(p, frame->tf_rip,
206 			(u_int)((int)lp->lwp_thread->td_sticks - sticks));
207 	}
208 
209 recheck:
210 	/*
211 	 * Specific on-return-to-usermode checks (LWP_MP_WEXIT,
212 	 * LWP_MP_VNLRU, etc).
213 	 */
214 	if (lp->lwp_mpflags & LWP_MP_URETMASK)
215 		lwpuserret(lp);
216 
217 	/*
218 	 * Block here if we are in a stopped state.
219 	 */
220 	if (STOPLWP(p, lp)) {
221 		lwkt_gettoken(&p->p_token);
222 		tstop();
223 		lwkt_reltoken(&p->p_token);
224 		goto recheck;
225 	}
226 
227 	/*
228 	 * Post any pending upcalls.  If running a virtual kernel be sure
229 	 * to restore the virtual kernel's vmspace before posting the upcall.
230 	 */
231 	if (p->p_flags & (P_SIGVTALRM | P_SIGPROF)) {
232 		lwkt_gettoken(&p->p_token);
233 		if (p->p_flags & P_SIGVTALRM) {
234 			p->p_flags &= ~P_SIGVTALRM;
235 			ksignal(p, SIGVTALRM);
236 		}
237 		if (p->p_flags & P_SIGPROF) {
238 			p->p_flags &= ~P_SIGPROF;
239 			ksignal(p, SIGPROF);
240 		}
241 		lwkt_reltoken(&p->p_token);
242 		goto recheck;
243 	}
244 
245 	/*
246 	 * Post any pending signals
247 	 *
248 	 * WARNING!  postsig() can exit and not return.
249 	 */
250 	if ((sig = CURSIG_LCK_TRACE(lp, &ptok)) != 0) {
251 		postsig(sig, ptok);
252 		goto recheck;
253 	}
254 
255 	/*
256 	 * block here if we are swapped out, but still process signals
257 	 * (such as SIGKILL).  proc0 (the swapin scheduler) is already
258 	 * aware of our situation, we do not have to wake it up.
259 	 */
260 	if (p->p_flags & P_SWAPPEDOUT) {
261 		lwkt_gettoken(&p->p_token);
262 		get_mplock();
263 		p->p_flags |= P_SWAPWAIT;
264 		swapin_request();
265 		if (p->p_flags & P_SWAPWAIT)
266 			tsleep(p, PCATCH, "SWOUT", 0);
267 		p->p_flags &= ~P_SWAPWAIT;
268 		rel_mplock();
269 		lwkt_reltoken(&p->p_token);
270 		goto recheck;
271 	}
272 
273 	/*
274 	 * In a multi-threaded program it is possible for a thread to change
275 	 * signal state during a system call which temporarily changes the
276 	 * signal mask.  In this case postsig() might not be run and we
277 	 * have to restore the mask ourselves.
278 	 */
279 	if (lp->lwp_flags & LWP_OLDMASK) {
280 		lp->lwp_flags &= ~LWP_OLDMASK;
281 		lp->lwp_sigmask = lp->lwp_oldsigmask;
282 		goto recheck;
283 	}
284 }
285 
286 /*
287  * Cleanup from userenter and any passive release that might have occured.
288  * We must reclaim the current-process designation before we can return
289  * to usermode.  We also handle both LWKT and USER reschedule requests.
290  */
291 static __inline void
292 userexit(struct lwp *lp)
293 {
294 	struct thread *td = lp->lwp_thread;
295 	/* globaldata_t gd = td->td_gd; */
296 
297 	/*
298 	 * Handle stop requests at kernel priority.  Any requests queued
299 	 * after this loop will generate another AST.
300 	 */
301 	while (STOPLWP(lp->lwp_proc, lp)) {
302 		lwkt_gettoken(&lp->lwp_proc->p_token);
303 		tstop();
304 		lwkt_reltoken(&lp->lwp_proc->p_token);
305 	}
306 
307 	/*
308 	 * Reduce our priority in preparation for a return to userland.  If
309 	 * our passive release function was still in place, our priority was
310 	 * never raised and does not need to be reduced.
311 	 */
312 	lwkt_passive_recover(td);
313 
314 	/*
315 	 * Become the current user scheduled process if we aren't already,
316 	 * and deal with reschedule requests and other factors.
317 	 */
318 	lp->lwp_proc->p_usched->acquire_curproc(lp);
319 	/* WARNING: we may have migrated cpu's */
320 	/* gd = td->td_gd; */
321 }
322 
323 #if !defined(KTR_KERNENTRY)
324 #define	KTR_KERNENTRY	KTR_ALL
325 #endif
326 KTR_INFO_MASTER(kernentry);
327 KTR_INFO(KTR_KERNENTRY, kernentry, trap, 0,
328 	 "TRAP(pid %hd, tid %hd, trapno %ld, eva %lu)",
329 	 pid_t pid, lwpid_t tid,  register_t trapno, vm_offset_t eva);
330 KTR_INFO(KTR_KERNENTRY, kernentry, trap_ret, 0, "TRAP_RET(pid %hd, tid %hd)",
331 	 pid_t pid, lwpid_t tid);
332 KTR_INFO(KTR_KERNENTRY, kernentry, syscall, 0, "SYSC(pid %hd, tid %hd, nr %ld)",
333 	 pid_t pid, lwpid_t tid,  register_t trapno);
334 KTR_INFO(KTR_KERNENTRY, kernentry, syscall_ret, 0, "SYSRET(pid %hd, tid %hd, err %d)",
335 	 pid_t pid, lwpid_t tid,  int err);
336 KTR_INFO(KTR_KERNENTRY, kernentry, fork_ret, 0, "FORKRET(pid %hd, tid %hd)",
337 	 pid_t pid, lwpid_t tid);
338 
339 /*
340  * Exception, fault, and trap interface to the kernel.
341  * This common code is called from assembly language IDT gate entry
342  * routines that prepare a suitable stack frame, and restore this
343  * frame after the exception has been processed.
344  *
345  * This function is also called from doreti in an interlock to handle ASTs.
