xref: /dragonfly/sys/platform/vkernel64/x86_64/trap.c (revision 655933d6)
1 /*-
2  * Copyright (C) 1994, David Greenman
3  * Copyright (c) 1990, 1993
4  *	The Regents of the University of California.  All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * the University of Utah, and William Jolitz.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed by the University of
20  *	California, Berkeley and its contributors.
21  * 4. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *	from: @(#)trap.c	7.4 (Berkeley) 5/13/91
38  * $FreeBSD: src/sys/i386/i386/trap.c,v 1.147.2.11 2003/02/27 19:09:59 luoqi Exp $
39  */
40 
41 /*
42  * x86_64 Trap and System call handling
43  */
44 
45 #include "use_isa.h"
46 
47 #include "opt_ddb.h"
48 #include "opt_ktrace.h"
49 
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/proc.h>
53 #include <sys/pioctl.h>
54 #include <sys/kernel.h>
55 #include <sys/resourcevar.h>
56 #include <sys/signalvar.h>
57 #include <sys/signal2.h>
58 #include <sys/syscall.h>
59 #include <sys/sysctl.h>
60 #include <sys/sysent.h>
61 #include <sys/vmmeter.h>
62 #include <sys/malloc.h>
63 #ifdef KTRACE
64 #include <sys/ktrace.h>
65 #endif
66 #include <sys/ktr.h>
67 #include <sys/vkernel.h>
68 #include <sys/sysmsg.h>
69 #include <sys/vmspace.h>
70 
71 #include <vm/vm.h>
72 #include <vm/vm_param.h>
73 #include <sys/lock.h>
74 #include <vm/pmap.h>
75 #include <vm/vm_kern.h>
76 #include <vm/vm_map.h>
77 #include <vm/vm_page.h>
78 #include <vm/vm_extern.h>
79 
80 #include <machine/cpu.h>
81 #include <machine/md_var.h>
82 #include <machine/pcb.h>
83 #include <machine/smp.h>
84 #include <machine/tss.h>
85 #include <machine/globaldata.h>
86 
87 #include <ddb/ddb.h>
88 
89 #include <sys/msgport2.h>
90 #include <sys/thread2.h>
91 #include <sys/mplock2.h>
92 
93 int (*pmath_emulate) (struct trapframe *);
94 
95 static int trap_pfault (struct trapframe *, int, vm_offset_t);
96 static void trap_fatal (struct trapframe *, int, vm_offset_t);
97 void dblfault_handler (void);
98 
99 static struct krate segfltrate = { 1 };
100 
101 #if 0
102 extern inthand_t IDTVEC(syscall);
103 #endif
104 
105 #define MAX_TRAP_MSG		30
106 static char *trap_msg[] = {
107 	"",					/*  0 unused */
108 	"privileged instruction fault",		/*  1 T_PRIVINFLT */
109 	"",					/*  2 unused */
110 	"breakpoint instruction fault",		/*  3 T_BPTFLT */
111 	"",					/*  4 unused */
112 	"",					/*  5 unused */
113 	"arithmetic trap",			/*  6 T_ARITHTRAP */
114 	"system forced exception",		/*  7 T_ASTFLT */
115 	"",					/*  8 unused */
116 	"general protection fault",		/*  9 T_PROTFLT */
117 	"trace trap",				/* 10 T_TRCTRAP */
118 	"",					/* 11 unused */
119 	"page fault",				/* 12 T_PAGEFLT */
120 	"",					/* 13 unused */
121 	"alignment fault",			/* 14 T_ALIGNFLT */
122 	"",					/* 15 unused */
123 	"",					/* 16 unused */
124 	"",					/* 17 unused */
125 	"integer divide fault",			/* 18 T_DIVIDE */
126 	"non-maskable interrupt trap",		/* 19 T_NMI */
127 	"overflow trap",			/* 20 T_OFLOW */
128 	"FPU bounds check fault",		/* 21 T_BOUND */
129 	"FPU device not available",		/* 22 T_DNA */
130 	"double fault",				/* 23 T_DOUBLEFLT */
131 	"FPU operand fetch fault",		/* 24 T_FPOPFLT */
132 	"invalid TSS fault",			/* 25 T_TSSFLT */
133 	"segment not present fault",		/* 26 T_SEGNPFLT */
134 	"stack fault",				/* 27 T_STKFLT */
135 	"machine check trap",			/* 28 T_MCHK */
136 	"SIMD floating-point exception",	/* 29 T_XMMFLT */
137 	"reserved (unknown) fault",		/* 30 T_RESERVED */
138 };
139 
140 #ifdef DDB
141 static int ddb_on_nmi = 1;
142 SYSCTL_INT(_machdep, OID_AUTO, ddb_on_nmi, CTLFLAG_RW,
143 	&ddb_on_nmi, 0, "Go to DDB on NMI");
144 #endif
145 static int panic_on_nmi = 1;
146 SYSCTL_INT(_machdep, OID_AUTO, panic_on_nmi, CTLFLAG_RW,
147 	&panic_on_nmi, 0, "Panic on NMI");
148 
149 /*
150  * Passively intercepts the thread switch function to increase
151  * the thread priority from a user priority to a kernel priority, reducing
152  * syscall and trap overhead for the case where no switch occurs.
153  *
154  * Synchronizes td_ucred with p_ucred.  This is used by system calls,
155  * signal handling, faults, AST traps, and anything else that enters the
156  * kernel from userland and provides the kernel with a stable read-only
157  * copy of the process ucred.
158  */
159 static __inline void
160 userenter(struct thread *curtd, struct proc *curp)
161 {
162 	struct ucred *ocred;
163 	struct ucred *ncred;
164 
165 	curtd->td_release = lwkt_passive_release;
166 
167 	if (curtd->td_ucred != curp->p_ucred) {
168 		ncred = crhold(curp->p_ucred);
169 		ocred = curtd->td_ucred;
170 		curtd->td_ucred = ncred;
171 		if (ocred)
172 			crfree(ocred);
173 	}
174 }
175 
176 /*
177  * Handle signals, profiling, and other AST's and/or tasks that
178  * must be completed before we can return to or try to return to userland.
179  *
180  * Note that td_sticks is a 64 bit quantity, but there's no point doing 64
181  * arithmatic on the delta calculation so the absolute tick values are
182  * truncated to an integer.
183  */
184 static void
185 userret(struct lwp *lp, struct trapframe *frame, int sticks)
186 {
187 	struct proc *p = lp->lwp_proc;
188 	int sig;
189 	int ptok;
190 
191 	/*
192 	 * Charge system time if profiling.  Note: times are in microseconds.
193 	 * This may do a copyout and block, so do it first even though it
194 	 * means some system time will be charged as user time.
195 	 */
196 	if (p->p_flags & P_PROFIL) {
197 		addupc_task(p, frame->tf_rip,
198 			(u_int)((int)lp->lwp_thread->td_sticks - sticks));
199 	}
200 
201 recheck:
202 	/*
203 	 * Specific on-return-to-usermode checks (LWP_MP_WEXIT,
204 	 * LWP_MP_VNLRU, etc).
