xref: /dragonfly/sys/sys/thread.h (revision 8d1e479a)
1 /*
2  * SYS/THREAD.H
3  *
4  *	Implements the architecture independant portion of the LWKT
5  *	subsystem.
6  */
7 
8 #ifndef _SYS_THREAD_H_
9 #define	_SYS_THREAD_H_
10 
11 #ifndef _SYS_PARAM_H_
12 #include <sys/param.h>		/* MAXCOMLEN */
13 #endif
14 #ifndef _SYS_QUEUE_H_
15 #include <sys/queue.h>		/* TAILQ_* macros */
16 #endif
17 #ifndef _SYS_MSGPORT_H_
18 #include <sys/msgport.h>	/* lwkt_port */
19 #endif
20 #ifndef _SYS_TIME_H_
21 #include <sys/time.h>   	/* struct timeval */
22 #endif
23 #ifndef _SYS_LOCK_H
24 #include <sys/lock.h>
25 #endif
26 #ifndef _SYS_SPINLOCK_H_
27 #include <sys/spinlock.h>
28 #endif
29 #ifndef _SYS_IOSCHED_H_
30 #include <sys/iosched.h>
31 #endif
32 #include <machine/thread.h>	/* md_thread */
33 #include <machine/stdint.h>
34 #include <machine/ucontext.h>
35 
36 struct globaldata;
37 struct lwp;
38 struct proc;
39 struct thread;
40 struct lwkt_queue;
41 struct lwkt_token;
42 struct lwkt_tokref;
43 struct lwkt_ipiq;
44 #if 0
45 struct lwkt_cpu_msg;
46 struct lwkt_cpu_port;
47 #endif
48 struct lwkt_cpusync;
49 struct fdnode;
50 union sysunion;
51 
52 struct sleepqueue_wchan;
53 
54 typedef struct lwkt_queue	*lwkt_queue_t;
55 typedef struct lwkt_token	*lwkt_token_t;
56 typedef struct lwkt_tokref	*lwkt_tokref_t;
57 #if 0
58 typedef struct lwkt_cpu_msg	*lwkt_cpu_msg_t;
59 typedef struct lwkt_cpu_port	*lwkt_cpu_port_t;
60 #endif
61 typedef struct lwkt_ipiq	*lwkt_ipiq_t;
62 typedef struct lwkt_cpusync	*lwkt_cpusync_t;
63 typedef struct thread 		*thread_t;
64 
65 typedef TAILQ_HEAD(lwkt_queue, thread) lwkt_queue;
66 
67 /*
68  * Differentiation between kernel threads and user threads.  Userland
69  * programs which want to access to kernel structures have to define
70  * _KERNEL_STRUCTURES.  This is a kinda safety valve to prevent badly
71  * written user programs from getting an LWKT thread that is neither the
72  * kernel nor the user version.
73  */
74 #if defined(_KERNEL) || defined(_KERNEL_STRUCTURES)
75 #ifndef _SYS_CPUMASK_H_
76 #include <sys/cpumask.h>	/* cpumask_t */
77 #endif
78 #ifndef _CPU_FRAME_H_
79 #include <machine/frame.h>
80 #endif
81 #else
82 struct intrframe;
83 #endif
84 
85 /*
86  * Tokens are used to serialize access to information.  They are 'soft'
87  * serialization entities that only stay in effect while a thread is
88  * running.  If the thread blocks, other threads can run holding the same
89  * token(s).  The tokens are reacquired when the original thread resumes.
90  *
91  * Tokens guarantee that no deadlock can happen regardless of type or
92  * ordering.  However, obtaining the same token first shared, then
93  * stacking exclusive, is not allowed and will panic.
94  *
95  * A thread can depend on its serialization remaining intact through a
96  * preemption.  An interrupt which attempts to use the same token as the
97  * thread being preempted will reschedule itself for non-preemptive
98  * operation, so the new token code is capable of interlocking against
99  * interrupts as well as other cpus.  This means that your token can only
100  * be (temporarily) lost if you *explicitly* block.