346  * For example:  hardwareint->INTROUTINE->(set ast)->doreti->trap
347  *
348  * NOTE!  We have to retrieve the fault address prior to obtaining the
349  * MP lock because get_mplock() may switch out.  YYY cr2 really ought
350  * to be retrieved by the assembly code, not here.
351  *
352  * XXX gd_trap_nesting_level currently prevents lwkt_switch() from panicing
353  * if an attempt is made to switch from a fast interrupt or IPI.  This is
354  * necessary to properly take fatal kernel traps on SMP machines if
355  * get_mplock() has to block.
356  */
357 
358 void
359 user_trap(struct trapframe *frame)
360 {
361 	struct globaldata *gd = mycpu;
362 	struct thread *td = gd->gd_curthread;
363 	struct lwp *lp = td->td_lwp;
364 	struct proc *p;
365 	int sticks = 0;
366 	int i = 0, ucode = 0, type, code;
367 #ifdef INVARIANTS
368 	int crit_count = td->td_critcount;
369 	lwkt_tokref_t curstop = td->td_toks_stop;
370 #endif
371 	vm_offset_t eva;
372 
373 	p = td->td_proc;
374 
375 	if (frame->tf_trapno == T_PAGEFLT)
376 		eva = frame->tf_addr;
377 	else
378 		eva = 0;
379 #if 0
380 	kprintf("USER_TRAP AT %08lx xflags %ld trapno %ld eva %08lx\n",
381 		frame->tf_rip, frame->tf_xflags, frame->tf_trapno, eva);
382 #endif
383 
384 	/*
385 	 * Everything coming from user mode runs through user_trap,
386 	 * including system calls.
387 	 */
388 	if (frame->tf_trapno == T_FAST_SYSCALL) {
389 		syscall2(frame);
390 		return;
391 	}
392 
393 	KTR_LOG(kernentry_trap, lp->lwp_proc->p_pid, lp->lwp_tid,
394 		frame->tf_trapno, eva);
395 
396 #ifdef DDB
397 	if (db_active) {
398 		eva = (frame->tf_trapno == T_PAGEFLT ? rcr2() : 0);
399 		++gd->gd_trap_nesting_level;
400 		trap_fatal(frame, TRUE, eva);
401 		--gd->gd_trap_nesting_level;
402 		goto out2;
403 	}
404 #endif
405 
406 	type = frame->tf_trapno;
407 	code = frame->tf_err;
408 
409 	userenter(td, p);
410 
411 	sticks = (int)td->td_sticks;
412 	lp->lwp_md.md_regs = frame;
413 
414 	switch (type) {
415 	case T_PRIVINFLT:	/* privileged instruction fault */
416 		i = SIGILL;
417 		ucode = ILL_PRVOPC;
418 		break;
419 
420 	case T_BPTFLT:		/* bpt instruction fault */
421 	case T_TRCTRAP:		/* trace trap */
422 		frame->tf_rflags &= ~PSL_T;
423 		i = SIGTRAP;
424 		ucode = (type == T_TRCTRAP ? TRAP_TRACE : TRAP_BRKPT);
425 		break;
426 
427 	case T_ARITHTRAP:	/* arithmetic trap */
428 		ucode = code;
429 		i = SIGFPE;
430 		break;
431 
432 	case T_ASTFLT:		/* Allow process switch */
433 		mycpu->gd_cnt.v_soft++;
434 		if (mycpu->gd_reqflags & RQF_AST_OWEUPC) {
435 			atomic_clear_int(&mycpu->gd_reqflags, RQF_AST_OWEUPC);
436 			addupc_task(p, p->p_prof.pr_addr, p->p_prof.pr_ticks);
437 		}
438 		goto out;
439 
440 		/*
441 		 * The following two traps can happen in
442 		 * vm86 mode, and, if so, we want to handle
443 		 * them specially.
444 		 */
445 	case T_PROTFLT:		/* general protection fault */
446 	case T_STKFLT:		/* stack fault */
447 #if 0
448 		if (frame->tf_eflags & PSL_VM) {
449 			i = vm86_emulate((struct vm86frame *)frame);
450 			if (i == 0)
451 				goto out;
452 			break;
453 		}
454 #endif
455 		/* FALL THROUGH */
456 
457 	case T_SEGNPFLT:	/* segment not present fault */
458 	case T_TSSFLT:		/* invalid TSS fault */
459 	case T_DOUBLEFLT:	/* double fault */
460 	default:
461 		i = SIGBUS;
462 		ucode = code + BUS_SEGM_FAULT ;
463 		break;
464 
465 	case T_PAGEFLT:		/* page fault */
466 		i = trap_pfault(frame, TRUE, eva);
467 		if (i == -1 || i == 0)
468 			goto out;
469 
470 
471 		if (i == SIGSEGV)
472 			ucode = SEGV_MAPERR;
473 		else {
474 			i = SIGSEGV;
475 			ucode = SEGV_ACCERR;
476 		}
477 		break;
478 
479 	case T_DIVIDE:		/* integer divide fault */
480 		ucode = FPE_INTDIV;
481 		i = SIGFPE;
482 		break;
483 
484 #if NISA > 0
485 	case T_NMI:
486 		/* machine/parity/power fail/"kitchen sink" faults */
487 		if (isa_nmi(code) == 0) {
488 #ifdef DDB
489 			/*
490 			 * NMI can be hooked up to a pushbutton
491 			 * for debugging.
492 			 */
493 			if (ddb_on_nmi) {
494 				kprintf ("NMI ... going to debugger\n");
495 				kdb_trap(type, 0, frame);
496 			}
497 #endif /* DDB */
498 			goto out2;
499 		} else if (panic_on_nmi)
500 			panic("NMI indicates hardware failure");
501 		break;
502 #endif /* NISA > 0 */
503 
504 	case T_OFLOW:		/* integer overflow fault */
505 		ucode = FPE_INTOVF;
506 		i = SIGFPE;
507 		break;
508 
509 	case T_BOUND:		/* bounds check fault */
510 		ucode = FPE_FLTSUB;
511 		i = SIGFPE;
512 		break;
513 
514 	case T_DNA:
515 		/*
516 		 * Virtual kernel intercept - pass the DNA exception
517 		 * to the (emulated) virtual kernel if it asked to handle
518 		 * it.  This occurs when the virtual kernel is holding
519 		 * onto the FP context for a different emulated
520 		 * process then the one currently running.