205 	 */
206 	if (lp->lwp_mpflags & LWP_MP_URETMASK)
207 		lwpuserret(lp);
208 
209 	/*
210 	 * Block here if we are in a stopped state.
211 	 */
212 	if (STOPLWP(p, lp)) {
213 		lwkt_gettoken(&p->p_token);
214 		tstop();
215 		lwkt_reltoken(&p->p_token);
216 		goto recheck;
217 	}
218 
219 	/*
220 	 * Post any pending upcalls.  If running a virtual kernel be sure
221 	 * to restore the virtual kernel's vmspace before posting the upcall.
222 	 */
223 	if (p->p_flags & (P_SIGVTALRM | P_SIGPROF)) {
224 		lwkt_gettoken(&p->p_token);
225 		if (p->p_flags & P_SIGVTALRM) {
226 			p->p_flags &= ~P_SIGVTALRM;
227 			ksignal(p, SIGVTALRM);
228 		}
229 		if (p->p_flags & P_SIGPROF) {
230 			p->p_flags &= ~P_SIGPROF;
231 			ksignal(p, SIGPROF);
232 		}
233 		lwkt_reltoken(&p->p_token);
234 		goto recheck;
235 	}
236 
237 	/*
238 	 * Post any pending signals
239 	 *
240 	 * WARNING!  postsig() can exit and not return.
241 	 */
242 	if ((sig = CURSIG_LCK_TRACE(lp, &ptok)) != 0) {
243 		postsig(sig, ptok);
244 		goto recheck;
245 	}
246 
247 	/*
248 	 * In a multi-threaded program it is possible for a thread to change
249 	 * signal state during a system call which temporarily changes the
250 	 * signal mask.  In this case postsig() might not be run and we
251 	 * have to restore the mask ourselves.
252 	 */
253 	if (lp->lwp_flags & LWP_OLDMASK) {
254 		lp->lwp_flags &= ~LWP_OLDMASK;
255 		lp->lwp_sigmask = lp->lwp_oldsigmask;
256 		goto recheck;
257 	}
258 }
259 
260 /*
261  * Cleanup from userenter and any passive release that might have occured.
262  * We must reclaim the current-process designation before we can return
263  * to usermode.  We also handle both LWKT and USER reschedule requests.
264  */
265 static __inline void
266 userexit(struct lwp *lp)
267 {
268 	struct thread *td = lp->lwp_thread;
269 	/* globaldata_t gd = td->td_gd; */
270 
271 	/*
272 	 * Handle stop requests at kernel priority.  Any requests queued
273 	 * after this loop will generate another AST.
274 	 */
275 	while (STOPLWP(lp->lwp_proc, lp)) {
276 		lwkt_gettoken(&lp->lwp_proc->p_token);
277 		tstop();
278 		lwkt_reltoken(&lp->lwp_proc->p_token);
279 	}
280 
281 	/*
282 	 * Reduce our priority in preparation for a return to userland.  If
283 	 * our passive release function was still in place, our priority was
284 	 * never raised and does not need to be reduced.
285 	 */
286 	lwkt_passive_recover(td);
287 
288 	/*
289 	 * Become the current user scheduled process if we aren't already,
290 	 * and deal with reschedule requests and other factors.
291 	 */
292 	lp->lwp_proc->p_usched->acquire_curproc(lp);
293 	/* WARNING: we may have migrated cpu's */
294 	/* gd = td->td_gd; */
295 }
296 
297 #if !defined(KTR_KERNENTRY)
298 #define	KTR_KERNENTRY	KTR_ALL
299 #endif
300 KTR_INFO_MASTER(kernentry);
301 KTR_INFO(KTR_KERNENTRY, kernentry, trap, 0,
302 	 "TRAP(pid %hd, tid %hd, trapno %ld, eva %lu)",
303 	 pid_t pid, lwpid_t tid,  register_t trapno, vm_offset_t eva);
304 KTR_INFO(KTR_KERNENTRY, kernentry, trap_ret, 0, "TRAP_RET(pid %hd, tid %hd)",
305 	 pid_t pid, lwpid_t tid);
306 KTR_INFO(KTR_KERNENTRY, kernentry, syscall, 0, "SYSC(pid %hd, tid %hd, nr %ld)",
307 	 pid_t pid, lwpid_t tid,  register_t trapno);
308 KTR_INFO(KTR_KERNENTRY, kernentry, syscall_ret, 0, "SYSRET(pid %hd, tid %hd, err %d)",
309 	 pid_t pid, lwpid_t tid,  int err);
310 KTR_INFO(KTR_KERNENTRY, kernentry, fork_ret, 0, "FORKRET(pid %hd, tid %hd)",
311 	 pid_t pid, lwpid_t tid);
312 
313 /*
314  * Exception, fault, and trap interface to the kernel.
315  * This common code is called from assembly language IDT gate entry
316  * routines that prepare a suitable stack frame, and restore this
317  * frame after the exception has been processed.
318  *
319  * This function is also called from doreti in an interlock to handle ASTs.
320  * For example:  hardwareint->INTROUTINE->(set ast)->doreti->trap
321  *
322  * NOTE!  We have to retrieve the fault address prior to obtaining the
323  * MP lock because get_mplock() may switch out.  YYY cr2 really ought
324  * to be retrieved by the assembly code, not here.
325  *
326  * XXX gd_trap_nesting_level currently prevents lwkt_switch() from panicing
327  * if an attempt is made to switch from a fast interrupt or IPI.  This is
328  * necessary to properly take fatal kernel traps on SMP machines if
329  * get_mplock() has to block.
330  */
331 
332 void
333 user_trap(struct trapframe *frame)
334 {
335 	struct globaldata *gd = mycpu;
336 	struct thread *td = gd->gd_curthread;
337 	struct lwp *lp = td->td_lwp;
338 	struct proc *p;
339 	int sticks = 0;
340 	int i = 0, ucode = 0, type, code;
341 #ifdef INVARIANTS
342 	int crit_count = td->td_critcount;
343 	lwkt_tokref_t curstop = td->td_toks_stop;
344 #endif
345 	vm_offset_t eva;
346 
347 	p = td->td_proc;
348 
349 	if (frame->tf_trapno == T_PAGEFLT)
350 		eva = frame->tf_addr;
351 	else
352 		eva = 0;
353 #if 0
354 	kprintf("USER_TRAP AT %08lx xflags %ld trapno %ld eva %08lx\n",
355 		frame->tf_rip, frame->tf_xflags, frame->tf_trapno, eva);
356 #endif
357 
358 	/*
359 	 * Everything coming from user mode runs through user_trap,
360 	 * including system calls.
