xref: /dragonfly/sys/sys/thread.h (revision e8c03636)
1 /*
2  * SYS/THREAD.H
3  *
4  *	Implements the architecture independant portion of the LWKT
5  *	subsystem.
6  *
7  * Types which must already be defined when this header is included by
8  * userland:	struct md_thread
9  */
10 
11 #ifndef _SYS_THREAD_H_
12 #define _SYS_THREAD_H_
13 
14 #ifndef _SYS_STDINT_H_
15 #include <sys/stdint.h>		/* __int types */
16 #endif
17 #ifndef _SYS_PARAM_H_
18 #include <sys/param.h>		/* MAXCOMLEN */
19 #endif
20 #ifndef _SYS_QUEUE_H_
21 #include <sys/queue.h>		/* TAILQ_* macros */
22 #endif
23 #ifndef _SYS_MSGPORT_H_
24 #include <sys/msgport.h>	/* lwkt_port */
25 #endif
26 #ifndef _SYS_TIME_H_
27 #include <sys/time.h>   	/* struct timeval */
28 #endif
29 #ifndef _SYS_LOCK_H
30 #include <sys/lock.h>
31 #endif
32 #ifndef _SYS_SPINLOCK_H_
33 #include <sys/spinlock.h>
34 #endif
35 #ifndef _SYS_IOSCHED_H_
36 #include <sys/iosched.h>
37 #endif
38 #include <machine/thread.h>
39 
40 struct globaldata;
41 struct lwp;
42 struct proc;
43 struct thread;
44 struct lwkt_queue;
45 struct lwkt_token;
46 struct lwkt_tokref;
47 struct lwkt_ipiq;
48 struct lwkt_cpu_msg;
49 struct lwkt_cpu_port;
50 struct lwkt_msg;
51 struct lwkt_port;
52 struct lwkt_cpusync;
53 union sysunion;
54 
55 typedef struct lwkt_queue	*lwkt_queue_t;
56 typedef struct lwkt_token	*lwkt_token_t;
57 typedef struct lwkt_tokref	*lwkt_tokref_t;
58 typedef struct lwkt_cpu_msg	*lwkt_cpu_msg_t;
59 typedef struct lwkt_cpu_port	*lwkt_cpu_port_t;
60 typedef struct lwkt_ipiq	*lwkt_ipiq_t;
61 typedef struct lwkt_cpusync	*lwkt_cpusync_t;
62 typedef struct thread 		*thread_t;
63 
64 typedef TAILQ_HEAD(lwkt_queue, thread) lwkt_queue;
65 
66 /*
67  * Differentiation between kernel threads and user threads.  Userland
68  * programs which want to access to kernel structures have to define
69  * _KERNEL_STRUCTURES.  This is a kinda safety valve to prevent badly
70  * written user programs from getting an LWKT thread that is neither the
71  * kernel nor the user version.
72  */
73 #if defined(_KERNEL) || defined(_KERNEL_STRUCTURES)
74 #ifndef _MACHINE_THREAD_H_
75 #include <machine/thread.h>		/* md_thread */
76 #endif
77 #ifndef _MACHINE_FRAME_H_
78 #include <machine/frame.h>
79 #endif
80 #else
81 struct intrframe;
82 #endif
83 
84 /*
85  * Tokens are used to serialize access to information.  They are 'soft'
86  * serialization entities that only stay in effect while a thread is
87  * running.  If the thread blocks, other threads can run holding the same
88  * token(s).  The tokens are reacquired when the original thread resumes.
89  *
90  * A thread can depend on its serialization remaining intact through a
91  * preemption.  An interrupt which attempts to use the same token as the
92  * thread being preempted will reschedule itself for non-preemptive
93  * operation, so the new token code is capable of interlocking against
94  * interrupts as well as other cpus.  This means that your token can only
95  * be (temporarily) lost if you *explicitly* block.
