xref: /dragonfly/sys/platform/vkernel64/x86_64/trap.c (revision 92fc8b5c)
1 /*-
2  * Copyright (C) 1994, David Greenman
3  * Copyright (c) 1990, 1993
4  *	The Regents of the University of California.  All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * the University of Utah, and William Jolitz.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed by the University of
20  *	California, Berkeley and its contributors.
21  * 4. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *	from: @(#)trap.c	7.4 (Berkeley) 5/13/91
38  * $FreeBSD: src/sys/i386/i386/trap.c,v 1.147.2.11 2003/02/27 19:09:59 luoqi Exp $
39  */
40 
41 /*
42  * x86_64 Trap and System call handling
43  */
44 
45 #include "use_isa.h"
46 
47 #include "opt_ddb.h"
48 #include "opt_ktrace.h"
49 
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/proc.h>
53 #include <sys/pioctl.h>
54 #include <sys/kernel.h>
55 #include <sys/resourcevar.h>
56 #include <sys/signalvar.h>
57 #include <sys/signal2.h>
58 #include <sys/syscall.h>
59 #include <sys/sysctl.h>
60 #include <sys/sysent.h>
61 #include <sys/uio.h>
62 #include <sys/vmmeter.h>
63 #include <sys/malloc.h>
64 #ifdef KTRACE
65 #include <sys/ktrace.h>
66 #endif
67 #include <sys/ktr.h>
68 #include <sys/upcall.h>
69 #include <sys/vkernel.h>
70 #include <sys/sysproto.h>
71 #include <sys/sysunion.h>
72 #include <sys/vmspace.h>
73 
74 #include <vm/vm.h>
75 #include <vm/vm_param.h>
76 #include <sys/lock.h>
77 #include <vm/pmap.h>
78 #include <vm/vm_kern.h>
79 #include <vm/vm_map.h>
80 #include <vm/vm_page.h>
81 #include <vm/vm_extern.h>
82 
83 #include <machine/cpu.h>
84 #include <machine/md_var.h>
85 #include <machine/pcb.h>
86 #include <machine/smp.h>
87 #include <machine/tss.h>
88 #include <machine/globaldata.h>
89 
90 #include <ddb/ddb.h>
91 
92 #include <sys/msgport2.h>
93 #include <sys/thread2.h>
94 #include <sys/mplock2.h>
95 
96 #ifdef SMP
97 
98 #define MAKEMPSAFE(have_mplock)			\
99 	if (have_mplock == 0) {			\
100 		get_mplock();			\
101 		have_mplock = 1;		\
102 	}
103 
104 #else
105 
106 #define MAKEMPSAFE(have_mplock)
107 
108 #endif
109 
110 int (*pmath_emulate) (struct trapframe *);
111 
112 extern int trapwrite (unsigned addr);
113 
114 static int trap_pfault (struct trapframe *, int, vm_offset_t);
115 static void trap_fatal (struct trapframe *, int, vm_offset_t);
116 void dblfault_handler (void);
117 
118 #if 0
119 extern inthand_t IDTVEC(syscall);
120 #endif
121 
122 #define MAX_TRAP_MSG		30
123 static char *trap_msg[] = {
124 	"",					/*  0 unused */
125 	"privileged instruction fault",		/*  1 T_PRIVINFLT */
126 	"",					/*  2 unused */
127 	"breakpoint instruction fault",		/*  3 T_BPTFLT */
128 	"",					/*  4 unused */
129 	"",					/*  5 unused */
130 	"arithmetic trap",			/*  6 T_ARITHTRAP */
131 	"system forced exception",		/*  7 T_ASTFLT */
132 	"",					/*  8 unused */
133 	"general protection fault",		/*  9 T_PROTFLT */
134 	"trace trap",				/* 10 T_TRCTRAP */
135 	"",					/* 11 unused */
136 	"page fault",				/* 12 T_PAGEFLT */
137 	"",					/* 13 unused */
138 	"alignment fault",			/* 14 T_ALIGNFLT */
139 	"",					/* 15 unused */
140 	"",					/* 16 unused */
141 	"",					/* 17 unused */
142 	"integer divide fault",			/* 18 T_DIVIDE */
143 	"non-maskable interrupt trap",		/* 19 T_NMI */
144 	"overflow trap",			/* 20 T_OFLOW */
145 	"FPU bounds check fault",		/* 21 T_BOUND */
146 	"FPU device not available",		/* 22 T_DNA */
147 	"double fault",				/* 23 T_DOUBLEFLT */
148 	"FPU operand fetch fault",		/* 24 T_FPOPFLT */
149 	"invalid TSS fault",			/* 25 T_TSSFLT */
150 	"segment not present fault",		/* 26 T_SEGNPFLT */
151 	"stack fault",				/* 27 T_STKFLT */
152 	"machine check trap",			/* 28 T_MCHK */
153 	"SIMD floating-point exception",	/* 29 T_XMMFLT */
154 	"reserved (unknown) fault",		/* 30 T_RESERVED */
155 };
156 
157 #ifdef DDB
158 static int ddb_on_nmi = 1;
159 SYSCTL_INT(_machdep, OID_AUTO, ddb_on_nmi, CTLFLAG_RW,
160 	&ddb_on_nmi, 0, "Go to DDB on NMI");
161 #endif
162 static int panic_on_nmi = 1;
163 SYSCTL_INT(_machdep, OID_AUTO, panic_on_nmi, CTLFLAG_RW,
164 	&panic_on_nmi, 0, "Panic on NMI");
165 static int fast_release;
166 SYSCTL_INT(_machdep, OID_AUTO, fast_release, CTLFLAG_RW,
167 	&fast_release, 0, "Passive Release was optimal");
168 static int slow_release;
169 SYSCTL_INT(_machdep, OID_AUTO, slow_release, CTLFLAG_RW,
170 	&slow_release, 0, "Passive Release was nonoptimal");
171 
172 MALLOC_DEFINE(M_SYSMSG, "sysmsg", "sysmsg structure");
173 extern int max_sysmsg;
174 
175 /*
176  * Passively intercepts the thread switch function to increase the thread
177  * priority from a user priority to a kernel priority, reducing
178  * syscall and trap overhead for the case where no switch occurs.
179  *
180  * Synchronizes td_ucred with p_ucred.  This is used by system calls,
181  * signal handling, faults, AST traps, and anything else that enters the
182  * kernel from userland and provides the kernel with a stable read-only
183  * copy of the process ucred.
184  */
185 static __inline void
186 userenter(struct thread *curtd, struct proc *curp)
187 {
188 	struct ucred *ocred;
189 	struct ucred *ncred;
190 
191 	curtd->td_release = lwkt_passive_release;
192 
193 	if (curtd->td_ucred != curp->p_ucred) {
194 		ncred = crhold(curp->p_ucred);
195 		ocred = curtd->td_ucred;
196 		curtd->td_ucred = ncred;
197 		if (ocred)
198 			crfree(ocred);
199 	}
200 }
201 
202 /*
203  * Handle signals, upcalls, profiling, and other AST's and/or tasks that
204  * must be completed before we can return to or try to return to userland.