101  *
102  * Tokens are managed through a helper reference structure, lwkt_tokref.  Each
103  * thread has a stack of tokref's to keep track of acquired tokens.  Multiple
104  * tokref's may reference the same token.
105  *
106  * EXCLUSIVE TOKENS
107  *	Acquiring an exclusive token requires acquiring the EXCLUSIVE bit
108  *	with count == 0.  If the exclusive bit cannot be acquired, EXCLREQ
109  *	is set.  Once acquired, EXCLREQ is cleared (but could get set by
110  *	another thread also trying for an exclusive lock at any time).
111  *
112  * SHARED TOKENS
113  *	Acquiring a shared token requires waiting for the EXCLUSIVE bit
114  *	to be cleared and then acquiring a count.  A shared lock request
115  *	can temporarily acquire a count and then back it out if it is
116  *	unable to obtain the EXCLUSIVE bit, allowing fetchadd to be used.
117  *
118  *	A thread attempting to get a single shared token will defer to
119  *	pending exclusive requesters.  However, a thread already holding
120  *	one or more tokens and trying to get an additional shared token
121  *	cannot defer to exclusive requesters because doing so can lead
122  *	to a deadlock.
123  *
124  * Multiple exclusive tokens are handled by treating the additional tokens
125  * as a special case of the shared token, incrementing the count value.  This
126  * reduces the complexity of the token release code.
127  */
128 
129 struct lwkt_token {
130     long		t_count;	/* Shared/exclreq/exclusive access */
131     struct lwkt_tokref	*t_ref;		/* Exclusive ref */
132     long		t_collisions;	/* Collision counter */
133     const char		*t_desc;	/* Descriptive name */
134 };
135 
136 #define TOK_EXCLUSIVE	0x00000001	/* Exclusive lock held */
137 #define TOK_EXCLREQ	0x00000002	/* Exclusive request pending */
138 #define TOK_INCR	4		/* Shared count increment */
139 #define TOK_COUNTMASK	(~(long)(TOK_EXCLUSIVE|TOK_EXCLREQ))
140 
141 /*
142  * Static initialization for a lwkt_token.
143  */
144 #define LWKT_TOKEN_INITIALIZER(name)	\
145 {					\
146 	.t_count = 0,			\
147 	.t_ref = NULL,			\
148 	.t_collisions = 0,		\
149 	.t_desc = #name			\
150 }
151 
152 /*
153  * Assert that a particular token is held
154  */
155 #define LWKT_TOKEN_HELD_ANY(tok)	_lwkt_token_held_any(tok, curthread)
156 #define LWKT_TOKEN_HELD_EXCL(tok)	_lwkt_token_held_excl(tok, curthread)
157 
158 #define ASSERT_LWKT_TOKEN_HELD(tok)		\
159 	KKASSERT(LWKT_TOKEN_HELD_ANY(tok))
160 
161 #define ASSERT_LWKT_TOKEN_HELD_EXCL(tok)	\
162 	KKASSERT(LWKT_TOKEN_HELD_EXCL(tok))
163 
164 #define ASSERT_NO_TOKENS_HELD(td)	\
165 	KKASSERT((td)->td_toks_stop == &td->td_toks_array[0])
166 
167 struct lwkt_tokref {
168     lwkt_token_t	tr_tok;		/* token in question */
169     long		tr_count;	/* TOK_EXCLUSIVE|TOK_EXCLREQ or 0 */
170     struct thread	*tr_owner;	/* me */
171 };
172 
173 #define MAXCPUFIFO      256	/* power of 2 */
174 #define MAXCPUFIFO_MASK	(MAXCPUFIFO - 1)
175 #define LWKT_MAXTOKENS	32	/* max tokens beneficially held by thread */
176 
177 #if defined(_KERNEL) || defined(_KERNEL_STRUCTURES)
178 /*
179  * Always cast to ipifunc_t when registering an ipi.  The actual ipi function
180  * is called with both the data and an interrupt frame, but the ipi function
181  * that is registered might only declare a data argument.