521 		 *
522 		 * We must still call npxdna() since we may have
523 		 * saved FP state that the (emulated) virtual kernel
524 		 * needs to hand over to a different emulated process.
525 		 */
526 		if (lp->lwp_vkernel && lp->lwp_vkernel->ve &&
527 		    (td->td_pcb->pcb_flags & FP_VIRTFP)
528 		) {
529 			npxdna(frame);
530 			break;
531 		}
532 
533 		/*
534 		 * The kernel may have switched out the FP unit's
535 		 * state, causing the user process to take a fault
536 		 * when it tries to use the FP unit.  Restore the
537 		 * state here
538 		 */
539 		if (npxdna(frame)) {
540 			gd->gd_cnt.v_trap++;
541 			goto out;
542 		}
543 		if (!pmath_emulate) {
544 			i = SIGFPE;
545 			ucode = FPE_FPU_NP_TRAP;
546 			break;
547 		}
548 		i = (*pmath_emulate)(frame);
549 		if (i == 0) {
550 			if (!(frame->tf_rflags & PSL_T))
551 				goto out2;
552 			frame->tf_rflags &= ~PSL_T;
553 			i = SIGTRAP;
554 		}
555 		/* else ucode = emulator_only_knows() XXX */
556 		break;
557 
558 	case T_FPOPFLT:		/* FPU operand fetch fault */
559 		ucode = T_FPOPFLT;
560 		i = SIGILL;
561 		break;
562 
563 	case T_XMMFLT:		/* SIMD floating-point exception */
564 		ucode = 0; /* XXX */
565 		i = SIGFPE;
566 		break;
567 	}
568 
569 	/*
570 	 * Virtual kernel intercept - if the fault is directly related to a
571 	 * VM context managed by a virtual kernel then let the virtual kernel
572 	 * handle it.
573 	 */
574 	if (lp->lwp_vkernel && lp->lwp_vkernel->ve) {
575 		vkernel_trap(lp, frame);
576 		goto out;
577 	}
578 
579 	/*
580 	 * Translate fault for emulators (e.g. Linux)
581 	 */
582 	if (*p->p_sysent->sv_transtrap)
583 		i = (*p->p_sysent->sv_transtrap)(i, type);
584 
585 	trapsignal(lp, i, ucode);
586 
587 #ifdef DEBUG
588 	if (type <= MAX_TRAP_MSG) {
589 		uprintf("fatal process exception: %s",
590 			trap_msg[type]);
591 		if ((type == T_PAGEFLT) || (type == T_PROTFLT))
592 			uprintf(", fault VA = 0x%lx", (u_long)eva);
593 		uprintf("\n");
594 	}
595 #endif
596 
597 out:
598 	userret(lp, frame, sticks);
599 	userexit(lp);
600 out2:	;
601 	KTR_LOG(kernentry_trap_ret, lp->lwp_proc->p_pid, lp->lwp_tid);
602 #ifdef INVARIANTS
603 	KASSERT(crit_count == td->td_critcount,
604 		("trap: critical section count mismatch! %d/%d",
605 		crit_count, td->td_pri));
606 	KASSERT(curstop == td->td_toks_stop,
607 		("trap: extra tokens held after trap! %ld/%ld",
608 		curstop - &td->td_toks_base,
609 		td->td_toks_stop - &td->td_toks_base));
610 #endif
611 }
612 
613 void
614 kern_trap(struct trapframe *frame)
615 {
616 	struct globaldata *gd = mycpu;
617 	struct thread *td = gd->gd_curthread;
618 	struct lwp *lp;
619 	struct proc *p;
620 	int i = 0, ucode = 0, type, code;
621 #ifdef INVARIANTS
622 	int crit_count = td->td_critcount;
623 	lwkt_tokref_t curstop = td->td_toks_stop;
624 #endif
625 	vm_offset_t eva;
626 
627 	lp = td->td_lwp;
628 	p = td->td_proc;
629 
630 	if (frame->tf_trapno == T_PAGEFLT)
631 		eva = frame->tf_addr;
632 	else
633 		eva = 0;
634 
635 #ifdef DDB
636 	if (db_active) {
637 		++gd->gd_trap_nesting_level;
638 		trap_fatal(frame, FALSE, eva);
639 		--gd->gd_trap_nesting_level;
640 		goto out2;
641 	}
642 #endif
643 
644 	type = frame->tf_trapno;
645 	code = frame->tf_err;
646 
647 #if 0
648 kernel_trap:
649 #endif
650 	/* kernel trap */
651 
652 	switch (type) {
653 	case T_PAGEFLT:			/* page fault */
654 		trap_pfault(frame, FALSE, eva);
655 		goto out2;
656 
657 	case T_DNA:
658 		/*
659 		 * The kernel may be using npx for copying or other
660 		 * purposes.
661 		 */
662 		panic("kernel NPX should not happen");
663 		if (npxdna(frame))
664 			goto out2;
665 		break;
666 
667 	case T_PROTFLT:		/* general protection fault */
668 	case T_SEGNPFLT:	/* segment not present fault */
669 		/*
670 		 * Invalid segment selectors and out of bounds
671 		 * %eip's and %esp's can be set up in user mode.
672 		 * This causes a fault in kernel mode when the
673 		 * kernel tries to return to user mode.  We want
674 		 * to get this fault so that we can fix the
675 		 * problem here and not have to check all the
676 		 * selectors and pointers when the user changes
677 		 * them.
