xref: /dragonfly/sys/sys/thread.h (revision 2983445f)
1 /*
2  * SYS/THREAD.H
3  *
4  *	Implements the architecture independant portion of the LWKT
5  *	subsystem.
6  *
7  * Types which must already be defined when this header is included by
8  * userland:	struct md_thread
9  *
10  * $DragonFly: src/sys/sys/thread.h,v 1.97 2008/09/20 04:31:02 sephe Exp $
11  */
12 
13 #ifndef _SYS_THREAD_H_
14 #define _SYS_THREAD_H_
15 
16 #ifndef _SYS_STDINT_H_
17 #include <sys/stdint.h>		/* __int types */
18 #endif
19 #ifndef _SYS_PARAM_H_
20 #include <sys/param.h>		/* MAXCOMLEN */
21 #endif
22 #ifndef _SYS_QUEUE_H_
23 #include <sys/queue.h>		/* TAILQ_* macros */
24 #endif
25 #ifndef _SYS_MSGPORT_H_
26 #include <sys/msgport.h>	/* lwkt_port */
27 #endif
28 #ifndef _SYS_TIME_H_
29 #include <sys/time.h>   	/* struct timeval */
30 #endif
31 #ifndef _SYS_SPINLOCK_H_
32 #include <sys/spinlock.h>
33 #endif
34 #ifndef _SYS_IOSCHED_H_
35 #include <sys/iosched.h>
36 #endif
37 #ifndef _MACHINE_THREAD_H_
38 #include <machine/thread.h>
39 #endif
40 
41 struct globaldata;
42 struct lwp;
43 struct proc;
44 struct thread;
45 struct lwkt_queue;
46 struct lwkt_token;
47 struct lwkt_tokref;
48 struct lwkt_ipiq;
49 struct lwkt_cpu_msg;
50 struct lwkt_cpu_port;
51 struct lwkt_msg;
52 struct lwkt_port;
53 struct lwkt_cpusync;
54 union sysunion;
55 
56 typedef struct lwkt_queue	*lwkt_queue_t;
57 typedef struct lwkt_token	*lwkt_token_t;
58 typedef struct lwkt_tokref	*lwkt_tokref_t;
59 typedef struct lwkt_cpu_msg	*lwkt_cpu_msg_t;
60 typedef struct lwkt_cpu_port	*lwkt_cpu_port_t;
61 typedef struct lwkt_ipiq	*lwkt_ipiq_t;
62 typedef struct lwkt_cpusync	*lwkt_cpusync_t;
63 typedef struct thread 		*thread_t;
64 
65 typedef TAILQ_HEAD(lwkt_queue, thread) lwkt_queue;
66 
67 /*
68  * Differentiation between kernel threads and user threads.  Userland
69  * programs which want to access to kernel structures have to define
70  * _KERNEL_STRUCTURES.  This is a kinda safety valve to prevent badly
71  * written user programs from getting an LWKT thread that is neither the
72  * kernel nor the user version.
73  */
74 #if defined(_KERNEL) || defined(_KERNEL_STRUCTURES)
75 #ifndef _MACHINE_THREAD_H_
76 #include <machine/thread.h>		/* md_thread */
77 #endif
78 #ifndef _MACHINE_FRAME_H_
79 #include <machine/frame.h>
80 #endif
81 #else
82 struct intrframe;
83 #endif
84 
85 /*
86  * Tokens are used to serialize access to information.  They are 'soft'
87  * serialization entities that only stay in effect while a thread is
88  * running.  If the thread blocks, other threads can run holding the same
89  * token(s).  The tokens are reacquired when the original thread resumes.
90  *
91  * A thread can depend on its serialization remaining intact through a
92  * preemption.  An interrupt which attempts to use the same token as the
93  * thread being preempted will reschedule itself for non-preemptive
94  * operation, so the new token code is capable of interlocking against
95  * interrupts as well as other cpus.  This means that your token can only
96  * be (temporarily) lost if you *explicitly* block.
97  *
98  * Tokens are managed through a helper reference structure, lwkt_tokref.  Each
99  * thread has a stack of tokref's to keep track of acquired tokens.  Multiple
100  * tokref's may reference the same token.