361 	 */
362 	if (frame->tf_trapno == T_FAST_SYSCALL) {
363 		syscall2(frame);
364 		return;
365 	}
366 
367 	KTR_LOG(kernentry_trap, lp->lwp_proc->p_pid, lp->lwp_tid,
368 		frame->tf_trapno, eva);
369 
370 #ifdef DDB
371 	if (db_active) {
372 		eva = (frame->tf_trapno == T_PAGEFLT ? rcr2() : 0);
373 		++gd->gd_trap_nesting_level;
374 		trap_fatal(frame, TRUE, eva);
375 		--gd->gd_trap_nesting_level;
376 		goto out2;
377 	}
378 #endif
379 
380 	type = frame->tf_trapno;
381 	code = frame->tf_err;
382 
383 	userenter(td, p);
384 
385 	sticks = (int)td->td_sticks;
386 	lp->lwp_md.md_regs = frame;
387 
388 	switch (type) {
389 	case T_PRIVINFLT:	/* privileged instruction fault */
390 		i = SIGILL;
391 		ucode = ILL_PRVOPC;
392 		break;
393 
394 	case T_BPTFLT:		/* bpt instruction fault */
395 	case T_TRCTRAP:		/* trace trap */
396 		frame->tf_rflags &= ~PSL_T;
397 		i = SIGTRAP;
398 		ucode = (type == T_TRCTRAP ? TRAP_TRACE : TRAP_BRKPT);
399 		break;
400 
401 	case T_ARITHTRAP:	/* arithmetic trap */
402 		ucode = code;
403 		i = SIGFPE;
404 		break;
405 
406 	case T_ASTFLT:		/* Allow process switch */
407 		mycpu->gd_cnt.v_soft++;
408 		if (mycpu->gd_reqflags & RQF_AST_OWEUPC) {
409 			atomic_clear_int(&mycpu->gd_reqflags, RQF_AST_OWEUPC);
410 			addupc_task(p, p->p_prof.pr_addr, p->p_prof.pr_ticks);
411 		}
412 		goto out;
413 
414 		/*
415 		 * The following two traps can happen in
416 		 * vm86 mode, and, if so, we want to handle
417 		 * them specially.
418 		 */
419 	case T_PROTFLT:		/* general protection fault */
420 	case T_STKFLT:		/* stack fault */
421 #if 0
422 		if (frame->tf_eflags & PSL_VM) {
423 			i = vm86_emulate((struct vm86frame *)frame);
424 			if (i == 0)
425 				goto out;
426 			break;
427 		}
428 #endif
429 		/* FALL THROUGH */
430 
431 	case T_SEGNPFLT:	/* segment not present fault */
432 	case T_TSSFLT:		/* invalid TSS fault */
433 	case T_DOUBLEFLT:	/* double fault */
434 	default:
435 		i = SIGBUS;
436 		ucode = code + BUS_SEGM_FAULT ;
437 		break;
438 
439 	case T_PAGEFLT:		/* page fault */
440 		i = trap_pfault(frame, TRUE, eva);
441 		if (i == -1 || i == 0)
442 			goto out;
443 
444 
445 		if (i == SIGSEGV)
446 			ucode = SEGV_MAPERR;
447 		else {
448 			i = SIGSEGV;
449 			ucode = SEGV_ACCERR;
450 		}
451 		break;
452 
453 	case T_DIVIDE:		/* integer divide fault */
454 		ucode = FPE_INTDIV;
455 		i = SIGFPE;
456 		break;
457 
458 #if NISA > 0
459 	case T_NMI:
460 		/* machine/parity/power fail/"kitchen sink" faults */
461 		if (isa_nmi(code) == 0) {
462 #ifdef DDB
463 			/*
464 			 * NMI can be hooked up to a pushbutton
465 			 * for debugging.
466 			 */
467 			if (ddb_on_nmi) {
468 				kprintf ("NMI ... going to debugger\n");
469 				kdb_trap(type, 0, frame);
470 			}
471 #endif /* DDB */
472 			goto out2;
473 		} else if (panic_on_nmi)
474 			panic("NMI indicates hardware failure");
475 		break;
476 #endif /* NISA > 0 */
477 
478 	case T_OFLOW:		/* integer overflow fault */
479 		ucode = FPE_INTOVF;
480 		i = SIGFPE;
481 		break;
482 
483 	case T_BOUND:		/* bounds check fault */
484 		ucode = FPE_FLTSUB;
485 		i = SIGFPE;
486 		break;
487 
488 	case T_DNA:
489 		/*
490 		 * Virtual kernel intercept - pass the DNA exception
491 		 * to the (emulated) virtual kernel if it asked to handle
492 		 * it.  This occurs when the virtual kernel is holding
493 		 * onto the FP context for a different emulated
494 		 * process then the one currently running.
495 		 *
496 		 * We must still call npxdna() since we may have
497 		 * saved FP state that the (emulated) virtual kernel
498 		 * needs to hand over to a different emulated process.
499 		 */
500 		if (lp->lwp_vkernel && lp->lwp_vkernel->ve &&
501 		    (td->td_pcb->pcb_flags & FP_VIRTFP)
502 		) {
503 			npxdna(frame);
504 			break;
505 		}
506 
507 		/*
508 		 * The kernel may have switched out the FP unit's
509 		 * state, causing the user process to take a fault
510 		 * when it tries to use the FP unit.  Restore the
511 		 * state here
512 		 */
513 		if (npxdna(frame)) {
514 			gd->gd_cnt.v_trap++;
515 			goto out;
516 		}
517 		if (!pmath_emulate) {
518 			i = SIGFPE;
519 			ucode = FPE_FPU_NP_TRAP;
520 			break;
521 		}
522 		i = (*pmath_emulate)(frame);
523 		if (i == 0) {
524 			if (!(frame->tf_rflags & PSL_T))
525 				goto out2;
526 			frame->tf_rflags &= ~PSL_T;
527 			i = SIGTRAP;
528 		}
529 		/* else ucode = emulator_only_knows() XXX */
530 		break;
531 
532 	case T_FPOPFLT:		/* FPU operand fetch fault */
533 		ucode = T_FPOPFLT;
534 		i = SIGILL;
535 		break;
536 
537 	case T_XMMFLT:		/* SIMD floating-point exception */
538 		ucode = 0; /* XXX */
539 		i = SIGFPE;
540 		break;
541 	}
542 
543 	/*
544 	 * Virtual kernel intercept - if the fault is directly related to a
545 	 * VM context managed by a virtual kernel then let the virtual kernel
546 	 * handle it.