678 		 */
679 		if (mycpu->gd_intr_nesting_level == 0) {
680 			if (td->td_pcb->pcb_onfault) {
681 				frame->tf_rip =
682 				    (register_t)td->td_pcb->pcb_onfault;
683 				goto out2;
684 			}
685 		}
686 		break;
687 
688 	case T_TSSFLT:
689 		/*
690 		 * PSL_NT can be set in user mode and isn't cleared
691 		 * automatically when the kernel is entered.  This
692 		 * causes a TSS fault when the kernel attempts to
693 		 * `iret' because the TSS link is uninitialized.  We
694 		 * want to get this fault so that we can fix the
695 		 * problem here and not every time the kernel is
696 		 * entered.
697 		 */
698 		if (frame->tf_rflags & PSL_NT) {
699 			frame->tf_rflags &= ~PSL_NT;
700 			goto out2;
701 		}
702 		break;
703 
704 	case T_TRCTRAP:	 /* trace trap */
705 #if 0
706 		if (frame->tf_eip == (int)IDTVEC(syscall)) {
707 			/*
708 			 * We've just entered system mode via the
709 			 * syscall lcall.  Continue single stepping
710 			 * silently until the syscall handler has
711 			 * saved the flags.
712 			 */
713 			goto out2;
714 		}
715 		if (frame->tf_eip == (int)IDTVEC(syscall) + 1) {
716 			/*
717 			 * The syscall handler has now saved the
718 			 * flags.  Stop single stepping it.
719 			 */
720 			frame->tf_eflags &= ~PSL_T;
721 			goto out2;
722 		}
723 #endif
724 #if 0
725 		/*
726 		 * Ignore debug register trace traps due to
727 		 * accesses in the user's address space, which
728 		 * can happen under several conditions such as
729 		 * if a user sets a watchpoint on a buffer and
730 		 * then passes that buffer to a system call.
731 		 * We still want to get TRCTRAPS for addresses
732 		 * in kernel space because that is useful when
733 		 * debugging the kernel.
734 		 */
735 		if (user_dbreg_trap()) {
736 			/*
737 			 * Reset breakpoint bits because the
738 			 * processor doesn't
739 			 */
740 			load_dr6(rdr6() & 0xfffffff0);
741 			goto out2;
742 		}
743 #endif
744 		/*
745 		 * Fall through (TRCTRAP kernel mode, kernel address)
746 		 */
747 	case T_BPTFLT:
748 		/*
749 		 * If DDB is enabled, let it handle the debugger trap.
750 		 * Otherwise, debugger traps "can't happen".
751 		 */
752 #ifdef DDB
753 		if (kdb_trap (type, 0, frame))
754 			goto out2;
755 #endif
756 		break;
757 	case T_DIVIDE:
758 		trap_fatal(frame, FALSE, eva);
759 		goto out2;
760 	case T_NMI:
761 		trap_fatal(frame, FALSE, eva);
762 		goto out2;
763 	case T_SYSCALL80:
764 	case T_FAST_SYSCALL:
765 		/*
766 		 * Ignore this trap generated from a spurious SIGTRAP.
767 		 *
768 		 * single stepping in / syscalls leads to spurious / SIGTRAP
769 		 * so ignore
770 		 *
771 		 * Haiku (c) 2007 Simon 'corecode' Schubert
772 		 */
773 		goto out2;
774 	}
775 
776 	/*
777 	 * Translate fault for emulators (e.g. Linux)
778 	 */
779 	if (*p->p_sysent->sv_transtrap)
780 		i = (*p->p_sysent->sv_transtrap)(i, type);
781 
782 	gd->gd_cnt.v_trap++;
783 	trapsignal(lp, i, ucode);
784 
785 #ifdef DEBUG
786 	if (type <= MAX_TRAP_MSG) {
787 		uprintf("fatal process exception: %s",
788 			trap_msg[type]);
789 		if ((type == T_PAGEFLT) || (type == T_PROTFLT))
790 			uprintf(", fault VA = 0x%lx", (u_long)eva);
791 		uprintf("\n");
792 	}
793 #endif
794 
795 out2:
796 	;
797 #ifdef INVARIANTS
798 	KASSERT(crit_count == td->td_critcount,
799 		("trap: critical section count mismatch! %d/%d",
800 		crit_count, td->td_pri));
801 	KASSERT(curstop == td->td_toks_stop,
802 		("trap: extra tokens held after trap! %ld/%ld",
803 		curstop - &td->td_toks_base,
804 		td->td_toks_stop - &td->td_toks_base));
805 #endif
806 }
807 
808 int
809 trap_pfault(struct trapframe *frame, int usermode, vm_offset_t eva)
810 {
811 	vm_offset_t va;
812 	struct vmspace *vm = NULL;
813 	vm_map_t map = 0;
814 	int rv = 0;
815 	vm_prot_t ftype;
816 	thread_t td = curthread;
817 	struct lwp *lp = td->td_lwp;
818 	int fault_flags;
819 
820 	va = trunc_page(eva);
821 	if (usermode == FALSE) {
822 		/*
823 		 * This is a fault on kernel virtual memory.
824 		 */
825 		map = &kernel_map;
826 	} else {
827 		/*
828 		 * This is a fault on non-kernel virtual memory.
829 		 * vm is initialized above to NULL. If curproc is NULL
830 		 * or curproc->p_vmspace is NULL the fault is fatal.
831 		 */
832 		if (lp != NULL)
833 			vm = lp->lwp_vmspace;
834 
835 		if (vm == NULL)
836 			goto nogo;
837 
838 		map = &vm->vm_map;
839 	}
840 
841 	if (frame->tf_err & PGEX_W)
842 		ftype = VM_PROT_READ | VM_PROT_WRITE;
843 	else if (frame->tf_err & PGEX_I)
844 		ftype = VM_PROT_EXECUTE;
845 	else
846 		ftype = VM_PROT_READ;
847 
848 	if (map != &kernel_map) {
849 		/*
850 		 * Keep swapout from messing with us during this
851 		 *	critical time.
852 		 */
853 		PHOLD(lp->lwp_proc);
854 
855 #if 0
856 		/*
857 		 * Grow the stack if necessary
858 		 */
859 		/* grow_stack returns false only if va falls into
860 		 * a growable stack region and the stack growth
861 		 * fails.  It returns true if va was not within
862 		 * a growable stack region, or if the stack
863 		 * growth succeeded.
