xref: /dragonfly/sys/sys/thread.h (revision a8ca8ac6)
1 /*
2  * SYS/THREAD.H
3  *
4  *	Implements the architecture independant portion of the LWKT
5  *	subsystem.
6  *
7  * Types which must already be defined when this header is included by
8  * userland:	struct md_thread
9  *
10  * $DragonFly: src/sys/sys/thread.h,v 1.97 2008/09/20 04:31:02 sephe Exp $
11  */
12 
13 #ifndef _SYS_THREAD_H_
14 #define _SYS_THREAD_H_
15 
16 #ifndef _SYS_STDINT_H_
17 #include <sys/stdint.h>		/* __int types */
18 #endif
19 #ifndef _SYS_PARAM_H_
20 #include <sys/param.h>		/* MAXCOMLEN */
21 #endif
22 #ifndef _SYS_QUEUE_H_
23 #include <sys/queue.h>		/* TAILQ_* macros */
24 #endif
25 #ifndef _SYS_MSGPORT_H_
26 #include <sys/msgport.h>	/* lwkt_port */
27 #endif
28 #ifndef _SYS_TIME_H_
29 #include <sys/time.h>   	/* struct timeval */
30 #endif
31 #ifndef _SYS_SPINLOCK_H_
32 #include <sys/spinlock.h>
33 #endif
34 #ifndef _SYS_IOSCHED_H_
35 #include <sys/iosched.h>
36 #endif
37 #ifndef _MACHINE_THREAD_H_
38 #include <machine/thread.h>
39 #endif
40 
41 struct globaldata;
42 struct lwp;
43 struct proc;
44 struct thread;
45 struct lwkt_queue;
46 struct lwkt_token;
47 struct lwkt_tokref;
48 struct lwkt_ipiq;
49 struct lwkt_cpu_msg;
50 struct lwkt_cpu_port;
51 struct lwkt_msg;
52 struct lwkt_port;
53 struct lwkt_cpusync;
54 union sysunion;
55 
56 typedef struct lwkt_queue	*lwkt_queue_t;
57 typedef struct lwkt_token	*lwkt_token_t;
58 typedef struct lwkt_tokref	*lwkt_tokref_t;
59 typedef struct lwkt_cpu_msg	*lwkt_cpu_msg_t;
60 typedef struct lwkt_cpu_port	*lwkt_cpu_port_t;
61 typedef struct lwkt_ipiq	*lwkt_ipiq_t;
62 typedef struct lwkt_cpusync	*lwkt_cpusync_t;
63 typedef struct thread 		*thread_t;
64 
65 typedef TAILQ_HEAD(lwkt_queue, thread) lwkt_queue;
66 
67 /*
68  * Differentiation between kernel threads and user threads.  Userland
69  * programs which want to access to kernel structures have to define
70  * _KERNEL_STRUCTURES.  This is a kinda safety valve to prevent badly
71  * written user programs from getting an LWKT thread that is neither the
72  * kernel nor the user version.
73  */
74 #if defined(_KERNEL) || defined(_KERNEL_STRUCTURES)
75 #ifndef _MACHINE_THREAD_H_
76 #include <machine/thread.h>		/* md_thread */
77 #endif
78 #ifndef _MACHINE_FRAME_H_
79 #include <machine/frame.h>
80 #endif
81 #else
82 struct intrframe;
83 #endif
84 
85 /*
86  * Tokens are used to serialize access to information.  They are 'soft'
87  * serialization entities that only stay in effect while a thread is
88  * running.  If the thread blocks, other threads can run holding the same
89  * token(s).  The tokens are reacquired when the original thread resumes.
90  *
91  * A thread can depend on its serialization remaining intact through a
92  * preemption.  An interrupt which attempts to use the same token as the
93  * thread being preempted will reschedule itself for non-preemptive
94  * operation, so the new token code is capable of interlocking against
95  * interrupts as well as other cpus.  This means that your token can only
96  * be (temporarily) lost if you *explicitly* block.