96  *
97  * Tokens are managed through a helper reference structure, lwkt_tokref.  Each
98  * thread has a stack of tokref's to keep track of acquired tokens.  Multiple
99  * tokref's may reference the same token.
100  *
101  * Tokens can be held shared or exclusive.   An exclusive holder is able
102  * to set the TOK_EXCLUSIVE bit in t_count as long as no bit in the count
103  * mask is set.  If unable to accomplish this TOK_EXCLREQ can be set instead
104  * which prevents any new shared acquisitions while the exclusive requestor
105  * spins in the scheduler.  A shared holder can bump t_count by the increment
106  * value as long as neither TOK_EXCLUSIVE or TOK_EXCLREQ is set, else spin
107  * in the scheduler.
108  *
109  * Multiple exclusive tokens are handled by treating the additional tokens
110  * as a special case of the shared token, incrementing the count value.  This
111  * reduces the complexity of the token release code.
112  */
113 
114 typedef struct lwkt_token {
115     long		t_count;	/* Shared/exclreq/exclusive access */
116     struct lwkt_tokref	*t_ref;		/* Exclusive ref */
117     long		t_collisions;	/* Collision counter */
118     const char		*t_desc;	/* Descriptive name */
119 } lwkt_token;
120 
121 #define TOK_EXCLUSIVE	0x00000001	/* Exclusive lock held */
122 #define TOK_EXCLREQ	0x00000002	/* Exclusive request pending */
123 #define TOK_INCR	4		/* Shared count increment */
124 #define TOK_COUNTMASK	(~(long)(TOK_EXCLUSIVE|TOK_EXCLREQ))
125 
126 /*
127  * Static initialization for a lwkt_token.
128  */
129 #define LWKT_TOKEN_INITIALIZER(name)	\
130 {					\
131 	.t_count = 0,			\
132 	.t_ref = NULL,			\
133 	.t_collisions = 0,		\
134 	.t_desc = #name			\
135 }
136 
137 /*
138  * Assert that a particular token is held
139  */
140 #define LWKT_TOKEN_HELD_ANY(tok)	_lwkt_token_held_any(tok, curthread)
141 #define LWKT_TOKEN_HELD_EXCL(tok)	_lwkt_token_held_excl(tok, curthread)
142 
143 #define ASSERT_LWKT_TOKEN_HELD(tok)		\
144 	KKASSERT(LWKT_TOKEN_HELD_ANY(tok))
145 
146 #define ASSERT_LWKT_TOKEN_HELD_EXCL(tok)	\
147 	KKASSERT(LWKT_TOKEN_HELD_EXCL(tok))
148 
149 #define ASSERT_NO_TOKENS_HELD(td)	\
150 	KKASSERT((td)->td_toks_stop == &td->td_toks_array[0])
151 
152 /*
153  * Assert that a particular token is held and we are in a hard
154  * code execution section (interrupt, ipi, or hard code section).
155  * Hard code sections are not allowed to block or potentially block.
156  * e.g. lwkt_gettoken() would only be ok if the token were already
157  * held.
158  */
159 #define ASSERT_LWKT_TOKEN_HARD(tok)					\
160 	do {								\
161 		globaldata_t zgd __debugvar = mycpu;			\
162 		KKASSERT((tok)->t_ref &&				\
163 			 (tok)->t_ref->tr_owner == zgd->gd_curthread &&	\
164 			 zgd->gd_intr_nesting_level > 0);		\
165 	} while(0)
166 
167 /*
168  * Assert that a particular token is held and we are in a normal
169  * critical section.  Critical sections will not be preempted but
170  * can explicitly block (tsleep, lwkt_gettoken, etc).
