xref: /dragonfly/sys/sys/tree.h (revision fb151170)
1 /*	$NetBSD: tree.h,v 1.8 2004/03/28 19:38:30 provos Exp $	*/
2 /*	$OpenBSD: tree.h,v 1.7 2002/10/17 21:51:54 art Exp $	*/
3 /*	$DragonFly: src/sys/sys/tree.h,v 1.11 2008/01/07 01:22:30 corecode Exp $ */
4 /*
5  * Copyright 2002 Niels Provos <provos@citi.umich.edu>
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #ifndef	_SYS_TREE_H_
30 #define	_SYS_TREE_H_
31 
32 #ifndef _SYS_SPINLOCK_H_
33 #include <sys/spinlock.h>
34 #endif
35 
36 void rb_spin_lock(struct spinlock *spin);
37 void rb_spin_unlock(struct spinlock *spin);
38 
39 /*
40  * This file defines data structures for different types of trees:
41  * splay trees and red-black trees.
42  *
43  * A splay tree is a self-organizing data structure.  Every operation
44  * on the tree causes a splay to happen.  The splay moves the requested
45  * node to the root of the tree and partly rebalances it.
46  *
47  * This has the benefit that request locality causes faster lookups as
48  * the requested nodes move to the top of the tree.  On the other hand,
49  * every lookup causes memory writes.
50  *
51  * The Balance Theorem bounds the total access time for m operations
52  * and n inserts on an initially empty tree as O((m + n)lg n).  The
53  * amortized cost for a sequence of m accesses to a splay tree is O(lg n);
54  *
55  * A red-black tree is a binary search tree with the node color as an
56  * extra attribute.  It fulfills a set of conditions:
57  *	- every search path from the root to a leaf consists of the
58  *	  same number of black nodes,
59  *	- each red node (except for the root) has a black parent,
60  *	- each leaf node is black.
61  *
62  * Every operation on a red-black tree is bounded as O(lg n).
63  * The maximum height of a red-black tree is 2lg (n+1).
64  */
65 
66 #define SPLAY_HEAD(name, type)						\
67 struct name {								\
68 	struct type *sph_root; /* root of the tree */			\
69 }
70 
71 #define SPLAY_INITIALIZER(root)						\
72 	{ NULL }
73 
74 #define SPLAY_INIT(root) do {						\
75 	(root)->sph_root = NULL;					\
76 } while (/*CONSTCOND*/ 0)
77 
78 #define SPLAY_ENTRY(type)						\
79 struct {								\
80 	struct type *spe_left; /* left element */			\
81 	struct type *spe_right; /* right element */			\
82 }
83 
84 #define SPLAY_LEFT(elm, field)		(elm)->field.spe_left
85 #define SPLAY_RIGHT(elm, field)		(elm)->field.spe_right
86 #define SPLAY_ROOT(head)		(head)->sph_root
87 #define SPLAY_EMPTY(head)		(SPLAY_ROOT(head) == NULL)
88 
89 /* SPLAY_ROTATE_{LEFT,RIGHT} expect that tmp hold SPLAY_{RIGHT,LEFT} */
90 #define SPLAY_ROTATE_RIGHT(head, tmp, field) do {			\
91 	SPLAY_LEFT((head)->sph_root, field) = SPLAY_RIGHT(tmp, field);	\
92 	SPLAY_RIGHT(tmp, field) = (head)->sph_root;			\
93 	(head)->sph_root = tmp;						\
94 } while (/*CONSTCOND*/ 0)
95 
96 #define SPLAY_ROTATE_LEFT(head, tmp, field) do {			\
97 	SPLAY_RIGHT((head)->sph_root, field) = SPLAY_LEFT(tmp, field);	\
98 	SPLAY_LEFT(tmp, field) = (head)->sph_root;			\
99 	(head)->sph_root = tmp;						\
100 } while (/*CONSTCOND*/ 0)
101 
102 #define SPLAY_LINKLEFT(head, tmp, field) do {				\
103 	SPLAY_LEFT(tmp, field) = (head)->sph_root;			\
104 	tmp = (head)->sph_root;						\
105 	(head)->sph_root = SPLAY_LEFT((head)->sph_root, field);		\
106 } while (/*CONSTCOND*/ 0)
107 
108 #define SPLAY_LINKRIGHT(head, tmp, field) do {				\
109 	SPLAY_RIGHT(tmp, field) = (head)->sph_root;			\
110 	tmp = (head)->sph_root;						\
111 	(head)->sph_root = SPLAY_RIGHT((head)->sph_root, field);	\
112 } while (/*CONSTCOND*/ 0)
113 
114 #define SPLAY_ASSEMBLE(head, node, left, right, field) do {		\
115 	SPLAY_RIGHT(left, field) = SPLAY_LEFT((head)->sph_root, field);	\
116 	SPLAY_LEFT(right, field) = SPLAY_RIGHT((head)->sph_root, field);\
117 	SPLAY_LEFT((head)->sph_root, field) = SPLAY_RIGHT(node, field);	\
118 	SPLAY_RIGHT((head)->sph_root, field) = SPLAY_LEFT(node, field);	\
119 } while (/*CONSTCOND*/ 0)
120 
121 /* Generates prototypes and inline functions */
122 
123 #define SPLAY_PROTOTYPE(name, type, field, cmp)				\
124 void name##_SPLAY(struct name *, struct type *);			\
125 void name##_SPLAY_MINMAX(struct name *, int);				\
126 struct type *name##_SPLAY_INSERT(struct name *, struct type *);		\
127 struct type *name##_SPLAY_REMOVE(struct name *, struct type *);		\
128 									\
129 /* Finds the node with the same key as elm */				\
130 static __inline struct type *						\
131 name##_SPLAY_FIND(struct name *head, struct type *elm)			\
132 {									\
133 	if (SPLAY_EMPTY(head))						\
134 		return(NULL);						\
135 	name##_SPLAY(head, elm);					\
136 	if ((cmp)(elm, (head)->sph_root) == 0)				\
137 		return (head->sph_root);				\
138 	return (NULL);							\
139 }									\
140 									\
141 static __inline struct type *						\
142 name##_SPLAY_NEXT(struct name *head, struct type *elm)			\
143 {									\
144 	name##_SPLAY(head, elm);					\
145 	if (SPLAY_RIGHT(elm, field) != NULL) {				\
146 		elm = SPLAY_RIGHT(elm, field);				\
147 		while (SPLAY_LEFT(elm, field) != NULL) {		\
148 			elm = SPLAY_LEFT(elm, field);			\
149 		}							\
150 	} else								\
151 		elm = NULL;						\
152 	return (elm);							\
153 }									\
154 									\
155 static __inline struct type *						\
156 name##_SPLAY_MIN_MAX(struct name *head, int val)			\
157 {									\
158 	name##_SPLAY_MINMAX(head, val);					\
159         return (SPLAY_ROOT(head));					\
160 }
161 
162 /* Main splay operation.