97  *
98  * Tokens are managed through a helper reference structure, lwkt_tokref.  Each
99  * thread has a stack of tokref's to keep track of acquired tokens.  Multiple
100  * tokref's may reference the same token.
101  */
102 
103 typedef struct lwkt_token {
104     struct lwkt_tokref	*t_ref;		/* Owning ref or NULL */
105     intptr_t		t_flags;	/* MP lock required */
106     long		t_collisions;	/* Collision counter */
107     const char		*t_desc;	/* Descriptive name */
108 } lwkt_token;
109 
110 #define LWKT_TOKEN_MPSAFE	0x0001
111 
112 /*
113  * Static initialization for a lwkt_token.
114  *	UP - Not MPSAFE (full MP lock will also be acquired)
115  *	MP - Is MPSAFE  (only the token will be acquired)
116  */
117 #define LWKT_TOKEN_UP_INITIALIZER	\
118 {					\
119 	.t_ref = NULL,			\
120 	.t_flags = 0,			\
121 	.t_collisions = 0		\
122 }
123 
124 #define LWKT_TOKEN_MP_INITIALIZER	\
125 {					\
126 	.t_ref = NULL,			\
127 	.t_flags = LWKT_TOKEN_MPSAFE,	\
128 	.t_collisions = 0		\
129 }
130 
131 #define ASSERT_LWKT_TOKEN_HELD(tok) \
132 	KKASSERT((tok)->t_ref->tr_owner == curthread)
133 
134 struct lwkt_tokref {
135     lwkt_token_t	tr_tok;		/* token in question */
136     struct thread	*tr_owner;	/* me */
137     intptr_t		tr_flags;	/* copy of t_flags */
138     const void		*tr_stallpc;	/* stalled at pc */
139 };
140 
141 #define MAXCPUFIFO      16	/* power of 2 */
142 #define MAXCPUFIFO_MASK	(MAXCPUFIFO - 1)
143 #define LWKT_MAXTOKENS	32	/* max tokens beneficially held by thread */
144 
145 /*
146  * Always cast to ipifunc_t when registering an ipi.  The actual ipi function
147  * is called with both the data and an interrupt frame, but the ipi function
148  * that is registered might only declare a data argument.
149  */
150 typedef void (*ipifunc1_t)(void *arg);
151 typedef void (*ipifunc2_t)(void *arg, int arg2);
152 typedef void (*ipifunc3_t)(void *arg, int arg2, struct intrframe *frame);
153 
154 typedef struct lwkt_ipiq {
155     int		ip_rindex;      /* only written by target cpu */
156     int		ip_xindex;      /* written by target, indicates completion */
157     int		ip_windex;      /* only written by source cpu */
158     ipifunc3_t	ip_func[MAXCPUFIFO];
159     void	*ip_arg1[MAXCPUFIFO];
160     int		ip_arg2[MAXCPUFIFO];
161     u_int	ip_npoll;	/* synchronization to avoid excess IPIs */
162 } lwkt_ipiq;
163 
164 /*
165  * CPU Synchronization structure.  See lwkt_cpusync_start() and
166  * lwkt_cpusync_finish() for more information.
167  */
168 typedef void (*cpusync_func_t)(lwkt_cpusync_t poll);
169 typedef void (*cpusync_func2_t)(void *data);
170 
171 struct lwkt_cpusync {
172     cpusync_func_t cs_run_func;		/* run (tandem w/ acquire) */
173     cpusync_func_t cs_fin1_func;	/* fin1 (synchronized) */
174     cpusync_func2_t cs_fin2_func;	/* fin2 (tandem w/ release) */
175     void	*cs_data;
176     int		cs_maxcount;
177     volatile int cs_count;
178     cpumask_t	cs_mask;
179 };
180 
181 /*
182  * The standard message and queue structure used for communications between
183  * cpus.  Messages are typically queued via a machine-specific non-linked
184  * FIFO matrix allowing any cpu to send a message to any other cpu without
185  * blocking.