864 		 */
865 		if (!grow_stack (map, va)) {
866 			rv = KERN_FAILURE;
867 			PRELE(lp->lwp_proc);
868 			goto nogo;
869 		}
870 #endif
871 
872 		fault_flags = 0;
873 		if (usermode)
874 			fault_flags |= VM_FAULT_BURST | VM_FAULT_USERMODE;
875 		if (ftype & VM_PROT_WRITE)
876 			fault_flags |= VM_FAULT_DIRTY;
877 		else
878 			fault_flags |= VM_FAULT_NORMAL;
879 		rv = vm_fault(map, va, ftype, fault_flags);
880 
881 		PRELE(lp->lwp_proc);
882 	} else {
883 		/*
884 		 * Don't have to worry about process locking or stacks in the kernel.
885 		 */
886 		rv = vm_fault(map, va, ftype, VM_FAULT_NORMAL);
887 	}
888 
889 	if (rv == KERN_SUCCESS)
890 		return (0);
891 nogo:
892 	if (!usermode) {
893 		if (td->td_gd->gd_intr_nesting_level == 0 &&
894 		    td->td_pcb->pcb_onfault) {
895 			frame->tf_rip = (register_t)td->td_pcb->pcb_onfault;
896 			return (0);
897 		}
898 		trap_fatal(frame, usermode, eva);
899 		return (-1);
900 	}
901 
902 	/*
903 	 * NOTE: on x86_64 we have a tf_addr field in the trapframe, no
904 	 * kludge is needed to pass the fault address to signal handlers.
905 	 */
906 	struct proc *p = td->td_proc;
907 	krateprintf(&segfltrate,
908 		    "seg-fault accessing address %p "
909 		    "rip=%p pid=%d p_comm=%s\n",
910 		    (void *)va,
911 		    (void *)frame->tf_rip, p->p_pid, p->p_comm);
912 	/* Debugger("seg-fault"); */
913 
914 	return((rv == KERN_PROTECTION_FAILURE) ? SIGBUS : SIGSEGV);
915 }
916 
917 static void
918 trap_fatal(struct trapframe *frame, int usermode, vm_offset_t eva)
919 {
920 	int code, type, ss;
921 	long rsp;
922 
923 	code = frame->tf_xflags;
924 	type = frame->tf_trapno;
925 
926 	if (type <= MAX_TRAP_MSG) {
927 		kprintf("\n\nFatal trap %d: %s while in %s mode\n",
928 			type, trap_msg[type],
929 			(usermode ? "user" : "kernel"));
930 	}
931 	/* two separate prints in case of a trap on an unmapped page */
932 	kprintf("cpuid = %d\n", mycpu->gd_cpuid);
933 	if (type == T_PAGEFLT) {
934 		kprintf("fault virtual address	= %p\n", (void *)eva);
935 		kprintf("fault code		= %s %s, %s\n",
936 			usermode ? "user" : "supervisor",
937 			code & PGEX_W ? "write" : "read",
938 			code & PGEX_P ? "protection violation" : "page not present");
939 	}
940 	kprintf("instruction pointer	= 0x%lx:0x%lx\n",
941 	       frame->tf_cs & 0xffff, frame->tf_rip);
942 	if (usermode) {
943 		ss = frame->tf_ss & 0xffff;
944 		rsp = frame->tf_rsp;
945 	} else {
946 		ss = GSEL(GDATA_SEL, SEL_KPL);
947 		rsp = (long)&frame->tf_rsp;
948 	}
949 	kprintf("stack pointer	        = 0x%x:0x%lx\n", ss, rsp);
950 	kprintf("frame pointer	        = 0x%x:0x%lx\n", ss, frame->tf_rbp);
951 	kprintf("processor eflags	= ");
952 	if (frame->tf_rflags & PSL_T)
953 		kprintf("trace trap, ");
954 	if (frame->tf_rflags & PSL_I)
955 		kprintf("interrupt enabled, ");
956 	if (frame->tf_rflags & PSL_NT)
957 		kprintf("nested task, ");
958 	if (frame->tf_rflags & PSL_RF)
959 		kprintf("resume, ");
960 #if 0
961 	if (frame->tf_eflags & PSL_VM)
962 		kprintf("vm86, ");
963 #endif
964 	kprintf("IOPL = %jd\n", (intmax_t)((frame->tf_rflags & PSL_IOPL) >> 12));
965 	kprintf("current process		= ");
966 	if (curproc) {
967 		kprintf("%lu (%s)\n",
968 		    (u_long)curproc->p_pid, curproc->p_comm ?
969 		    curproc->p_comm : "");
970 	} else {
971 		kprintf("Idle\n");
972 	}
973 	kprintf("current thread          = pri %d ", curthread->td_pri);
974 	if (curthread->td_critcount)
975 		kprintf("(CRIT)");
976 	kprintf("\n");
977 /**
978  *  XXX FIXME:
979  *	we probably SHOULD have stopped the other CPUs before now!
980  *	another CPU COULD have been touching cpl at this moment...
981  */
982 	kprintf(" <- SMP: XXX");
983 	kprintf("\n");
984 
985 #ifdef KDB
986 	if (kdb_trap(&psl))
987 		return;
988 #endif
989 #ifdef DDB
990 	if ((debugger_on_panic || db_active) && kdb_trap(type, code, frame))
991 		return;
992 #endif
993 	kprintf("trap number		= %d\n", type);
994 	if (type <= MAX_TRAP_MSG)
995 		panic("%s", trap_msg[type]);
996 	else
997 		panic("unknown/reserved trap");
998 }
999 
1000 /*
1001  * Double fault handler. Called when a fault occurs while writing
1002  * a frame for a trap/exception onto the stack. This usually occurs
1003  * when the stack overflows (such is the case with infinite recursion,
1004  * for example).
1005  *
1006  * XXX Note that the current PTD gets replaced by IdlePTD when the
1007  * task switch occurs. This means that the stack that was active at
1008  * the time of the double fault is not available at <kstack> unless
1009  * the machine was idle when the double fault occurred. The downside
1010  * of this is that "trace <ebp>" in ddb won't work.