163  * Moves node close to the key of elm to top
164  */
165 #define SPLAY_GENERATE(name, type, field, cmp)				\
166 struct type *								\
167 name##_SPLAY_INSERT(struct name *head, struct type *elm)		\
168 {									\
169     if (SPLAY_EMPTY(head)) {						\
170 	    SPLAY_LEFT(elm, field) = SPLAY_RIGHT(elm, field) = NULL;	\
171     } else {								\
172 	    int __comp;							\
173 	    name##_SPLAY(head, elm);					\
174 	    __comp = (cmp)(elm, (head)->sph_root);			\
175 	    if(__comp < 0) {						\
176 		    SPLAY_LEFT(elm, field) = SPLAY_LEFT((head)->sph_root, field);\
177 		    SPLAY_RIGHT(elm, field) = (head)->sph_root;		\
178 		    SPLAY_LEFT((head)->sph_root, field) = NULL;		\
179 	    } else if (__comp > 0) {					\
180 		    SPLAY_RIGHT(elm, field) = SPLAY_RIGHT((head)->sph_root, field);\
181 		    SPLAY_LEFT(elm, field) = (head)->sph_root;		\
182 		    SPLAY_RIGHT((head)->sph_root, field) = NULL;	\
183 	    } else							\
184 		    return ((head)->sph_root);				\
185     }									\
186     (head)->sph_root = (elm);						\
187     return (NULL);							\
188 }									\
189 									\
190 struct type *								\
191 name##_SPLAY_REMOVE(struct name *head, struct type *elm)		\
192 {									\
193 	struct type *__tmp;						\
194 	if (SPLAY_EMPTY(head))						\
195 		return (NULL);						\
196 	name##_SPLAY(head, elm);					\
197 	if ((cmp)(elm, (head)->sph_root) == 0) {			\
198 		if (SPLAY_LEFT((head)->sph_root, field) == NULL) {	\
199 			(head)->sph_root = SPLAY_RIGHT((head)->sph_root, field);\
200 		} else {						\
201 			__tmp = SPLAY_RIGHT((head)->sph_root, field);	\
202 			(head)->sph_root = SPLAY_LEFT((head)->sph_root, field);\
203 			name##_SPLAY(head, elm);			\
204 			SPLAY_RIGHT((head)->sph_root, field) = __tmp;	\
205 		}							\
206 		return (elm);						\
207 	}								\
208 	return (NULL);							\
209 }									\
210 									\
211 void									\
212 name##_SPLAY(struct name *head, struct type *elm)			\
213 {									\
214 	struct type __node, *__left, *__right, *__tmp;			\
215 	int __comp;							\
216 \
217 	SPLAY_LEFT(&__node, field) = SPLAY_RIGHT(&__node, field) = NULL;\
218 	__left = __right = &__node;					\
219 \
220 	while ((__comp = (cmp)(elm, (head)->sph_root)) != 0) {		\
221 		if (__comp < 0) {					\
222 			__tmp = SPLAY_LEFT((head)->sph_root, field);	\
223 			if (__tmp == NULL)				\
224 				break;					\
225 			if ((cmp)(elm, __tmp) < 0){			\
226 				SPLAY_ROTATE_RIGHT(head, __tmp, field);	\
227 				if (SPLAY_LEFT((head)->sph_root, field) == NULL)\
228 					break;				\
229 			}						\
230 			SPLAY_LINKLEFT(head, __right, field);		\
231 		} else if (__comp > 0) {				\
232 			__tmp = SPLAY_RIGHT((head)->sph_root, field);	\
233 			if (__tmp == NULL)				\
234 				break;					\
235 			if ((cmp)(elm, __tmp) > 0){			\
236 				SPLAY_ROTATE_LEFT(head, __tmp, field);	\
237 				if (SPLAY_RIGHT((head)->sph_root, field) == NULL)\
238 					break;				\
239 			}						\
240 			SPLAY_LINKRIGHT(head, __left, field);		\
241 		}							\
242 	}								\
243 	SPLAY_ASSEMBLE(head, &__node, __left, __right, field);		\
244 }									\
245 									\
246 /* Splay with either the minimum or the maximum element			\
247  * Used to find minimum or maximum element in tree.			\
248  */									\
249 void name##_SPLAY_MINMAX(struct name *head, int __comp) \
250 {									\
251 	struct type __node, *__left, *__right, *__tmp;			\
252 \
253 	SPLAY_LEFT(&__node, field) = SPLAY_RIGHT(&__node, field) = NULL;\
254 	__left = __right = &__node;					\
255 \
256 	while (1) {							\
257 		if (__comp < 0) {					\
258 			__tmp = SPLAY_LEFT((head)->sph_root, field);	\