171  */
172 #define ASSERT_LWKT_TOKEN_CRIT(tok)					\
173 	do {								\
174 		globaldata_t zgd __debugvar = mycpu;			\
175 		KKASSERT((tok)->t_ref &&				\
176 			 (tok)->t_ref->tr_owner == zgd->gd_curthread &&	\
177 			 zgd->gd_curthread->td_critcount > 0);		\
178 	} while(0)
179 
180 struct lwkt_tokref {
181     lwkt_token_t	tr_tok;		/* token in question */
182     long		tr_count;	/* TOK_EXCLUSIVE|TOK_EXCLREQ or 0 */
183     struct thread	*tr_owner;	/* me */
184 };
185 
186 #define MAXCPUFIFO      32	/* power of 2 */
187 #define MAXCPUFIFO_MASK	(MAXCPUFIFO - 1)
188 #define LWKT_MAXTOKENS	32	/* max tokens beneficially held by thread */
189 
190 /*
191  * Always cast to ipifunc_t when registering an ipi.  The actual ipi function
192  * is called with both the data and an interrupt frame, but the ipi function
193  * that is registered might only declare a data argument.
194  */
195 typedef void (*ipifunc1_t)(void *arg);
196 typedef void (*ipifunc2_t)(void *arg, int arg2);
197 typedef void (*ipifunc3_t)(void *arg, int arg2, struct intrframe *frame);
198 
199 typedef struct lwkt_ipiq {
200     int		ip_rindex;      /* only written by target cpu */
201     int		ip_xindex;      /* written by target, indicates completion */
202     int		ip_windex;      /* only written by source cpu */
203     struct {
204 	ipifunc3_t	func;
205 	void		*arg1;
206 	int		arg2;
207 	char		filler[32 - sizeof(int) - sizeof(void *) * 2];
208     } ip_info[MAXCPUFIFO];
209 } lwkt_ipiq;
210 
211 /*
212  * CPU Synchronization structure.  See lwkt_cpusync_start() and
213  * lwkt_cpusync_finish() for more information.
214  */
215 typedef void (*cpusync_func_t)(void *arg);
216 
217 struct lwkt_cpusync {
218     cpumask_t	cs_mask;		/* cpus running the sync */
219     cpumask_t	cs_mack;		/* mask acknowledge */
220     cpusync_func_t cs_func;		/* function to execute */
221     void	*cs_data;		/* function data */
222 };
223 
224 /*
225  * The standard message and queue structure used for communications between
226  * cpus.  Messages are typically queued via a machine-specific non-linked
227  * FIFO matrix allowing any cpu to send a message to any other cpu without
228  * blocking.
229  */
230 typedef struct lwkt_cpu_msg {
231     void	(*cm_func)(lwkt_cpu_msg_t msg);	/* primary dispatch function */
232     int		cm_code;		/* request code if applicable */
233     int		cm_cpu;			/* reply to cpu */
234     thread_t	cm_originator;		/* originating thread for wakeup */
235 } lwkt_cpu_msg;
236 
237 /*
238  * Thread structure.  Note that ownership of a thread structure is special
239  * cased and there is no 'token'.  A thread is always owned by the cpu
240  * represented by td_gd, any manipulation of the thread by some other cpu
241  * must be done through cpu_*msg() functions.  e.g. you could request
242  * ownership of a thread that way, or hand a thread off to another cpu.
243  *
244  * NOTE: td_ucred is synchronized from the p_ucred on user->kernel syscall,
245  *	 trap, and AST/signal transitions to provide a stable ucred for
246  *	 (primarily) system calls.  This field will be NULL for pure kernel
247  *	 threads.