1011  */
1012 void
1013 dblfault_handler(void)
1014 {
1015 #if 0 /* JG */
1016 	struct mdglobaldata *gd = mdcpu;
1017 #endif
1018 
1019 	kprintf("\nFatal double fault:\n");
1020 #if 0 /* JG */
1021 	kprintf("rip = 0x%lx\n", gd->gd_common_tss.tss_rip);
1022 	kprintf("rsp = 0x%lx\n", gd->gd_common_tss.tss_rsp);
1023 	kprintf("rbp = 0x%lx\n", gd->gd_common_tss.tss_rbp);
1024 #endif
1025 	/* two separate prints in case of a trap on an unmapped page */
1026 	kprintf("cpuid = %d\n", mycpu->gd_cpuid);
1027 	panic("double fault");
1028 }
1029 
1030 /*
1031  *	syscall2 -	MP aware system call request C handler
1032  *
1033  *	A system call is essentially treated as a trap except that the
1034  *	MP lock is not held on entry or return.  We are responsible for
1035  *	obtaining the MP lock if necessary and for handling ASTs
1036  *	(e.g. a task switch) prior to return.
1037  *
1038  *	In general, only simple access and manipulation of curproc and
1039  *	the current stack is allowed without having to hold MP lock.
1040  *
1041  *	MPSAFE - note that large sections of this routine are run without
1042  *		 the MP lock.
1043  */
1044 void
1045 syscall2(struct trapframe *frame)
1046 {
1047 	struct thread *td = curthread;
1048 	struct proc *p = td->td_proc;
1049 	struct lwp *lp = td->td_lwp;
1050 	caddr_t params;
1051 	struct sysent *callp;
1052 	register_t orig_tf_rflags;
1053 	int sticks;
1054 	int error;
1055 	int narg;
1056 #ifdef INVARIANTS
1057 	int crit_count = td->td_critcount;
1058 	lwkt_tokref_t curstop = td->td_toks_stop;
1059 #endif
1060 	register_t *argp;
1061 	u_int code;
1062 	int reg, regcnt;
1063 	union sysunion args;
1064 	register_t *argsdst;
1065 
1066 	mycpu->gd_cnt.v_syscall++;
1067 
1068 	KTR_LOG(kernentry_syscall, lp->lwp_proc->p_pid, lp->lwp_tid,
1069 		frame->tf_rax);
1070 
1071 	userenter(td, p);	/* lazy raise our priority */
1072 
1073 	reg = 0;
1074 	regcnt = 6;
1075 	/*
1076 	 * Misc
1077 	 */
1078 	sticks = (int)td->td_sticks;
1079 	orig_tf_rflags = frame->tf_rflags;
1080 
1081 	/*
1082 	 * Virtual kernel intercept - if a VM context managed by a virtual
1083 	 * kernel issues a system call the virtual kernel handles it, not us.
1084 	 * Restore the virtual kernel context and return from its system
1085 	 * call.  The current frame is copied out to the virtual kernel.
1086 	 */
1087 	if (lp->lwp_vkernel && lp->lwp_vkernel->ve) {
1088 		vkernel_trap(lp, frame);
1089 		error = EJUSTRETURN;
1090 		callp = NULL;
1091 		code = 0;
1092 		goto out;
1093 	}
1094 
1095 	/*
1096 	 * Get the system call parameters and account for time
1097 	 */
1098 	lp->lwp_md.md_regs = frame;
1099 	params = (caddr_t)frame->tf_rsp + sizeof(register_t);
1100 	code = frame->tf_rax;
1101 
1102 	if (code == SYS_syscall || code == SYS___syscall) {
1103 		code = frame->tf_rdi;
1104 		reg++;
1105 		regcnt--;
1106 	}
1107 
1108 	if (code >= p->p_sysent->sv_size)
1109 		callp = &p->p_sysent->sv_table[0];
1110 	else
1111 		callp = &p->p_sysent->sv_table[code];
1112 
1113 	narg = callp->sy_narg & SYF_ARGMASK;
1114 
1115 	/*
1116 	 * On x86_64 we get up to six arguments in registers. The rest are
1117 	 * on the stack. The first six members of 'struct trapframe' happen
1118 	 * to be the registers used to pass arguments, in exactly the right
1119 	 * order.
1120 	 */
1121 	argp = &frame->tf_rdi;
1122 	argp += reg;
1123 	argsdst = (register_t *)(&args.nosys.sysmsg + 1);
1124 
1125 	/*
1126 	 * JG can we overflow the space pointed to by 'argsdst'
1127 	 * either with 'bcopy' or with 'copyin'?
1128 	 */
1129 	bcopy(argp, argsdst, sizeof(register_t) * regcnt);
1130 
1131 	/*
1132 	 * copyin is MP aware, but the tracing code is not
1133 	 */
1134 	if (narg > regcnt) {
1135 		KASSERT(params != NULL, ("copyin args with no params!"));
1136 		error = copyin(params, &argsdst[regcnt],
1137 			(narg - regcnt) * sizeof(register_t));
1138 		if (error) {
1139 #ifdef KTRACE
1140 			if (KTRPOINT(td, KTR_SYSCALL)) {
1141 				ktrsyscall(lp, code, narg,
1142 					(void *)(&args.nosys.sysmsg + 1));
1143 			}
1144 #endif
1145 			goto bad;
1146 		}
1147 	}
1148 
1149 #ifdef KTRACE
1150 	if (KTRPOINT(td, KTR_SYSCALL)) {
1151 		ktrsyscall(lp, code, narg, (void *)(&args.nosys.sysmsg + 1));
1152 	}
1153 #endif
1154 
1155 	/*
1156 	 * Default return value is 0 (will be copied to %rax).  Double-value
1157 	 * returns use %rax and %rdx.  %rdx is left unchanged for system
1158 	 * calls which return only one result.
1159 	 */
1160 	args.sysmsg_fds[0] = 0;
1161 	args.sysmsg_fds[1] = frame->tf_rdx;
1162 
1163 	/*
1164 	 * The syscall might manipulate the trap frame. If it does it
1165 	 * will probably return EJUSTRETURN.
