xref: /dragonfly/sys/platform/vkernel64/x86_64/trap.c (revision defad9da)
1 /*-
2  * Copyright (C) 1994, David Greenman
3  * Copyright (c) 1990, 1993
4  *	The Regents of the University of California.  All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * the University of Utah, and William Jolitz.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed by the University of
20  *	California, Berkeley and its contributors.
21  * 4. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *	from: @(#)trap.c	7.4 (Berkeley) 5/13/91
38  * $FreeBSD: src/sys/i386/i386/trap.c,v 1.147.2.11 2003/02/27 19:09:59 luoqi Exp $
39  */
40 
41 /*
42  * x86_64 Trap and System call handling
43  */
44 
45 #include "use_isa.h"
46 
47 #include "opt_ddb.h"
48 #include "opt_ktrace.h"
49 
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/proc.h>
53 #include <sys/pioctl.h>
54 #include <sys/kernel.h>
55 #include <sys/resourcevar.h>
56 #include <sys/signalvar.h>
57 #include <sys/signal2.h>
58 #include <sys/syscall.h>
59 #include <sys/sysctl.h>
60 #include <sys/sysent.h>
61 #include <sys/uio.h>
62 #include <sys/vmmeter.h>
63 #include <sys/malloc.h>
64 #ifdef KTRACE
65 #include <sys/ktrace.h>
66 #endif
67 #include <sys/ktr.h>
68 #include <sys/vkernel.h>
69 #include <sys/sysproto.h>
70 #include <sys/sysunion.h>
71 #include <sys/vmspace.h>
72 
73 #include <vm/vm.h>
74 #include <vm/vm_param.h>
75 #include <sys/lock.h>
76 #include <vm/pmap.h>
77 #include <vm/vm_kern.h>
78 #include <vm/vm_map.h>
79 #include <vm/vm_page.h>
80 #include <vm/vm_extern.h>
81 
82 #include <machine/cpu.h>
83 #include <machine/md_var.h>
84 #include <machine/pcb.h>
85 #include <machine/smp.h>
86 #include <machine/tss.h>
87 #include <machine/globaldata.h>
88 
89 #include <ddb/ddb.h>
90 
91 #include <sys/msgport2.h>
92 #include <sys/thread2.h>
93 #include <sys/mplock2.h>
94 
95 #define MAKEMPSAFE(have_mplock)			\
96 	if (have_mplock == 0) {			\
97 		get_mplock();			\
98 		have_mplock = 1;		\
99 	}
100 
101 int (*pmath_emulate) (struct trapframe *);
102 
103 extern int trapwrite (unsigned addr);
104 
105 static int trap_pfault (struct trapframe *, int, vm_offset_t);
106 static void trap_fatal (struct trapframe *, int, vm_offset_t);
107 void dblfault_handler (void);
108 extern int vmm_enabled;
109 
110 #if 0
111 extern inthand_t IDTVEC(syscall);
112 #endif
113 
114 #define MAX_TRAP_MSG		30
115 static char *trap_msg[] = {
116 	"",					/*  0 unused */
117 	"privileged instruction fault",		/*  1 T_PRIVINFLT */
118 	"",					/*  2 unused */
119 	"breakpoint instruction fault",		/*  3 T_BPTFLT */
120 	"",					/*  4 unused */
121 	"",					/*  5 unused */
122 	"arithmetic trap",			/*  6 T_ARITHTRAP */
123 	"system forced exception",		/*  7 T_ASTFLT */
124 	"",					/*  8 unused */
125 	"general protection fault",		/*  9 T_PROTFLT */
126 	"trace trap",				/* 10 T_TRCTRAP */
127 	"",					/* 11 unused */
128 	"page fault",				/* 12 T_PAGEFLT */
129 	"",					/* 13 unused */
130 	"alignment fault",			/* 14 T_ALIGNFLT */
131 	"",					/* 15 unused */
132 	"",					/* 16 unused */
133 	"",					/* 17 unused */
134 	"integer divide fault",			/* 18 T_DIVIDE */
135 	"non-maskable interrupt trap",		/* 19 T_NMI */
136 	"overflow trap",			/* 20 T_OFLOW */
137 	"FPU bounds check fault",		/* 21 T_BOUND */
138 	"FPU device not available",		/* 22 T_DNA */
139 	"double fault",				/* 23 T_DOUBLEFLT */
140 	"FPU operand fetch fault",		/* 24 T_FPOPFLT */
141 	"invalid TSS fault",			/* 25 T_TSSFLT */
142 	"segment not present fault",		/* 26 T_SEGNPFLT */
143 	"stack fault",				/* 27 T_STKFLT */
144 	"machine check trap",			/* 28 T_MCHK */
145 	"SIMD floating-point exception",	/* 29 T_XMMFLT */
146 	"reserved (unknown) fault",		/* 30 T_RESERVED */
147 };
148 
149 #ifdef DDB
150 static int ddb_on_nmi = 1;
151 SYSCTL_INT(_machdep, OID_AUTO, ddb_on_nmi, CTLFLAG_RW,
152 	&ddb_on_nmi, 0, "Go to DDB on NMI");
153 #endif
154 static int panic_on_nmi = 1;
155 SYSCTL_INT(_machdep, OID_AUTO, panic_on_nmi, CTLFLAG_RW,
156 	&panic_on_nmi, 0, "Panic on NMI");
157 static int fast_release;
158 SYSCTL_INT(_machdep, OID_AUTO, fast_release, CTLFLAG_RW,
159 	&fast_release, 0, "Passive Release was optimal");
160 static int slow_release;
161 SYSCTL_INT(_machdep, OID_AUTO, slow_release, CTLFLAG_RW,
162 	&slow_release, 0, "Passive Release was nonoptimal");
163 
164 /*
165  * Passively intercepts the thread switch function to increase
166  * the thread priority from a user priority to a kernel priority, reducing
167  * syscall and trap overhead for the case where no switch occurs.
168  *
169  * Synchronizes td_ucred with p_ucred.  This is used by system calls,
170  * signal handling, faults, AST traps, and anything else that enters the
171  * kernel from userland and provides the kernel with a stable read-only
172  * copy of the process ucred.
173  */
174 static __inline void
175 userenter(struct thread *curtd, struct proc *curp)
176 {
177 	struct ucred *ocred;
178 	struct ucred *ncred;
179 
180 	curtd->td_release = lwkt_passive_release;
181 
182 	if (curtd->td_ucred != curp->p_ucred) {
183 		ncred = crhold(curp->p_ucred);
184 		ocred = curtd->td_ucred;
185 		curtd->td_ucred = ncred;
186 		if (ocred)
187 			crfree(ocred);
188 	}
189 }
190 
191 /*
192  * Handle signals, profiling, and other AST's and/or tasks that
193  * must be completed before we can return to or try to return to userland.
194  *
195  * Note that td_sticks is a 64 bit quantity, but there's no point doing 64
196  * arithmatic on the delta calculation so the absolute tick values are
197  * truncated to an integer.
198  */
199 static void
200 userret(struct lwp *lp, struct trapframe *frame, int sticks)
201 {
202 	struct proc *p = lp->lwp_proc;
203 	int sig;
204 
205 	/*
206 	 * Charge system time if profiling.  Note: times are in microseconds.