547 	 */
548 	if (lp->lwp_vkernel && lp->lwp_vkernel->ve) {
549 		vkernel_trap(lp, frame);
550 		goto out;
551 	}
552 
553 	/*
554 	 * Translate fault for emulators (e.g. Linux)
555 	 */
556 	if (*p->p_sysent->sv_transtrap)
557 		i = (*p->p_sysent->sv_transtrap)(i, type);
558 
559 	trapsignal(lp, i, ucode);
560 
561 #ifdef DEBUG
562 	if (type <= MAX_TRAP_MSG) {
563 		uprintf("fatal process exception: %s",
564 			trap_msg[type]);
565 		if ((type == T_PAGEFLT) || (type == T_PROTFLT))
566 			uprintf(", fault VA = 0x%lx", (u_long)eva);
567 		uprintf("\n");
568 	}
569 #endif
570 
571 out:
572 	userret(lp, frame, sticks);
573 	userexit(lp);
574 out2:	;
575 	KTR_LOG(kernentry_trap_ret, lp->lwp_proc->p_pid, lp->lwp_tid);
576 #ifdef INVARIANTS
577 	KASSERT(crit_count == td->td_critcount,
578 		("trap: critical section count mismatch! %d/%d",
579 		crit_count, td->td_pri));
580 	KASSERT(curstop == td->td_toks_stop,
581 		("trap: extra tokens held after trap! %ld/%ld",
582 		curstop - &td->td_toks_base,
583 		td->td_toks_stop - &td->td_toks_base));
584 #endif
585 }
586 
587 void
588 kern_trap(struct trapframe *frame)
589 {
590 	struct globaldata *gd = mycpu;
591 	struct thread *td = gd->gd_curthread;
592 	struct lwp *lp;
593 	struct proc *p;
594 	int i = 0, ucode = 0, type, code;
595 #ifdef INVARIANTS
596 	int crit_count = td->td_critcount;
597 	lwkt_tokref_t curstop = td->td_toks_stop;
598 #endif
599 	vm_offset_t eva;
600 
601 	lp = td->td_lwp;
602 	p = td->td_proc;
603 
604 	if (frame->tf_trapno == T_PAGEFLT)
605 		eva = frame->tf_addr;
606 	else
607 		eva = 0;
608 
609 #ifdef DDB
610 	if (db_active) {
611 		++gd->gd_trap_nesting_level;
612 		trap_fatal(frame, FALSE, eva);
613 		--gd->gd_trap_nesting_level;
614 		goto out2;
615 	}
616 #endif
617 
618 	type = frame->tf_trapno;
619 	code = frame->tf_err;
620 
621 #if 0
622 kernel_trap:
623 #endif
624 	/* kernel trap */
625 
626 	switch (type) {
627 	case T_PAGEFLT:			/* page fault */
628 		trap_pfault(frame, FALSE, eva);
629 		goto out2;
630 
631 	case T_DNA:
632 		/*
633 		 * The kernel may be using npx for copying or other
634 		 * purposes.
635 		 */
636 		panic("kernel NPX should not happen");
637 		if (npxdna(frame))
638 			goto out2;
639 		break;
640 
641 	case T_PROTFLT:		/* general protection fault */
642 	case T_SEGNPFLT:	/* segment not present fault */
643 		/*
644 		 * Invalid segment selectors and out of bounds
645 		 * %eip's and %esp's can be set up in user mode.
646 		 * This causes a fault in kernel mode when the
647 		 * kernel tries to return to user mode.  We want
648 		 * to get this fault so that we can fix the
649 		 * problem here and not have to check all the
650 		 * selectors and pointers when the user changes
651 		 * them.
652 		 */
653 		if (mycpu->gd_intr_nesting_level == 0) {
654 			if (td->td_pcb->pcb_onfault) {
655 				frame->tf_rip =
656 				    (register_t)td->td_pcb->pcb_onfault;
657 				goto out2;
658 			}
659 		}
660 		break;
661 
662 	case T_TSSFLT:
663 		/*
664 		 * PSL_NT can be set in user mode and isn't cleared
665 		 * automatically when the kernel is entered.  This
666 		 * causes a TSS fault when the kernel attempts to
667 		 * `iret' because the TSS link is uninitialized.  We
668 		 * want to get this fault so that we can fix the
669 		 * problem here and not every time the kernel is
670 		 * entered.
671 		 */
672 		if (frame->tf_rflags & PSL_NT) {
673 			frame->tf_rflags &= ~PSL_NT;
674 			goto out2;
675 		}
676 		break;
677 
678 	case T_TRCTRAP:	 /* trace trap */
679 #if 0
680 		if (frame->tf_eip == (int)IDTVEC(syscall)) {
681 			/*
682 			 * We've just entered system mode via the
683 			 * syscall lcall.  Continue single stepping
684 			 * silently until the syscall handler has
685 			 * saved the flags.
686 			 */
687 			goto out2;
688 		}
689 		if (frame->tf_eip == (int)IDTVEC(syscall) + 1) {
690 			/*
691 			 * The syscall handler has now saved the
692 			 * flags.  Stop single stepping it.
693 			 */
694 			frame->tf_eflags &= ~PSL_T;
695 			goto out2;
696 		}
697 #endif
698 #if 0
699 		/*
700 		 * Ignore debug register trace traps due to
701 		 * accesses in the user's address space, which
702 		 * can happen under several conditions such as
703 		 * if a user sets a watchpoint on a buffer and
704 		 * then passes that buffer to a system call.
705 		 * We still want to get TRCTRAPS for addresses
706 		 * in kernel space because that is useful when
707 		 * debugging the kernel.
708 		 */
709 		if (user_dbreg_trap()) {
710 			/*
711 			 * Reset breakpoint bits because the
712 			 * processor doesn't
713 			 */
714 			load_dr6(rdr6() & 0xfffffff0);
715 			goto out2;
716 		}
717 #endif
718 		/*
719 		 * Fall through (TRCTRAP kernel mode, kernel address)
720 		 */
721 	case T_BPTFLT:
722 		/*
723 		 * If DDB is enabled, let it handle the debugger trap.
724 		 * Otherwise, debugger traps "can't happen".
725 		 */
726 #ifdef DDB
727 		if (kdb_trap (type, 0, frame))
728 			goto out2;
729 #endif
730 		break;
731 	case T_DIVIDE:
732 		trap_fatal(frame, FALSE, eva);
733 		goto out2;
734 	case T_NMI:
735 		trap_fatal(frame, FALSE, eva);
736 		goto out2;
737 	case T_SYSCALL80:
738 	case T_FAST_SYSCALL:
739 		/*
740 		 * Ignore this trap generated from a spurious SIGTRAP.
741 		 *
742 		 * single stepping in / syscalls leads to spurious / SIGTRAP
743 		 * so ignore
744 		 *
745 		 * Haiku (c) 2007 Simon 'corecode' Schubert
746 		 */
747 		goto out2;
748 	}
749 
750 	/*
751 	 * Translate fault for emulators (e.g. Linux)
752 	 */
753 	if (*p->p_sysent->sv_transtrap)
754 		i = (*p->p_sysent->sv_transtrap)(i, type);
755 
756 	gd->gd_cnt.v_trap++;
757 	trapsignal(lp, i, ucode);
758 
759 #ifdef DEBUG
760 	if (type <= MAX_TRAP_MSG) {
761 		uprintf("fatal process exception: %s",
762 			trap_msg[type]);
763 		if ((type == T_PAGEFLT) || (type == T_PROTFLT))
764 			uprintf(", fault VA = 0x%lx", (u_long)eva);
765 		uprintf("\n");
766 	}
767 #endif
768 
769 out2:
770 	;
771 #ifdef INVARIANTS
772 	KASSERT(crit_count == td->td_critcount,
773 		("trap: critical section count mismatch! %d/%d",
774 		crit_count, td->td_pri));
775 	KASSERT(curstop == td->td_toks_stop,
776 		("trap: extra tokens held after trap! %ld/%ld",
777 		curstop - &td->td_toks_base,
778 		td->td_toks_stop - &td->td_toks_base));
779 #endif
780 }
781 
782 int
783 trap_pfault(struct trapframe *frame, int usermode, vm_offset_t eva)
784 {
785 	vm_offset_t va;
786 	struct vmspace *vm = NULL;
787 	vm_map_t map = 0;
788 	int rv = 0;
789 	vm_prot_t ftype;
790 	thread_t td = curthread;
791 	struct lwp *lp = td->td_lwp;
792 	int fault_flags;
793 
794 	va = trunc_page(eva);
795 	if (usermode == FALSE) {
796 		/*
797 		 * This is a fault on kernel virtual memory.