101  */
102 
103 typedef struct lwkt_token {
104     struct lwkt_tokref	*t_ref;		/* Owning ref or NULL */
105     intptr_t		t_flags;	/* MP lock required */
106     long		t_collisions;	/* Collision counter */
107     cpumask_t		t_collmask;	/* Collision cpu mask for resched */
108     const char		*t_desc;	/* Descriptive name */
109 } lwkt_token;
110 
111 #define LWKT_TOKEN_MPSAFE	0x0001
112 
113 /*
114  * Static initialization for a lwkt_token.
115  *	UP - Not MPSAFE (full MP lock will also be acquired)
116  *	MP - Is MPSAFE  (only the token will be acquired)
117  */
118 #define LWKT_TOKEN_UP_INITIALIZER(name)	\
119 {					\
120 	.t_ref = NULL,			\
121 	.t_flags = 0,			\
122 	.t_collisions = 0,		\
123 	.t_collmask = 0,		\
124 	.t_desc = #name			\
125 }
126 
127 #define LWKT_TOKEN_MP_INITIALIZER(name)	\
128 {					\
129 	.t_ref = NULL,			\
130 	.t_flags = LWKT_TOKEN_MPSAFE,	\
131 	.t_collisions = 0,		\
132 	.t_collmask = 0,		\
133 	.t_desc = #name			\
134 }
135 
136 /*
137  * Assert that a particular token is held
138  */
139 #define LWKT_TOKEN_HELD(tok)		_lwkt_token_held(tok, curthread)
140 
141 #define ASSERT_LWKT_TOKEN_HELD(tok)	\
142 	KKASSERT(LWKT_TOKEN_HELD(tok))
143 
144 #define ASSERT_NO_TOKENS_HELD(td)	\
145 	KKASSERT((td)->td_toks_stop == &td->td_toks_array[0])
146 
147 /*
148  * Assert that a particular token is held and we are in a hard
149  * code execution section (interrupt, ipi, or hard code section).
150  * Hard code sections are not allowed to block or potentially block.
151  * e.g. lwkt_gettoken() would only be ok if the token were already
152  * held.
153  */
154 #define ASSERT_LWKT_TOKEN_HARD(tok)					\
155 	do {								\
156 		globaldata_t zgd __debugvar = mycpu;			\
157 		KKASSERT((tok)->t_ref &&				\
158 			 (tok)->t_ref->tr_owner == zgd->gd_curthread &&	\
159 			 zgd->gd_intr_nesting_level > 0);		\
160 	} while(0)
161 
162 /*
163  * Assert that a particular token is held and we are in a normal
164  * critical section.  Critical sections will not be preempted but
165  * can explicitly block (tsleep, lwkt_gettoken, etc).
166  */
167 #define ASSERT_LWKT_TOKEN_CRIT(tok)					\
168 	do {								\
169 		globaldata_t zgd __debugvar = mycpu;			\
170 		KKASSERT((tok)->t_ref &&				\
171 			 (tok)->t_ref->tr_owner == zgd->gd_curthread &&	\
172 			 zgd->gd_curthread->td_critcount > 0);		\
173 	} while(0)
174 
175 struct lwkt_tokref {
176     lwkt_token_t	tr_tok;		/* token in question */
177     struct thread	*tr_owner;	/* me */
178     intptr_t		tr_flags;	/* copy of t_flags */
179     const void		*tr_stallpc;	/* stalled at pc */
180 };
181 
182 #define MAXCPUFIFO      16	/* power of 2 */
183 #define MAXCPUFIFO_MASK	(MAXCPUFIFO - 1)
184 #define LWKT_MAXTOKENS	32	/* max tokens beneficially held by thread */
185 
186 /*
187  * Always cast to ipifunc_t when registering an ipi.  The actual ipi function
188  * is called with both the data and an interrupt frame, but the ipi function
189  * that is registered might only declare a data argument.
190  */
191 typedef void (*ipifunc1_t)(void *arg);
192 typedef void (*ipifunc2_t)(void *arg, int arg2);
193 typedef void (*ipifunc3_t)(void *arg, int arg2, struct intrframe *frame);
194 
195 typedef struct lwkt_ipiq {
196     int		ip_rindex;      /* only written by target cpu */
197     int		ip_xindex;      /* written by target, indicates completion */
198     int		ip_windex;      /* only written by source cpu */
199     ipifunc3_t	ip_func[MAXCPUFIFO];
200     void	*ip_arg1[MAXCPUFIFO];
201     int		ip_arg2[MAXCPUFIFO];
202     u_int	ip_npoll;	/* synchronization to avoid excess IPIs */
203 } lwkt_ipiq;
204 
205 /*
206  * CPU Synchronization structure.  See lwkt_cpusync_start() and
207  * lwkt_cpusync_finish() for more information.