186  */
187 typedef struct lwkt_cpu_msg {
188     void	(*cm_func)(lwkt_cpu_msg_t msg);	/* primary dispatch function */
189     int		cm_code;		/* request code if applicable */
190     int		cm_cpu;			/* reply to cpu */
191     thread_t	cm_originator;		/* originating thread for wakeup */
192 } lwkt_cpu_msg;
193 
194 /*
195  * Thread structure.  Note that ownership of a thread structure is special
196  * cased and there is no 'token'.  A thread is always owned by the cpu
197  * represented by td_gd, any manipulation of the thread by some other cpu
198  * must be done through cpu_*msg() functions.  e.g. you could request
199  * ownership of a thread that way, or hand a thread off to another cpu.
200  *
201  * NOTE: td_ucred is synchronized from the p_ucred on user->kernel syscall,
202  *	 trap, and AST/signal transitions to provide a stable ucred for
203  *	 (primarily) system calls.  This field will be NULL for pure kernel
204  *	 threads.
205  */
206 struct md_intr_info;
207 struct caps_kinfo;
208 
209 struct thread {
210     TAILQ_ENTRY(thread) td_threadq;
211     TAILQ_ENTRY(thread) td_allq;
212     TAILQ_ENTRY(thread) td_sleepq;
213     lwkt_port	td_msgport;	/* built-in message port for replies */
214     struct lwp	*td_lwp;	/* (optional) associated lwp */
215     struct proc	*td_proc;	/* (optional) associated process */
216     struct pcb	*td_pcb;	/* points to pcb and top of kstack */
217     struct globaldata *td_gd;	/* associated with this cpu */
218     const char	*td_wmesg;	/* string name for blockage */
219     const volatile void	*td_wchan;	/* waiting on channel */
220     int		td_pri;		/* 0-31, 31=highest priority (note 1) */
221     int		td_critcount;	/* critical section priority */
222     int		td_flags;	/* TDF flags */
223     int		td_wdomain;	/* domain for wchan address (typ 0) */
224     void	(*td_preemptable)(struct thread *td, int critcount);
225     void	(*td_release)(struct thread *td);
226     char	*td_kstack;	/* kernel stack */
227     int		td_kstack_size;	/* size of kernel stack */
228     char	*td_sp;		/* kernel stack pointer for LWKT restore */
229     void	(*td_switch)(struct thread *ntd);
230     __uint64_t	td_uticks;	/* Statclock hits in user mode (uS) */
231     __uint64_t	td_sticks;      /* Statclock hits in system mode (uS) */
232     __uint64_t	td_iticks;	/* Statclock hits processing intr (uS) */
233     int		td_locks;	/* lockmgr lock debugging */
234     void	*td_dsched_priv1;	/* priv data for I/O schedulers */
235     int		td_refs;	/* hold position in gd_tdallq / hold free */
236     int		td_nest_count;	/* prevent splz nesting */
237 #ifdef SMP
238     int		td_mpcount;	/* MP lock held (count) */
239     int		td_cscount;	/* cpu synchronization master */
240 #else
241     int		td_mpcount_unused;	/* filler so size matches */
242     int		td_cscount_unused;
243 #endif
244     struct iosched_data td_iosdata;	/* Dynamic I/O scheduling data */
245     struct timeval td_start;	/* start time for a thread/process */
246     char	td_comm[MAXCOMLEN+1]; /* typ 16+1 bytes */
247     struct thread *td_preempted; /* we preempted this thread */
248     struct ucred *td_ucred;		/* synchronized from p_ucred */
249     struct caps_kinfo *td_caps;	/* list of client and server registrations */
250     lwkt_tokref_t td_toks_stop;
251     struct lwkt_tokref td_toks_array[LWKT_MAXTOKENS];
252     int		td_fairq_lticks;	/* fairq wakeup accumulator reset */
253     int		td_fairq_accum;		/* fairq priority accumulator */