798 		 */
799 		map = kernel_map;
800 	} else {
801 		/*
802 		 * This is a fault on non-kernel virtual memory.
803 		 * vm is initialized above to NULL. If curproc is NULL
804 		 * or curproc->p_vmspace is NULL the fault is fatal.
805 		 */
806 		if (lp != NULL)
807 			vm = lp->lwp_vmspace;
808 
809 		if (vm == NULL)
810 			goto nogo;
811 
812 		map = &vm->vm_map;
813 	}
814 
815 	if (frame->tf_err & PGEX_W)
816 		ftype = VM_PROT_READ | VM_PROT_WRITE;
817 	else if (frame->tf_err & PGEX_I)
818 		ftype = VM_PROT_EXECUTE;
819 	else
820 		ftype = VM_PROT_READ;
821 
822 	if (map != kernel_map) {
823 		/*
824 		 * Keep swapout from messing with us during this
825 		 *	critical time.
826 		 */
827 		PHOLD(lp->lwp_proc);
828 
829 #if 0
830 		/*
831 		 * Grow the stack if necessary
832 		 */
833 		/* grow_stack returns false only if va falls into
834 		 * a growable stack region and the stack growth
835 		 * fails.  It returns true if va was not within
836 		 * a growable stack region, or if the stack
837 		 * growth succeeded.
838 		 */
839 		if (!grow_stack (map, va)) {
840 			rv = KERN_FAILURE;
841 			PRELE(lp->lwp_proc);
842 			goto nogo;
843 		}
844 #endif
845 
846 		fault_flags = 0;
847 		if (usermode)
848 			fault_flags |= VM_FAULT_BURST | VM_FAULT_USERMODE;
849 		if (ftype & VM_PROT_WRITE)
850 			fault_flags |= VM_FAULT_DIRTY;
851 		else
852 			fault_flags |= VM_FAULT_NORMAL;
853 		rv = vm_fault(map, va, ftype, fault_flags);
854 
855 		PRELE(lp->lwp_proc);
856 	} else {
857 		/*
858 		 * Don't have to worry about process locking or stacks in the kernel.
859 		 */
860 		rv = vm_fault(map, va, ftype, VM_FAULT_NORMAL);
861 	}
862 
863 	if (rv == KERN_SUCCESS)
864 		return (0);
865 nogo:
866 	if (!usermode) {
867 		if (td->td_gd->gd_intr_nesting_level == 0 &&
868 		    td->td_pcb->pcb_onfault) {
869 			frame->tf_rip = (register_t)td->td_pcb->pcb_onfault;
870 			return (0);
871 		}
872 		trap_fatal(frame, usermode, eva);
873 		return (-1);
874 	}
875 
876 	/*
877 	 * NOTE: on x86_64 we have a tf_addr field in the trapframe, no
878 	 * kludge is needed to pass the fault address to signal handlers.
879 	 */
880 	struct proc *p = td->td_proc;
881 	krateprintf(&segfltrate,
882 		    "seg-fault accessing address %p "
883 		    "rip=%p pid=%d p_comm=%s\n",
884 		    (void *)va,
885 		    (void *)frame->tf_rip, p->p_pid, p->p_comm);
886 	/* Debugger("seg-fault"); */
887 
888 	return((rv == KERN_PROTECTION_FAILURE) ? SIGBUS : SIGSEGV);
889 }
890 
891 static void
892 trap_fatal(struct trapframe *frame, int usermode, vm_offset_t eva)
893 {
894 	int code, type, ss;
895 	long rsp;
896 
897 	code = frame->tf_xflags;
898 	type = frame->tf_trapno;
899 
900 	if (type <= MAX_TRAP_MSG) {
901 		kprintf("\n\nFatal trap %d: %s while in %s mode\n",
902 			type, trap_msg[type],
903 			(usermode ? "user" : "kernel"));
904 	}
905 	/* two separate prints in case of a trap on an unmapped page */
906 	kprintf("cpuid = %d\n", mycpu->gd_cpuid);
907 	if (type == T_PAGEFLT) {
908 		kprintf("fault virtual address	= %p\n", (void *)eva);
909 		kprintf("fault code		= %s %s, %s\n",
910 			usermode ? "user" : "supervisor",
911 			code & PGEX_W ? "write" : "read",
912 			code & PGEX_P ? "protection violation" : "page not present");
913 	}
914 	kprintf("instruction pointer	= 0x%lx:0x%lx\n",
915 	       frame->tf_cs & 0xffff, frame->tf_rip);
916 	if (usermode) {
917 		ss = frame->tf_ss & 0xffff;
918 		rsp = frame->tf_rsp;
919 	} else {
920 		ss = GSEL(GDATA_SEL, SEL_KPL);
921 		rsp = (long)&frame->tf_rsp;
922 	}
923 	kprintf("stack pointer	        = 0x%x:0x%lx\n", ss, rsp);
924 	kprintf("frame pointer	        = 0x%x:0x%lx\n", ss, frame->tf_rbp);
925 	kprintf("processor eflags	= ");
926 	if (frame->tf_rflags & PSL_T)
927 		kprintf("trace trap, ");
928 	if (frame->tf_rflags & PSL_I)
929 		kprintf("interrupt enabled, ");
930 	if (frame->tf_rflags & PSL_NT)
931 		kprintf("nested task, ");
932 	if (frame->tf_rflags & PSL_RF)
933 		kprintf("resume, ");
934 #if 0
935 	if (frame->tf_eflags & PSL_VM)
936 		kprintf("vm86, ");
937 #endif
938 	kprintf("IOPL = %jd\n", (intmax_t)((frame->tf_rflags & PSL_IOPL) >> 12));
939 	kprintf("current process		= ");
940 	if (curproc) {
941 		kprintf("%lu (%s)\n",
942 		    (u_long)curproc->p_pid, curproc->p_comm ?
943 		    curproc->p_comm : "");
944 	} else {
945 		kprintf("Idle\n");
946 	}
947 	kprintf("current thread          = pri %d ", curthread->td_pri);
948 	if (curthread->td_critcount)
949 		kprintf("(CRIT)");
950 	kprintf("\n");
951 /**
952  *  XXX FIXME:
953  *	we probably SHOULD have stopped the other CPUs before now!