207 	 * This may do a copyout and block, so do it first even though it
208 	 * means some system time will be charged as user time.
209 	 */
210 	if (p->p_flags & P_PROFIL) {
211 		addupc_task(p, frame->tf_rip,
212 			(u_int)((int)lp->lwp_thread->td_sticks - sticks));
213 	}
214 
215 recheck:
216 	/*
217 	 * Specific on-return-to-usermode checks (LWP_MP_WEXIT,
218 	 * LWP_MP_VNLRU, etc).
219 	 */
220 	if (lp->lwp_mpflags & LWP_MP_URETMASK)
221 		lwpuserret(lp);
222 
223 	/*
224 	 * Block here if we are in a stopped state.
225 	 */
226 	if (p->p_stat == SSTOP || p->p_stat == SCORE) {
227 		lwkt_gettoken(&p->p_token);
228 		tstop();
229 		lwkt_reltoken(&p->p_token);
230 		goto recheck;
231 	}
232 
233 	/*
234 	 * Post any pending upcalls.  If running a virtual kernel be sure
235 	 * to restore the virtual kernel's vmspace before posting the upcall.
236 	 */
237 	if (p->p_flags & (P_SIGVTALRM | P_SIGPROF)) {
238 		lwkt_gettoken(&p->p_token);
239 		if (p->p_flags & P_SIGVTALRM) {
240 			p->p_flags &= ~P_SIGVTALRM;
241 			ksignal(p, SIGVTALRM);
242 		}
243 		if (p->p_flags & P_SIGPROF) {
244 			p->p_flags &= ~P_SIGPROF;
245 			ksignal(p, SIGPROF);
246 		}
247 		lwkt_reltoken(&p->p_token);
248 		goto recheck;
249 	}
250 
251 	/*
252 	 * Post any pending signals
253 	 *
254 	 * WARNING!  postsig() can exit and not return.
255 	 */
256 	if ((sig = CURSIG_TRACE(lp)) != 0) {
257 		lwkt_gettoken(&p->p_token);
258 		postsig(sig);
259 		lwkt_reltoken(&p->p_token);
260 		goto recheck;
261 	}
262 
263 	/*
264 	 * block here if we are swapped out, but still process signals
265 	 * (such as SIGKILL).  proc0 (the swapin scheduler) is already
266 	 * aware of our situation, we do not have to wake it up.
267 	 */
268 	if (p->p_flags & P_SWAPPEDOUT) {
269 		lwkt_gettoken(&p->p_token);
270 		get_mplock();
271 		p->p_flags |= P_SWAPWAIT;
272 		swapin_request();
273 		if (p->p_flags & P_SWAPWAIT)
274 			tsleep(p, PCATCH, "SWOUT", 0);
275 		p->p_flags &= ~P_SWAPWAIT;
276 		rel_mplock();
277 		lwkt_reltoken(&p->p_token);
278 		goto recheck;
279 	}
280 
281 	/*
282 	 * In a multi-threaded program it is possible for a thread to change
283 	 * signal state during a system call which temporarily changes the
284 	 * signal mask.  In this case postsig() might not be run and we
285 	 * have to restore the mask ourselves.
286 	 */
287 	if (lp->lwp_flags & LWP_OLDMASK) {
288 		lp->lwp_flags &= ~LWP_OLDMASK;
289 		lp->lwp_sigmask = lp->lwp_oldsigmask;
290 		goto recheck;
291 	}
292 }
293 
294 /*
295  * Cleanup from userenter and any passive release that might have occured.
296  * We must reclaim the current-process designation before we can return
297  * to usermode.  We also handle both LWKT and USER reschedule requests.
298  */
299 static __inline void
300 userexit(struct lwp *lp)
301 {
302 	struct thread *td = lp->lwp_thread;
303 	/* globaldata_t gd = td->td_gd; */
304 
305 	/*
306 	 * Handle stop requests at kernel priority.  Any requests queued
307 	 * after this loop will generate another AST.
308 	 */
309 	while (lp->lwp_proc->p_stat == SSTOP ||
310 	       lp->lwp_proc->p_stat == SCORE) {
311 		lwkt_gettoken(&lp->lwp_proc->p_token);
312 		tstop();
313 		lwkt_reltoken(&lp->lwp_proc->p_token);
314 	}
315 
316 	/*
317 	 * Reduce our priority in preparation for a return to userland.  If
318 	 * our passive release function was still in place, our priority was
319 	 * never raised and does not need to be reduced.
320 	 */
321 	lwkt_passive_recover(td);
322 
323 	/*
324 	 * Become the current user scheduled process if we aren't already,
325 	 * and deal with reschedule requests and other factors.
326 	 */
327 	lp->lwp_proc->p_usched->acquire_curproc(lp);
328 	/* WARNING: we may have migrated cpu's */
329 	/* gd = td->td_gd; */
330 }
331 
332 #if !defined(KTR_KERNENTRY)
333 #define	KTR_KERNENTRY	KTR_ALL
334 #endif
335 KTR_INFO_MASTER(kernentry);
336 KTR_INFO(KTR_KERNENTRY, kernentry, trap, 0,
337 	 "TRAP(pid %hd, tid %hd, trapno %ld, eva %lu)",
338 	 pid_t pid, lwpid_t tid,  register_t trapno, vm_offset_t eva);
339 KTR_INFO(KTR_KERNENTRY, kernentry, trap_ret, 0, "TRAP_RET(pid %hd, tid %hd)",
340 	 pid_t pid, lwpid_t tid);
341 KTR_INFO(KTR_KERNENTRY, kernentry, syscall, 0, "SYSC(pid %hd, tid %hd, nr %ld)",
342 	 pid_t pid, lwpid_t tid,  register_t trapno);
343 KTR_INFO(KTR_KERNENTRY, kernentry, syscall_ret, 0, "SYSRET(pid %hd, tid %hd, err %d)",
344 	 pid_t pid, lwpid_t tid,  int err);
345 KTR_INFO(KTR_KERNENTRY, kernentry, fork_ret, 0, "FORKRET(pid %hd, tid %hd)",
346 	 pid_t pid, lwpid_t tid);
347 
348 /*
349  * Exception, fault, and trap interface to the kernel.
350  * This common code is called from assembly language IDT gate entry
351  * routines that prepare a suitable stack frame, and restore this
352  * frame after the exception has been processed.
353  *
354  * This function is also called from doreti in an interlock to handle ASTs.
355  * For example:  hardwareint->INTROUTINE->(set ast)->doreti->trap
356  *
357  * NOTE!  We have to retrieve the fault address prior to obtaining the
358  * MP lock because get_mplock() may switch out.  YYY cr2 really ought
359  * to be retrieved by the assembly code, not here.
360  *
361  * XXX gd_trap_nesting_level currently prevents lwkt_switch() from panicing
362  * if an attempt is made to switch from a fast interrupt or IPI.  This is
363  * necessary to properly take fatal kernel traps on SMP machines if
364  * get_mplock() has to block.