259 			if (__tmp == NULL)				\
260 				break;					\
261 			if (__comp < 0){				\
262 				SPLAY_ROTATE_RIGHT(head, __tmp, field);	\
263 				if (SPLAY_LEFT((head)->sph_root, field) == NULL)\
264 					break;				\
265 			}						\
266 			SPLAY_LINKLEFT(head, __right, field);		\
267 		} else if (__comp > 0) {				\
268 			__tmp = SPLAY_RIGHT((head)->sph_root, field);	\
269 			if (__tmp == NULL)				\
270 				break;					\
271 			if (__comp > 0) {				\
272 				SPLAY_ROTATE_LEFT(head, __tmp, field);	\
273 				if (SPLAY_RIGHT((head)->sph_root, field) == NULL)\
274 					break;				\
275 			}						\
276 			SPLAY_LINKRIGHT(head, __left, field);		\
277 		}							\
278 	}								\
279 	SPLAY_ASSEMBLE(head, &__node, __left, __right, field);		\
280 }
281 
282 #define SPLAY_NEGINF	-1
283 #define SPLAY_INF	1
284 
285 #define SPLAY_INSERT(name, x, y)	name##_SPLAY_INSERT(x, y)
286 #define SPLAY_REMOVE(name, x, y)	name##_SPLAY_REMOVE(x, y)
287 #define SPLAY_FIND(name, x, y)		name##_SPLAY_FIND(x, y)
288 #define SPLAY_NEXT(name, x, y)		name##_SPLAY_NEXT(x, y)
289 #define SPLAY_MIN(name, x)		(SPLAY_EMPTY(x) ? NULL	\
290 					: name##_SPLAY_MIN_MAX(x, SPLAY_NEGINF))
291 #define SPLAY_MAX(name, x)		(SPLAY_EMPTY(x) ? NULL	\
292 					: name##_SPLAY_MIN_MAX(x, SPLAY_INF))
293 
294 #define SPLAY_FOREACH(x, name, head)					\
295 	for ((x) = SPLAY_MIN(name, head);				\
296 	     (x) != NULL;						\
297 	     (x) = SPLAY_NEXT(name, head, x))
298 
299 /*
300  * Macros that define a red-black tree
301  */
302 
303 #define RB_SCAN_INFO(name, type)					\
304 struct name##_scan_info {						\
305 	struct name##_scan_info *link;					\
306 	struct type	*node;						\
307 }
308 
309 #define RB_HEAD(name, type)						\
310 struct name {								\
311 	struct type *rbh_root; 		     /* root of the tree */	\
312 	struct name##_scan_info *rbh_inprog; /* scans in progress */	\
313 	struct spinlock rbh_spin;					\
314 }
315 
316 #define RB_INITIALIZER(root)						\
317 	{ NULL, NULL, SPINLOCK_INITIALIZER(root.spin) }
318 
319 #define RB_INIT(root) do {						\
320 	(root)->rbh_root = NULL;					\
321 	(root)->rbh_inprog = NULL;					\
322 } while (/*CONSTCOND*/ 0)
323 
324 #ifdef _KERNEL
325 #define RB_SCAN_LOCK(spin)	rb_spin_lock(spin)
326 #define RB_SCAN_UNLOCK(spin)	rb_spin_unlock(spin)
327 #else
328 #define RB_SCAN_LOCK(spin)
329 #define RB_SCAN_UNLOCK(spin)
330 #endif
331 
332 #define RB_BLACK	0
333 #define RB_RED		1
334 #define RB_ENTRY(type)							\
335 struct {								\
336 	struct type *rbe_left;		/* left element */		\
337 	struct type *rbe_right;		/* right element */		\
338 	struct type *rbe_parent;	/* parent element */		\
339 	int rbe_color;			/* node color */		\
340 }
341 
342 #define RB_LEFT(elm, field)		(elm)->field.rbe_left
343 #define RB_RIGHT(elm, field)		(elm)->field.rbe_right
344 #define RB_PARENT(elm, field)		(elm)->field.rbe_parent
345 #define RB_COLOR(elm, field)		(elm)->field.rbe_color
346 #define RB_ROOT(head)			(head)->rbh_root
347 #define RB_INPROG(head)			(head)->rbh_inprog
348 #define RB_EMPTY(head)			(RB_ROOT(head) == NULL)
349 
350 #define RB_SET(elm, parent, field) do {					\
351 	RB_PARENT(elm, field) = parent;					\
352 	RB_LEFT(elm, field) = RB_RIGHT(elm, field) = NULL;		\
353 	RB_COLOR(elm, field) = RB_RED;					\
354 } while (/*CONSTCOND*/ 0)
355 
356 #define RB_SET_BLACKRED(black, red, field) do {				\
357 	RB_COLOR(black, field) = RB_BLACK;				\
358 	RB_COLOR(red, field) = RB_RED;					\
359 } while (/*CONSTCOND*/ 0)
360 
361 #ifndef RB_AUGMENT
362 #define RB_AUGMENT(x)	do {} while (0)
363 #endif
364 
365 #define RB_ROTATE_LEFT(head, elm, tmp, field) do {			\