248  */
249 struct md_intr_info;
250 
251 struct thread {
252     TAILQ_ENTRY(thread) td_threadq;
253     TAILQ_ENTRY(thread) td_allq;
254     TAILQ_ENTRY(thread) td_sleepq;
255     lwkt_port	td_msgport;	/* built-in message port for replies */
256     struct lwp	*td_lwp;	/* (optional) associated lwp */
257     struct proc	*td_proc;	/* (optional) associated process */
258     struct pcb	*td_pcb;	/* points to pcb and top of kstack */
259     struct globaldata *td_gd;	/* associated with this cpu */
260     const char	*td_wmesg;	/* string name for blockage */
261     const volatile void	*td_wchan;	/* waiting on channel */
262     int		td_pri;		/* 0-31, 31=highest priority (note 1) */
263     int		td_critcount;	/* critical section priority */
264     u_int	td_flags;	/* TDF flags */
265     int		td_wdomain;	/* domain for wchan address (typ 0) */
266     void	(*td_preemptable)(struct thread *td, int critcount);
267     void	(*td_release)(struct thread *td);
268     char	*td_kstack;	/* kernel stack */
269     int		td_kstack_size;	/* size of kernel stack */
270     char	*td_sp;		/* kernel stack pointer for LWKT restore */
271     thread_t	(*td_switch)(struct thread *ntd);
272     __uint64_t	td_uticks;	/* Statclock hits in user mode (uS) */
273     __uint64_t	td_sticks;      /* Statclock hits in system mode (uS) */
274     __uint64_t	td_iticks;	/* Statclock hits processing intr (uS) */
275     int		td_locks;	/* lockmgr lock debugging */
276     void	*td_dsched_priv1;	/* priv data for I/O schedulers */
277     int		td_refs;	/* hold position in gd_tdallq / hold free */
278     int		td_nest_count;	/* prevent splz nesting */
279     int		td_contended;	/* token contention count */
280     u_int	td_mpflags;	/* flags can be set by foreign cpus */
281     int		td_cscount;	/* cpu synchronization master */
282     int		td_wakefromcpu;	/* who woke me up? */
283     int		td_upri;	/* user priority (sub-priority under td_pri) */
284     int		td_type;	/* thread type, TD_TYPE_ */
285     int		td_unused02[1];	/* for future fields */
286     int		td_unused03[4];	/* for future fields */
287     struct iosched_data td_iosdata;	/* Dynamic I/O scheduling data */
288     struct timeval td_start;	/* start time for a thread/process */
289     char	td_comm[MAXCOMLEN+1]; /* typ 16+1 bytes */
290     struct thread *td_preempted; /* we preempted this thread */
291     struct ucred *td_ucred;		/* synchronized from p_ucred */
292     void	 *td_unused04;	/* for future fields */
293     lwkt_tokref_t td_toks_have;		/* tokens we own */
294     lwkt_tokref_t td_toks_stop;		/* tokens we want */
295     struct lwkt_tokref td_toks_array[LWKT_MAXTOKENS];
296     int		td_fairq_load;		/* fairq */
297     int		td_fairq_count;		/* fairq */
298     struct globaldata *td_migrate_gd;	/* target gd for thread migration */
299 #ifdef DEBUG_CRIT_SECTIONS
300 #define CRIT_DEBUG_ARRAY_SIZE   32
301 #define CRIT_DEBUG_ARRAY_MASK   (CRIT_DEBUG_ARRAY_SIZE - 1)
302     const char	*td_crit_debug_array[CRIT_DEBUG_ARRAY_SIZE];
303     int		td_crit_debug_index;
304     int		td_in_crit_report;
305 #endif
306     struct md_thread td_mach;
307 #ifdef DEBUG_LOCKS
308 #define SPINLOCK_DEBUG_ARRAY_SIZE	32
309    int 	td_spinlock_stack_id[SPINLOCK_DEBUG_ARRAY_SIZE];
310    struct spinlock *td_spinlock_stack[SPINLOCK_DEBUG_ARRAY_SIZE];
311    void 	*td_spinlock_caller_pc[SPINLOCK_DEBUG_ARRAY_SIZE];
312 
313     /*
314      * Track lockmgr locks held; lk->lk_filename:lk->lk_lineno is the holder
315      */
316 #define LOCKMGR_DEBUG_ARRAY_SIZE	8
317     int		td_lockmgr_stack_id[LOCKMGR_DEBUG_ARRAY_SIZE];
318     struct lock	*td_lockmgr_stack[LOCKMGR_DEBUG_ARRAY_SIZE];
319 #endif
320 };
321 
322 #define td_toks_base		td_toks_array[0]
323 #define td_toks_end		td_toks_array[LWKT_MAXTOKENS]
324 
325 #define TD_TOKS_HELD(td)	((td)->td_toks_stop != &(td)->td_toks_base)
326 #define TD_TOKS_NOT_HELD(td)	((td)->td_toks_stop == &(td)->td_toks_base)
327 
328 /*
329  * Thread flags.  Note that TDF_RUNNING is cleared on the old thread after
330  * we switch to the new one, which is necessary because LWKTs don't need
331  * to hold the BGL.  This flag is used by the exit code and the managed
332  * thread migration code.  Note in addition that preemption will cause
333  * TDF_RUNNING to be cleared temporarily, so any code checking TDF_RUNNING
334  * must also check TDF_PREEMPT_LOCK.