182  */
183 typedef void (*ipifunc1_t)(void *arg);
184 typedef void (*ipifunc2_t)(void *arg, int arg2);
185 typedef void (*ipifunc3_t)(void *arg, int arg2, struct intrframe *frame);
186 
187 struct lwkt_ipiq {
188     int		ip_rindex;      /* only written by target cpu */
189     int		ip_xindex;      /* written by target, indicates completion */
190     int		ip_windex;      /* only written by source cpu */
191     int		ip_drain;	/* drain source limit */
192     struct {
193 	ipifunc3_t	func;
194 	void		*arg1;
195 	int		arg2;
196 	char		filler[32 - sizeof(int) - sizeof(void *) * 2];
197     } ip_info[MAXCPUFIFO];
198 };
199 
200 /*
201  * CPU Synchronization structure.  See lwkt_cpusync_init() and
202  * lwkt_cpusync_interlock() for more information.
203  */
204 typedef void (*cpusync_func_t)(void *arg);
205 
206 struct lwkt_cpusync {
207     cpumask_t	cs_mask;		/* cpus running the sync */
208     cpumask_t	cs_mack;		/* mask acknowledge */
209     cpusync_func_t cs_func;		/* function to execute */
210     void	*cs_data;		/* function data */
211 };
212 #endif /* _KERNEL || _KERNEL_STRUCTURES */
213 
214 /*
215  * The standard message and queue structure used for communications between
216  * cpus.  Messages are typically queued via a machine-specific non-linked
217  * FIFO matrix allowing any cpu to send a message to any other cpu without
218  * blocking.
219  */
220 #if 0
221 typedef struct lwkt_cpu_msg {
222     void	(*cm_func)(lwkt_cpu_msg_t msg);	/* primary dispatch function */
223     int		cm_code;		/* request code if applicable */
224     int		cm_cpu;			/* reply to cpu */
225     thread_t	cm_originator;		/* originating thread for wakeup */
226 } lwkt_cpu_msg;
227 #endif
228 
229 /*
230  * per-thread file descriptor cache
231  */
232 struct fdcache {
233 	int     fd;			/* descriptor being cached */
234 	int     locked;
235 	struct file *fp;		/* cached referenced fp */
236 	int	lru;
237 	int	unused[3];
238 } __cachealign;
239 
240 #define NFDCACHE	4		/* max fd's cached by a thread */
241 
242 /*
243  * Thread structure.  Note that ownership of a thread structure is special
244  * cased and there is no 'token'.  A thread is always owned by the cpu
245  * represented by td_gd, any manipulation of the thread by some other cpu
246  * must be done through cpu_*msg() functions.  e.g. you could request
247  * ownership of a thread that way, or hand a thread off to another cpu.
248  *
249  * NOTE: td_ucred is synchronized from the p_ucred on user->kernel syscall,
250  *	 trap, and AST/signal transitions to provide a stable ucred for
251  *	 (primarily) system calls.  This field will be NULL for pure kernel
252  *	 threads.