365  */
366 
367 void
368 user_trap(struct trapframe *frame)
369 {
370 	struct globaldata *gd = mycpu;
371 	struct thread *td = gd->gd_curthread;
372 	struct lwp *lp = td->td_lwp;
373 	struct proc *p;
374 	int sticks = 0;
375 	int i = 0, ucode = 0, type, code;
376 	int have_mplock = 0;
377 #ifdef INVARIANTS
378 	int crit_count = td->td_critcount;
379 	lwkt_tokref_t curstop = td->td_toks_stop;
380 #endif
381 	vm_offset_t eva;
382 
383 	p = td->td_proc;
384 
385 	if (frame->tf_trapno == T_PAGEFLT)
386 		eva = frame->tf_addr;
387 	else
388 		eva = 0;
389 #if 0
390 	kprintf("USER_TRAP AT %08lx xflags %ld trapno %ld eva %08lx\n",
391 		frame->tf_rip, frame->tf_xflags, frame->tf_trapno, eva);
392 #endif
393 
394 	/*
395 	 * Everything coming from user mode runs through user_trap,
396 	 * including system calls.
397 	 */
398 	if (frame->tf_trapno == T_FAST_SYSCALL) {
399 		syscall2(frame);
400 		return;
401 	}
402 
403 	KTR_LOG(kernentry_trap, lp->lwp_proc->p_pid, lp->lwp_tid,
404 		frame->tf_trapno, eva);
405 
406 #ifdef DDB
407 	if (db_active) {
408 		eva = (frame->tf_trapno == T_PAGEFLT ? rcr2() : 0);
409 		++gd->gd_trap_nesting_level;
410 		MAKEMPSAFE(have_mplock);
411 		trap_fatal(frame, TRUE, eva);
412 		--gd->gd_trap_nesting_level;
413 		goto out2;
414 	}
415 #endif
416 
417 	type = frame->tf_trapno;
418 	code = frame->tf_err;
419 
420 	userenter(td, p);
421 
422 	sticks = (int)td->td_sticks;
423 	lp->lwp_md.md_regs = frame;
424 
425 	switch (type) {
426 	case T_PRIVINFLT:	/* privileged instruction fault */
427 		i = SIGILL;
428 		ucode = ILL_PRVOPC;
429 		break;
430 
431 	case T_BPTFLT:		/* bpt instruction fault */
432 	case T_TRCTRAP:		/* trace trap */
433 		frame->tf_rflags &= ~PSL_T;
434 		i = SIGTRAP;
435 		ucode = (type == T_TRCTRAP ? TRAP_TRACE : TRAP_BRKPT);
436 		break;
437 
438 	case T_ARITHTRAP:	/* arithmetic trap */
439 		ucode = code;
440 		i = SIGFPE;
441 		break;
442 
443 	case T_ASTFLT:		/* Allow process switch */
444 		mycpu->gd_cnt.v_soft++;
445 		if (mycpu->gd_reqflags & RQF_AST_OWEUPC) {
446 			atomic_clear_int(&mycpu->gd_reqflags, RQF_AST_OWEUPC);
447 			addupc_task(p, p->p_prof.pr_addr, p->p_prof.pr_ticks);
448 		}
449 		goto out;
450 
451 		/*
452 		 * The following two traps can happen in
453 		 * vm86 mode, and, if so, we want to handle
454 		 * them specially.
455 		 */
456 	case T_PROTFLT:		/* general protection fault */
457 	case T_STKFLT:		/* stack fault */
458 #if 0
459 		if (frame->tf_eflags & PSL_VM) {
460 			i = vm86_emulate((struct vm86frame *)frame);
461 			if (i == 0)
462 				goto out;
463 			break;
464 		}
465 #endif
466 		/* FALL THROUGH */
467 
468 	case T_SEGNPFLT:	/* segment not present fault */
469 	case T_TSSFLT:		/* invalid TSS fault */
470 	case T_DOUBLEFLT:	/* double fault */
471 	default:
472 		i = SIGBUS;
473 		ucode = code + BUS_SEGM_FAULT ;
474 		break;
475 
476 	case T_PAGEFLT:		/* page fault */
477 		i = trap_pfault(frame, TRUE, eva);
478 		if (i == -1 || i == 0)
479 			goto out;
480 
481 
482 		if (i == SIGSEGV)
483 			ucode = SEGV_MAPERR;
484 		else {
485 			i = SIGSEGV;
486 			ucode = SEGV_ACCERR;
487 		}
488 		break;
489 
490 	case T_DIVIDE:		/* integer divide fault */
491 		ucode = FPE_INTDIV;
492 		i = SIGFPE;
493 		break;
494 
495 #if NISA > 0
496 	case T_NMI:
497 		MAKEMPSAFE(have_mplock);
498 		/* machine/parity/power fail/"kitchen sink" faults */
499 		if (isa_nmi(code) == 0) {
500 #ifdef DDB
501 			/*
502 			 * NMI can be hooked up to a pushbutton
503 			 * for debugging.
504 			 */
505 			if (ddb_on_nmi) {
506 				kprintf ("NMI ... going to debugger\n");
507 				kdb_trap(type, 0, frame);
508 			}
509 #endif /* DDB */
510 			goto out2;
511 		} else if (panic_on_nmi)
512 			panic("NMI indicates hardware failure");
513 		break;
514 #endif /* NISA > 0 */
515 
516 	case T_OFLOW:		/* integer overflow fault */
517 		ucode = FPE_INTOVF;
518 		i = SIGFPE;
519 		break;
520 
521 	case T_BOUND:		/* bounds check fault */
522 		ucode = FPE_FLTSUB;
523 		i = SIGFPE;
524 		break;
525 
526 	case T_DNA:
527 		/*
528 		 * Virtual kernel intercept - pass the DNA exception
529 		 * to the (emulated) virtual kernel if it asked to handle
530 		 * it.  This occurs when the virtual kernel is holding
531 		 * onto the FP context for a different emulated
532 		 * process then the one currently running.
533 		 *
534 		 * We must still call npxdna() since we may have
535 		 * saved FP state that the (emulated) virtual kernel
536 		 * needs to hand over to a different emulated process.
537 		 */
538 		if (lp->lwp_vkernel && lp->lwp_vkernel->ve &&
539 		    (td->td_pcb->pcb_flags & FP_VIRTFP)
540 		) {
541 			npxdna(frame);
542 			break;
543 		}
544 
545 		/*
546 		 * The kernel may have switched out the FP unit's
547 		 * state, causing the user process to take a fault
548 		 * when it tries to use the FP unit.  Restore the
549 		 * state here
550 		 */
551 		if (npxdna(frame))
552 			goto out;
553 		if (!pmath_emulate) {
554 			i = SIGFPE;
555 			ucode = FPE_FPU_NP_TRAP;
556 			break;
557 		}
558 		i = (*pmath_emulate)(frame);
559 		if (i == 0) {
560 			if (!(frame->tf_rflags & PSL_T))
561 				goto out2;
562 			frame->tf_rflags &= ~PSL_T;
563 			i = SIGTRAP;
564 		}
565 		/* else ucode = emulator_only_knows() XXX */
566 		break;
567 
568 	case T_FPOPFLT:		/* FPU operand fetch fault */
569 		ucode = T_FPOPFLT;
570 		i = SIGILL;
571 		break;
572 
573 	case T_XMMFLT:		/* SIMD floating-point exception */
574 		ucode = 0; /* XXX */
575 		i = SIGFPE;
576 		break;
577 	}
578 
579 	/*
580 	 * Virtual kernel intercept - if the fault is directly related to a
581 	 * VM context managed by a virtual kernel then let the virtual kernel
582 	 * handle it.