335  *
336  * LWKT threads stay on their (per-cpu) run queue while running, not to
337  * be confused with user processes which are removed from the user scheduling
338  * run queue while actually running.
339  *
340  * td_threadq can represent the thread on one of three queues... the LWKT
341  * run queue, a tsleep queue, or an lwkt blocking queue.  The LWKT subsystem
342  * does not allow a thread to be scheduled if it already resides on some
343  * queue.
344  */
345 #define TDF_RUNNING		0x00000001	/* thread still active */
346 #define TDF_RUNQ		0x00000002	/* on an LWKT run queue */
347 #define TDF_PREEMPT_LOCK	0x00000004	/* I have been preempted */
348 #define TDF_PREEMPT_DONE	0x00000008	/* ac preemption complete */
349 #define TDF_NOSTART		0x00000010	/* do not schedule on create */
350 #define TDF_MIGRATING		0x00000020	/* thread is being migrated */
351 #define TDF_SINTR		0x00000040	/* interruptability for 'ps' */
352 #define TDF_TSLEEPQ		0x00000080	/* on a tsleep wait queue */
353 
354 #define TDF_SYSTHREAD		0x00000100	/* reserve memory may be used */
355 #define TDF_ALLOCATED_THREAD	0x00000200	/* objcache allocated thread */
356 #define TDF_ALLOCATED_STACK	0x00000400	/* objcache allocated stack */
357 #define TDF_VERBOSE		0x00000800	/* verbose on exit */
358 #define TDF_DEADLKTREAT		0x00001000	/* special lockmgr treatment */
359 #define TDF_MARKER		0x00002000	/* tdallq list scan marker */
360 #define TDF_TIMEOUT_RUNNING	0x00004000	/* tsleep timeout race */
361 #define TDF_TIMEOUT		0x00008000	/* tsleep timeout */
362 #define TDF_INTTHREAD		0x00010000	/* interrupt thread */
363 #define TDF_TSLEEP_DESCHEDULED	0x00020000	/* tsleep core deschedule */
364 #define TDF_BLOCKED		0x00040000	/* Thread is blocked */
365 #define TDF_PANICWARN		0x00080000	/* panic warning in switch */
366 #define TDF_BLOCKQ		0x00100000	/* on block queue */
367 #define TDF_FORCE_SPINPORT	0x00200000
368 #define TDF_EXITING		0x00400000	/* thread exiting */
369 #define TDF_USINGFP		0x00800000	/* thread using fp coproc */
370 #define TDF_KERNELFP		0x01000000	/* kernel using fp coproc */
371 #define TDF_DELAYED_WAKEUP	0x02000000
372 #define TDF_UNUSED1		0x04000000	/* unused */
373 #define TDF_USERMODE		0x08000000	/* in or entering user mode */
374 #define TDF_NOFAULT		0x10000000	/* force onfault on fault */
375 
376 #define TDF_MP_STOPREQ		0x00000001	/* suspend_kproc */
377 #define TDF_MP_WAKEREQ		0x00000002	/* resume_kproc */
378 #define TDF_MP_EXITWAIT		0x00000004	/* reaper, see lwp_wait() */
379 #define TDF_MP_EXITSIG		0x00000008	/* reaper, see lwp_wait() */
380 #define TDF_MP_BATCH_DEMARC	0x00000010	/* batch mode handling */
381 
382 #define TD_TYPE_GENERIC		0		/* generic thread */
383 #define TD_TYPE_CRYPTO		1		/* crypto thread */
384 #define TD_TYPE_NETISR		2		/* netisr thread */
385 
386 /*
387  * Thread priorities.  Typically only one thread from any given
388  * user process scheduling queue is on the LWKT run queue at a time.