208  */
209 typedef void (*cpusync_func_t)(void *arg);
210 
211 struct lwkt_cpusync {
212     cpumask_t	cs_mask;		/* cpus running the sync */
213     cpumask_t	cs_mack;		/* mask acknowledge */
214     cpusync_func_t cs_func;		/* function to execute */
215     void	*cs_data;		/* function data */
216 };
217 
218 /*
219  * The standard message and queue structure used for communications between
220  * cpus.  Messages are typically queued via a machine-specific non-linked
221  * FIFO matrix allowing any cpu to send a message to any other cpu without
222  * blocking.
223  */
224 typedef struct lwkt_cpu_msg {
225     void	(*cm_func)(lwkt_cpu_msg_t msg);	/* primary dispatch function */
226     int		cm_code;		/* request code if applicable */
227     int		cm_cpu;			/* reply to cpu */
228     thread_t	cm_originator;		/* originating thread for wakeup */
229 } lwkt_cpu_msg;
230 
231 /*
232  * Thread structure.  Note that ownership of a thread structure is special
233  * cased and there is no 'token'.  A thread is always owned by the cpu
234  * represented by td_gd, any manipulation of the thread by some other cpu
235  * must be done through cpu_*msg() functions.  e.g. you could request
236  * ownership of a thread that way, or hand a thread off to another cpu.
237  *
238  * NOTE: td_ucred is synchronized from the p_ucred on user->kernel syscall,
239  *	 trap, and AST/signal transitions to provide a stable ucred for
240  *	 (primarily) system calls.  This field will be NULL for pure kernel
241  *	 threads.
242  */
243 struct md_intr_info;
244 struct caps_kinfo;
245 
246 struct thread {
247     TAILQ_ENTRY(thread) td_threadq;
248     TAILQ_ENTRY(thread) td_allq;
249     TAILQ_ENTRY(thread) td_sleepq;
250     lwkt_port	td_msgport;	/* built-in message port for replies */
251     struct lwp	*td_lwp;	/* (optional) associated lwp */
252     struct proc	*td_proc;	/* (optional) associated process */
253     struct pcb	*td_pcb;	/* points to pcb and top of kstack */
254     struct globaldata *td_gd;	/* associated with this cpu */
255     const char	*td_wmesg;	/* string name for blockage */
256     const volatile void	*td_wchan;	/* waiting on channel */
257     int		td_pri;		/* 0-31, 31=highest priority (note 1) */
258     int		td_critcount;	/* critical section priority */
259     int		td_flags;	/* TDF flags */
260     int		td_wdomain;	/* domain for wchan address (typ 0) */
261     void	(*td_preemptable)(struct thread *td, int critcount);
262     void	(*td_release)(struct thread *td);
263     char	*td_kstack;	/* kernel stack */
264     int		td_kstack_size;	/* size of kernel stack */
265     char	*td_sp;		/* kernel stack pointer for LWKT restore */
266     void	(*td_switch)(struct thread *ntd);
267     __uint64_t	td_uticks;	/* Statclock hits in user mode (uS) */
268     __uint64_t	td_sticks;      /* Statclock hits in system mode (uS) */
269     __uint64_t	td_iticks;	/* Statclock hits processing intr (uS) */
270     int		td_locks;	/* lockmgr lock debugging */
271     void	*td_dsched_priv1;	/* priv data for I/O schedulers */
272     int		td_refs;	/* hold position in gd_tdallq / hold free */
273     int		td_nest_count;	/* prevent splz nesting */
274     int		td_unused01[2];	/* for future fields */
275 #ifdef SMP
276     int		td_cscount;	/* cpu synchronization master */
277 #else
278     int		td_cscount_unused;
279 #endif
280     int		td_unused02[4];	/* for future fields */
281     int		td_unused03[4];	/* for future fields */
282     struct iosched_data td_iosdata;	/* Dynamic I/O scheduling data */
283     struct timeval td_start;	/* start time for a thread/process */
284     char	td_comm[MAXCOMLEN+1]; /* typ 16+1 bytes */
285     struct thread *td_preempted; /* we preempted this thread */
286     struct ucred *td_ucred;		/* synchronized from p_ucred */
287     struct caps_kinfo *td_caps;	/* list of client and server registrations */