254     const void	*td_mplock_stallpc;	/* last mplock stall address */
255 #ifdef DEBUG_CRIT_SECTIONS
256 #define CRIT_DEBUG_ARRAY_SIZE   32
257 #define CRIT_DEBUG_ARRAY_MASK   (CRIT_DEBUG_ARRAY_SIZE - 1)
258     const char	*td_crit_debug_array[CRIT_DEBUG_ARRAY_SIZE];
259     int		td_crit_debug_index;
260     int		td_in_crit_report;
261 #endif
262     struct md_thread td_mach;
263 };
264 
265 #define td_toks_base	td_toks_array[0]
266 #define td_toks_end	td_toks_array[LWKT_MAXTOKENS]
267 
268 #define TD_TOKS_HELD(td)	((td)->td_toks_stop != &(td)->td_toks_base)
269 #define TD_TOKS_NOT_HELD(td)	((td)->td_toks_stop == &(td)->td_toks_base)
270 
271 /*
272  * Thread flags.  Note that TDF_RUNNING is cleared on the old thread after
273  * we switch to the new one, which is necessary because LWKTs don't need
274  * to hold the BGL.  This flag is used by the exit code and the managed
275  * thread migration code.  Note in addition that preemption will cause
276  * TDF_RUNNING to be cleared temporarily, so any code checking TDF_RUNNING
277  * must also check TDF_PREEMPT_LOCK.
278  *
279  * LWKT threads stay on their (per-cpu) run queue while running, not to
280  * be confused with user processes which are removed from the user scheduling
281  * run queue while actually running.
282  *
283  * td_threadq can represent the thread on one of three queues... the LWKT
284  * run queue, a tsleep queue, or an lwkt blocking queue.  The LWKT subsystem
285  * does not allow a thread to be scheduled if it already resides on some
286  * queue.
287  */
288 #define TDF_RUNNING		0x0001	/* thread still active */
289 #define TDF_RUNQ		0x0002	/* on an LWKT run queue */
290 #define TDF_PREEMPT_LOCK	0x0004	/* I have been preempted */
291 #define TDF_PREEMPT_DONE	0x0008	/* acknowledge preemption complete */
292 #define TDF_IDLE_NOHLT		0x0010	/* we need to spin */
293 #define TDF_MIGRATING		0x0020	/* thread is being migrated */
294 #define TDF_SINTR		0x0040	/* interruptability hint for 'ps' */
295 #define TDF_TSLEEPQ		0x0080	/* on a tsleep wait queue */
296 
297 #define TDF_SYSTHREAD		0x0100	/* allocations may use reserve */
298 #define TDF_ALLOCATED_THREAD	0x0200	/* objcache allocated thread */
299 #define TDF_ALLOCATED_STACK	0x0400	/* objcache allocated stack */
300 #define TDF_VERBOSE		0x0800	/* verbose on exit */
301 #define TDF_DEADLKTREAT		0x1000	/* special lockmgr deadlock treatment */
302 #define TDF_STOPREQ		0x2000	/* suspend_kproc */
303 #define TDF_WAKEREQ		0x4000	/* resume_kproc */
304 #define TDF_TIMEOUT		0x8000	/* tsleep timeout */
305 #define TDF_INTTHREAD		0x00010000	/* interrupt thread */
306 #define TDF_TSLEEP_DESCHEDULED	0x00020000	/* tsleep core deschedule */
307 #define TDF_BLOCKED		0x00040000	/* Thread is blocked */
308 #define TDF_PANICWARN		0x00080000	/* panic warning in switch */
309 #define TDF_BLOCKQ		0x00100000	/* on block queue */
310 #define TDF_MPSAFE		0x00200000	/* (thread creation) */
311 #define TDF_EXITING		0x00400000	/* thread exiting */
312 #define TDF_USINGFP		0x00800000	/* thread using fp coproc */
313 #define TDF_KERNELFP		0x01000000	/* kernel using fp coproc */
314 #define TDF_NETWORK		0x02000000	/* network proto thread */
315 #define TDF_CRYPTO		0x04000000	/* crypto thread */
316 #define TDF_MARKER		0x80000000	/* fairq marker thread */
317 
318 /*
319  * Thread priorities.  Typically only one thread from any given
320  * user process scheduling queue is on the LWKT run queue at a time.