366 	(tmp) = RB_RIGHT(elm, field);					\
367 	if ((RB_RIGHT(elm, field) = RB_LEFT(tmp, field)) != NULL) {	\
368 		RB_PARENT(RB_LEFT(tmp, field), field) = (elm);		\
369 	}								\
370 	RB_AUGMENT(elm);						\
371 	if ((RB_PARENT(tmp, field) = RB_PARENT(elm, field)) != NULL) {	\
372 		if ((elm) == RB_LEFT(RB_PARENT(elm, field), field))	\
373 			RB_LEFT(RB_PARENT(elm, field), field) = (tmp);	\
374 		else							\
375 			RB_RIGHT(RB_PARENT(elm, field), field) = (tmp);	\
376 	} else								\
377 		(head)->rbh_root = (tmp);				\
378 	RB_LEFT(tmp, field) = (elm);					\
379 	RB_PARENT(elm, field) = (tmp);					\
380 	RB_AUGMENT(tmp);						\
381 	if ((RB_PARENT(tmp, field)))					\
382 		RB_AUGMENT(RB_PARENT(tmp, field));			\
383 } while (/*CONSTCOND*/ 0)
384 
385 #define RB_ROTATE_RIGHT(head, elm, tmp, field) do {			\
386 	(tmp) = RB_LEFT(elm, field);					\
387 	if ((RB_LEFT(elm, field) = RB_RIGHT(tmp, field)) != NULL) {	\
388 		RB_PARENT(RB_RIGHT(tmp, field), field) = (elm);		\
389 	}								\
390 	RB_AUGMENT(elm);						\
391 	if ((RB_PARENT(tmp, field) = RB_PARENT(elm, field)) != NULL) {	\
392 		if ((elm) == RB_LEFT(RB_PARENT(elm, field), field))	\
393 			RB_LEFT(RB_PARENT(elm, field), field) = (tmp);	\
394 		else							\
395 			RB_RIGHT(RB_PARENT(elm, field), field) = (tmp);	\
396 	} else								\
397 		(head)->rbh_root = (tmp);				\
398 	RB_RIGHT(tmp, field) = (elm);					\
399 	RB_PARENT(elm, field) = (tmp);					\
400 	RB_AUGMENT(tmp);						\
401 	if ((RB_PARENT(tmp, field)))					\
402 		RB_AUGMENT(RB_PARENT(tmp, field));			\
403 } while (/*CONSTCOND*/ 0)
404 
405 /* Generates prototypes and inline functions */
406 #define RB_PROTOTYPE(name, type, field, cmp)				\
407 	_RB_PROTOTYPE(name, type, field, cmp,)
408 #define RB_PROTOTYPE_STATIC(name, type, field, cmp)			\
409 	_RB_PROTOTYPE(name, type, field, cmp, __unused static)
410 
411 #define _RB_PROTOTYPE(name, type, field, cmp, STORQUAL)			\
412 STORQUAL struct type *name##_RB_REMOVE(struct name *, struct type *);	\
413 STORQUAL struct type *name##_RB_INSERT(struct name *, struct type *);	\
414 STORQUAL struct type *name##_RB_FIND(struct name *, struct type *);	\
415 STORQUAL int name##_RB_SCAN(struct name *, int (*)(struct type *, void *),\
416 			int (*)(struct type *, void *), void *);	\
417 STORQUAL struct type *name##_RB_NEXT(struct type *);			\
418 STORQUAL struct type *name##_RB_PREV(struct type *);			\
419 STORQUAL struct type *name##_RB_MINMAX(struct name *, int);		\
420 RB_SCAN_INFO(name, type)						\
421 
422 /*
423  * A version which supplies a fast lookup routine for an exact match
424  * on a numeric field.
425  */
426 #define RB_PROTOTYPE2(name, type, field, cmp, datatype)			\
427 RB_PROTOTYPE(name, type, field, cmp);					\
428 struct type *name##_RB_LOOKUP(struct name *, datatype)			\
429 
430 /*
431  * A version which supplies a fast lookup routine for a numeric
432  * field which resides within a ranged object, either using (begin,end),
433  * or using (begin,size).
434  */
435 #define RB_PROTOTYPE3(name, type, field, cmp, datatype)			\
436 RB_PROTOTYPE2(name, type, field, cmp, datatype);			\
437 struct type *name##_RB_RLOOKUP(struct name *, datatype)			\
438 
439 #define RB_PROTOTYPE4(name, type, field, cmp, datatype)			\
440 RB_PROTOTYPE2(name, type, field, cmp, datatype);			\
441 struct type *name##_RB_RLOOKUP(struct name *, datatype)			\
442 
443 #define RB_PROTOTYPEX(name, ext, type, field, cmp, datatype)		\
444 RB_PROTOTYPE(name, type, field, cmp);					\
445 struct type *name##_RB_LOOKUP_##ext (struct name *, datatype)		\
446 
447 /* Main rb operation.