253  */
254 struct md_intr_info;
255 
256 struct thread {
257     TAILQ_ENTRY(thread) td_threadq;
258     TAILQ_ENTRY(thread) td_allq;
259     TAILQ_ENTRY(thread) td_sleepq;
260     lwkt_port	td_msgport;	/* built-in message port for replies */
261     struct lwp	*td_lwp;	/* (optional) associated lwp */
262     struct proc	*td_proc;	/* (optional) associated process */
263     struct pcb	*td_pcb;	/* points to pcb and top of kstack */
264     struct globaldata *td_gd;	/* associated with this cpu */
265     const char	*td_wmesg;	/* string name for blockage */
266     const volatile void	*td_wchan;	/* waiting on channel */
267     int		td_pri;		/* 0-31, 31=highest priority (note 1) */
268     int		td_critcount;	/* critical section priority */
269     u_int	td_flags;	/* TDF flags */
270     int		td_wdomain;	/* domain for wchan address (typ 0) */
271     void	(*td_preemptable)(struct thread *td, int critcount);
272     void	(*td_release)(struct thread *td);
273     char	*td_kstack;	/* kernel stack */
274     int		td_kstack_size;	/* size of kernel stack */
275     char	*td_sp;		/* kernel stack pointer for LWKT restore */
276     thread_t	(*td_switch)(struct thread *ntd);
277     __uint64_t	td_uticks;	/* Statclock hits in user mode (uS) */
278     __uint64_t	td_sticks;      /* Statclock hits in system mode (uS) */
279     __uint64_t	td_iticks;	/* Statclock hits processing intr (uS) */
280     int		td_locks;	/* lockmgr lock debugging */
281     struct plimit *td_limit;	/* synchronized from proc->p_limit */
282     int		td_refs;	/* hold position in gd_tdallq / hold free */
283     int		td_nest_count;	/* prevent splz nesting */
284     u_int	td_contended;	/* token contention count */
285     u_int	td_mpflags;	/* flags can be set by foreign cpus */
286     int		td_cscount;	/* cpu synchronization master */
287     int		td_wakefromcpu;	/* who woke me up? */
288     int		td_upri;	/* user priority (sub-priority under td_pri) */
289     int		td_type;	/* thread type, TD_TYPE_ */
290     int		td_tracker;	/* misc use (base value 0), recursion count */
291     int		td_fdcache_lru;
292     int		td_unused03[3];	/* for future fields */
293     struct iosched_data td_iosdata;	/* Dynamic I/O scheduling data */
294     struct timeval td_start;	/* start time for a thread/process */
295     char	td_comm[MAXCOMLEN+1]; /* typ 16+1 bytes */
296     struct thread *td_preempted; /* we preempted this thread */
297     struct ucred *td_ucred;	/* synchronized from proc->p_ucred */
298     mcontext_t	*td_kfpuctx;	/* kernel_fpu_begin()/kernel_fpu_end() */
299     lwkt_tokref_t td_toks_have;		/* tokens we own */
300     lwkt_tokref_t td_toks_stop;		/* tokens we want */
301     struct lwkt_tokref td_toks_array[LWKT_MAXTOKENS];
302     int		td_fairq_load;		/* fairq */
303     int		td_fairq_count;		/* fairq */
304     struct globaldata *td_migrate_gd;	/* target gd for thread migration */
305     struct fdcache    td_fdcache[NFDCACHE];
306 
307     /*
308      * Linux and FreeBSD compat fields
309      */
310     void	*td_linux_task;		/* drm/linux support */
311     struct sleepqueue_wchan *td_sqwc;	/* freebsd sleepq*() API */
312     sbintime_t	td_sqtimo;		/* freebsd sleepq*() API */
313     int		td_sqqueue;		/* freebsd sleepq*() API */
314 
315     /*
316      * Debugging