321  * Remember that there is one LWKT run queue per cpu.
322  *
323  * Critical sections are handled by bumping td_pri above TDPRI_MAX, which
324  * causes interrupts to be masked as they occur.  When this occurs a
325  * rollup flag will be set in mycpu->gd_reqflags.
326  */
327 #define TDPRI_IDLE_THREAD	0	/* the idle thread */
328 #define TDPRI_IDLE_WORK		1	/* idle work (page zero, etc) */
329 #define TDPRI_USER_SCHEDULER	2	/* user scheduler helper */
330 #define TDPRI_USER_IDLE		4	/* user scheduler idle */
331 #define TDPRI_USER_NORM		6	/* user scheduler normal */
332 #define TDPRI_USER_REAL		8	/* user scheduler real time */
333 #define TDPRI_KERN_LPSCHED	9	/* scheduler helper for userland sch */
334 #define TDPRI_KERN_USER		10	/* kernel / block in syscall */
335 #define TDPRI_KERN_DAEMON	12	/* kernel daemon (pageout, etc) */
336 #define TDPRI_SOFT_NORM		14	/* kernel / normal */
337 #define TDPRI_SOFT_TIMER	16	/* kernel / timer */
338 #define TDPRI_EXITING		19	/* exiting thread */
339 #define TDPRI_INT_SUPPORT	20	/* kernel / high priority support */
340 #define TDPRI_INT_LOW		27	/* low priority interrupt */
341 #define TDPRI_INT_MED		28	/* medium priority interrupt */
342 #define TDPRI_INT_HIGH		29	/* high priority interrupt */
343 #define TDPRI_MAX		31
344 
345 /*
346  * Scale is the approximate number of ticks for which we desire the
347  * entire gd_tdrunq to get service.  With hz = 100 a scale of 8 is 80ms.
348  *
349  * Setting this value too small will result in inefficient switching
350  * rates.
351  */
352 #define TDFAIRQ_SCALE		8
353 #define TDFAIRQ_MAX(gd)		((gd)->gd_fairq_total_pri * TDFAIRQ_SCALE)
354 
355 #define LWKT_THREAD_STACK	(UPAGES * PAGE_SIZE)
356 
357 #define CACHE_NTHREADS		6
358 
359 #define IN_CRITICAL_SECT(td)	((td)->td_critcount)
360 
361 #ifdef _KERNEL
362 
363 /*
364  * Global tokens
365  */
366 extern struct lwkt_token pmap_token;
367 extern struct lwkt_token dev_token;
368 extern struct lwkt_token vm_token;
369 extern struct lwkt_token vmspace_token;
370 extern struct lwkt_token kvm_token;
371 extern struct lwkt_token proc_token;
372 extern struct lwkt_token tty_token;
373 extern struct lwkt_token vnode_token;
374 
375 /*
376  * Procedures
377  */
378 extern void lwkt_init(void);
379 extern struct thread *lwkt_alloc_thread(struct thread *, int, int, int);
380 extern void lwkt_init_thread(struct thread *, void *, int, int,
381 			     struct globaldata *);
382 extern void lwkt_set_comm(thread_t, const char *, ...) __printflike(2, 3);
383 extern void lwkt_wait_free(struct thread *);
384 extern void lwkt_free_thread(struct thread *);
385 extern void lwkt_gdinit(struct globaldata *);
386 extern void lwkt_switch(void);
387 extern void lwkt_preempt(thread_t, int);
388 extern void lwkt_schedule(thread_t);
389 extern void lwkt_schedule_noresched(thread_t);
390 extern void lwkt_schedule_self(thread_t);
391 extern void lwkt_deschedule(thread_t);