954  *	another CPU COULD have been touching cpl at this moment...
955  */
956 	kprintf(" <- SMP: XXX");
957 	kprintf("\n");
958 
959 #ifdef KDB
960 	if (kdb_trap(&psl))
961 		return;
962 #endif
963 #ifdef DDB
964 	if ((debugger_on_panic || db_active) && kdb_trap(type, code, frame))
965 		return;
966 #endif
967 	kprintf("trap number		= %d\n", type);
968 	if (type <= MAX_TRAP_MSG)
969 		panic("%s", trap_msg[type]);
970 	else
971 		panic("unknown/reserved trap");
972 }
973 
974 /*
975  * Double fault handler. Called when a fault occurs while writing
976  * a frame for a trap/exception onto the stack. This usually occurs
977  * when the stack overflows (such is the case with infinite recursion,
978  * for example).
979  *
980  * XXX Note that the current PTD gets replaced by IdlePTD when the
981  * task switch occurs. This means that the stack that was active at
982  * the time of the double fault is not available at <kstack> unless
983  * the machine was idle when the double fault occurred. The downside
984  * of this is that "trace <ebp>" in ddb won't work.
985  */
986 void
987 dblfault_handler(void)
988 {
989 #if 0 /* JG */
990 	struct mdglobaldata *gd = mdcpu;
991 #endif
992 
993 	kprintf("\nFatal double fault:\n");
994 #if 0 /* JG */
995 	kprintf("rip = 0x%lx\n", gd->gd_common_tss.tss_rip);
996 	kprintf("rsp = 0x%lx\n", gd->gd_common_tss.tss_rsp);
997 	kprintf("rbp = 0x%lx\n", gd->gd_common_tss.tss_rbp);
998 #endif
999 	/* two separate prints in case of a trap on an unmapped page */
1000 	kprintf("cpuid = %d\n", mycpu->gd_cpuid);
1001 	panic("double fault");
1002 }
1003 
1004 /*
1005  * syscall2 -	MP aware system call request C handler
1006  *
1007  * A system call is essentially treated as a trap except that the
1008  * MP lock is not held on entry or return.  We are responsible for
1009  * obtaining the MP lock if necessary and for handling ASTs
1010  * (e.g. a task switch) prior to return.
1011  */
1012 void
1013 syscall2(struct trapframe *frame)
1014 {
1015 	struct thread *td = curthread;
1016 	struct proc *p = td->td_proc;
1017 	struct lwp *lp = td->td_lwp;
1018 	struct sysent *callp;
1019 	register_t orig_tf_rflags;
1020 	int sticks;
1021 	int error;
1022 	int narg;
1023 #ifdef INVARIANTS
1024 	int crit_count = td->td_critcount;
1025 	lwkt_tokref_t curstop = td->td_toks_stop;
1026 #endif
1027 	struct sysmsg sysmsg;
1028 	union sysunion *argp;
1029 	u_int code;
1030 	const int regcnt = 6;
1031 
1032 	mycpu->gd_cnt.v_syscall++;
1033 
1034 	KTR_LOG(kernentry_syscall, lp->lwp_proc->p_pid, lp->lwp_tid,
1035 		frame->tf_rax);
1036 
1037 	userenter(td, p);	/* lazy raise our priority */
1038 
1039 	/*
1040 	 * Misc
1041 	 */
1042 	sticks = (int)td->td_sticks;
1043 	orig_tf_rflags = frame->tf_rflags;
1044 
1045 	/*
1046 	 * Virtual kernel intercept - if a VM context managed by a virtual
1047 	 * kernel issues a system call the virtual kernel handles it, not us.
1048 	 * Restore the virtual kernel context and return from its system
1049 	 * call.  The current frame is copied out to the virtual kernel.
1050 	 */
1051 	if (__predict_false(lp->lwp_vkernel && lp->lwp_vkernel->ve)) {
1052 		vkernel_trap(lp, frame);
1053 		error = EJUSTRETURN;
1054 		callp = NULL;
1055 		code = 0;
1056 		goto out;
1057 	}
1058 
1059 	/*
1060 	 * Get the system call parameters and account for time
1061 	 */
1062 	lp->lwp_md.md_regs = frame;
1063 	code = frame->tf_rax;
1064 
1065 	if (code >= p->p_sysent->sv_size)
1066 		code = SYS___nosys;
1067 	argp = (union sysunion *)&frame->tf_rdi;
1068 	callp = &p->p_sysent->sv_table[code];
1069 
1070 	/*
1071 	 * On x86_64 we get up to six arguments in registers. The rest are
1072 	 * on the stack. The first six members of 'struct trapframe' happen
1073 	 * to be the registers used to pass arguments, in exactly the right
1074 	 * order.
1075 	 *
1076 	 * Any arguments beyond available argument-passing registers must
1077 	 * be copyin()'d from the user stack.
1078 	 */
1079 	narg = callp->sy_narg;
1080 	if (__predict_false(narg > regcnt)) {
1081 		register_t *argsdst;
1082 		caddr_t params;
1083 
1084 		argsdst = (register_t *)&sysmsg.extargs;
1085 		bcopy(argp, argsdst, sizeof(register_t) * regcnt);
1086 		params = (caddr_t)frame->tf_rsp + sizeof(register_t);
1087 
1088 		KASSERT(params != NULL, ("copyin args with no params!"));
1089 		error = copyin(params, &argsdst[regcnt],
1090 			       (narg - regcnt) * sizeof(register_t));
1091 		argp = (void *)argsdst;
1092 		if (error) {
1093 #ifdef KTRACE
1094 			if (KTRPOINT(td, KTR_SYSCALL)) {
1095 				ktrsyscall(lp, code, narg, argp);
1096 			}
1097 #endif
1098 			goto bad;
1099 		}
1100 	}
1101 
1102 #ifdef KTRACE
1103 	if (KTRPOINT(td, KTR_SYSCALL)) {
1104 		ktrsyscall(lp, code, narg, argp);
1105 	}
1106 #endif
1107 
1108 	/*
1109 	 * Default return value is 0 (will be copied to %rax).  Double-value
1110 	 * returns use %rax and %rdx.  %rdx is left unchanged for system
1111 	 * calls which return only one result.
1112 	 */
1113 	sysmsg.sysmsg_fds[0] = 0;
1114 	sysmsg.sysmsg_fds[1] = frame->tf_rdx;
1115 
1116 	/*
1117 	 * The syscall might manipulate the trap frame. If it does it
1118 	 * will probably return EJUSTRETURN.
1119 	 */
1120 	sysmsg.sysmsg_frame = frame;
1121 
1122 	STOPEVENT(p, S_SCE, narg);	/* MP aware */
1123 
1124 	/*
1125 	 * NOTE: All system calls run MPSAFE now.  The system call itself
1126 	 *	 is responsible for getting the MP lock.