583 	 */
584 	if (lp->lwp_vkernel && lp->lwp_vkernel->ve) {
585 		vkernel_trap(lp, frame);
586 		goto out;
587 	}
588 
589 	/*
590 	 * Translate fault for emulators (e.g. Linux)
591 	 */
592 	if (*p->p_sysent->sv_transtrap)
593 		i = (*p->p_sysent->sv_transtrap)(i, type);
594 
595 	MAKEMPSAFE(have_mplock);
596 	trapsignal(lp, i, ucode);
597 
598 #ifdef DEBUG
599 	if (type <= MAX_TRAP_MSG) {
600 		uprintf("fatal process exception: %s",
601 			trap_msg[type]);
602 		if ((type == T_PAGEFLT) || (type == T_PROTFLT))
603 			uprintf(", fault VA = 0x%lx", (u_long)eva);
604 		uprintf("\n");
605 	}
606 #endif
607 
608 out:
609 	userret(lp, frame, sticks);
610 	userexit(lp);
611 out2:	;
612 	if (have_mplock)
613 		rel_mplock();
614 	KTR_LOG(kernentry_trap_ret, lp->lwp_proc->p_pid, lp->lwp_tid);
615 #ifdef INVARIANTS
616 	KASSERT(crit_count == td->td_critcount,
617 		("trap: critical section count mismatch! %d/%d",
618 		crit_count, td->td_pri));
619 	KASSERT(curstop == td->td_toks_stop,
620 		("trap: extra tokens held after trap! %ld/%ld",
621 		curstop - &td->td_toks_base,
622 		td->td_toks_stop - &td->td_toks_base));
623 #endif
624 }
625 
626 void
627 kern_trap(struct trapframe *frame)
628 {
629 	struct globaldata *gd = mycpu;
630 	struct thread *td = gd->gd_curthread;
631 	struct lwp *lp;
632 	struct proc *p;
633 	int i = 0, ucode = 0, type, code;
634 	int have_mplock = 0;
635 #ifdef INVARIANTS
636 	int crit_count = td->td_critcount;
637 	lwkt_tokref_t curstop = td->td_toks_stop;
638 #endif
639 	vm_offset_t eva;
640 
641 	lp = td->td_lwp;
642 	p = td->td_proc;
643 
644 	if (frame->tf_trapno == T_PAGEFLT)
645 		eva = frame->tf_addr;
646 	else
647 		eva = 0;
648 
649 #ifdef DDB
650 	if (db_active) {
651 		++gd->gd_trap_nesting_level;
652 		MAKEMPSAFE(have_mplock);
653 		trap_fatal(frame, FALSE, eva);
654 		--gd->gd_trap_nesting_level;
655 		goto out2;
656 	}
657 #endif
658 
659 	type = frame->tf_trapno;
660 	code = frame->tf_err;
661 
662 #if 0
663 kernel_trap:
664 #endif
665 	/* kernel trap */
666 
667 	switch (type) {
668 	case T_PAGEFLT:			/* page fault */
669 		trap_pfault(frame, FALSE, eva);
670 		goto out2;
671 
672 	case T_DNA:
673 		/*
674 		 * The kernel may be using npx for copying or other
675 		 * purposes.
676 		 */
677 		panic("kernel NPX should not happen");
678 		if (npxdna(frame))
679 			goto out2;
680 		break;
681 
682 	case T_PROTFLT:		/* general protection fault */
683 	case T_SEGNPFLT:	/* segment not present fault */
684 		/*
685 		 * Invalid segment selectors and out of bounds
686 		 * %eip's and %esp's can be set up in user mode.
687 		 * This causes a fault in kernel mode when the
688 		 * kernel tries to return to user mode.  We want
689 		 * to get this fault so that we can fix the
690 		 * problem here and not have to check all the
691 		 * selectors and pointers when the user changes
692 		 * them.
693 		 */
694 		if (mycpu->gd_intr_nesting_level == 0) {
695 			if (td->td_pcb->pcb_onfault) {
696 				frame->tf_rip =
697 				    (register_t)td->td_pcb->pcb_onfault;
698 				goto out2;
699 			}
700 		}
701 		break;
702 
703 	case T_TSSFLT:
704 		/*
705 		 * PSL_NT can be set in user mode and isn't cleared
706 		 * automatically when the kernel is entered.  This
707 		 * causes a TSS fault when the kernel attempts to
708 		 * `iret' because the TSS link is uninitialized.  We
709 		 * want to get this fault so that we can fix the
710 		 * problem here and not every time the kernel is
711 		 * entered.
712 		 */
713 		if (frame->tf_rflags & PSL_NT) {
714 			frame->tf_rflags &= ~PSL_NT;
715 			goto out2;
716 		}
717 		break;
718 
719 	case T_TRCTRAP:	 /* trace trap */
720 #if 0
721 		if (frame->tf_eip == (int)IDTVEC(syscall)) {
722 			/*
723 			 * We've just entered system mode via the
724 			 * syscall lcall.  Continue single stepping
725 			 * silently until the syscall handler has
726 			 * saved the flags.
727 			 */
728 			goto out2;
729 		}
730 		if (frame->tf_eip == (int)IDTVEC(syscall) + 1) {
731 			/*
732 			 * The syscall handler has now saved the
733 			 * flags.  Stop single stepping it.
734 			 */
735 			frame->tf_eflags &= ~PSL_T;
736 			goto out2;
737 		}
738 #endif
739 #if 0
740 		/*
741 		 * Ignore debug register trace traps due to
742 		 * accesses in the user's address space, which
743 		 * can happen under several conditions such as
744 		 * if a user sets a watchpoint on a buffer and
745 		 * then passes that buffer to a system call.
746 		 * We still want to get TRCTRAPS for addresses
747 		 * in kernel space because that is useful when
748 		 * debugging the kernel.
749 		 */
750 		if (user_dbreg_trap()) {
751 			/*
752 			 * Reset breakpoint bits because the
753 			 * processor doesn't
754 			 */
755 			load_dr6(rdr6() & 0xfffffff0);
756 			goto out2;
757 		}
758 #endif
759 		/*
760 		 * Fall through (TRCTRAP kernel mode, kernel address)
761 		 */
762 	case T_BPTFLT:
763 		/*
764 		 * If DDB is enabled, let it handle the debugger trap.
765 		 * Otherwise, debugger traps "can't happen".
766 		 */
767 #ifdef DDB
768 		MAKEMPSAFE(have_mplock);
769 		if (kdb_trap (type, 0, frame))
770 			goto out2;
771 #endif
772 		break;
773 	case T_DIVIDE:
774 		MAKEMPSAFE(have_mplock);
775 		trap_fatal(frame, FALSE, eva);
776 		goto out2;
777 	case T_NMI:
778 		MAKEMPSAFE(have_mplock);
779 		trap_fatal(frame, FALSE, eva);
780 		goto out2;
781 	case T_SYSCALL80:
782 	case T_FAST_SYSCALL:
783 		/*
784 		 * Ignore this trap generated from a spurious SIGTRAP.