205  *
206  * Note that td_sticks is a 64 bit quantity, but there's no point doing 64
207  * arithmatic on the delta calculation so the absolute tick values are
208  * truncated to an integer.
209  */
210 static void
211 userret(struct lwp *lp, struct trapframe *frame, int sticks)
212 {
213 	struct proc *p = lp->lwp_proc;
214 	int sig;
215 
216 	/*
217 	 * Charge system time if profiling.  Note: times are in microseconds.
218 	 * This may do a copyout and block, so do it first even though it
219 	 * means some system time will be charged as user time.
220 	 */
221 	if (p->p_flag & P_PROFIL) {
222 		addupc_task(p, frame->tf_rip,
223 			(u_int)((int)lp->lwp_thread->td_sticks - sticks));
224 	}
225 
226 recheck:
227 	/*
228 	 * If the jungle wants us dead, so be it.
229 	 */
230 	if (lp->lwp_flag & LWP_WEXIT) {
231 		lwkt_gettoken(&p->p_token);
232 		lwp_exit(0);
233 		lwkt_reltoken(&p->p_token);	/* NOT REACHED */
234 	}
235 
236 	/*
237 	 * Block here if we are in a stopped state.
238 	 */
239 	if (p->p_stat == SSTOP) {
240 		get_mplock();
241 		tstop();
242 		rel_mplock();
243 		goto recheck;
244 	}
245 
246 	/*
247 	 * Post any pending upcalls
248 	 */
249 	if (p->p_flag & P_UPCALLPEND) {
250 		get_mplock();
251 		p->p_flag &= ~P_UPCALLPEND;
252 		postupcall(lp);
253 		rel_mplock();
254 		goto recheck;
255 	}
256 
257 	/*
258 	 * Post any pending signals
259 	 *
260 	 * WARNING!  postsig() can exit and not return.
261 	 */
262 	if ((sig = CURSIG_TRACE(lp)) != 0) {
263 		get_mplock();
264 		postsig(sig);
265 		rel_mplock();
266 		goto recheck;
267 	}
268 
269 	/*
270 	 * block here if we are swapped out, but still process signals
271 	 * (such as SIGKILL).  proc0 (the swapin scheduler) is already
272 	 * aware of our situation, we do not have to wake it up.
273 	 */
274 	if (p->p_flag & P_SWAPPEDOUT) {
275 		get_mplock();
276 		p->p_flag |= P_SWAPWAIT;
277 		swapin_request();
278 		if (p->p_flag & P_SWAPWAIT)
279 			tsleep(p, PCATCH, "SWOUT", 0);
280 		p->p_flag &= ~P_SWAPWAIT;
281 		rel_mplock();
282 		goto recheck;
283 	}
284 
285 	/*
286 	 * Make sure postsig() handled request to restore old signal mask after
287 	 * running signal handler.
288 	 */
289 	KKASSERT((lp->lwp_flag & LWP_OLDMASK) == 0);
290 }
291 
292 /*
293  * Cleanup from userenter and any passive release that might have occured.
294  * We must reclaim the current-process designation before we can return
295  * to usermode.  We also handle both LWKT and USER reschedule requests.
296  */
297 static __inline void
298 userexit(struct lwp *lp)
299 {
300 	struct thread *td = lp->lwp_thread;
301 	/* globaldata_t gd = td->td_gd; */
302 
303 	/*
304 	 * Handle stop requests at kernel priority.  Any requests queued
305 	 * after this loop will generate another AST.
306 	 */
307 	while (lp->lwp_proc->p_stat == SSTOP) {
308 		get_mplock();
309 		tstop();
310 		rel_mplock();
311 	}
312 
313 	/*
314 	 * Reduce our priority in preparation for a return to userland.  If
315 	 * our passive release function was still in place, our priority was
316 	 * never raised and does not need to be reduced.
317 	 */
318 	lwkt_passive_recover(td);
319 
320 	/*
321 	 * Become the current user scheduled process if we aren't already,
322 	 * and deal with reschedule requests and other factors.
323 	 */
324 	lp->lwp_proc->p_usched->acquire_curproc(lp);
325 	/* WARNING: we may have migrated cpu's */
326 	/* gd = td->td_gd; */
327 }
328 
329 #if !defined(KTR_KERNENTRY)
330 #define	KTR_KERNENTRY	KTR_ALL
331 #endif
332 KTR_INFO_MASTER(kernentry);
333 KTR_INFO(KTR_KERNENTRY, kernentry, trap, 0, "pid=%d, tid=%d, trapno=%d, eva=%p",
334 	 sizeof(int) + sizeof(int) + sizeof(int) + sizeof(vm_offset_t));
335 KTR_INFO(KTR_KERNENTRY, kernentry, trap_ret, 0, "pid=%d, tid=%d",
336 	 sizeof(int) + sizeof(int));
337 KTR_INFO(KTR_KERNENTRY, kernentry, syscall, 0, "pid=%d, tid=%d, call=%d",
338 	 sizeof(int) + sizeof(int) + sizeof(int));
339 KTR_INFO(KTR_KERNENTRY, kernentry, syscall_ret, 0, "pid=%d, tid=%d, err=%d",
340 	 sizeof(int) + sizeof(int) + sizeof(int));
341 KTR_INFO(KTR_KERNENTRY, kernentry, fork_ret, 0, "pid=%d, tid=%d",
342 	 sizeof(int) + sizeof(int));
343 
344 /*
345  * Exception, fault, and trap interface to the kernel.
346  * This common code is called from assembly language IDT gate entry
347  * routines that prepare a suitable stack frame, and restore this
348  * frame after the exception has been processed.
349  *
350  * This function is also called from doreti in an interlock to handle ASTs.
351  * For example:  hardwareint->INTROUTINE->(set ast)->doreti->trap
352  *
353  * NOTE!  We have to retrieve the fault address prior to obtaining the
354  * MP lock because get_mplock() may switch out.  YYY cr2 really ought
355  * to be retrieved by the assembly code, not here.
356  *
357  * XXX gd_trap_nesting_level currently prevents lwkt_switch() from panicing
358  * if an attempt is made to switch from a fast interrupt or IPI.  This is
359  * necessary to properly take fatal kernel traps on SMP machines if
360  * get_mplock() has to block.