1127 	 */
1128 	error = (*callp->sy_call)(&sysmsg, argp);
1129 
1130 #if 0
1131 	kprintf("system call %d returned %d\n", code, error);
1132 #endif
1133 
1134 out:
1135 	/*
1136 	 * MP SAFE (we may or may not have the MP lock at this point)
1137 	 */
1138 	switch (error) {
1139 	case 0:
1140 		/*
1141 		 * Reinitialize proc pointer `p' as it may be different
1142 		 * if this is a child returning from fork syscall.
1143 		 */
1144 		p = curproc;
1145 		lp = curthread->td_lwp;
1146 		frame->tf_rax = sysmsg.sysmsg_fds[0];
1147 		frame->tf_rdx = sysmsg.sysmsg_fds[1];
1148 		frame->tf_rflags &= ~PSL_C;
1149 		break;
1150 	case ERESTART:
1151 		/*
1152 		 * Reconstruct pc, we know that 'syscall' is 2 bytes.
1153 		 * We have to do a full context restore so that %r10
1154 		 * (which was holding the value of %rcx) is restored for
1155 		 * the next iteration.
1156 		 */
1157 		frame->tf_rip -= frame->tf_err;
1158 		frame->tf_r10 = frame->tf_rcx;
1159 		break;
1160 	case EJUSTRETURN:
1161 		break;
1162 	case EASYNC:
1163 		panic("Unexpected EASYNC return value (for now)");
1164 	default:
1165 bad:
1166 		if (p->p_sysent->sv_errsize) {
1167 			if (error >= p->p_sysent->sv_errsize)
1168 				error = -1;	/* XXX */
1169 			else
1170 				error = p->p_sysent->sv_errtbl[error];
1171 		}
1172 		frame->tf_rax = error;
1173 		frame->tf_rflags |= PSL_C;
1174 		break;
1175 	}
1176 
1177 	/*
1178 	 * Traced syscall.  trapsignal() is not MP aware.
1179 	 */
1180 	if (orig_tf_rflags & PSL_T) {
1181 		frame->tf_rflags &= ~PSL_T;
1182 		trapsignal(lp, SIGTRAP, 0);
1183 	}
1184 
1185 	/*
1186 	 * Handle reschedule and other end-of-syscall issues
1187 	 */
1188 	userret(lp, frame, sticks);
1189 
1190 #ifdef KTRACE
1191 	if (KTRPOINT(td, KTR_SYSRET)) {
1192 		ktrsysret(lp, code, error, sysmsg.sysmsg_result);
1193 	}
1194 #endif
1195 
1196 	/*
1197 	 * This works because errno is findable through the
1198 	 * register set.  If we ever support an emulation where this
1199 	 * is not the case, this code will need to be revisited.
1200 	 */
1201 	STOPEVENT(p, S_SCX, code);
1202 
1203 	userexit(lp);
1204 	KTR_LOG(kernentry_syscall_ret, lp->lwp_proc->p_pid, lp->lwp_tid, error);
1205 #ifdef INVARIANTS
1206 	KASSERT(&td->td_toks_base == td->td_toks_stop,
1207 		("syscall: critical section count mismatch! %d/%d",
1208 		crit_count, td->td_pri));
1209 	KASSERT(curstop == td->td_toks_stop,
1210 		("syscall: extra tokens held after trap! %ld",
1211 		td->td_toks_stop - &td->td_toks_base));
1212 #endif
1213 }
1214 
1215 /*
1216  * Handles the syscall() and __syscall() API
1217  */
1218 void xsyscall(struct sysmsg *sysmsg, struct nosys_args *uap);
1219 
1220 int
1221 sys_xsyscall(struct sysmsg *sysmsg, const struct nosys_args *uap)
1222 {
1223 	struct trapframe *frame;
1224 	struct sysent *callp;
1225 	union sysunion *argp;
1226 	struct thread *td;
1227 	const int regcnt = 5;	/* number of args passed in registers */
1228 	u_int code;
1229 	int error;
1230 	int narg;
1231 
1232 	td = curthread;
1233 	frame = sysmsg->sysmsg_frame;
1234 	code = (u_int)frame->tf_rdi;
1235 	if (code >= td->td_proc->p_sysent->sv_size)
1236 		code = SYS___nosys;
1237 	argp = (union sysunion *)(&frame->tf_rdi + 1);
1238 	callp = &td->td_proc->p_sysent->sv_table[code];
1239 	narg = callp->sy_narg;
1240 
1241 	/*
1242 	 * On x86_64 we get up to six arguments in registers.  The rest are
1243 	 * on the stack.  However, for syscall() and __syscall() the syscall
1244 	 * number is inserted as the first argument, so the limit is reduced
1245 	 * by one to five.
1246 	 */
1247 	if (__predict_false(narg > regcnt)) {
1248 		register_t *argsdst;
1249 		caddr_t params;
1250 
1251 		argsdst = (register_t *)&sysmsg->extargs;
1252 		bcopy(argp, argsdst, sizeof(register_t) * regcnt);
1253 		params = (caddr_t)frame->tf_rsp + sizeof(register_t);
1254 		error = copyin(params, &argsdst[regcnt],
1255 			       (narg - regcnt) * sizeof(register_t));
1256 		argp = (void *)argsdst;
1257 		if (error)
1258 			return error;
1259 	}
1260 
1261 #ifdef KTRACE
1262 	if (KTRPOINTP(td->td_proc, td, KTR_SYSCALL)) {
1263 		ktrsyscall(td->td_lwp, code, narg, argp);
1264 	}
1265 #endif
1266 
1267 	error = (*callp->sy_call)(sysmsg, argp);
1268 
1269 #ifdef KTRACE
1270 	if (KTRPOINTP(td->td_proc, td, KTR_SYSRET)) {
1271 		ktrsysret(td->td_lwp, code, error, sysmsg->sysmsg_result);
1272 	}
1273 #endif
1274 
1275 	return error;
1276 }
1277 
1278 /*
1279  * NOTE: mplock not held at any point
1280  */
1281 void
1282 fork_return(struct lwp *lp, struct trapframe *frame)
1283 {
1284 	frame->tf_rax = 0;		/* Child returns zero */
1285 	frame->tf_rflags &= ~PSL_C;	/* success */
1286 	frame->tf_rdx = 1;
1287 
1288 	generic_lwp_return(lp, frame);
1289 	KTR_LOG(kernentry_fork_ret, lp->lwp_proc->p_pid, lp->lwp_tid);
1290 }
1291 
1292 /*
1293  * Simplified back end of syscall(), used when returning from fork()
1294  * directly into user mode.
1295  *
1296  * This code will return back into the fork trampoline code which then
1297  * runs doreti.
1298  *
1299  * NOTE: The mplock is not held at any point.
1300  */
1301 void
1302 generic_lwp_return(struct lwp *lp, struct trapframe *frame)
1303 {
1304 	struct proc *p = lp->lwp_proc;
1305 
1306 	/*
1307 	 * Check for exit-race.  If one lwp exits the process concurrent with
1308 	 * another lwp creating a new thread, the two operations may cross
1309 	 * each other resulting in the newly-created lwp not receiving a
1310 	 * KILL signal.