785 		 *
786 		 * single stepping in / syscalls leads to spurious / SIGTRAP
787 		 * so ignore
788 		 *
789 		 * Haiku (c) 2007 Simon 'corecode' Schubert
790 		 */
791 		goto out2;
792 	}
793 
794 	/*
795 	 * Translate fault for emulators (e.g. Linux)
796 	 */
797 	if (*p->p_sysent->sv_transtrap)
798 		i = (*p->p_sysent->sv_transtrap)(i, type);
799 
800 	MAKEMPSAFE(have_mplock);
801 	trapsignal(lp, i, ucode);
802 
803 #ifdef DEBUG
804 	if (type <= MAX_TRAP_MSG) {
805 		uprintf("fatal process exception: %s",
806 			trap_msg[type]);
807 		if ((type == T_PAGEFLT) || (type == T_PROTFLT))
808 			uprintf(", fault VA = 0x%lx", (u_long)eva);
809 		uprintf("\n");
810 	}
811 #endif
812 
813 out2:
814 	;
815 	if (have_mplock)
816 		rel_mplock();
817 #ifdef INVARIANTS
818 	KASSERT(crit_count == td->td_critcount,
819 		("trap: critical section count mismatch! %d/%d",
820 		crit_count, td->td_pri));
821 	KASSERT(curstop == td->td_toks_stop,
822 		("trap: extra tokens held after trap! %ld/%ld",
823 		curstop - &td->td_toks_base,
824 		td->td_toks_stop - &td->td_toks_base));
825 #endif
826 }
827 
828 int
829 trap_pfault(struct trapframe *frame, int usermode, vm_offset_t eva)
830 {
831 	vm_offset_t va;
832 	struct vmspace *vm = NULL;
833 	vm_map_t map = 0;
834 	int rv = 0;
835 	vm_prot_t ftype;
836 	thread_t td = curthread;
837 	struct lwp *lp = td->td_lwp;
838 	int fault_flags;
839 
840 	va = trunc_page(eva);
841 	if (usermode == FALSE) {
842 		/*
843 		 * This is a fault on kernel virtual memory.
844 		 */
845 		map = &kernel_map;
846 	} else {
847 		/*
848 		 * This is a fault on non-kernel virtual memory.
849 		 * vm is initialized above to NULL. If curproc is NULL
850 		 * or curproc->p_vmspace is NULL the fault is fatal.
851 		 */
852 		if (lp != NULL)
853 			vm = lp->lwp_vmspace;
854 
855 		if (vm == NULL)
856 			goto nogo;
857 
858 		map = &vm->vm_map;
859 	}
860 
861 	if (frame->tf_err & PGEX_W)
862 		ftype = VM_PROT_READ | VM_PROT_WRITE;
863 	else
864 		ftype = VM_PROT_READ;
865 
866 	if (map != &kernel_map) {
867 		/*
868 		 * Keep swapout from messing with us during this
869 		 *	critical time.
870 		 */
871 		PHOLD(lp->lwp_proc);
872 
873 		/*
874 		 * Grow the stack if necessary
875 		 */
876 		/* grow_stack returns false only if va falls into
877 		 * a growable stack region and the stack growth
878 		 * fails.  It returns true if va was not within
879 		 * a growable stack region, or if the stack
880 		 * growth succeeded.
881 		 */
882 		if (!grow_stack (lp->lwp_proc, va)) {
883 			rv = KERN_FAILURE;
884 			PRELE(lp->lwp_proc);
885 			goto nogo;
886 		}
887 
888 		fault_flags = 0;
889 		if (usermode)
890 			fault_flags |= VM_FAULT_BURST;
891 		if (ftype & VM_PROT_WRITE)
892 			fault_flags |= VM_FAULT_DIRTY;
893 		else
894 			fault_flags |= VM_FAULT_NORMAL;
895 		rv = vm_fault(map, va, ftype, fault_flags);
896 
897 		PRELE(lp->lwp_proc);
898 	} else {
899 		/*
900 		 * Don't have to worry about process locking or stacks in the kernel.
901 		 */
902 		rv = vm_fault(map, va, ftype, VM_FAULT_NORMAL);
903 	}
904 
905 	if (rv == KERN_SUCCESS)
906 		return (0);
907 nogo:
908 	if (!usermode) {
909 		if (td->td_gd->gd_intr_nesting_level == 0 &&
910 		    td->td_pcb->pcb_onfault) {
911 			frame->tf_rip = (register_t)td->td_pcb->pcb_onfault;
912 			return (0);
913 		}
914 		trap_fatal(frame, usermode, eva);
915 		return (-1);
916 	}
917 
918 	/*
919 	 * NOTE: on x86_64 we have a tf_addr field in the trapframe, no
920 	 * kludge is needed to pass the fault address to signal handlers.
921 	 */
922 	struct proc *p = td->td_proc;
923 	kprintf("seg-fault accessing address %p rip=%p pid=%d p_comm=%s\n",
924 		(void *)va, (void *)frame->tf_rip, p->p_pid, p->p_comm);
925 	/* Debugger("seg-fault"); */
926 
927 	return((rv == KERN_PROTECTION_FAILURE) ? SIGBUS : SIGSEGV);
928 }
929 
930 static void
931 trap_fatal(struct trapframe *frame, int usermode, vm_offset_t eva)
932 {
933 	int code, type, ss;
934 	long rsp;
935 
936 	code = frame->tf_xflags;
937 	type = frame->tf_trapno;
938 
939 	if (type <= MAX_TRAP_MSG) {
940 		kprintf("\n\nFatal trap %d: %s while in %s mode\n",
941 			type, trap_msg[type],
942 			(usermode ? "user" : "kernel"));
943 	}
944 	/* two separate prints in case of a trap on an unmapped page */
945 	kprintf("cpuid = %d\n", mycpu->gd_cpuid);
946 	if (type == T_PAGEFLT) {
947 		kprintf("fault virtual address	= %p\n", (void *)eva);
948 		kprintf("fault code		= %s %s, %s\n",
949 			usermode ? "user" : "supervisor",
950 			code & PGEX_W ? "write" : "read",
951 			code & PGEX_P ? "protection violation" : "page not present");
952 	}
953 	kprintf("instruction pointer	= 0x%lx:0x%lx\n",
954 	       frame->tf_cs & 0xffff, frame->tf_rip);
955 	if (usermode) {
956 		ss = frame->tf_ss & 0xffff;
957 		rsp = frame->tf_rsp;
958 	} else {
959 		ss = GSEL(GDATA_SEL, SEL_KPL);
960 		rsp = (long)&frame->tf_rsp;
961 	}
962 	kprintf("stack pointer	        = 0x%x:0x%lx\n", ss, rsp);
963 	kprintf("frame pointer	        = 0x%x:0x%lx\n", ss, frame->tf_rbp);
964 	kprintf("processor eflags	= ");
965 	if (frame->tf_rflags & PSL_T)
966 		kprintf("trace trap, ");
967 	if (frame->tf_rflags & PSL_I)
968 		kprintf("interrupt enabled, ");
969 	if (frame->tf_rflags & PSL_NT)
970 		kprintf("nested task, ");
971 	if (frame->tf_rflags & PSL_RF)
972 		kprintf("resume, ");
973 #if 0
974 	if (frame->tf_eflags & PSL_VM)
975 		kprintf("vm86, ");
976 #endif
977 	kprintf("IOPL = %jd\n", (intmax_t)((frame->tf_rflags & PSL_IOPL) >> 12));
978 	kprintf("current process		= ");
979 	if (curproc) {
980 		kprintf("%lu (%s)\n",
981 		    (u_long)curproc->p_pid, curproc->p_comm ?