317      */
318 #ifdef DEBUG_CRIT_SECTIONS
319 #define CRIT_DEBUG_ARRAY_SIZE   32
320 #define CRIT_DEBUG_ARRAY_MASK   (CRIT_DEBUG_ARRAY_SIZE - 1)
321     const char	*td_crit_debug_array[CRIT_DEBUG_ARRAY_SIZE];
322     int		td_crit_debug_index;
323     int		td_in_crit_report;
324 #endif
325 
326     /*
327      * machine-specific
328      */
329     struct md_thread td_mach;
330 
331     /*
332      * Debugging
333      */
334 #ifdef DEBUG_LOCKS
335 #define SPINLOCK_DEBUG_ARRAY_SIZE	32
336    int 	td_spinlock_stack_id[SPINLOCK_DEBUG_ARRAY_SIZE];
337    struct spinlock *td_spinlock_stack[SPINLOCK_DEBUG_ARRAY_SIZE];
338    void 	*td_spinlock_caller_pc[SPINLOCK_DEBUG_ARRAY_SIZE];
339 
340     /*
341      * Track lockmgr locks held; lk->lk_filename:lk->lk_lineno is the holder
342      */
343 #define LOCKMGR_DEBUG_ARRAY_SIZE	8
344     int		td_lockmgr_stack_id[LOCKMGR_DEBUG_ARRAY_SIZE];
345     struct lock	*td_lockmgr_stack[LOCKMGR_DEBUG_ARRAY_SIZE];
346 #endif
347 };
348 
349 #define td_toks_base		td_toks_array[0]
350 #define td_toks_end		td_toks_array[LWKT_MAXTOKENS]
351 
352 #define TD_TOKS_HELD(td)	((td)->td_toks_stop != &(td)->td_toks_base)
353 #define TD_TOKS_NOT_HELD(td)	((td)->td_toks_stop == &(td)->td_toks_base)
354 
355 /*
356  * Thread flags.  Note that TDF_RUNNING is cleared on the old thread after
357  * we switch to the new one, which is necessary because LWKTs don't need
358  * to hold the BGL.  This flag is used by the exit code and the managed
359  * thread migration code.  Note in addition that preemption will cause
360  * TDF_RUNNING to be cleared temporarily, so any code checking TDF_RUNNING
361  * must also check TDF_PREEMPT_LOCK.
362  *
363  * LWKT threads stay on their (per-cpu) run queue while running, not to
364  * be confused with user processes which are removed from the user scheduling
365  * run queue while actually running.
366  *
367  * td_threadq can represent the thread on one of three queues... the LWKT
368  * run queue, a tsleep queue, or an lwkt blocking queue.  The LWKT subsystem
369  * does not allow a thread to be scheduled if it already resides on some
370  * queue.
371  */
372 #define TDF_RUNNING		0x00000001	/* thread still active */
373 #define TDF_RUNQ		0x00000002	/* on an LWKT run queue */
374 #define TDF_PREEMPT_LOCK	0x00000004	/* I have been preempted */
375 #define TDF_PREEMPT_DONE	0x00000008	/* ac preemption complete */
376 #define TDF_NOSTART		0x00000010	/* do not schedule on create */
377 #define TDF_MIGRATING		0x00000020	/* thread is being migrated */
378 #define TDF_SINTR		0x00000040	/* interruptability for 'ps' */
379 #define TDF_TSLEEPQ		0x00000080	/* on a tsleep wait queue */
380 
381 #define TDF_SYSTHREAD		0x00000100	/* reserve memory may be used */
382 #define TDF_ALLOCATED_THREAD	0x00000200	/* objcache allocated thread */
383 #define TDF_ALLOCATED_STACK	0x00000400	/* objcache allocated stack */
384 #define TDF_FPU_HEUR		0x00000800	/* active restore on switch */
385 #define TDF_DEADLKTREAT		0x00001000	/* special lockmgr treatment */
386 #define TDF_MARKER		0x00002000	/* tdallq list scan marker */
387 #define TDF_TIMEOUT_RUNNING	0x00004000	/* tsleep timeout race */
388 #define TDF_TIMEOUT		0x00008000	/* tsleep timeout */
389 #define TDF_INTTHREAD		0x00010000	/* interrupt thread */