1166 	 */
1167 	args.sysmsg_frame = frame;
1168 
1169 	STOPEVENT(p, S_SCE, narg);	/* MP aware */
1170 
1171 	/*
1172 	 * NOTE: All system calls run MPSAFE now.  The system call itself
1173 	 *	 is responsible for getting the MP lock.
1174 	 */
1175 	error = (*callp->sy_call)(&args);
1176 
1177 #if 0
1178 	kprintf("system call %d returned %d\n", code, error);
1179 #endif
1180 
1181 out:
1182 	/*
1183 	 * MP SAFE (we may or may not have the MP lock at this point)
1184 	 */
1185 	switch (error) {
1186 	case 0:
1187 		/*
1188 		 * Reinitialize proc pointer `p' as it may be different
1189 		 * if this is a child returning from fork syscall.
1190 		 */
1191 		p = curproc;
1192 		lp = curthread->td_lwp;
1193 		frame->tf_rax = args.sysmsg_fds[0];
1194 		frame->tf_rdx = args.sysmsg_fds[1];
1195 		frame->tf_rflags &= ~PSL_C;
1196 		break;
1197 	case ERESTART:
1198 		/*
1199 		 * Reconstruct pc, we know that 'syscall' is 2 bytes.
1200 		 * We have to do a full context restore so that %r10
1201 		 * (which was holding the value of %rcx) is restored for
1202 		 * the next iteration.
1203 		 */
1204 		frame->tf_rip -= frame->tf_err;
1205 		frame->tf_r10 = frame->tf_rcx;
1206 		break;
1207 	case EJUSTRETURN:
1208 		break;
1209 	case EASYNC:
1210 		panic("Unexpected EASYNC return value (for now)");
1211 	default:
1212 bad:
1213 		if (p->p_sysent->sv_errsize) {
1214 			if (error >= p->p_sysent->sv_errsize)
1215 				error = -1;	/* XXX */
1216 			else
1217 				error = p->p_sysent->sv_errtbl[error];
1218 		}
1219 		frame->tf_rax = error;
1220 		frame->tf_rflags |= PSL_C;
1221 		break;
1222 	}
1223 
1224 	/*
1225 	 * Traced syscall.  trapsignal() is not MP aware.
1226 	 */
1227 	if (orig_tf_rflags & PSL_T) {
1228 		frame->tf_rflags &= ~PSL_T;
1229 		trapsignal(lp, SIGTRAP, 0);
1230 	}
1231 
1232 	/*
1233 	 * Handle reschedule and other end-of-syscall issues
1234 	 */
1235 	userret(lp, frame, sticks);
1236 
1237 #ifdef KTRACE
1238 	if (KTRPOINT(td, KTR_SYSRET)) {
1239 		ktrsysret(lp, code, error, args.sysmsg_result);
1240 	}
1241 #endif
1242 
1243 	/*
1244 	 * This works because errno is findable through the
1245 	 * register set.  If we ever support an emulation where this
1246 	 * is not the case, this code will need to be revisited.
1247 	 */
1248 	STOPEVENT(p, S_SCX, code);
1249 
1250 	userexit(lp);
1251 	KTR_LOG(kernentry_syscall_ret, lp->lwp_proc->p_pid, lp->lwp_tid, error);
1252 #ifdef INVARIANTS
1253 	KASSERT(&td->td_toks_base == td->td_toks_stop,
1254 		("syscall: critical section count mismatch! %d/%d",
1255 		crit_count, td->td_pri));
1256 	KASSERT(curstop == td->td_toks_stop,
1257 		("syscall: extra tokens held after trap! %ld",
1258 		td->td_toks_stop - &td->td_toks_base));
1259 #endif
1260 }
1261 
1262 /*
1263  * NOTE: mplock not held at any point
1264  */
1265 void
1266 fork_return(struct lwp *lp, struct trapframe *frame)
1267 {
1268 	frame->tf_rax = 0;		/* Child returns zero */
1269 	frame->tf_rflags &= ~PSL_C;	/* success */
1270 	frame->tf_rdx = 1;
1271 
1272 	generic_lwp_return(lp, frame);
1273 	KTR_LOG(kernentry_fork_ret, lp->lwp_proc->p_pid, lp->lwp_tid);
1274 }
1275 
1276 /*
1277  * Simplified back end of syscall(), used when returning from fork()
1278  * directly into user mode.
1279  *
1280  * This code will return back into the fork trampoline code which then
1281  * runs doreti.
1282  *
1283  * NOTE: The mplock is not held at any point.
1284  */
1285 void
1286 generic_lwp_return(struct lwp *lp, struct trapframe *frame)
1287 {
1288 	struct proc *p = lp->lwp_proc;
1289 
1290 	/*
1291 	 * Check for exit-race.  If one lwp exits the process concurrent with
1292 	 * another lwp creating a new thread, the two operations may cross
1293 	 * each other resulting in the newly-created lwp not receiving a
1294 	 * KILL signal.
1295 	 */
1296 	if (p->p_flags & P_WEXIT) {
1297 		lwpsignal(p, lp, SIGKILL);
1298 	}
1299 
1300 	/*
1301 	 * Newly forked processes are given a kernel priority.  We have to
1302 	 * adjust the priority to a normal user priority and fake entry
1303 	 * into the kernel (call userenter()) to install a passive release
1304 	 * function just in case userret() decides to stop the process.  This
1305 	 * can occur when ^Z races a fork.  If we do not install the passive
1306 	 * release function the current process designation will not be
1307 	 * released when the thread goes to sleep.
1308 	 */
1309 	lwkt_setpri_self(TDPRI_USER_NORM);
1310 	userenter(lp->lwp_thread, p);
1311 	userret(lp, frame, 0);
1312 #ifdef KTRACE
1313 	if (KTRPOINT(lp->lwp_thread, KTR_SYSRET))
1314 		ktrsysret(lp, SYS_fork, 0, 0);
1315 #endif
1316 	lp->lwp_flags |= LWP_PASSIVE_ACQ;
1317 	userexit(lp);
1318 	lp->lwp_flags &= ~LWP_PASSIVE_ACQ;
1319 }
1320 
1321 /*
1322  * doreti has turned into this.  The frame is directly on the stack.  We
1323  * pull everything else we need (fpu and tls context) from the current
1324  * thread.