361  */
362 
363 void
364 user_trap(struct trapframe *frame)
365 {
366 	struct globaldata *gd = mycpu;
367 	struct thread *td = gd->gd_curthread;
368 	struct lwp *lp = td->td_lwp;
369 	struct proc *p;
370 	int sticks = 0;
371 	int i = 0, ucode = 0, type, code;
372 #ifdef SMP
373 	int have_mplock = 0;
374 #endif
375 #ifdef INVARIANTS
376 	int crit_count = td->td_critcount;
377 	lwkt_tokref_t curstop = td->td_toks_stop;
378 #endif
379 	vm_offset_t eva;
380 
381 	p = td->td_proc;
382 
383 	if (frame->tf_trapno == T_PAGEFLT)
384 		eva = frame->tf_addr;
385 	else
386 		eva = 0;
387 #if 0
388 	kprintf("USER_TRAP AT %08lx xflags %ld trapno %ld eva %08lx\n",
389 		frame->tf_rip, frame->tf_xflags, frame->tf_trapno, eva);
390 #endif
391 
392 	/*
393 	 * Everything coming from user mode runs through user_trap,
394 	 * including system calls.
395 	 */
396 	if (frame->tf_trapno == T_FAST_SYSCALL) {
397 		syscall2(frame);
398 		return;
399 	}
400 
401 	KTR_LOG(kernentry_trap, lp->lwp_proc->p_pid, lp->lwp_tid,
402 		frame->tf_trapno, eva);
403 
404 #ifdef DDB
405 	if (db_active) {
406 		eva = (frame->tf_trapno == T_PAGEFLT ? rcr2() : 0);
407 		++gd->gd_trap_nesting_level;
408 		MAKEMPSAFE(have_mplock);
409 		trap_fatal(frame, TRUE, eva);
410 		--gd->gd_trap_nesting_level;
411 		goto out2;
412 	}
413 #endif
414 
415 	type = frame->tf_trapno;
416 	code = frame->tf_err;
417 
418 	userenter(td, p);
419 
420 	sticks = (int)td->td_sticks;
421 	lp->lwp_md.md_regs = frame;
422 
423 	switch (type) {
424 	case T_PRIVINFLT:	/* privileged instruction fault */
425 		ucode = type;
426 		i = SIGILL;
427 		break;
428 
429 	case T_BPTFLT:		/* bpt instruction fault */
430 	case T_TRCTRAP:		/* trace trap */
431 		frame->tf_rflags &= ~PSL_T;
432 		i = SIGTRAP;
433 		break;
434 
435 	case T_ARITHTRAP:	/* arithmetic trap */
436 		ucode = code;
437 		i = SIGFPE;
438 		break;
439 
440 	case T_ASTFLT:		/* Allow process switch */
441 		mycpu->gd_cnt.v_soft++;
442 		if (mycpu->gd_reqflags & RQF_AST_OWEUPC) {
443 			atomic_clear_int(&mycpu->gd_reqflags, RQF_AST_OWEUPC);
444 			addupc_task(p, p->p_prof.pr_addr, p->p_prof.pr_ticks);
445 		}
446 		goto out;
447 
448 		/*
449 		 * The following two traps can happen in
450 		 * vm86 mode, and, if so, we want to handle
451 		 * them specially.
452 		 */
453 	case T_PROTFLT:		/* general protection fault */
454 	case T_STKFLT:		/* stack fault */
455 #if 0
456 		if (frame->tf_eflags & PSL_VM) {
457 			i = vm86_emulate((struct vm86frame *)frame);
458 			if (i == 0)
459 				goto out;
460 			break;
461 		}
462 #endif
463 		/* FALL THROUGH */
464 
465 	case T_SEGNPFLT:	/* segment not present fault */
466 	case T_TSSFLT:		/* invalid TSS fault */
467 	case T_DOUBLEFLT:	/* double fault */
468 	default:
469 		ucode = code + BUS_SEGM_FAULT ;
470 		i = SIGBUS;
471 		break;
472 
473 	case T_PAGEFLT:		/* page fault */
474 		MAKEMPSAFE(have_mplock);
475 		i = trap_pfault(frame, TRUE, eva);
476 		if (i == -1 || i == 0)
477 			goto out;
478 
479 		ucode = T_PAGEFLT;
480 		break;
481 
482 	case T_DIVIDE:		/* integer divide fault */
483 		ucode = FPE_INTDIV;
484 		i = SIGFPE;
485 		break;
486 
487 #if NISA > 0
488 	case T_NMI:
489 		MAKEMPSAFE(have_mplock);
490 		/* machine/parity/power fail/"kitchen sink" faults */
491 		if (isa_nmi(code) == 0) {
492 #ifdef DDB
493 			/*
494 			 * NMI can be hooked up to a pushbutton
495 			 * for debugging.
496 			 */
497 			if (ddb_on_nmi) {
498 				kprintf ("NMI ... going to debugger\n");
499 				kdb_trap (type, 0, frame);
500 			}
501 #endif /* DDB */
502 			goto out2;
503 		} else if (panic_on_nmi)
504 			panic("NMI indicates hardware failure");
505 		break;
506 #endif /* NISA > 0 */
507 
508 	case T_OFLOW:		/* integer overflow fault */
509 		ucode = FPE_INTOVF;
510 		i = SIGFPE;
511 		break;
512 
513 	case T_BOUND:		/* bounds check fault */
514 		ucode = FPE_FLTSUB;
515 		i = SIGFPE;
516 		break;
517 
518 	case T_DNA:
519 		/*
520 		 * Virtual kernel intercept - pass the DNA exception
521 		 * to the (emulated) virtual kernel if it asked to handle
522 		 * it.  This occurs when the virtual kernel is holding
523 		 * onto the FP context for a different emulated
524 		 * process then the one currently running.
525 		 *
526 		 * We must still call npxdna() since we may have
527 		 * saved FP state that the (emulated) virtual kernel
528 		 * needs to hand over to a different emulated process.
529 		 */
530 		if (lp->lwp_vkernel && lp->lwp_vkernel->ve &&
531 		    (td->td_pcb->pcb_flags & FP_VIRTFP)
532 		) {
533 			npxdna(frame);
534 			break;
535 		}
536 		/*
537 		 * The kernel may have switched out the FP unit's
538 		 * state, causing the user process to take a fault
539 		 * when it tries to use the FP unit.  Restore the
540 		 * state here
541 		 */
542 		if (npxdna(frame))
543 			goto out;
544 		if (!pmath_emulate) {
545 			i = SIGFPE;
546 			ucode = FPE_FPU_NP_TRAP;
547 			break;
548 		}
549 		i = (*pmath_emulate)(frame);
550 		if (i == 0) {
551 			if (!(frame->tf_rflags & PSL_T))
552 				goto out2;
553 			frame->tf_rflags &= ~PSL_T;
554 			i = SIGTRAP;
555 		}
556 		/* else ucode = emulator_only_knows() XXX */
557 		break;
558 
559 	case T_FPOPFLT:		/* FPU operand fetch fault */
560 		ucode = T_FPOPFLT;
561 		i = SIGILL;
562 		break;
563 
564 	case T_XMMFLT:		/* SIMD floating-point exception */
565 		ucode = 0; /* XXX */
566 		i = SIGFPE;
567 		break;
568 	}
569 
570 	/*
571 	 * Virtual kernel intercept - if the fault is directly related to a
572 	 * VM context managed by a virtual kernel then let the virtual kernel
573 	 * handle it.