389  * Remember that there is one LWKT run queue per cpu.
390  *
391  * Critical sections are handled by bumping td_pri above TDPRI_MAX, which
392  * causes interrupts to be masked as they occur.  When this occurs a
393  * rollup flag will be set in mycpu->gd_reqflags.
394  */
395 #define TDPRI_IDLE_THREAD	0	/* the idle thread */
396 #define TDPRI_IDLE_WORK		1	/* idle work (page zero, etc) */
397 #define TDPRI_USER_SCHEDULER	2	/* user scheduler helper */
398 #define TDPRI_USER_IDLE		4	/* user scheduler idle */
399 #define TDPRI_USER_NORM		6	/* user scheduler normal */
400 #define TDPRI_USER_REAL		8	/* user scheduler real time */
401 #define TDPRI_KERN_LPSCHED	9	/* scheduler helper for userland sch */
402 #define TDPRI_KERN_USER		10	/* kernel / block in syscall */
403 #define TDPRI_KERN_DAEMON	12	/* kernel daemon (pageout, etc) */
404 #define TDPRI_SOFT_NORM		14	/* kernel / normal */
405 #define TDPRI_SOFT_TIMER	16	/* kernel / timer */
406 #define TDPRI_EXITING		19	/* exiting thread */
407 #define TDPRI_INT_SUPPORT	20	/* kernel / high priority support */
408 #define TDPRI_INT_LOW		27	/* low priority interrupt */
409 #define TDPRI_INT_MED		28	/* medium priority interrupt */
410 #define TDPRI_INT_HIGH		29	/* high priority interrupt */
411 #define TDPRI_MAX		31
412 
413 #define LWKT_THREAD_STACK	(UPAGES * PAGE_SIZE)
414 
415 #define IN_CRITICAL_SECT(td)	((td)->td_critcount)
416 
417 #ifdef _KERNEL
418 
419 /*
420  * Global tokens
421  */
422 extern struct lwkt_token mp_token;
423 extern struct lwkt_token pmap_token;
424 extern struct lwkt_token dev_token;
425 extern struct lwkt_token vm_token;
426 extern struct lwkt_token vmspace_token;
427 extern struct lwkt_token kvm_token;
428 extern struct lwkt_token proc_token;
429 extern struct lwkt_token tty_token;
430 extern struct lwkt_token vnode_token;
431 extern struct lwkt_token vmobj_token;
432 
433 /*
434  * Procedures
435  */
436 extern void lwkt_init(void);
437 extern struct thread *lwkt_alloc_thread(struct thread *, int, int, int);
438 extern void lwkt_init_thread(struct thread *, void *, int, int,
439 			     struct globaldata *);
440 extern void lwkt_set_interrupt_support_thread(void);
441 extern void lwkt_set_comm(thread_t, const char *, ...) __printflike(2, 3);
442 extern void lwkt_free_thread(struct thread *);
443 extern void lwkt_gdinit(struct globaldata *);
444 extern void lwkt_switch(void);
445 extern void lwkt_switch_return(struct thread *);
446 extern void lwkt_preempt(thread_t, int);
447 extern void lwkt_schedule(thread_t);
448 extern void lwkt_schedule_noresched(thread_t);
449 extern void lwkt_schedule_self(thread_t);
450 extern void lwkt_deschedule(thread_t);
451 extern void lwkt_deschedule_self(thread_t);
452 extern void lwkt_yield(void);
453 extern void lwkt_yield_quick(void);
454 extern void lwkt_user_yield(void);