288     lwkt_tokref_t td_toks_stop;
289     struct lwkt_tokref td_toks_array[LWKT_MAXTOKENS];
290     int		td_fairq_lticks;	/* fairq wakeup accumulator reset */
291     int		td_fairq_accum;		/* fairq priority accumulator */
292     const void	*td_mplock_stallpc;	/* last mplock stall address */
293 #ifdef DEBUG_CRIT_SECTIONS
294 #define CRIT_DEBUG_ARRAY_SIZE   32
295 #define CRIT_DEBUG_ARRAY_MASK   (CRIT_DEBUG_ARRAY_SIZE - 1)
296     const char	*td_crit_debug_array[CRIT_DEBUG_ARRAY_SIZE];
297     int		td_crit_debug_index;
298     int		td_in_crit_report;
299 #endif
300     struct md_thread td_mach;
301 #ifdef DEBUG_LOCKS
302 #define SPINLOCK_DEBUG_ARRAY_SIZE	32
303    int 	td_spinlock_stack_id[SPINLOCK_DEBUG_ARRAY_SIZE];
304    struct spinlock *td_spinlock_stack[SPINLOCK_DEBUG_ARRAY_SIZE];
305    void 	*td_spinlock_caller_pc[SPINLOCK_DEBUG_ARRAY_SIZE];
306 #endif
307 };
308 
309 #define td_toks_base		td_toks_array[0]
310 #define td_toks_end		td_toks_array[LWKT_MAXTOKENS]
311 
312 #define TD_TOKS_HELD(td)	((td)->td_toks_stop != &(td)->td_toks_base)
313 #define TD_TOKS_NOT_HELD(td)	((td)->td_toks_stop == &(td)->td_toks_base)
314 
315 /*
316  * Thread flags.  Note that TDF_RUNNING is cleared on the old thread after
317  * we switch to the new one, which is necessary because LWKTs don't need
318  * to hold the BGL.  This flag is used by the exit code and the managed
319  * thread migration code.  Note in addition that preemption will cause
320  * TDF_RUNNING to be cleared temporarily, so any code checking TDF_RUNNING
321  * must also check TDF_PREEMPT_LOCK.
322  *
323  * LWKT threads stay on their (per-cpu) run queue while running, not to
324  * be confused with user processes which are removed from the user scheduling
325  * run queue while actually running.
326  *
327  * td_threadq can represent the thread on one of three queues... the LWKT
328  * run queue, a tsleep queue, or an lwkt blocking queue.  The LWKT subsystem
329  * does not allow a thread to be scheduled if it already resides on some
330  * queue.
331  */
332 #define TDF_RUNNING		0x0001	/* thread still active */
333 #define TDF_RUNQ		0x0002	/* on an LWKT run queue */
334 #define TDF_PREEMPT_LOCK	0x0004	/* I have been preempted */
335 #define TDF_PREEMPT_DONE	0x0008	/* acknowledge preemption complete */
336 #define TDF_UNUSED00000010	0x0010
337 #define TDF_MIGRATING		0x0020	/* thread is being migrated */
338 #define TDF_SINTR		0x0040	/* interruptability hint for 'ps' */
339 #define TDF_TSLEEPQ		0x0080	/* on a tsleep wait queue */
340 
341 #define TDF_SYSTHREAD		0x0100	/* allocations may use reserve */
342 #define TDF_ALLOCATED_THREAD	0x0200	/* objcache allocated thread */
343 #define TDF_ALLOCATED_STACK	0x0400	/* objcache allocated stack */
344 #define TDF_VERBOSE		0x0800	/* verbose on exit */
345 #define TDF_DEADLKTREAT		0x1000	/* special lockmgr deadlock treatment */
346 #define TDF_STOPREQ		0x2000	/* suspend_kproc */
347 #define TDF_WAKEREQ		0x4000	/* resume_kproc */
348 #define TDF_TIMEOUT		0x8000	/* tsleep timeout */
349 #define TDF_INTTHREAD		0x00010000	/* interrupt thread */
350 #define TDF_TSLEEP_DESCHEDULED	0x00020000	/* tsleep core deschedule */
351 #define TDF_BLOCKED		0x00040000	/* Thread is blocked */
352 #define TDF_PANICWARN		0x00080000	/* panic warning in switch */
353 #define TDF_BLOCKQ		0x00100000	/* on block queue */
354 #define TDF_UNUSED00200000	0x00200000
355 #define TDF_EXITING		0x00400000	/* thread exiting */
356 #define TDF_USINGFP		0x00800000	/* thread using fp coproc */
357 #define TDF_KERNELFP		0x01000000	/* kernel using fp coproc */
358 #define TDF_UNUSED02000000	0x02000000
359 #define TDF_CRYPTO		0x04000000	/* crypto thread */
360 #define TDF_MARKER		0x80000000	/* fairq marker thread */
361 
362 /*
363  * Thread priorities.  Typically only one thread from any given
364  * user process scheduling queue is on the LWKT run queue at a time.