982 		    curproc->p_comm : "");
983 	} else {
984 		kprintf("Idle\n");
985 	}
986 	kprintf("current thread          = pri %d ", curthread->td_pri);
987 	if (curthread->td_critcount)
988 		kprintf("(CRIT)");
989 	kprintf("\n");
990 /**
991  *  XXX FIXME:
992  *	we probably SHOULD have stopped the other CPUs before now!
993  *	another CPU COULD have been touching cpl at this moment...
994  */
995 	kprintf(" <- SMP: XXX");
996 	kprintf("\n");
997 
998 #ifdef KDB
999 	if (kdb_trap(&psl))
1000 		return;
1001 #endif
1002 #ifdef DDB
1003 	if ((debugger_on_panic || db_active) && kdb_trap(type, code, frame))
1004 		return;
1005 #endif
1006 	kprintf("trap number		= %d\n", type);
1007 	if (type <= MAX_TRAP_MSG)
1008 		panic("%s", trap_msg[type]);
1009 	else
1010 		panic("unknown/reserved trap");
1011 }
1012 
1013 /*
1014  * Double fault handler. Called when a fault occurs while writing
1015  * a frame for a trap/exception onto the stack. This usually occurs
1016  * when the stack overflows (such is the case with infinite recursion,
1017  * for example).
1018  *
1019  * XXX Note that the current PTD gets replaced by IdlePTD when the
1020  * task switch occurs. This means that the stack that was active at
1021  * the time of the double fault is not available at <kstack> unless
1022  * the machine was idle when the double fault occurred. The downside
1023  * of this is that "trace <ebp>" in ddb won't work.
1024  */
1025 void
1026 dblfault_handler(void)
1027 {
1028 #if JG
1029 	struct mdglobaldata *gd = mdcpu;
1030 #endif
1031 
1032 	kprintf("\nFatal double fault:\n");
1033 #if JG
1034 	kprintf("rip = 0x%lx\n", gd->gd_common_tss.tss_rip);
1035 	kprintf("rsp = 0x%lx\n", gd->gd_common_tss.tss_rsp);
1036 	kprintf("rbp = 0x%lx\n", gd->gd_common_tss.tss_rbp);
1037 #endif
1038 	/* two separate prints in case of a trap on an unmapped page */
1039 	kprintf("cpuid = %d\n", mycpu->gd_cpuid);
1040 	panic("double fault");
1041 }
1042 
1043 /*
1044  * Compensate for 386 brain damage (missing URKR).
1045  * This is a little simpler than the pagefault handler in trap() because
1046  * it the page tables have already been faulted in and high addresses
1047  * are thrown out early for other reasons.
1048  */
1049 int
1050 trapwrite(unsigned addr)
1051 {
1052 	struct lwp *lp;
1053 	vm_offset_t va;
1054 	struct vmspace *vm;
1055 	int rv;
1056 
1057 	va = trunc_page((vm_offset_t)addr);
1058 	/*
1059 	 * XXX - MAX is END.  Changed > to >= for temp. fix.
1060 	 */
1061 	if (va >= VM_MAX_USER_ADDRESS)
1062 		return (1);
1063 
1064 	lp = curthread->td_lwp;
1065 	vm = lp->lwp_vmspace;
1066 
1067 	PHOLD(lp->lwp_proc);
1068 
1069 	if (!grow_stack (lp->lwp_proc, va)) {
1070 		PRELE(lp->lwp_proc);
1071 		return (1);
1072 	}
1073 
1074 	/*
1075 	 * fault the data page
1076 	 */
1077 	rv = vm_fault(&vm->vm_map, va, VM_PROT_WRITE, VM_FAULT_DIRTY);
1078 
1079 	PRELE(lp->lwp_proc);
1080 
1081 	if (rv != KERN_SUCCESS)
1082 		return 1;
1083 
1084 	return (0);
1085 }
1086 
1087 /*
1088  *	syscall2 -	MP aware system call request C handler
1089  *
1090  *	A system call is essentially treated as a trap except that the
1091  *	MP lock is not held on entry or return.  We are responsible for
1092  *	obtaining the MP lock if necessary and for handling ASTs
1093  *	(e.g. a task switch) prior to return.
1094  *
1095  *	In general, only simple access and manipulation of curproc and
1096  *	the current stack is allowed without having to hold MP lock.
1097  *
1098  *	MPSAFE - note that large sections of this routine are run without
1099  *		 the MP lock.
1100  */
1101 void
1102 syscall2(struct trapframe *frame)
1103 {
1104 	struct thread *td = curthread;
1105 	struct proc *p = td->td_proc;
1106 	struct lwp *lp = td->td_lwp;
1107 	caddr_t params;
1108 	struct sysent *callp;
1109 	register_t orig_tf_rflags;
1110 	int sticks;
1111 	int error;
1112 	int narg;
1113 #ifdef INVARIANTS
1114 	int crit_count = td->td_critcount;
1115 	lwkt_tokref_t curstop = td->td_toks_stop;
1116 #endif
1117 	int have_mplock = 0;
1118 	register_t *argp;
1119 	u_int code;
1120 	int reg, regcnt;
1121 	union sysunion args;
1122 	register_t *argsdst;
1123 
1124 	mycpu->gd_cnt.v_syscall++;
1125 
1126 	KTR_LOG(kernentry_syscall, lp->lwp_proc->p_pid, lp->lwp_tid,
1127 		frame->tf_rax);
1128 
1129 	userenter(td, p);	/* lazy raise our priority */
1130 
1131 	reg = 0;
1132 	regcnt = 6;
1133 	/*
1134 	 * Misc
1135 	 */
1136 	sticks = (int)td->td_sticks;
1137 	orig_tf_rflags = frame->tf_rflags;
1138 
1139 	/*
1140 	 * Virtual kernel intercept - if a VM context managed by a virtual
1141 	 * kernel issues a system call the virtual kernel handles it, not us.
1142 	 * Restore the virtual kernel context and return from its system
1143 	 * call.  The current frame is copied out to the virtual kernel.