392 extern void lwkt_deschedule_self(thread_t);
393 extern void lwkt_yield(void);
394 extern void lwkt_user_yield(void);
395 extern void lwkt_token_wait(void);
396 extern void lwkt_hold(thread_t);
397 extern void lwkt_rele(thread_t);
398 extern void lwkt_passive_release(thread_t);
399 
400 extern void lwkt_gettoken(lwkt_token_t);
401 extern int  lwkt_trytoken(lwkt_token_t);
402 extern void lwkt_reltoken(lwkt_token_t);
403 extern int  lwkt_getalltokens(thread_t, const char **, const void **);
404 extern void lwkt_relalltokens(thread_t);
405 extern void lwkt_drain_token_requests(void);
406 extern void lwkt_token_init(lwkt_token_t, int, const char *);
407 extern void lwkt_token_uninit(lwkt_token_t);
408 
409 extern void lwkt_token_pool_init(void);
410 extern lwkt_token_t lwkt_token_pool_lookup(void *);
411 extern lwkt_token_t lwkt_getpooltoken(void *);
412 
413 extern void lwkt_setpri(thread_t, int);
414 extern void lwkt_setpri_initial(thread_t, int);
415 extern void lwkt_setpri_self(int);
416 extern void lwkt_fairq_schedulerclock(thread_t td);
417 extern void lwkt_fairq_setpri_self(int pri);
418 extern int lwkt_fairq_push(int pri);
419 extern void lwkt_fairq_pop(int pri);
420 extern void lwkt_fairq_yield(void);
421 extern void lwkt_setcpu_self(struct globaldata *);
422 extern void lwkt_migratecpu(int);
423 
424 #ifdef SMP
425 
426 extern void lwkt_giveaway(struct thread *);
427 extern void lwkt_acquire(struct thread *);
428 extern int  lwkt_send_ipiq3(struct globaldata *, ipifunc3_t, void *, int);
429 extern int  lwkt_send_ipiq3_passive(struct globaldata *, ipifunc3_t,
430 				    void *, int);
431 extern int  lwkt_send_ipiq3_nowait(struct globaldata *, ipifunc3_t,
432 				   void *, int);
433 extern int  lwkt_send_ipiq3_bycpu(int, ipifunc3_t, void *, int);
434 extern int  lwkt_send_ipiq3_mask(cpumask_t, ipifunc3_t, void *, int);
435 extern void lwkt_wait_ipiq(struct globaldata *, int);
436 extern int  lwkt_seq_ipiq(struct globaldata *);
437 extern void lwkt_process_ipiq(void);
438 extern void lwkt_process_ipiq_frame(struct intrframe *);
439 extern void lwkt_smp_stopped(void);
440 extern void lwkt_synchronize_ipiqs(const char *);
441 
442 #endif /* SMP */
443 
444 extern void lwkt_cpusync_simple(cpumask_t, cpusync_func_t, void *);
445 extern void lwkt_cpusync_fastdata(cpumask_t, cpusync_func2_t, void *);
446 extern void lwkt_cpusync_start(cpumask_t, lwkt_cpusync_t);
447 extern void lwkt_cpusync_add(cpumask_t, lwkt_cpusync_t);
448 extern void lwkt_cpusync_finish(lwkt_cpusync_t);
449 
450 extern void crit_panic(void);
451 extern struct lwp *lwkt_preempted_proc(void);
452 
453 extern int  lwkt_create (void (*func)(void *), void *, struct thread **,
454 		struct thread *, int, int,
455 		const char *, ...) __printflike(7, 8);
456 extern void lwkt_exit (void) __dead2;
457 extern void lwkt_remove_tdallq (struct thread *);
458 
459 #endif
460 
461 #endif
462 
463