448  * Moves node close to the key of elm to top
449  */
450 #define RB_GENERATE(name, type, field, cmp)				\
451 	_RB_GENERATE(name, type, field, cmp,)
452 
453 #define RB_GENERATE_STATIC(name, type, field, cmp)			\
454 	_RB_GENERATE(name, type, field, cmp, __unused static)
455 
456 #define _RB_GENERATE(name, type, field, cmp, STORQUAL)			\
457 static void								\
458 name##_RB_INSERT_COLOR(struct name *head, struct type *elm)		\
459 {									\
460 	struct type *parent, *gparent, *tmp;				\
461 	while ((parent = RB_PARENT(elm, field)) != NULL &&		\
462 	    RB_COLOR(parent, field) == RB_RED) {			\
463 		gparent = RB_PARENT(parent, field);			\
464 		if (parent == RB_LEFT(gparent, field)) {		\
465 			tmp = RB_RIGHT(gparent, field);			\
466 			if (tmp && RB_COLOR(tmp, field) == RB_RED) {	\
467 				RB_COLOR(tmp, field) = RB_BLACK;	\
468 				RB_SET_BLACKRED(parent, gparent, field);\
469 				elm = gparent;				\
470 				continue;				\
471 			}						\
472 			if (RB_RIGHT(parent, field) == elm) {		\
473 				RB_ROTATE_LEFT(head, parent, tmp, field);\
474 				tmp = parent;				\
475 				parent = elm;				\
476 				elm = tmp;				\
477 			}						\
478 			RB_SET_BLACKRED(parent, gparent, field);	\
479 			RB_ROTATE_RIGHT(head, gparent, tmp, field);	\
480 		} else {						\
481 			tmp = RB_LEFT(gparent, field);			\
482 			if (tmp && RB_COLOR(tmp, field) == RB_RED) {	\
483 				RB_COLOR(tmp, field) = RB_BLACK;	\
484 				RB_SET_BLACKRED(parent, gparent, field);\
485 				elm = gparent;				\
486 				continue;				\
487 			}						\
488 			if (RB_LEFT(parent, field) == elm) {		\
489 				RB_ROTATE_RIGHT(head, parent, tmp, field);\
490 				tmp = parent;				\
491 				parent = elm;				\
492 				elm = tmp;				\
493 			}						\
494 			RB_SET_BLACKRED(parent, gparent, field);	\
495 			RB_ROTATE_LEFT(head, gparent, tmp, field);	\
496 		}							\
497 	}								\
498 	RB_COLOR(head->rbh_root, field) = RB_BLACK;			\
499 }									\
500 									\
501 static void								\
502 name##_RB_REMOVE_COLOR(struct name *head, struct type *parent,		\
503 			struct type *elm) 				\
504 {									\
505 	struct type *tmp;						\
506 	while ((elm == NULL || RB_COLOR(elm, field) == RB_BLACK) &&	\
507 	    elm != RB_ROOT(head)) {					\
508 		if (RB_LEFT(parent, field) == elm) {			\
509 			tmp = RB_RIGHT(parent, field);			\
510 			if (RB_COLOR(tmp, field) == RB_RED) {		\
511 				RB_SET_BLACKRED(tmp, parent, field);	\
512 				RB_ROTATE_LEFT(head, parent, tmp, field);\
513 				tmp = RB_RIGHT(parent, field);		\
514 			}						\
515 			if ((RB_LEFT(tmp, field) == NULL ||		\
516 			    RB_COLOR(RB_LEFT(tmp, field), field) == RB_BLACK) &&\
517 			    (RB_RIGHT(tmp, field) == NULL ||		\
518 			    RB_COLOR(RB_RIGHT(tmp, field), field) == RB_BLACK)) {\
519 				RB_COLOR(tmp, field) = RB_RED;		\
520 				elm = parent;				\
521 				parent = RB_PARENT(elm, field);		\
522 			} else {					\
523 				if (RB_RIGHT(tmp, field) == NULL ||	\
524 				    RB_COLOR(RB_RIGHT(tmp, field), field) == RB_BLACK) {\
525 					struct type *oleft;		\
526 					if ((oleft = RB_LEFT(tmp, field)) \
527 					    != NULL)			\
528 						RB_COLOR(oleft, field) = RB_BLACK;\
529 					RB_COLOR(tmp, field) = RB_RED;	\
530 					RB_ROTATE_RIGHT(head, tmp, oleft, field);\
531 					tmp = RB_RIGHT(parent, field);	\
532 				}					\
533 				RB_COLOR(tmp, field) = RB_COLOR(parent, field);\
534 				RB_COLOR(parent, field) = RB_BLACK;	\
535 				if (RB_RIGHT(tmp, field))		\
536 					RB_COLOR(RB_RIGHT(tmp, field), field) = RB_BLACK;\
537 				RB_ROTATE_LEFT(head, parent, tmp, field);\
538 				elm = RB_ROOT(head);			\
539 				break;					\
540 			}						\
541 		} else {						\
542 			tmp = RB_LEFT(parent, field);			\
543 			if (RB_COLOR(tmp, field) == RB_RED) {		\
544 				RB_SET_BLACKRED(tmp, parent, field);	\
545 				RB_ROTATE_RIGHT(head, parent, tmp, field);\
546 				tmp = RB_LEFT(parent, field);		\
547 			}						\
548 			if ((RB_LEFT(tmp, field) == NULL ||		\
549 			    RB_COLOR(RB_LEFT(tmp, field), field) == RB_BLACK) &&\
550 			    (RB_RIGHT(tmp, field) == NULL ||		\
551 			    RB_COLOR(RB_RIGHT(tmp, field), field) == RB_BLACK)) {\
552 				RB_COLOR(tmp, field) = RB_RED;		\
553 				elm = parent;				\
554 				parent = RB_PARENT(elm, field);		\
555 			} else {					\
556 				if (RB_LEFT(tmp, field) == NULL ||	\
557 				    RB_COLOR(RB_LEFT(tmp, field), field) == RB_BLACK) {\
558 					struct type *oright;		\
559 					if ((oright = RB_RIGHT(tmp, field)) \
560 					    != NULL)			\
561 						RB_COLOR(oright, field) = RB_BLACK;\
562 					RB_COLOR(tmp, field) = RB_RED;	\
563 					RB_ROTATE_LEFT(head, tmp, oright, field);\
564 					tmp = RB_LEFT(parent, field);	\
565 				}					\
566 				RB_COLOR(tmp, field) = RB_COLOR(parent, field);\
567 				RB_COLOR(parent, field) = RB_BLACK;	\