574 	 */
575 	if (lp->lwp_vkernel && lp->lwp_vkernel->ve) {
576 		vkernel_trap(lp, frame);
577 		goto out;
578 	}
579 
580 	/*
581 	 * Translate fault for emulators (e.g. Linux)
582 	 */
583 	if (*p->p_sysent->sv_transtrap)
584 		i = (*p->p_sysent->sv_transtrap)(i, type);
585 
586 	MAKEMPSAFE(have_mplock);
587 	trapsignal(lp, i, ucode);
588 
589 #ifdef DEBUG
590 	if (type <= MAX_TRAP_MSG) {
591 		uprintf("fatal process exception: %s",
592 			trap_msg[type]);
593 		if ((type == T_PAGEFLT) || (type == T_PROTFLT))
594 			uprintf(", fault VA = 0x%lx", (u_long)eva);
595 		uprintf("\n");
596 	}
597 #endif
598 
599 out:
600 	userret(lp, frame, sticks);
601 	userexit(lp);
602 out2:	;
603 #ifdef SMP
604 	if (have_mplock)
605 		rel_mplock();
606 #endif
607 	KTR_LOG(kernentry_trap_ret, lp->lwp_proc->p_pid, lp->lwp_tid);
608 #ifdef INVARIANTS
609 	KASSERT(crit_count == td->td_critcount,
610 		("trap: critical section count mismatch! %d/%d",
611 		crit_count, td->td_pri));
612 	KASSERT(curstop == td->td_toks_stop,
613 		("trap: extra tokens held after trap! %ld/%ld",
614 		curstop - &td->td_toks_base,
615 		td->td_toks_stop - &td->td_toks_base));
616 #endif
617 }
618 
619 void
620 kern_trap(struct trapframe *frame)
621 {
622 	struct globaldata *gd = mycpu;
623 	struct thread *td = gd->gd_curthread;
624 	struct lwp *lp;
625 	struct proc *p;
626 	int i = 0, ucode = 0, type, code;
627 #ifdef SMP
628 	int have_mplock = 0;
629 #endif
630 #ifdef INVARIANTS
631 	int crit_count = td->td_critcount;
632 	lwkt_tokref_t curstop = td->td_toks_stop;
633 #endif
634 	vm_offset_t eva;
635 
636 	lp = td->td_lwp;
637 	p = td->td_proc;
638 
639 	if (frame->tf_trapno == T_PAGEFLT)
640 		eva = frame->tf_addr;
641 	else
642 		eva = 0;
643 
644 #ifdef DDB
645 	if (db_active) {
646 		++gd->gd_trap_nesting_level;
647 		MAKEMPSAFE(have_mplock);
648 		trap_fatal(frame, FALSE, eva);
649 		--gd->gd_trap_nesting_level;
650 		goto out2;
651 	}
652 #endif
653 
654 	type = frame->tf_trapno;
655 	code = frame->tf_err;
656 
657 #if 0
658 kernel_trap:
659 #endif
660 	/* kernel trap */
661 
662 	switch (type) {
663 	case T_PAGEFLT:			/* page fault */
664 		MAKEMPSAFE(have_mplock);
665 		trap_pfault(frame, FALSE, eva);
666 		goto out2;
667 
668 	case T_DNA:
669 		/*
670 		 * The kernel may be using npx for copying or other
671 		 * purposes.
672 		 */
673 		panic("kernel NPX should not happen");
674 		if (npxdna(frame))
675 			goto out2;
676 		break;
677 
678 	case T_PROTFLT:		/* general protection fault */
679 	case T_SEGNPFLT:	/* segment not present fault */
680 		/*
681 		 * Invalid segment selectors and out of bounds
682 		 * %eip's and %esp's can be set up in user mode.
683 		 * This causes a fault in kernel mode when the
684 		 * kernel tries to return to user mode.  We want
685 		 * to get this fault so that we can fix the
686 		 * problem here and not have to check all the
687 		 * selectors and pointers when the user changes
688 		 * them.
689 		 */
690 		if (mycpu->gd_intr_nesting_level == 0) {
691 			if (td->td_pcb->pcb_onfault) {
692 				frame->tf_rip =
693 				    (register_t)td->td_pcb->pcb_onfault;
694 				goto out2;
695 			}
696 		}
697 		break;
698 
699 	case T_TSSFLT:
700 		/*
701 		 * PSL_NT can be set in user mode and isn't cleared
702 		 * automatically when the kernel is entered.  This
703 		 * causes a TSS fault when the kernel attempts to
704 		 * `iret' because the TSS link is uninitialized.  We
705 		 * want to get this fault so that we can fix the
706 		 * problem here and not every time the kernel is
707 		 * entered.
708 		 */
709 		if (frame->tf_rflags & PSL_NT) {
710 			frame->tf_rflags &= ~PSL_NT;
711 			goto out2;
712 		}
713 		break;
714 
715 	case T_TRCTRAP:	 /* trace trap */
716 #if 0
717 		if (frame->tf_eip == (int)IDTVEC(syscall)) {
718 			/*
719 			 * We've just entered system mode via the
720 			 * syscall lcall.  Continue single stepping
721 			 * silently until the syscall handler has
722 			 * saved the flags.
723 			 */
724 			goto out2;
725 		}
726 		if (frame->tf_eip == (int)IDTVEC(syscall) + 1) {
727 			/*
728 			 * The syscall handler has now saved the
729 			 * flags.  Stop single stepping it.
730 			 */
731 			frame->tf_eflags &= ~PSL_T;
732 			goto out2;
733 		}
734 #endif
735 #if 0
736 		/*
737 		 * Ignore debug register trace traps due to
738 		 * accesses in the user's address space, which
739 		 * can happen under several conditions such as
740 		 * if a user sets a watchpoint on a buffer and
741 		 * then passes that buffer to a system call.
742 		 * We still want to get TRCTRAPS for addresses
743 		 * in kernel space because that is useful when
744 		 * debugging the kernel.
745 		 */
746 		if (user_dbreg_trap()) {
747 			/*
748 			 * Reset breakpoint bits because the
749 			 * processor doesn't
750 			 */
751 			load_dr6(rdr6() & 0xfffffff0);
752 			goto out2;
753 		}
754 #endif
755 		/*
756 		 * Fall through (TRCTRAP kernel mode, kernel address)
757 		 */
758 	case T_BPTFLT:
759 		/*
760 		 * If DDB is enabled, let it handle the debugger trap.
761 		 * Otherwise, debugger traps "can't happen".
762 		 */
763 #ifdef DDB
764 		MAKEMPSAFE(have_mplock);
765 		if (kdb_trap (type, 0, frame))
766 			goto out2;
767 #endif
768 		break;
769 	case T_DIVIDE:
770 		MAKEMPSAFE(have_mplock);
771 		trap_fatal(frame, FALSE, eva);
772 		goto out2;
773 	case T_NMI:
774 		MAKEMPSAFE(have_mplock);
775 		trap_fatal(frame, FALSE, eva);
776 		goto out2;
777 	case T_SYSCALL80:
778 	case T_FAST_SYSCALL:
779 		/*
780 		 * Ignore this trap generated from a spurious SIGTRAP.