390 #define TDF_TSLEEP_DESCHEDULED	0x00020000	/* tsleep core deschedule */
391 #define TDF_BLOCKED		0x00040000	/* Thread is blocked */
392 #define TDF_PANICWARN		0x00080000	/* panic warning in switch */
393 #define TDF_BLOCKQ		0x00100000	/* on block queue */
394 #define TDF_FORCE_SPINPORT	0x00200000
395 #define TDF_EXITING		0x00400000	/* thread exiting */
396 #define TDF_USINGFP		0x00800000	/* thread using fp coproc */
397 #define TDF_KERNELFP		0x01000000	/* kernel using fp coproc */
398 #define TDF_DELAYED_WAKEUP	0x02000000
399 #define TDF_FIXEDCPU		0x04000000	/* running cpu is fixed */
400 #define TDF_USERMODE		0x08000000	/* in or entering user mode */
401 #define TDF_NOFAULT		0x10000000	/* force onfault on fault */
402 #define TDF_CLKTHREAD		0x20000000	/* detect INTTHREAD clock */
403 
404 #define TDF_MP_STOPREQ		0x00000001	/* suspend_kproc */
405 #define TDF_MP_WAKEREQ		0x00000002	/* resume_kproc */
406 #define TDF_MP_EXITWAIT		0x00000004	/* reaper, see lwp_wait() */
407 #define TDF_MP_EXITSIG		0x00000008	/* reaper, see lwp_wait() */
408 #define TDF_MP_BATCH_DEMARC	0x00000010	/* batch mode handling */
409 #define TDF_MP_DIDYIELD		0x00000020	/* effects scheduling */
410 
411 #define TD_TYPE_GENERIC		0		/* generic thread */
412 #define TD_TYPE_CRYPTO		1		/* crypto thread */
413 #define TD_TYPE_NETISR		2		/* netisr thread */
414 
415 /*
416  * Thread priorities.  Typically only one thread from any given
417  * user process scheduling queue is on the LWKT run queue at a time.
418  * Remember that there is one LWKT run queue per cpu.
419  *
420  * Critical sections are handled by bumping td_pri above TDPRI_MAX, which
421  * causes interrupts to be masked as they occur.  When this occurs a
422  * rollup flag will be set in mycpu->gd_reqflags.
423  */
424 #define TDPRI_IDLE_THREAD	0	/* the idle thread */
425 #define TDPRI_IDLE_WORK		1	/* idle work (page zero, etc) */
426 #define TDPRI_USER_SCHEDULER	2	/* user scheduler helper */
427 #define TDPRI_USER_IDLE		4	/* user scheduler idle */
428 #define TDPRI_USER_NORM		6	/* user scheduler normal */
429 #define TDPRI_USER_REAL		8	/* user scheduler real time */
430 #define TDPRI_KERN_LPSCHED	9	/* (comparison point only) */
431 #define TDPRI_KERN_USER		10	/* kernel / block in syscall */
432 #define TDPRI_KERN_DAEMON	12	/* kernel daemon (pageout, etc) */
433 #define TDPRI_SOFT_NORM		14	/* kernel / normal */
434 #define TDPRI_SOFT_TIMER	16	/* kernel / timer */
435 #define TDPRI_UNUSED19		19
436 #define TDPRI_INT_SUPPORT	20	/* kernel / high priority support */
437 #define TDPRI_INT_LOW		27	/* low priority interrupt */
438 #define TDPRI_INT_MED		28	/* medium priority interrupt */
439 #define TDPRI_INT_HIGH		29	/* high priority interrupt */
440 #define TDPRI_MAX		31
441 
442 #define LWKT_THREAD_STACK	(UPAGES * PAGE_SIZE)
443 
444 #define IN_CRITICAL_SECT(td)	((td)->td_critcount)
445 
446 #ifdef _KERNEL
447 
448 extern void (*linux_task_drop_callback)(struct thread *);
449 extern void (*linux_proc_drop_callback)(struct proc *);
450 
451 /*
452  * Global tokens
453  */
454 extern struct lwkt_token mp_token;
455 extern struct lwkt_token pmap_token;
456 extern struct lwkt_token dev_token;
457 extern struct lwkt_token vm_token;
458 extern struct lwkt_token vmspace_token;