365  * Remember that there is one LWKT run queue per cpu.
366  *
367  * Critical sections are handled by bumping td_pri above TDPRI_MAX, which
368  * causes interrupts to be masked as they occur.  When this occurs a
369  * rollup flag will be set in mycpu->gd_reqflags.
370  */
371 #define TDPRI_IDLE_THREAD	0	/* the idle thread */
372 #define TDPRI_IDLE_WORK		1	/* idle work (page zero, etc) */
373 #define TDPRI_USER_SCHEDULER	2	/* user scheduler helper */
374 #define TDPRI_USER_IDLE		4	/* user scheduler idle */
375 #define TDPRI_USER_NORM		6	/* user scheduler normal */
376 #define TDPRI_USER_REAL		8	/* user scheduler real time */
377 #define TDPRI_KERN_LPSCHED	9	/* scheduler helper for userland sch */
378 #define TDPRI_KERN_USER		10	/* kernel / block in syscall */
379 #define TDPRI_KERN_DAEMON	12	/* kernel daemon (pageout, etc) */
380 #define TDPRI_SOFT_NORM		14	/* kernel / normal */
381 #define TDPRI_SOFT_TIMER	16	/* kernel / timer */
382 #define TDPRI_EXITING		19	/* exiting thread */
383 #define TDPRI_INT_SUPPORT	20	/* kernel / high priority support */
384 #define TDPRI_INT_LOW		27	/* low priority interrupt */
385 #define TDPRI_INT_MED		28	/* medium priority interrupt */
386 #define TDPRI_INT_HIGH		29	/* high priority interrupt */
387 #define TDPRI_MAX		31
388 
389 /*
390  * Scale is the approximate number of ticks for which we desire the
391  * entire gd_tdrunq to get service.  With hz = 100 a scale of 8 is 80ms.
392  *
393  * Setting this value too small will result in inefficient switching
394  * rates.
395  */
396 #define TDFAIRQ_SCALE		8
397 #define TDFAIRQ_MAX(gd)		((gd)->gd_fairq_total_pri * TDFAIRQ_SCALE)
398 
399 #define LWKT_THREAD_STACK	(UPAGES * PAGE_SIZE)
400 
401 #define CACHE_NTHREADS		6
402 
403 #define IN_CRITICAL_SECT(td)	((td)->td_critcount)
404 
405 #ifdef _KERNEL
406 
407 /*
408  * Global tokens
409  */
410 extern struct lwkt_token mp_token;
411 extern struct lwkt_token pmap_token;
412 extern struct lwkt_token dev_token;
413 extern struct lwkt_token vm_token;
414 extern struct lwkt_token vmspace_token;
415 extern struct lwkt_token kvm_token;
416 extern struct lwkt_token proc_token;
417 extern struct lwkt_token tty_token;
418 extern struct lwkt_token vnode_token;
419 extern struct lwkt_token vmobj_token;
420 
421 /*
422  * Procedures
423  */
424 extern void lwkt_init(void);
425 extern struct thread *lwkt_alloc_thread(struct thread *, int, int, int);
426 extern void lwkt_init_thread(struct thread *, void *, int, int,
427 			     struct globaldata *);
428 extern void lwkt_set_comm(thread_t, const char *, ...) __printflike(2, 3);
429 extern void lwkt_wait_free(struct thread *);
430 extern void lwkt_free_thread(struct thread *);
431 extern void lwkt_gdinit(struct globaldata *);
432 extern void lwkt_switch(void);
433 extern void lwkt_preempt(thread_t, int);
434 extern void lwkt_schedule(thread_t);
435 extern void lwkt_schedule_noresched(thread_t);
436 extern void lwkt_schedule_self(thread_t);
437 extern void lwkt_deschedule(thread_t);