781 		 *
782 		 * single stepping in / syscalls leads to spurious / SIGTRAP
783 		 * so ignore
784 		 *
785 		 * Haiku (c) 2007 Simon 'corecode' Schubert
786 		 */
787 		goto out2;
788 	}
789 
790 	/*
791 	 * Translate fault for emulators (e.g. Linux)
792 	 */
793 	if (*p->p_sysent->sv_transtrap)
794 		i = (*p->p_sysent->sv_transtrap)(i, type);
795 
796 	MAKEMPSAFE(have_mplock);
797 	trapsignal(lp, i, ucode);
798 
799 #ifdef DEBUG
800 	if (type <= MAX_TRAP_MSG) {
801 		uprintf("fatal process exception: %s",
802 			trap_msg[type]);
803 		if ((type == T_PAGEFLT) || (type == T_PROTFLT))
804 			uprintf(", fault VA = 0x%lx", (u_long)eva);
805 		uprintf("\n");
806 	}
807 #endif
808 
809 out2:
810 	;
811 #ifdef SMP
812 	if (have_mplock)
813 		rel_mplock();
814 #endif
815 #ifdef INVARIANTS
816 	KASSERT(crit_count == td->td_critcount,
817 		("trap: critical section count mismatch! %d/%d",
818 		crit_count, td->td_pri));
819 	KASSERT(curstop == td->td_toks_stop,
820 		("trap: extra tokens held after trap! %ld/%ld",
821 		curstop - &td->td_toks_base,
822 		td->td_toks_stop - &td->td_toks_base));
823 #endif
824 }
825 
826 int
827 trap_pfault(struct trapframe *frame, int usermode, vm_offset_t eva)
828 {
829 	vm_offset_t va;
830 	struct vmspace *vm = NULL;
831 	vm_map_t map = 0;
832 	int rv = 0;
833 	vm_prot_t ftype;
834 	thread_t td = curthread;
835 	struct lwp *lp = td->td_lwp;
836 
837 	va = trunc_page(eva);
838 	if (usermode == FALSE) {
839 		/*
840 		 * This is a fault on kernel virtual memory.
841 		 */
842 		map = &kernel_map;
843 	} else {
844 		/*
845 		 * This is a fault on non-kernel virtual memory.
846 		 * vm is initialized above to NULL. If curproc is NULL
847 		 * or curproc->p_vmspace is NULL the fault is fatal.
848 		 */
849 		if (lp != NULL)
850 			vm = lp->lwp_vmspace;
851 
852 		if (vm == NULL)
853 			goto nogo;
854 
855 		map = &vm->vm_map;
856 	}
857 
858 	if (frame->tf_err & PGEX_W)
859 		ftype = VM_PROT_READ | VM_PROT_WRITE;
860 	else
861 		ftype = VM_PROT_READ;
862 
863 	if (map != &kernel_map) {
864 		/*
865 		 * Keep swapout from messing with us during this
866 		 *	critical time.
867 		 */
868 		PHOLD(lp->lwp_proc);
869 
870 		/*
871 		 * Grow the stack if necessary
872 		 */
873 		/* grow_stack returns false only if va falls into
874 		 * a growable stack region and the stack growth
875 		 * fails.  It returns true if va was not within
876 		 * a growable stack region, or if the stack
877 		 * growth succeeded.
878 		 */
879 		if (!grow_stack (lp->lwp_proc, va)) {
880 			rv = KERN_FAILURE;
881 			PRELE(lp->lwp_proc);
882 			goto nogo;
883 		}
884 
885 		/* Fault in the user page: */
886 		rv = vm_fault(map, va, ftype,
887 			      (ftype & VM_PROT_WRITE) ? VM_FAULT_DIRTY
888 						      : VM_FAULT_NORMAL);
889 
890 		PRELE(lp->lwp_proc);
891 	} else {
892 		/*
893 		 * Don't have to worry about process locking or stacks in the kernel.
894 		 */
895 		rv = vm_fault(map, va, ftype, VM_FAULT_NORMAL);
896 	}
897 
898 	if (rv == KERN_SUCCESS)
899 		return (0);
900 nogo:
901 	if (!usermode) {
902 		if (td->td_gd->gd_intr_nesting_level == 0 &&
903 		    td->td_pcb->pcb_onfault) {
904 			frame->tf_rip = (register_t)td->td_pcb->pcb_onfault;
905 			return (0);
906 		}
907 		trap_fatal(frame, usermode, eva);
908 		return (-1);
909 	}
910 
911 	/*
912 	 * NOTE: on x86_64 we have a tf_addr field in the trapframe, no
913 	 * kludge is needed to pass the fault address to signal handlers.
914 	 */
915 	struct proc *p = td->td_proc;
916 	kprintf("seg-fault accessing address %p rip=%p pid=%d p_comm=%s\n",
917 		(void *)va, (void *)frame->tf_rip, p->p_pid, p->p_comm);
918 	/* Debugger("seg-fault"); */
919 
920 	return((rv == KERN_PROTECTION_FAILURE) ? SIGBUS : SIGSEGV);
921 }
922 
923 static void
924 trap_fatal(struct trapframe *frame, int usermode, vm_offset_t eva)
925 {
926 	int code, type, ss;
927 	long rsp;
928 
929 	code = frame->tf_xflags;
930 	type = frame->tf_trapno;
931 
932 	if (type <= MAX_TRAP_MSG) {
933 		kprintf("\n\nFatal trap %d: %s while in %s mode\n",
934 			type, trap_msg[type],
935 			(usermode ? "user" : "kernel"));
936 	}
937 #ifdef SMP
938 	/* two separate prints in case of a trap on an unmapped page */
939 	kprintf("cpuid = %d\n", mycpu->gd_cpuid);
940 #endif
941 	if (type == T_PAGEFLT) {
942 		kprintf("fault virtual address	= %p\n", (void *)eva);
943 		kprintf("fault code		= %s %s, %s\n",
944 			usermode ? "user" : "supervisor",
945 			code & PGEX_W ? "write" : "read",
946 			code & PGEX_P ? "protection violation" : "page not present");
947 	}
948 	kprintf("instruction pointer	= 0x%lx:0x%lx\n",
949 	       frame->tf_cs & 0xffff, frame->tf_rip);
950 	if (usermode) {
951 		ss = frame->tf_ss & 0xffff;
952 		rsp = frame->tf_rsp;
953 	} else {
954 		ss = GSEL(GDATA_SEL, SEL_KPL);
955 		rsp = (long)&frame->tf_rsp;
956 	}
957 	kprintf("stack pointer	        = 0x%x:0x%lx\n", ss, rsp);
958 	kprintf("frame pointer	        = 0x%x:0x%lx\n", ss, frame->tf_rbp);
959 	kprintf("processor eflags	= ");
960 	if (frame->tf_rflags & PSL_T)
961 		kprintf("trace trap, ");
962 	if (frame->tf_rflags & PSL_I)
963 		kprintf("interrupt enabled, ");
964 	if (frame->tf_rflags & PSL_NT)
965 		kprintf("nested task, ");
966 	if (frame->tf_rflags & PSL_RF)
967 		kprintf("resume, ");
968 #if 0
969 	if (frame->tf_eflags & PSL_VM)
970 		kprintf("vm86, ");
971 #endif
972 	kprintf("IOPL = %jd\n", (intmax_t)((frame->tf_rflags & PSL_IOPL) >> 12));
973 	kprintf("current process		= ");
974 	if (curproc) {
975 		kprintf("%lu (%s)\n",
976 		    (u_long)curproc->p_pid, curproc->p_comm ?