568 				if (RB_LEFT(tmp, field))		\
569 					RB_COLOR(RB_LEFT(tmp, field), field) = RB_BLACK;\
570 				RB_ROTATE_RIGHT(head, parent, tmp, field);\
571 				elm = RB_ROOT(head);			\
572 				break;					\
573 			}						\
574 		}							\
575 	}								\
576 	if (elm)							\
577 		RB_COLOR(elm, field) = RB_BLACK;			\
578 }									\
579 									\
580 STORQUAL struct type *							\
581 name##_RB_REMOVE(struct name *head, struct type *elm)			\
582 {									\
583 	struct type *child, *parent, *old;				\
584 	struct name##_scan_info *inprog;				\
585 	int color;							\
586 									\
587 	for (inprog = RB_INPROG(head); inprog; inprog = inprog->link) { \
588 		if (inprog->node == elm) 				\
589 			inprog->node = RB_NEXT(name, head, elm);	\
590 	}								\
591 									\
592 	old = elm;							\
593 	if (RB_LEFT(elm, field) == NULL)				\
594 		child = RB_RIGHT(elm, field);				\
595 	else if (RB_RIGHT(elm, field) == NULL)				\
596 		child = RB_LEFT(elm, field);				\
597 	else {								\
598 		struct type *left;					\
599 		elm = RB_RIGHT(elm, field);				\
600 		while ((left = RB_LEFT(elm, field)) != NULL)		\
601 			elm = left;					\
602 		child = RB_RIGHT(elm, field);				\
603 		parent = RB_PARENT(elm, field);				\
604 		color = RB_COLOR(elm, field);				\
605 		if (child)						\
606 			RB_PARENT(child, field) = parent;		\
607 		if (parent) {						\
608 			if (RB_LEFT(parent, field) == elm)		\
609 				RB_LEFT(parent, field) = child;		\
610 			else						\
611 				RB_RIGHT(parent, field) = child;	\
612 			RB_AUGMENT(parent);				\
613 		} else							\
614 			RB_ROOT(head) = child;				\
615 		if (RB_PARENT(elm, field) == old)			\
616 			parent = elm;					\
617 		(elm)->field = (old)->field;				\
618 		if (RB_PARENT(old, field)) {				\
619 			if (RB_LEFT(RB_PARENT(old, field), field) == old)\
620 				RB_LEFT(RB_PARENT(old, field), field) = elm;\
621 			else						\
622 				RB_RIGHT(RB_PARENT(old, field), field) = elm;\
623 			RB_AUGMENT(RB_PARENT(old, field));		\
624 		} else							\
625 			RB_ROOT(head) = elm;				\
626 		RB_PARENT(RB_LEFT(old, field), field) = elm;		\
627 		if (RB_RIGHT(old, field))				\
628 			RB_PARENT(RB_RIGHT(old, field), field) = elm;	\
629 		if (parent) {						\
630 			left = parent;					\
631 			do {						\
632 				RB_AUGMENT(left);			\
633 			} while ((left = RB_PARENT(left, field)) != NULL); \
634 		}							\
635 		goto color;						\
636 	}								\
637 	parent = RB_PARENT(elm, field);					\
638 	color = RB_COLOR(elm, field);					\
639 	if (child)							\
640 		RB_PARENT(child, field) = parent;			\
641 	if (parent) {							\
642 		if (RB_LEFT(parent, field) == elm)			\
643 			RB_LEFT(parent, field) = child;			\
644 		else							\
645 			RB_RIGHT(parent, field) = child;		\
646 		RB_AUGMENT(parent);					\
647 	} else								\
648 		RB_ROOT(head) = child;					\
649 color:									\
650 	if (color == RB_BLACK)						\
651 		name##_RB_REMOVE_COLOR(head, parent, child);		\
652 	return (old);							\
653 }									\
654 									\
655 /* Inserts a node into the RB tree */					\
656 STORQUAL struct type *							\
657 name##_RB_INSERT(struct name *head, struct type *elm)			\
658 {									\
659 	struct type *tmp;						\
660 	struct type *parent = NULL;					\
661 	int comp = 0;							\
662 	tmp = RB_ROOT(head);						\
663 	while (tmp) {							\
664 		parent = tmp;						\
665 		comp = (cmp)(elm, parent);				\
666 		if (comp < 0)						\
667 			tmp = RB_LEFT(tmp, field);			\
668 		else if (comp > 0)					\
669 			tmp = RB_RIGHT(tmp, field);			\
670 		else							\
671 			return(tmp);					\
672 	}								\
673 	RB_SET(elm, parent, field);					\
674 	if (parent != NULL) {						\
675 		if (comp < 0)						\
676 			RB_LEFT(parent, field) = elm;			\
677 		else							\
678 			RB_RIGHT(parent, field) = elm;			\
679 		RB_AUGMENT(parent);					\
680 	} else								\
681 		RB_ROOT(head) = elm;					\
682 	name##_RB_INSERT_COLOR(head, elm);				\
683 	return (NULL);							\
684 }									\
685 									\
686 /* Finds the node with the same key as elm */				\
687 STORQUAL struct type *							\
688 name##_RB_FIND(struct name *head, struct type *elm)			\
689 {									\
690 	struct type *tmp = RB_ROOT(head);				\
691 	int comp;							\
692 	while (tmp) {							\
693 		comp = cmp(elm, tmp);					\
694 		if (comp < 0)						\
695 			tmp = RB_LEFT(tmp, field);			\
696 		else if (comp > 0)					\
697 			tmp = RB_RIGHT(tmp, field);			\
698 		else							\
699 			return (tmp);					\
700 	}								\
701 	return (NULL);							\
702 }									\
703 									\
704 /*									\
705  * Issue a callback for all matching items.  The scan function must	\
706  * return < 0 for items below the desired range, 0 for items within	\