1325  *
1326  * Note on fpu interactions: In a virtual kernel, the fpu context for
1327  * an emulated user mode process is not shared with the virtual kernel's
1328  * fpu context, so we only have to 'stack' fpu contexts within the virtual
1329  * kernel itself, and not even then since the signal() contexts that we care
1330  * about save and restore the FPU state (I think anyhow).
1331  *
1332  * vmspace_ctl() returns an error only if it had problems instaling the
1333  * context we supplied or problems copying data to/from our VM space.
1334  */
1335 void
1336 go_user(struct intrframe *frame)
1337 {
1338 	struct trapframe *tf = (void *)&frame->if_rdi;
1339 	globaldata_t gd;
1340 	int r;
1341 	void *id;
1342 
1343 	/*
1344 	 * Interrupts may be disabled on entry, make sure all signals
1345 	 * can be received before beginning our loop.
1346 	 */
1347 	sigsetmask(0);
1348 
1349 	/*
1350 	 * Switch to the current simulated user process, then call
1351 	 * user_trap() when we break out of it (usually due to a signal).
1352 	 */
1353 	for (;;) {
1354 #if 1
1355 		/*
1356 		 * Always make the FPU state correct.  This should generally
1357 		 * be faster because the cost of taking a #NM fault through
1358 		 * the vkernel to the real kernel is astronomical.
1359 		 */
1360 		crit_enter();
1361 		tf->tf_xflags &= ~PGEX_FPFAULT;
1362 		if (mdcpu->gd_npxthread != curthread) {
1363 			if (mdcpu->gd_npxthread)
1364 				npxsave(mdcpu->gd_npxthread->td_savefpu);
1365 			npxdna(tf);
1366 		}
1367 #else
1368 		/*
1369 		 * Tell the real kernel whether it is ok to use the FP
1370 		 * unit or not, allowing us to take a T_DNA exception
1371 		 * if the context tries to use the FP.
1372 		 */
1373 		if (mdcpu->gd_npxthread == curthread) {
1374 			tf->tf_xflags &= ~PGEX_FPFAULT;
1375 		} else {
1376 			tf->tf_xflags |= PGEX_FPFAULT;
1377 		}
1378 #endif
1379 
1380 		/*
1381 		 * Run emulated user process context.  This call interlocks
1382 		 * with new mailbox signals.
1383 		 *
1384 		 * Set PGEX_U unconditionally, indicating a user frame (the
1385 		 * bit is normally set only by T_PAGEFLT).
1386 		 */
1387 		if (vmm_enabled)
1388 			id = (void *)vtophys(curproc->p_vmspace->vm_pmap.pm_pml4);
1389 		else
1390 			id = &curproc->p_vmspace->vm_pmap;
1391 
1392 		/*
1393 		 * The GDF_VIRTUSER hack helps statclock() figure out who
1394 		 * the tick belongs to.
1395 		 */
1396 		gd = mycpu;
1397 		gd->gd_flags |= GDF_VIRTUSER;
1398 		r = vmspace_ctl(id, VMSPACE_CTL_RUN, tf,
1399 				&curthread->td_savevext);
1400 
1401 		frame->if_xflags |= PGEX_U;
1402 
1403 		/*
1404 		 * Immediately save the user FPU state.  The vkernel is a
1405 		 * user program and libraries like libc will use the FP
1406 		 * unit.
1407 		 */
1408 		if (mdcpu->gd_npxthread == curthread) {
1409 			npxsave(mdcpu->gd_npxthread->td_savefpu);
1410 		}
1411 		crit_exit();
1412 		gd->gd_flags &= ~GDF_VIRTUSER;
1413 #if 0
1414 		kprintf("GO USER %d trap %ld EVA %08lx RIP %08lx RSP %08lx XFLAGS %02lx/%02lx\n",
1415 			r, tf->tf_trapno, tf->tf_addr, tf->tf_rip, tf->tf_rsp,
1416 			tf->tf_xflags, frame->if_xflags);
1417 #endif
1418 		if (r < 0) {
1419 			if (errno != EINTR)
1420 				panic("vmspace_ctl failed error %d", errno);
1421 		} else {
1422 			if (tf->tf_trapno) {
1423 				user_trap(tf);
1424 			}
1425 		}
1426 		if (mycpu->gd_reqflags & RQF_AST_MASK) {
1427 			tf->tf_trapno = T_ASTFLT;
1428 			user_trap(tf);
1429 		}
1430 		tf->tf_trapno = 0;
1431 	}
1432 }
1433 
1434 /*
1435  * If PGEX_FPFAULT is set then set FP_VIRTFP in the PCB to force a T_DNA
1436  * fault (which is then passed back to the virtual kernel) if an attempt is
1437  * made to use the FP unit.
1438  *
1439  * XXX this is a fairly big hack.
1440  */
1441 void
1442 set_vkernel_fp(struct trapframe *frame)
1443 {
1444 	struct thread *td = curthread;
1445 
1446 	if (frame->tf_xflags & PGEX_FPFAULT) {
1447 		td->td_pcb->pcb_flags |= FP_VIRTFP;
1448 		if (mdcpu->gd_npxthread == td)
1449 			npxexit();
1450 	} else {
1451 		td->td_pcb->pcb_flags &= ~FP_VIRTFP;
1452 	}
1453 }
1454 
1455 /*
1456  * Called from vkernel_trap() to fixup the vkernel's syscall
1457  * frame for vmspace_ctl() return.
1458  */
1459 void
1460 cpu_vkernel_trap(struct trapframe *frame, int error)
1461 {
1462 	frame->tf_rax = error;
1463 	if (error)
1464 		frame->tf_rflags |= PSL_C;
1465 	else
1466 		frame->tf_rflags &= ~PSL_C;
1467 }
1468