977 		    curproc->p_comm : "");
978 	} else {
979 		kprintf("Idle\n");
980 	}
981 	kprintf("current thread          = pri %d ", curthread->td_pri);
982 	if (curthread->td_critcount)
983 		kprintf("(CRIT)");
984 	kprintf("\n");
985 #ifdef SMP
986 /**
987  *  XXX FIXME:
988  *	we probably SHOULD have stopped the other CPUs before now!
989  *	another CPU COULD have been touching cpl at this moment...
990  */
991 	kprintf(" <- SMP: XXX");
992 #endif
993 	kprintf("\n");
994 
995 #ifdef KDB
996 	if (kdb_trap(&psl))
997 		return;
998 #endif
999 #ifdef DDB
1000 	if ((debugger_on_panic || db_active) && kdb_trap(type, code, frame))
1001 		return;
1002 #endif
1003 	kprintf("trap number		= %d\n", type);
1004 	if (type <= MAX_TRAP_MSG)
1005 		panic("%s", trap_msg[type]);
1006 	else
1007 		panic("unknown/reserved trap");
1008 }
1009 
1010 /*
1011  * Double fault handler. Called when a fault occurs while writing
1012  * a frame for a trap/exception onto the stack. This usually occurs
1013  * when the stack overflows (such is the case with infinite recursion,
1014  * for example).
1015  *
1016  * XXX Note that the current PTD gets replaced by IdlePTD when the
1017  * task switch occurs. This means that the stack that was active at
1018  * the time of the double fault is not available at <kstack> unless
1019  * the machine was idle when the double fault occurred. The downside
1020  * of this is that "trace <ebp>" in ddb won't work.
1021  */
1022 void
1023 dblfault_handler(void)
1024 {
1025 #if JG
1026 	struct mdglobaldata *gd = mdcpu;
1027 #endif
1028 
1029 	kprintf("\nFatal double fault:\n");
1030 #if JG
1031 	kprintf("rip = 0x%lx\n", gd->gd_common_tss.tss_rip);
1032 	kprintf("rsp = 0x%lx\n", gd->gd_common_tss.tss_rsp);
1033 	kprintf("rbp = 0x%lx\n", gd->gd_common_tss.tss_rbp);
1034 #endif
1035 #ifdef SMP
1036 	/* two separate prints in case of a trap on an unmapped page */
1037 	kprintf("cpuid = %d\n", mycpu->gd_cpuid);
1038 #endif
1039 	panic("double fault");
1040 }
1041 
1042 /*
1043  * Compensate for 386 brain damage (missing URKR).
1044  * This is a little simpler than the pagefault handler in trap() because
1045  * it the page tables have already been faulted in and high addresses
1046  * are thrown out early for other reasons.
1047  */
1048 int
1049 trapwrite(unsigned addr)
1050 {
1051 	struct lwp *lp;
1052 	vm_offset_t va;
1053 	struct vmspace *vm;
1054 	int rv;
1055 
1056 	va = trunc_page((vm_offset_t)addr);
1057 	/*
1058 	 * XXX - MAX is END.  Changed > to >= for temp. fix.
1059 	 */
1060 	if (va >= VM_MAX_USER_ADDRESS)
1061 		return (1);
1062 
1063 	lp = curthread->td_lwp;
1064 	vm = lp->lwp_vmspace;
1065 
1066 	PHOLD(lp->lwp_proc);
1067 
1068 	if (!grow_stack (lp->lwp_proc, va)) {
1069 		PRELE(lp->lwp_proc);
1070 		return (1);
1071 	}
1072 
1073 	/*
1074 	 * fault the data page
1075 	 */
1076 	rv = vm_fault(&vm->vm_map, va, VM_PROT_WRITE, VM_FAULT_DIRTY);
1077 
1078 	PRELE(lp->lwp_proc);
1079 
1080 	if (rv != KERN_SUCCESS)
1081 		return 1;
1082 
1083 	return (0);
1084 }
1085 
1086 /*
1087  *	syscall2 -	MP aware system call request C handler
1088  *
1089  *	A system call is essentially treated as a trap except that the
1090  *	MP lock is not held on entry or return.  We are responsible for
1091  *	obtaining the MP lock if necessary and for handling ASTs
1092  *	(e.g. a task switch) prior to return.
1093  *
1094  *	In general, only simple access and manipulation of curproc and
1095  *	the current stack is allowed without having to hold MP lock.
1096  *
1097  *	MPSAFE - note that large sections of this routine are run without
1098  *		 the MP lock.
1099  */
1100 void
1101 syscall2(struct trapframe *frame)
1102 {
1103 	struct thread *td = curthread;
1104 	struct proc *p = td->td_proc;
1105 	struct lwp *lp = td->td_lwp;
1106 	caddr_t params;
1107 	struct sysent *callp;
1108 	register_t orig_tf_rflags;
1109 	int sticks;
1110 	int error;
1111 	int narg;
1112 #ifdef INVARIANTS
1113 	int crit_count = td->td_critcount;
1114 	lwkt_tokref_t curstop = td->td_toks_stop;
1115 #endif
1116 #ifdef SMP
1117 	int have_mplock = 0;
1118 #endif
1119 	register_t *argp;
1120 	u_int code;
1121 	int reg, regcnt;
1122 	union sysunion args;
1123 	register_t *argsdst;
1124 
1125 	mycpu->gd_cnt.v_syscall++;
1126 
1127 	KTR_LOG(kernentry_syscall, lp->lwp_proc->p_pid, lp->lwp_tid,
1128 		frame->tf_eax);
1129 
1130 	userenter(td, p);	/* lazy raise our priority */
1131 
1132 	reg = 0;
1133 	regcnt = 6;
1134 	/*
1135 	 * Misc
1136 	 */
1137 	sticks = (int)td->td_sticks;
1138 	orig_tf_rflags = frame->tf_rflags;
1139 
1140 	/*
1141 	 * Virtual kernel intercept - if a VM context managed by a virtual
1142 	 * kernel issues a system call the virtual kernel handles it, not us.