707  * the range, and > 0 for items beyond the range.   Any item may be	\
708  * deleted while the scan is in progress.				\
709  */									\
710 static int								\
711 name##_SCANCMP_ALL(struct type *type __unused, void *data __unused)	\
712 {									\
713 	return(0);							\
714 }									\
715 									\
716 static __inline void							\
717 name##_scan_info_link(struct name##_scan_info *scan, struct name *head)	\
718 {									\
719 	RB_SCAN_LOCK(&head->rbh_spin);					\
720 	scan->link = RB_INPROG(head);					\
721 	RB_INPROG(head) = scan;						\
722 	RB_SCAN_UNLOCK(&head->rbh_spin);				\
723 }									\
724 									\
725 static __inline void							\
726 name##_scan_info_done(struct name##_scan_info *scan, struct name *head)	\
727 {									\
728 	struct name##_scan_info **infopp;				\
729 									\
730 	RB_SCAN_LOCK(&head->rbh_spin);					\
731 	infopp = &RB_INPROG(head);					\
732 	while (*infopp != scan) 					\
733 		infopp = &(*infopp)->link;				\
734 	*infopp = scan->link;						\
735 	RB_SCAN_UNLOCK(&head->rbh_spin);				\
736 }									\
737 									\
738 STORQUAL int								\
739 name##_RB_SCAN(struct name *head,					\
740 		int (*scancmp)(struct type *, void *),			\
741 		int (*callback)(struct type *, void *),			\
742 		void *data)						\
743 {									\
744 	struct name##_scan_info info;					\
745 	struct type *best;						\
746 	struct type *tmp;						\
747 	int count;							\
748 	int comp;							\
749 									\
750 	if (scancmp == NULL)						\
751 		scancmp = name##_SCANCMP_ALL;				\
752 									\
753 	/*								\
754 	 * Locate the first element.					\
755 	 */								\
756 	tmp = RB_ROOT(head);						\
757 	best = NULL;							\
758 	while (tmp) {							\
759 		comp = scancmp(tmp, data);				\
760 		if (comp < 0) {						\
761 			tmp = RB_RIGHT(tmp, field);			\
762 		} else if (comp > 0) {					\
763 			tmp = RB_LEFT(tmp, field);			\
764 		} else {						\
765 			best = tmp;					\
766 			if (RB_LEFT(tmp, field) == NULL)		\
767 				break;					\
768 			tmp = RB_LEFT(tmp, field);			\
769 		}							\
770 	}								\
771 	count = 0;							\
772 	if (best) {							\
773 		info.node = RB_NEXT(name, head, best);			\
774 		name##_scan_info_link(&info, head);			\
775 		while ((comp = callback(best, data)) >= 0) {		\
776 			count += comp;					\
777 			best = info.node;				\
778 			if (best == NULL || scancmp(best, data) != 0)	\
779 				break;					\
780 			info.node = RB_NEXT(name, head, best);		\
781 		}							\
782 		name##_scan_info_done(&info, head);			\
783 		if (comp < 0)	/* error or termination */		\
784 			count = comp;					\
785 	}								\
786 	return(count);							\
787 }									\
788 									\
789 /* ARGSUSED */								\
790 STORQUAL struct type *							\
791 name##_RB_NEXT(struct type *elm)					\
792 {									\
793 	if (RB_RIGHT(elm, field)) {					\
794 		elm = RB_RIGHT(elm, field);				\
795 		while (RB_LEFT(elm, field))				\
796 			elm = RB_LEFT(elm, field);			\
797 	} else {							\
798 		if (RB_PARENT(elm, field) &&				\
799 		    (elm == RB_LEFT(RB_PARENT(elm, field), field)))	\
800 			elm = RB_PARENT(elm, field);			\
801 		else {							\
802 			while (RB_PARENT(elm, field) &&			\
803 			    (elm == RB_RIGHT(RB_PARENT(elm, field), field)))\
804 				elm = RB_PARENT(elm, field);		\
805 			elm = RB_PARENT(elm, field);			\
806 		}							\
807 	}								\
808 	return (elm);							\
809 }									\
810 									\
811 /* ARGSUSED */								\
812 STORQUAL struct type *							\
813 name##_RB_PREV(struct type *elm)					\
814 {									\
815 	if (RB_LEFT(elm, field)) {					\
816 		elm = RB_LEFT(elm, field);				\
817 		while (RB_RIGHT(elm, field))				\
818 			elm = RB_RIGHT(elm, field);			\
819 	} else {							\
820 		if (RB_PARENT(elm, field) &&				\
821 		    (elm == RB_RIGHT(RB_PARENT(elm, field), field)))	\
822 			elm = RB_PARENT(elm, field);			\
823 		else {							\
824 			while (RB_PARENT(elm, field) &&			\
825 			    (elm == RB_LEFT(RB_PARENT(elm, field), field)))\
826 				elm = RB_PARENT(elm, field);		\
827 			elm = RB_PARENT(elm, field);			\
828 		}							\
829 	}								\
830 	return (elm);							\
831 }									\
832 									\
833 STORQUAL struct type *							\
834 name##_RB_MINMAX(struct name *head, int val)				\
835 {									\
836 	struct type *tmp = RB_ROOT(head);				\
837 	struct type *parent = NULL;					\
838 	while (tmp) {							\
839 		parent = tmp;						\
840 		if (val < 0)						\
841 			tmp = RB_LEFT(tmp, field);			\
842 		else							\
843 			tmp = RB_RIGHT(tmp, field);			\
844 	}								\
845 	return (parent);						\
846 }
847 
848 /*
849  * This extended version implements a fast LOOKUP function given
850  * a numeric data type.
851  *
852  * The element whos index/offset field is exactly the specified value
853  * will be returned, or NULL.