1144 	 */
1145 	if (lp->lwp_vkernel && lp->lwp_vkernel->ve) {
1146 		vkernel_trap(lp, frame);
1147 		error = EJUSTRETURN;
1148 		goto out;
1149 	}
1150 
1151 	/*
1152 	 * Get the system call parameters and account for time
1153 	 */
1154 	lp->lwp_md.md_regs = frame;
1155 	params = (caddr_t)frame->tf_rsp + sizeof(register_t);
1156 	code = frame->tf_rax;
1157 
1158 	if (p->p_sysent->sv_prepsyscall) {
1159 		(*p->p_sysent->sv_prepsyscall)(
1160 			frame, (int *)(&args.nosys.sysmsg + 1),
1161 			&code, &params);
1162 	} else {
1163 		if (code == SYS_syscall || code == SYS___syscall) {
1164 			code = frame->tf_rdi;
1165 			reg++;
1166 			regcnt--;
1167 		}
1168 	}
1169 
1170 	if (p->p_sysent->sv_mask)
1171 		code &= p->p_sysent->sv_mask;
1172 
1173 	if (code >= p->p_sysent->sv_size)
1174 		callp = &p->p_sysent->sv_table[0];
1175 	else
1176 		callp = &p->p_sysent->sv_table[code];
1177 
1178 	narg = callp->sy_narg & SYF_ARGMASK;
1179 
1180 	/*
1181 	 * On x86_64 we get up to six arguments in registers. The rest are
1182 	 * on the stack. The first six members of 'struct trapframe' happen
1183 	 * to be the registers used to pass arguments, in exactly the right
1184 	 * order.
1185 	 */
1186 	argp = &frame->tf_rdi;
1187 	argp += reg;
1188 	argsdst = (register_t *)(&args.nosys.sysmsg + 1);
1189 	/*
1190 	 * JG can we overflow the space pointed to by 'argsdst'
1191 	 * either with 'bcopy' or with 'copyin'?
1192 	 */
1193 	bcopy(argp, argsdst, sizeof(register_t) * regcnt);
1194 	/*
1195 	 * copyin is MP aware, but the tracing code is not
1196 	 */
1197 	if (narg > regcnt) {
1198 		KASSERT(params != NULL, ("copyin args with no params!"));
1199 		error = copyin(params, &argsdst[regcnt],
1200 			(narg - regcnt) * sizeof(register_t));
1201 		if (error) {
1202 #ifdef KTRACE
1203 			if (KTRPOINT(td, KTR_SYSCALL)) {
1204 				MAKEMPSAFE(have_mplock);
1205 
1206 				ktrsyscall(lp, code, narg,
1207 					(void *)(&args.nosys.sysmsg + 1));
1208 			}
1209 #endif
1210 			goto bad;
1211 		}
1212 	}
1213 
1214 #ifdef KTRACE
1215 	if (KTRPOINT(td, KTR_SYSCALL)) {
1216 		MAKEMPSAFE(have_mplock);
1217 		ktrsyscall(lp, code, narg, (void *)(&args.nosys.sysmsg + 1));
1218 	}
1219 #endif
1220 
1221 	/*
1222 	 * Default return value is 0 (will be copied to %rax).  Double-value
1223 	 * returns use %rax and %rdx.  %rdx is left unchanged for system
1224 	 * calls which return only one result.
1225 	 */
1226 	args.sysmsg_fds[0] = 0;
1227 	args.sysmsg_fds[1] = frame->tf_rdx;
1228 
1229 	/*
1230 	 * The syscall might manipulate the trap frame. If it does it
1231 	 * will probably return EJUSTRETURN.
1232 	 */
1233 	args.sysmsg_frame = frame;
1234 
1235 	STOPEVENT(p, S_SCE, narg);	/* MP aware */
1236 
1237 	/*
1238 	 * NOTE: All system calls run MPSAFE now.  The system call itself
1239 	 *	 is responsible for getting the MP lock.
1240 	 */
1241 	error = (*callp->sy_call)(&args);
1242 
1243 #if 0
1244 	kprintf("system call %d returned %d\n", code, error);
1245 #endif
1246 
1247 out:
1248 	/*
1249 	 * MP SAFE (we may or may not have the MP lock at this point)
1250 	 */
1251 	switch (error) {
1252 	case 0:
1253 		/*
1254 		 * Reinitialize proc pointer `p' as it may be different
1255 		 * if this is a child returning from fork syscall.
1256 		 */
1257 		p = curproc;
1258 		lp = curthread->td_lwp;
1259 		frame->tf_rax = args.sysmsg_fds[0];
1260 		frame->tf_rdx = args.sysmsg_fds[1];
1261 		frame->tf_rflags &= ~PSL_C;
1262 		break;
1263 	case ERESTART:
1264 		/*
1265 		 * Reconstruct pc, we know that 'syscall' is 2 bytes.
1266 		 * We have to do a full context restore so that %r10
1267 		 * (which was holding the value of %rcx) is restored for
1268 		 * the next iteration.
1269 		 */
1270 		frame->tf_rip -= frame->tf_err;
1271 		frame->tf_r10 = frame->tf_rcx;
1272 		break;
1273 	case EJUSTRETURN:
1274 		break;
1275 	case EASYNC:
1276 		panic("Unexpected EASYNC return value (for now)");
1277 	default:
1278 bad:
1279 		if (p->p_sysent->sv_errsize) {
1280 			if (error >= p->p_sysent->sv_errsize)
1281 				error = -1;	/* XXX */
1282 			else
1283 				error = p->p_sysent->sv_errtbl[error];
1284 		}
1285 		frame->tf_rax = error;
1286 		frame->tf_rflags |= PSL_C;
1287 		break;
1288 	}
1289 
1290 	/*
1291 	 * Traced syscall.  trapsignal() is not MP aware.
1292 	 */
1293 	if (orig_tf_rflags & PSL_T) {
1294 		MAKEMPSAFE(have_mplock);
1295 		frame->tf_rflags &= ~PSL_T;
1296 		trapsignal(lp, SIGTRAP, 0);
1297 	}
1298 
1299 	/*
1300 	 * Handle reschedule and other end-of-syscall issues
1301 	 */
1302 	userret(lp, frame, sticks);
1303 
1304 #ifdef KTRACE
1305 	if (KTRPOINT(td, KTR_SYSRET)) {
1306 		MAKEMPSAFE(have_mplock);
1307 		ktrsysret(lp, code, error, args.sysmsg_result);
1308 	}
1309 #endif
1310 
1311 	/*
1312 	 * This works because errno is findable through the
1313 	 * register set.  If we ever support an emulation where this
1314 	 * is not the case, this code will need to be revisited.
1315 	 */
1316 	STOPEVENT(p, S_SCX, code);
1317 
1318 	userexit(lp);
1319 	/*
1320 	 * Release the MP lock if we had to get it
1321 	 */
1322 	if (have_mplock)
1323 		rel_mplock();
1324 	KTR_LOG(kernentry_syscall_ret, lp->lwp_proc->p_pid, lp->lwp_tid, error);
1325 #ifdef INVARIANTS
1326 	KASSERT(&td->td_toks_base == td->td_toks_stop,
1327 		("syscall: critical section count mismatch! %d/%d",
1328 		crit_count, td->td_pri));
1329 	KASSERT(curstop == td->td_toks_stop,
1330 		("syscall: extra tokens held after trap! %ld",
1331 		td->td_toks_stop - &td->td_toks_base));
1332 #endif
1333 }
1334 
1335 /*
1336  * NOTE: mplock not held at any point
1337  */
1338 void
1339 fork_return(struct lwp *lp, struct trapframe *frame)
1340 {
1341 	frame->tf_rax = 0;		/* Child returns zero */
1342 	frame->tf_rflags &= ~PSL_C;	/* success */
1343 	frame->tf_rdx = 1;
1344 
1345 	generic_lwp_return(lp, frame);
1346 	KTR_LOG(kernentry_fork_ret, lp->lwp_proc->p_pid, lp->lwp_tid);
1347 }
1348 
1349 /*
1350  * Simplified back end of syscall(), used when returning from fork()
1351  * directly into user mode.