1143 	 * Restore the virtual kernel context and return from its system
1144 	 * call.  The current frame is copied out to the virtual kernel.
1145 	 */
1146 	if (lp->lwp_vkernel && lp->lwp_vkernel->ve) {
1147 		vkernel_trap(lp, frame);
1148 		error = EJUSTRETURN;
1149 		goto out;
1150 	}
1151 
1152 	/*
1153 	 * Get the system call parameters and account for time
1154 	 */
1155 	lp->lwp_md.md_regs = frame;
1156 	params = (caddr_t)frame->tf_rsp + sizeof(register_t);
1157 	code = frame->tf_rax;
1158 
1159 	if (p->p_sysent->sv_prepsyscall) {
1160 		(*p->p_sysent->sv_prepsyscall)(
1161 			frame, (int *)(&args.nosys.sysmsg + 1),
1162 			&code, &params);
1163 	} else {
1164 		if (code == SYS_syscall || code == SYS___syscall) {
1165 			code = frame->tf_rdi;
1166 			reg++;
1167 			regcnt--;
1168 		}
1169 	}
1170 
1171 	if (p->p_sysent->sv_mask)
1172 		code &= p->p_sysent->sv_mask;
1173 
1174 	if (code >= p->p_sysent->sv_size)
1175 		callp = &p->p_sysent->sv_table[0];
1176 	else
1177 		callp = &p->p_sysent->sv_table[code];
1178 
1179 	narg = callp->sy_narg & SYF_ARGMASK;
1180 
1181 	/*
1182 	 * On x86_64 we get up to six arguments in registers. The rest are
1183 	 * on the stack. The first six members of 'struct trapframe' happen
1184 	 * to be the registers used to pass arguments, in exactly the right
1185 	 * order.
1186 	 */
1187 	argp = &frame->tf_rdi;
1188 	argp += reg;
1189 	argsdst = (register_t *)(&args.nosys.sysmsg + 1);
1190 	/*
1191 	 * JG can we overflow the space pointed to by 'argsdst'
1192 	 * either with 'bcopy' or with 'copyin'?
1193 	 */
1194 	bcopy(argp, argsdst, sizeof(register_t) * regcnt);
1195 	/*
1196 	 * copyin is MP aware, but the tracing code is not
1197 	 */
1198 	if (narg > regcnt) {
1199 		KASSERT(params != NULL, ("copyin args with no params!"));
1200 		error = copyin(params, &argsdst[regcnt],
1201 			(narg - regcnt) * sizeof(register_t));
1202 		if (error) {
1203 #ifdef KTRACE
1204 			if (KTRPOINT(td, KTR_SYSCALL)) {
1205 				MAKEMPSAFE(have_mplock);
1206 
1207 				ktrsyscall(lp, code, narg,
1208 					(void *)(&args.nosys.sysmsg + 1));
1209 			}
1210 #endif
1211 			goto bad;
1212 		}
1213 	}
1214 
1215 #ifdef KTRACE
1216 	if (KTRPOINT(td, KTR_SYSCALL)) {
1217 		MAKEMPSAFE(have_mplock);
1218 		ktrsyscall(lp, code, narg, (void *)(&args.nosys.sysmsg + 1));
1219 	}
1220 #endif
1221 
1222 	/*
1223 	 * Default return value is 0 (will be copied to %rax).  Double-value
1224 	 * returns use %rax and %rdx.  %rdx is left unchanged for system
1225 	 * calls which return only one result.
1226 	 */
1227 	args.sysmsg_fds[0] = 0;
1228 	args.sysmsg_fds[1] = frame->tf_rdx;
1229 
1230 	/*
1231 	 * The syscall might manipulate the trap frame. If it does it
1232 	 * will probably return EJUSTRETURN.
1233 	 */
1234 	args.sysmsg_frame = frame;
1235 
1236 	STOPEVENT(p, S_SCE, narg);	/* MP aware */
1237 
1238 	/*
1239 	 * NOTE: All system calls run MPSAFE now.  The system call itself
1240 	 *	 is responsible for getting the MP lock.
1241 	 */
1242 	error = (*callp->sy_call)(&args);
1243 
1244 #if 0
1245 	kprintf("system call %d returned %d\n", code, error);
1246 #endif
1247 
1248 out:
1249 	/*
1250 	 * MP SAFE (we may or may not have the MP lock at this point)
1251 	 */
1252 	switch (error) {
1253 	case 0:
1254 		/*
1255 		 * Reinitialize proc pointer `p' as it may be different
1256 		 * if this is a child returning from fork syscall.
1257 		 */
1258 		p = curproc;
1259 		lp = curthread->td_lwp;
1260 		frame->tf_rax = args.sysmsg_fds[0];
1261 		frame->tf_rdx = args.sysmsg_fds[1];
1262 		frame->tf_rflags &= ~PSL_C;
1263 		break;
1264 	case ERESTART:
1265 		/*
1266 		 * Reconstruct pc, we know that 'syscall' is 2 bytes.
1267 		 * We have to do a full context restore so that %r10
1268 		 * (which was holding the value of %rcx) is restored for
1269 		 * the next iteration.
1270 		 */
1271 		frame->tf_rip -= frame->tf_err;
1272 		frame->tf_r10 = frame->tf_rcx;
1273 		break;
1274 	case EJUSTRETURN:
1275 		break;
1276 	case EASYNC:
1277 		panic("Unexpected EASYNC return value (for now)");
1278 	default:
1279 bad:
1280 		if (p->p_sysent->sv_errsize) {
1281 			if (error >= p->p_sysent->sv_errsize)
1282 				error = -1;	/* XXX */
1283 			else
1284 				error = p->p_sysent->sv_errtbl[error];
1285 		}
1286 		frame->tf_rax = error;
1287 		frame->tf_rflags |= PSL_C;
1288 		break;
1289 	}
1290 
1291 	/*
1292 	 * Traced syscall.  trapsignal() is not MP aware.
1293 	 */
1294 	if (orig_tf_rflags & PSL_T) {
1295 		MAKEMPSAFE(have_mplock);
1296 		frame->tf_rflags &= ~PSL_T;
1297 		trapsignal(lp, SIGTRAP, 0);
1298 	}
1299 
1300 	/*
1301 	 * Handle reschedule and other end-of-syscall issues
1302 	 */
1303 	userret(lp, frame, sticks);
1304 
1305 #ifdef KTRACE
1306 	if (KTRPOINT(td, KTR_SYSRET)) {
1307 		MAKEMPSAFE(have_mplock);
1308 		ktrsysret(lp, code, error, args.sysmsg_result);
1309 	}
1310 #endif
1311 
1312 	/*
1313 	 * This works because errno is findable through the
1314 	 * register set.  If we ever support an emulation where this
1315 	 * is not the case, this code will need to be revisited.