438 extern void lwkt_deschedule_self(thread_t);
439 extern void lwkt_yield(void);
440 extern void lwkt_user_yield(void);
441 extern void lwkt_token_wait(void);
442 extern void lwkt_hold(thread_t);
443 extern void lwkt_rele(thread_t);
444 extern void lwkt_passive_release(thread_t);
445 extern void lwkt_maybe_splz(thread_t);
446 
447 extern void lwkt_gettoken(lwkt_token_t);
448 extern void lwkt_gettoken_hard(lwkt_token_t);
449 extern int  lwkt_trytoken(lwkt_token_t);
450 extern void lwkt_reltoken(lwkt_token_t);
451 extern void lwkt_reltoken_hard(lwkt_token_t);
452 extern int  lwkt_cnttoken(lwkt_token_t, thread_t);
453 extern int  lwkt_getalltokens(thread_t);
454 extern void lwkt_relalltokens(thread_t);
455 extern void lwkt_drain_token_requests(void);
456 extern void lwkt_token_init(lwkt_token_t, int, const char *);
457 extern void lwkt_token_uninit(lwkt_token_t);
458 
459 extern void lwkt_token_pool_init(void);
460 extern lwkt_token_t lwkt_token_pool_lookup(void *);
461 extern lwkt_token_t lwkt_getpooltoken(void *);
462 extern void lwkt_relpooltoken(void *);
463 
464 extern void lwkt_setpri(thread_t, int);
465 extern void lwkt_setpri_initial(thread_t, int);
466 extern void lwkt_setpri_self(int);
467 extern void lwkt_fairq_schedulerclock(thread_t td);
468 extern void lwkt_fairq_setpri_self(int pri);
469 extern int lwkt_fairq_push(int pri);
470 extern void lwkt_fairq_pop(int pri);
471 extern void lwkt_fairq_yield(void);
472 extern void lwkt_setcpu_self(struct globaldata *);
473 extern void lwkt_migratecpu(int);
474 
475 #ifdef SMP
476 
477 extern void lwkt_giveaway(struct thread *);
478 extern void lwkt_acquire(struct thread *);
479 extern int  lwkt_send_ipiq3(struct globaldata *, ipifunc3_t, void *, int);
480 extern int  lwkt_send_ipiq3_passive(struct globaldata *, ipifunc3_t,
481 				    void *, int);
482 extern int  lwkt_send_ipiq3_nowait(struct globaldata *, ipifunc3_t,
483 				   void *, int);
484 extern int  lwkt_send_ipiq3_bycpu(int, ipifunc3_t, void *, int);
485 extern int  lwkt_send_ipiq3_mask(cpumask_t, ipifunc3_t, void *, int);
486 extern void lwkt_wait_ipiq(struct globaldata *, int);
487 extern int  lwkt_seq_ipiq(struct globaldata *);
488 extern void lwkt_process_ipiq(void);
489 extern void lwkt_process_ipiq_frame(struct intrframe *);
490 extern void lwkt_smp_stopped(void);
491 extern void lwkt_synchronize_ipiqs(const char *);
492 
493 #endif /* SMP */
494 
495 /* lwkt_cpusync_init() - inline function in sys/thread2.h */
496 extern void lwkt_cpusync_simple(cpumask_t, cpusync_func_t, void *);
497 extern void lwkt_cpusync_interlock(lwkt_cpusync_t);
498 extern void lwkt_cpusync_deinterlock(lwkt_cpusync_t);
499 
500 extern void crit_panic(void) __dead2;
501 extern struct lwp *lwkt_preempted_proc(void);
502 
503 extern int  lwkt_create (void (*func)(void *), void *, struct thread **,
504 		struct thread *, int, int,
505 		const char *, ...) __printflike(7, 8);
506 extern void lwkt_exit (void) __dead2;
507 extern void lwkt_remove_tdallq (struct thread *);
508 
509 #endif
510 
511 #endif
512 
513