455 extern void lwkt_token_wait(void);
456 extern void lwkt_hold(thread_t);
457 extern void lwkt_rele(thread_t);
458 extern void lwkt_passive_release(thread_t);
459 extern void lwkt_maybe_splz(thread_t);
460 
461 extern void lwkt_gettoken(lwkt_token_t);
462 extern void lwkt_gettoken_shared(lwkt_token_t);
463 extern void lwkt_gettoken_hard(lwkt_token_t);
464 extern int  lwkt_trytoken(lwkt_token_t);
465 extern void lwkt_reltoken(lwkt_token_t);
466 extern void lwkt_reltoken_hard(lwkt_token_t);
467 extern int  lwkt_cnttoken(lwkt_token_t, thread_t);
468 extern int  lwkt_getalltokens(thread_t, int);
469 extern void lwkt_relalltokens(thread_t);
470 extern void lwkt_drain_token_requests(void);
471 extern void lwkt_token_init(lwkt_token_t, const char *);
472 extern void lwkt_token_uninit(lwkt_token_t);
473 
474 extern void lwkt_token_pool_init(void);
475 extern lwkt_token_t lwkt_token_pool_lookup(void *);
476 extern lwkt_token_t lwkt_getpooltoken(void *);
477 extern void lwkt_relpooltoken(void *);
478 
479 extern void lwkt_token_swap(void);
480 
481 extern void lwkt_setpri(thread_t, int);
482 extern void lwkt_setpri_initial(thread_t, int);
483 extern void lwkt_setpri_self(int);
484 extern void lwkt_schedulerclock(thread_t td);
485 extern void lwkt_setcpu_self(struct globaldata *);
486 extern void lwkt_migratecpu(int);
487 
488 extern void lwkt_giveaway(struct thread *);
489 extern void lwkt_acquire(struct thread *);
490 extern int  lwkt_send_ipiq3(struct globaldata *, ipifunc3_t, void *, int);
491 extern int  lwkt_send_ipiq3_passive(struct globaldata *, ipifunc3_t,
492 				    void *, int);
493 extern int  lwkt_send_ipiq3_nowait(struct globaldata *, ipifunc3_t,
494 				   void *, int);
495 extern int  lwkt_send_ipiq3_bycpu(int, ipifunc3_t, void *, int);
496 extern int  lwkt_send_ipiq3_mask(cpumask_t, ipifunc3_t, void *, int);
497 extern void lwkt_wait_ipiq(struct globaldata *, int);
498 extern int  lwkt_seq_ipiq(struct globaldata *);
499 extern void lwkt_process_ipiq(void);
500 extern void lwkt_process_ipiq_frame(struct intrframe *);
501 extern void lwkt_smp_stopped(void);
502 extern void lwkt_synchronize_ipiqs(const char *);
503 
504 /* lwkt_cpusync_init() - inline function in sys/thread2.h */
505 extern void lwkt_cpusync_simple(cpumask_t, cpusync_func_t, void *);
506 extern void lwkt_cpusync_interlock(lwkt_cpusync_t);
507 extern void lwkt_cpusync_deinterlock(lwkt_cpusync_t);
508 
509 extern void crit_panic(void) __dead2;
510 extern struct lwp *lwkt_preempted_proc(void);
511 
512 extern int  lwkt_create (void (*func)(void *), void *, struct thread **,
513 		struct thread *, int, int,
514 		const char *, ...) __printflike(7, 8);
515 extern void lwkt_exit (void) __dead2;
516 extern void lwkt_remove_tdallq (struct thread *);
517 
518 #endif
519 
520 #endif
521 
522