854  */
855 #define RB_GENERATE2(name, type, field, cmp, datatype, indexfield)	\
856 RB_GENERATE(name, type, field, cmp)					\
857 									\
858 struct type *								\
859 name##_RB_LOOKUP(struct name *head, datatype value)			\
860 {									\
861 	struct type *tmp;						\
862 									\
863 	tmp = RB_ROOT(head);						\
864 	while (tmp) {							\
865 		if (value > tmp->indexfield) 				\
866 			tmp = RB_RIGHT(tmp, field);			\
867 		else if (value < tmp->indexfield) 			\
868 			tmp = RB_LEFT(tmp, field);			\
869 		else 							\
870 			return(tmp);					\
871 	}								\
872 	return(NULL);							\
873 }									\
874 
875 /*
876  * This extended version implements a fast ranged-based LOOKUP function
877  * given a numeric data type, for data types with a beginning and end
878  * (end is inclusive).
879  *
880  * The element whos range contains the specified value is returned, or NULL
881  */
882 #define RB_GENERATE3(name, type, field, cmp, datatype, begfield, endfield) \
883 RB_GENERATE2(name, type, field, cmp, datatype, begfield)		\
884 									\
885 struct type *								\
886 name##_RB_RLOOKUP(struct name *head, datatype value)			\
887 {									\
888 	struct type *tmp;						\
889 									\
890 	tmp = RB_ROOT(head);						\
891 	while (tmp) {							\
892 		if (value >= tmp->begfield && value <= tmp->endfield) 	\
893 			return(tmp);					\
894 		if (value > tmp->begfield) 				\
895 			tmp = RB_RIGHT(tmp, field);			\
896 		else							\
897 			tmp = RB_LEFT(tmp, field);			\
898 	}								\
899 	return(NULL);							\
900 }									\
901 
902 /*
903  * This extended version implements a fast ranged-based LOOKUP function
904  * given a numeric data type, for data types with a beginning and size.
905  *
906  * WARNING: The full range of the data type is not supported due to a
907  * boundary condition at the end, where (beginning + size) might overflow.
908  *
909  * The element whos range contains the specified value is returned, or NULL
910  */
911 #define RB_GENERATE4(name, type, field, cmp, datatype, begfield, sizefield) \
912 RB_GENERATE2(name, type, field, cmp, datatype, begfield)		\
913 									\
914 struct type *								\
915 name##_RB_RLOOKUP(struct name *head, datatype value)			\
916 {									\
917 	struct type *tmp;						\
918 									\
919 	tmp = RB_ROOT(head);						\
920 	while (tmp) {							\
921 		if (value >= tmp->begfield &&				\
922 		    value < tmp->begfield + tmp->sizefield) { 		\
923 			return(tmp);					\
924 		}							\
925 		if (value > tmp->begfield) 				\
926 			tmp = RB_RIGHT(tmp, field);			\
927 		else							\
928 			tmp = RB_LEFT(tmp, field);			\
929 	}								\
930 	return(NULL);							\
931 }									\
932 
933 /*
934  * This generates a custom lookup function for a red-black tree.
935  * Note that the macro may be used with a storage qualifier.
936  */
937 
938 #define RB_GENERATE_XLOOKUP(name, ext, type, field, xcmp, datatype)	   \
939 	_RB_GENERATE_XLOOKUP(name, ext, type, field, xcmp, datatype,)
940 #define RB_GENERATE_XLOOKUP_STATIC(name, ext, type, field, xcmp, datatype) \
941 	_RB_GENERATE_XLOOKUP(name, ext, type, field, xcmp, datatype, __unused static)
942 
943 #define _RB_GENERATE_XLOOKUP(name, ext, type, field, xcmp, datatype, STORQUAL)\
944 									\
945 STORQUAL struct type *							\
946 name##_RB_LOOKUP_##ext (struct name *head, datatype value)		\
947 {									\
948 	struct type *tmp;						\
949 	int r;								\
950 									\
951 	tmp = RB_ROOT(head);						\
952 	while (tmp) {							\
953 		r = xcmp(value, tmp);					\
954 		if (r == 0)						\
955 			return(tmp);					\
956 		if (r > 0) 						\
957 			tmp = RB_RIGHT(tmp, field);			\
958 		else							\
959 			tmp = RB_LEFT(tmp, field);			\
960 	}								\
961 	return(NULL);							\
962 }									\
963 
964 
965 #define RB_NEGINF	-1
966 #define RB_INF	1
967 
968 #define RB_INSERT(name, root, elm)	name##_RB_INSERT(root, elm)
969 #define RB_REMOVE(name, root, elm)	name##_RB_REMOVE(root, elm)
970 #define RB_FIND(name, root, elm)	name##_RB_FIND(root, elm)
971 #define RB_LOOKUP(name, root, value)	name##_RB_LOOKUP(root, value)
972 #define RB_RLOOKUP(name, root, value)	name##_RB_RLOOKUP(root, value)
973 #define RB_SCAN(name, root, cmp, callback, data) 			\
974 				name##_RB_SCAN(root, cmp, callback, data)
975 #define RB_FIRST(name, root)		name##_RB_MINMAX(root, RB_NEGINF)
976 #define RB_NEXT(name, root, elm)	name##_RB_NEXT(elm)
977 #define RB_PREV(name, root, elm)	name##_RB_PREV(elm)
978 #define RB_MIN(name, root)		name##_RB_MINMAX(root, RB_NEGINF)
979 #define RB_MAX(name, root)		name##_RB_MINMAX(root, RB_INF)
980 
981 #define RB_FOREACH(x, name, head)					\
982 	for ((x) = RB_MIN(name, head);					\
983 	     (x) != NULL;						\
984 	     (x) = name##_RB_NEXT(x))
985 
986 #endif	/* _SYS_TREE_H_ */
987