459 extern struct lwkt_token kvm_token;
460 extern struct lwkt_token sigio_token;
461 extern struct lwkt_token tty_token;
462 extern struct lwkt_token vnode_token;
463 extern struct lwkt_token revoke_token;
464 extern struct lwkt_token kbd_token;
465 extern struct lwkt_token vga_token;
466 
467 /*
468  * Procedures
469  */
470 struct thread *lwkt_alloc_thread(struct thread *, int, int, int);
471 void lwkt_init_thread(struct thread *, void *, int, int, struct globaldata *);
472 void lwkt_set_interrupt_support_thread(void);
473 void lwkt_set_comm(thread_t, const char *, ...) __printflike(2, 3);
474 void lwkt_free_thread(struct thread *);
475 void lwkt_gdinit(struct globaldata *);
476 void lwkt_switch(void);
477 void lwkt_switch_return(struct thread *);
478 void lwkt_preempt(thread_t, int);
479 void lwkt_schedule(thread_t);
480 void lwkt_schedule_noresched(thread_t);
481 void lwkt_schedule_self(thread_t);
482 void lwkt_deschedule(thread_t);
483 void lwkt_deschedule_self(thread_t);
484 void lwkt_yield(void);
485 void lwkt_yield_quick(void);
486 void lwkt_user_yield(void);
487 void lwkt_hold(thread_t);
488 void lwkt_rele(thread_t);
489 void lwkt_passive_release(thread_t);
490 void lwkt_maybe_splz(thread_t);
491 
492 void lwkt_gettoken(lwkt_token_t);
493 void lwkt_gettoken_shared(lwkt_token_t);
494 int  lwkt_trytoken(lwkt_token_t);
495 void lwkt_reltoken(lwkt_token_t);
496 int  lwkt_cnttoken(lwkt_token_t, thread_t);
497 int  lwkt_getalltokens(thread_t, int);
498 void lwkt_relalltokens(thread_t);
499 void lwkt_token_init(lwkt_token_t, const char *);
500 void lwkt_token_uninit(lwkt_token_t);
501 
502 void lwkt_token_pool_init(void);
503 lwkt_token_t lwkt_token_pool_lookup(void *);
504 lwkt_token_t lwkt_getpooltoken(void *);
505 void lwkt_relpooltoken(void *);
506 
507 void lwkt_token_swap(void);
508 
509 void lwkt_setpri(thread_t, int);
510 void lwkt_setpri_initial(thread_t, int);
511 void lwkt_setpri_self(int);
512 void lwkt_schedulerclock(thread_t td);
513 void lwkt_setcpu_self(struct globaldata *);
514 void lwkt_migratecpu(int);
515 
516 void lwkt_giveaway(struct thread *);
517 void lwkt_acquire(struct thread *);
518 int  lwkt_send_ipiq3(struct globaldata *, ipifunc3_t, void *, int);
519 int  lwkt_send_ipiq3_passive(struct globaldata *, ipifunc3_t, void *, int);
520 int  lwkt_send_ipiq3_bycpu(int, ipifunc3_t, void *, int);
521 int  lwkt_send_ipiq3_mask(cpumask_t, ipifunc3_t, void *, int);
522 void lwkt_wait_ipiq(struct globaldata *, int);
523 void lwkt_process_ipiq(void);
524 void lwkt_process_ipiq_frame(struct intrframe *);
525 void lwkt_smp_stopped(void);
526 void lwkt_synchronize_ipiqs(const char *);
527 
528 /* lwkt_cpusync_init() - inline function in sys/thread2.h */
529 void lwkt_cpusync_simple(cpumask_t, cpusync_func_t, void *);
530 void lwkt_cpusync_interlock(lwkt_cpusync_t);
531 void lwkt_cpusync_deinterlock(lwkt_cpusync_t);
532 void lwkt_cpusync_quick(lwkt_cpusync_t);
533 
534 void crit_panic(void) __dead2;
535 struct lwp *lwkt_preempted_proc(void);
536 
537 int  lwkt_create(void (*)(void *), void *, struct thread **, struct thread *,
538 	int, int, const char *, ...) __printflike(7, 8);
539 void lwkt_exit(void) __dead2;
540 void lwkt_remove_tdallq(struct thread *);
541 
542 #endif /* _KERNEL */
543 
544 #endif /* !_SYS_THREAD_H_ */
545 
546