1311 	 */
1312 	if (p->p_flags & P_WEXIT) {
1313 		lwpsignal(p, lp, SIGKILL);
1314 	}
1315 
1316 	/*
1317 	 * Newly forked processes are given a kernel priority.  We have to
1318 	 * adjust the priority to a normal user priority and fake entry
1319 	 * into the kernel (call userenter()) to install a passive release
1320 	 * function just in case userret() decides to stop the process.  This
1321 	 * can occur when ^Z races a fork.  If we do not install the passive
1322 	 * release function the current process designation will not be
1323 	 * released when the thread goes to sleep.
1324 	 */
1325 	lwkt_setpri_self(TDPRI_USER_NORM);
1326 	userenter(lp->lwp_thread, p);
1327 	userret(lp, frame, 0);
1328 #ifdef KTRACE
1329 	if (KTRPOINT(lp->lwp_thread, KTR_SYSRET))
1330 		ktrsysret(lp, SYS_fork, 0, 0);
1331 #endif
1332 	lp->lwp_flags |= LWP_PASSIVE_ACQ;
1333 	userexit(lp);
1334 	lp->lwp_flags &= ~LWP_PASSIVE_ACQ;
1335 }
1336 
1337 /*
1338  * doreti has turned into this.  The frame is directly on the stack.  We
1339  * pull everything else we need (fpu and tls context) from the current
1340  * thread.
1341  *
1342  * Note on fpu interactions: In a virtual kernel, the fpu context for
1343  * an emulated user mode process is not shared with the virtual kernel's
1344  * fpu context, so we only have to 'stack' fpu contexts within the virtual
1345  * kernel itself, and not even then since the signal() contexts that we care
1346  * about save and restore the FPU state (I think anyhow).
1347  *
1348  * vmspace_ctl() returns an error only if it had problems instaling the
1349  * context we supplied or problems copying data to/from our VM space.
1350  */
1351 void
1352 go_user(struct intrframe *frame)
1353 {
1354 	struct trapframe *tf = (void *)&frame->if_rdi;
1355 	globaldata_t gd;
1356 	int r;
1357 	void *id;
1358 
1359 	/*
1360 	 * Interrupts may be disabled on entry, make sure all signals
1361 	 * can be received before beginning our loop.
1362 	 */
1363 	sigsetmask(0);
1364 
1365 	/*
1366 	 * Switch to the current simulated user process, then call
1367 	 * user_trap() when we break out of it (usually due to a signal).
1368 	 */
1369 	for (;;) {
1370 #if 1
1371 		/*
1372 		 * Always make the FPU state correct.  This should generally
1373 		 * be faster because the cost of taking a #NM fault through
1374 		 * the vkernel to the real kernel is astronomical.
1375 		 */
1376 		crit_enter();
1377 		tf->tf_xflags &= ~PGEX_FPFAULT;
1378 		if (mdcpu->gd_npxthread != curthread) {
1379 			if (mdcpu->gd_npxthread)
1380 				npxsave(mdcpu->gd_npxthread->td_savefpu);
1381 			npxdna(tf);
1382 		}
1383 #else
1384 		/*
1385 		 * Tell the real kernel whether it is ok to use the FP
1386 		 * unit or not, allowing us to take a T_DNA exception
1387 		 * if the context tries to use the FP.
1388 		 */
1389 		if (mdcpu->gd_npxthread == curthread) {
1390 			tf->tf_xflags &= ~PGEX_FPFAULT;
1391 		} else {
1392 			tf->tf_xflags |= PGEX_FPFAULT;
1393 		}
1394 #endif
1395 
1396 		/*
1397 		 * Run emulated user process context.  This call interlocks
1398 		 * with new mailbox signals.
1399 		 *
1400 		 * Set PGEX_U unconditionally, indicating a user frame (the
1401 		 * bit is normally set only by T_PAGEFLT).
1402 		 */
1403 		id = &curproc->p_vmspace->vm_pmap;
1404 
1405 		/*
1406 		 * The GDF_VIRTUSER hack helps statclock() figure out who
1407 		 * the tick belongs to.
1408 		 */
1409 		gd = mycpu;
1410 		gd->gd_flags |= GDF_VIRTUSER;
1411 		r = vmspace_ctl(id, VMSPACE_CTL_RUN, tf,
1412 				&curthread->td_savevext);
1413 
1414 		frame->if_xflags |= PGEX_U;
1415 
1416 		/*
1417 		 * Immediately save the user FPU state.  The vkernel is a
1418 		 * user program and libraries like libc will use the FP
1419 		 * unit.
1420 		 */
1421 		if (mdcpu->gd_npxthread == curthread) {
1422 			npxsave(mdcpu->gd_npxthread->td_savefpu);
1423 		}
1424 		crit_exit();
1425 		gd->gd_flags &= ~GDF_VIRTUSER;
1426 #if 0
1427 		kprintf("GO USER %d trap %ld EVA %08lx RIP %08lx RSP %08lx XFLAGS %02lx/%02lx\n",
1428 			r, tf->tf_trapno, tf->tf_addr, tf->tf_rip, tf->tf_rsp,
1429 			tf->tf_xflags, frame->if_xflags);
1430 #endif
1431 		if (r < 0) {
1432 			if (errno != EINTR)
1433 				panic("vmspace_ctl failed error %d", errno);
1434 		} else {
1435 			if (tf->tf_trapno) {
1436 				user_trap(tf);
1437 			}
1438 		}
1439 		if (mycpu->gd_reqflags & RQF_AST_MASK) {
1440 			tf->tf_trapno = T_ASTFLT;
1441 			user_trap(tf);
1442 		}
1443 		tf->tf_trapno = 0;
1444 	}
1445 }
1446 
1447 /*
1448  * If PGEX_FPFAULT is set then set FP_VIRTFP in the PCB to force a T_DNA
1449  * fault (which is then passed back to the virtual kernel) if an attempt is
1450  * made to use the FP unit.
1451  *
1452  * XXX this is a fairly big hack.
1453  */
1454 void
1455 set_vkernel_fp(struct trapframe *frame)
1456 {
1457 	struct thread *td = curthread;
1458 
1459 	if (frame->tf_xflags & PGEX_FPFAULT) {
1460 		td->td_pcb->pcb_flags |= FP_VIRTFP;
1461 		if (mdcpu->gd_npxthread == td)
1462 			npxexit();
1463 	} else {
1464 		td->td_pcb->pcb_flags &= ~FP_VIRTFP;
1465 	}
1466 }
1467 
1468 /*
1469  * Called from vkernel_trap() to fixup the vkernel's syscall
1470  * frame for vmspace_ctl() return.
1471  */
1472 void
1473 cpu_vkernel_trap(struct trapframe *frame, int error)
1474 {
1475 	frame->tf_rax = error;
1476 	if (error)
1477 		frame->tf_rflags |= PSL_C;
1478 	else
1479 		frame->tf_rflags &= ~PSL_C;
1480 }
1481