1316 	 */
1317 	STOPEVENT(p, S_SCX, code);
1318 
1319 	userexit(lp);
1320 #ifdef SMP
1321 	/*
1322 	 * Release the MP lock if we had to get it
1323 	 */
1324 	if (have_mplock)
1325 		rel_mplock();
1326 #endif
1327 	KTR_LOG(kernentry_syscall_ret, lp->lwp_proc->p_pid, lp->lwp_tid, error);
1328 #ifdef INVARIANTS
1329 	KASSERT(&td->td_toks_base == td->td_toks_stop,
1330 		("syscall: critical section count mismatch! %d/%d",
1331 		crit_count, td->td_pri));
1332 	KASSERT(curstop == td->td_toks_stop,
1333 		("syscall: extra tokens held after trap! %ld",
1334 		td->td_toks_stop - &td->td_toks_base));
1335 #endif
1336 }
1337 
1338 /*
1339  * NOTE: mplock not held at any point
1340  */
1341 void
1342 fork_return(struct lwp *lp, struct trapframe *frame)
1343 {
1344 	frame->tf_rax = 0;		/* Child returns zero */
1345 	frame->tf_rflags &= ~PSL_C;	/* success */
1346 	frame->tf_rdx = 1;
1347 
1348 	generic_lwp_return(lp, frame);
1349 	KTR_LOG(kernentry_fork_ret, lp->lwp_proc->p_pid, lp->lwp_tid);
1350 }
1351 
1352 /*
1353  * Simplified back end of syscall(), used when returning from fork()
1354  * directly into user mode.
1355  *
1356  * This code will return back into the fork trampoline code which then
1357  * runs doreti.
1358  *
1359  * NOTE: The mplock is not held at any point.
1360  */
1361 void
1362 generic_lwp_return(struct lwp *lp, struct trapframe *frame)
1363 {
1364 	struct proc *p = lp->lwp_proc;
1365 
1366 	/*
1367 	 * Newly forked processes are given a kernel priority.  We have to
1368 	 * adjust the priority to a normal user priority and fake entry
1369 	 * into the kernel (call userenter()) to install a passive release
1370 	 * function just in case userret() decides to stop the process.  This
1371 	 * can occur when ^Z races a fork.  If we do not install the passive
1372 	 * release function the current process designation will not be
1373 	 * released when the thread goes to sleep.
1374 	 */
1375 	lwkt_setpri_self(TDPRI_USER_NORM);
1376 	userenter(lp->lwp_thread, p);
1377 	userret(lp, frame, 0);
1378 #ifdef KTRACE
1379 	if (KTRPOINT(lp->lwp_thread, KTR_SYSRET))
1380 		ktrsysret(lp, SYS_fork, 0, 0);
1381 #endif
1382 	p->p_flag |= P_PASSIVE_ACQ;
1383 	userexit(lp);
1384 	p->p_flag &= ~P_PASSIVE_ACQ;
1385 }
1386 
1387 /*
1388  * doreti has turned into this.  The frame is directly on the stack.  We
1389  * pull everything else we need (fpu and tls context) from the current
1390  * thread.
1391  *
1392  * Note on fpu interactions: In a virtual kernel, the fpu context for
1393  * an emulated user mode process is not shared with the virtual kernel's
1394  * fpu context, so we only have to 'stack' fpu contexts within the virtual
1395  * kernel itself, and not even then since the signal() contexts that we care
1396  * about save and restore the FPU state (I think anyhow).
1397  *
1398  * vmspace_ctl() returns an error only if it had problems instaling the
1399  * context we supplied or problems copying data to/from our VM space.
1400  */
1401 void
1402 go_user(struct intrframe *frame)
1403 {
1404 	struct trapframe *tf = (void *)&frame->if_rdi;
1405 	int r;
1406 
1407 	/*
1408 	 * Interrupts may be disabled on entry, make sure all signals
1409 	 * can be received before beginning our loop.
1410 	 */
1411 	sigsetmask(0);
1412 
1413 	/*
1414 	 * Switch to the current simulated user process, then call
1415 	 * user_trap() when we break out of it (usually due to a signal).
1416 	 */
1417 	for (;;) {
1418 		/*
1419 		 * Tell the real kernel whether it is ok to use the FP
1420 		 * unit or not.
1421 		 */
1422 		if (mdcpu->gd_npxthread == curthread) {
1423 			tf->tf_xflags &= ~PGEX_FPFAULT;
1424 		} else {
1425 			tf->tf_xflags |= PGEX_FPFAULT;
1426 		}
1427 
1428 		/*
1429 		 * Run emulated user process context.  This call interlocks
1430 		 * with new mailbox signals.
1431 		 *
1432 		 * Set PGEX_U unconditionally, indicating a user frame (the
1433 		 * bit is normally set only by T_PAGEFLT).
1434 		 */
1435 		r = vmspace_ctl(&curproc->p_vmspace->vm_pmap, VMSPACE_CTL_RUN,
1436 				tf, &curthread->td_savevext);
1437 		frame->if_xflags |= PGEX_U;
1438 #if 0
1439 		kprintf("GO USER %d trap %ld EVA %08lx RIP %08lx RSP %08lx XFLAGS %02lx/%02lx\n",
1440 			r, tf->tf_trapno, tf->tf_addr, tf->tf_rip, tf->tf_rsp,
1441 			tf->tf_xflags, frame->if_xflags);
1442 #endif
1443 		if (r < 0) {
1444 			if (errno != EINTR)
1445 				panic("vmspace_ctl failed error %d", errno);
1446 		} else {
1447 			if (tf->tf_trapno) {
1448 				user_trap(tf);
1449 			}
1450 		}
1451 		if (mycpu->gd_reqflags & RQF_AST_MASK) {
1452 			tf->tf_trapno = T_ASTFLT;
1453 			user_trap(tf);
1454 		}
1455 		tf->tf_trapno = 0;
1456 	}
1457 }
1458 
1459 /*
1460  * If PGEX_FPFAULT is set then set FP_VIRTFP in the PCB to force a T_DNA
1461  * fault (which is then passed back to the virtual kernel) if an attempt is
1462  * made to use the FP unit.
1463  *
1464  * XXX this is a fairly big hack.
1465  */
1466 void
1467 set_vkernel_fp(struct trapframe *frame)
1468 {
1469 	struct thread *td = curthread;
1470 
1471 	if (frame->tf_xflags & PGEX_FPFAULT) {
1472 		td->td_pcb->pcb_flags |= FP_VIRTFP;
1473 		if (mdcpu->gd_npxthread == td)
1474 			npxexit();
1475 	} else {
1476 		td->td_pcb->pcb_flags &= ~FP_VIRTFP;
1477 	}
1478 }
1479 
1480 /*
1481  * Called from vkernel_trap() to fixup the vkernel's syscall
1482  * frame for vmspace_ctl() return.
1483  */
1484 void
1485 cpu_vkernel_trap(struct trapframe *frame, int error)
1486 {
1487 	frame->tf_rax = error;
1488 	if (error)
1489 		frame->tf_rflags |= PSL_C;
1490 	else
1491 		frame->tf_rflags &= ~PSL_C;
1492 }
1493