1352  *
1353  * This code will return back into the fork trampoline code which then
1354  * runs doreti.
1355  *
1356  * NOTE: The mplock is not held at any point.
1357  */
1358 void
1359 generic_lwp_return(struct lwp *lp, struct trapframe *frame)
1360 {
1361 	struct proc *p = lp->lwp_proc;
1362 
1363 	/*
1364 	 * Check for exit-race.  If one lwp exits the process concurrent with
1365 	 * another lwp creating a new thread, the two operations may cross
1366 	 * each other resulting in the newly-created lwp not receiving a
1367 	 * KILL signal.
1368 	 */
1369 	if (p->p_flags & P_WEXIT) {
1370 		kprintf("pid %d (%s) exit race handled\n",
1371 			p->p_pid, p->p_comm);
1372 		lwpsignal(p, lp, SIGKILL);
1373 	}
1374 
1375 	/*
1376 	 * Newly forked processes are given a kernel priority.  We have to
1377 	 * adjust the priority to a normal user priority and fake entry
1378 	 * into the kernel (call userenter()) to install a passive release
1379 	 * function just in case userret() decides to stop the process.  This
1380 	 * can occur when ^Z races a fork.  If we do not install the passive
1381 	 * release function the current process designation will not be
1382 	 * released when the thread goes to sleep.
1383 	 */
1384 	lwkt_setpri_self(TDPRI_USER_NORM);
1385 	userenter(lp->lwp_thread, p);
1386 	userret(lp, frame, 0);
1387 #ifdef KTRACE
1388 	if (KTRPOINT(lp->lwp_thread, KTR_SYSRET))
1389 		ktrsysret(lp, SYS_fork, 0, 0);
1390 #endif
1391 	lp->lwp_flags |= LWP_PASSIVE_ACQ;
1392 	userexit(lp);
1393 	lp->lwp_flags &= ~LWP_PASSIVE_ACQ;
1394 }
1395 
1396 /*
1397  * doreti has turned into this.  The frame is directly on the stack.  We
1398  * pull everything else we need (fpu and tls context) from the current
1399  * thread.
1400  *
1401  * Note on fpu interactions: In a virtual kernel, the fpu context for
1402  * an emulated user mode process is not shared with the virtual kernel's
1403  * fpu context, so we only have to 'stack' fpu contexts within the virtual
1404  * kernel itself, and not even then since the signal() contexts that we care
1405  * about save and restore the FPU state (I think anyhow).
1406  *
1407  * vmspace_ctl() returns an error only if it had problems instaling the
1408  * context we supplied or problems copying data to/from our VM space.
1409  */
1410 void
1411 go_user(struct intrframe *frame)
1412 {
1413 	struct trapframe *tf = (void *)&frame->if_rdi;
1414 	int r;
1415 	void *id;
1416 
1417 	/*
1418 	 * Interrupts may be disabled on entry, make sure all signals
1419 	 * can be received before beginning our loop.
1420 	 */
1421 	sigsetmask(0);
1422 
1423 	/*
1424 	 * Switch to the current simulated user process, then call
1425 	 * user_trap() when we break out of it (usually due to a signal).
1426 	 */
1427 	for (;;) {
1428 #if 1
1429 		/*
1430 		 * Always make the FPU state correct.  This should generally
1431 		 * be faster because the cost of taking a #NM fault through
1432 		 * the vkernel to the real kernel is astronomical.
1433 		 */
1434 		tf->tf_xflags &= ~PGEX_FPFAULT;
1435 		if (mdcpu->gd_npxthread != curthread) {
1436 			if (mdcpu->gd_npxthread)
1437 				npxsave(mdcpu->gd_npxthread->td_savefpu);
1438 			npxdna(tf);
1439 		}
1440 #else
1441 		/*
1442 		 * Tell the real kernel whether it is ok to use the FP
1443 		 * unit or not, allowing us to take a T_DNA exception
1444 		 * if the context tries to use the FP.
1445 		 */
1446 		if (mdcpu->gd_npxthread == curthread) {
1447 			tf->tf_xflags &= ~PGEX_FPFAULT;
1448 		} else {
1449 			tf->tf_xflags |= PGEX_FPFAULT;
1450 		}
1451 #endif
1452 
1453 		/*
1454 		 * Run emulated user process context.  This call interlocks
1455 		 * with new mailbox signals.
1456 		 *
1457 		 * Set PGEX_U unconditionally, indicating a user frame (the
1458 		 * bit is normally set only by T_PAGEFLT).
1459 		 */
1460 		if (vmm_enabled)
1461 			id = (void *)vtophys(curproc->p_vmspace->vm_pmap.pm_pml4);
1462 		else
1463 			id = &curproc->p_vmspace->vm_pmap;
1464 
1465 		r = vmspace_ctl(id, VMSPACE_CTL_RUN, tf, &curthread->td_savevext);
1466 
1467 		frame->if_xflags |= PGEX_U;
1468 #if 0
1469 		kprintf("GO USER %d trap %ld EVA %08lx RIP %08lx RSP %08lx XFLAGS %02lx/%02lx\n",
1470 			r, tf->tf_trapno, tf->tf_addr, tf->tf_rip, tf->tf_rsp,
1471 			tf->tf_xflags, frame->if_xflags);
1472 #endif
1473 		if (r < 0) {
1474 			if (errno != EINTR)
1475 				panic("vmspace_ctl failed error %d", errno);
1476 		} else {
1477 			if (tf->tf_trapno) {
1478 				user_trap(tf);
1479 			}
1480 		}
1481 		if (mycpu->gd_reqflags & RQF_AST_MASK) {
1482 			tf->tf_trapno = T_ASTFLT;
1483 			user_trap(tf);
1484 		}
1485 		tf->tf_trapno = 0;
1486 	}
1487 }
1488 
1489 /*
1490  * If PGEX_FPFAULT is set then set FP_VIRTFP in the PCB to force a T_DNA
1491  * fault (which is then passed back to the virtual kernel) if an attempt is
1492  * made to use the FP unit.
1493  *
1494  * XXX this is a fairly big hack.
1495  */
1496 void
1497 set_vkernel_fp(struct trapframe *frame)
1498 {
1499 	struct thread *td = curthread;
1500 
1501 	if (frame->tf_xflags & PGEX_FPFAULT) {
1502 		td->td_pcb->pcb_flags |= FP_VIRTFP;
1503 		if (mdcpu->gd_npxthread == td)
1504 			npxexit();
1505 	} else {
1506 		td->td_pcb->pcb_flags &= ~FP_VIRTFP;
1507 	}
1508 }
1509 
1510 /*
1511  * Called from vkernel_trap() to fixup the vkernel's syscall
1512  * frame for vmspace_ctl() return.
1513  */
1514 void
1515 cpu_vkernel_trap(struct trapframe *frame, int error)
1516 {
1517 	frame->tf_rax = error;
1518 	if (error)
1519 		frame->tf_rflags |= PSL_C;
1520 	else
1521 		frame->tf_rflags &= ~PSL_C;
1522 }
1523