xref: /dragonfly/sys/vfs/devfs/devfs_core.c (revision 348a405d)
1 /*
2  * Copyright (c) 2009 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Alex Hornung <ahornung@gmail.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/kernel.h>
37 #include <sys/bus.h>
38 #include <sys/mount.h>
39 #include <sys/vnode.h>
40 #include <sys/types.h>
41 #include <sys/lock.h>
42 #include <sys/file.h>
43 #include <sys/msgport.h>
44 #include <sys/sysctl.h>
45 #include <sys/ucred.h>
46 #include <sys/devfs.h>
47 #include <sys/devfs_rules.h>
48 #include <sys/udev.h>
49 
50 #include <sys/msgport2.h>
51 #include <sys/spinlock2.h>
52 #include <sys/mplock2.h>
53 #include <sys/sysref2.h>
54 
55 MALLOC_DEFINE(M_DEVFS, "devfs", "Device File System (devfs) allocations");
56 DEVFS_DECLARE_CLONE_BITMAP(ops_id);
57 /*
58  * SYSREF Integration - reference counting, allocation,
59  * sysid and syslink integration.
60  */
61 static void devfs_cdev_terminate(cdev_t dev);
62 static void devfs_cdev_lock(cdev_t dev);
63 static void devfs_cdev_unlock(cdev_t dev);
64 static struct sysref_class     cdev_sysref_class = {
65 	.name =         "cdev",
66 	.mtype =        M_DEVFS,
67 	.proto =        SYSREF_PROTO_DEV,
68 	.offset =       offsetof(struct cdev, si_sysref),
69 	.objsize =      sizeof(struct cdev),
70 	.nom_cache =	32,
71 	.flags =        0,
72 	.ops =  {
73 		.terminate = (sysref_terminate_func_t)devfs_cdev_terminate,
74 		.lock = (sysref_lock_func_t)devfs_cdev_lock,
75 		.unlock = (sysref_unlock_func_t)devfs_cdev_unlock
76 	}
77 };
78 
79 static struct objcache	*devfs_node_cache;
80 static struct objcache 	*devfs_msg_cache;
81 static struct objcache	*devfs_dev_cache;
82 
83 static struct objcache_malloc_args devfs_node_malloc_args = {
84 	sizeof(struct devfs_node), M_DEVFS };
85 struct objcache_malloc_args devfs_msg_malloc_args = {
86 	sizeof(struct devfs_msg), M_DEVFS };
87 struct objcache_malloc_args devfs_dev_malloc_args = {
88 	sizeof(struct cdev), M_DEVFS };
89 
90 static struct devfs_dev_head devfs_dev_list =
91 		TAILQ_HEAD_INITIALIZER(devfs_dev_list);
92 static struct devfs_mnt_head devfs_mnt_list =
93 		TAILQ_HEAD_INITIALIZER(devfs_mnt_list);
94 static struct devfs_chandler_head devfs_chandler_list =
95 		TAILQ_HEAD_INITIALIZER(devfs_chandler_list);
96 static struct devfs_alias_head devfs_alias_list =
97 		TAILQ_HEAD_INITIALIZER(devfs_alias_list);
98 static struct devfs_dev_ops_head devfs_dev_ops_list =
99 		TAILQ_HEAD_INITIALIZER(devfs_dev_ops_list);
100 
101 struct lock 		devfs_lock;
102 static struct lwkt_port devfs_dispose_port;
103 static struct lwkt_port devfs_msg_port;
104 static struct thread 	*td_core;
105 
106 static struct spinlock  ino_lock;
107 static ino_t 	d_ino;
108 static int	devfs_debug_enable;
109 static int	devfs_run;
110 
111 static ino_t devfs_fetch_ino(void);
112 static int devfs_create_all_dev_worker(struct devfs_node *);
113 static int devfs_create_dev_worker(cdev_t, uid_t, gid_t, int);
114 static int devfs_destroy_dev_worker(cdev_t);
115 static int devfs_destroy_related_worker(cdev_t);
116 static int devfs_destroy_dev_by_ops_worker(struct dev_ops *, int);
117 static int devfs_propagate_dev(cdev_t, int);
118 static int devfs_unlink_dev(cdev_t dev);
119 static void devfs_msg_exec(devfs_msg_t msg);
120 
121 static int devfs_chandler_add_worker(const char *, d_clone_t *);
122 static int devfs_chandler_del_worker(const char *);
123 
124 static void devfs_msg_autofree_reply(lwkt_port_t, lwkt_msg_t);
125 static void devfs_msg_core(void *);
126 
127 static int devfs_find_device_by_name_worker(devfs_msg_t);
128 static int devfs_find_device_by_udev_worker(devfs_msg_t);
129 
130 static int devfs_apply_reset_rules_caller(char *, int);
131 
132 static int devfs_scan_callback_worker(devfs_scan_t *, void *);
133 
134 static struct devfs_node *devfs_resolve_or_create_dir(struct devfs_node *,
135 		char *, size_t, int);
136 
137 static int devfs_make_alias_worker(struct devfs_alias *);
138 static int devfs_destroy_alias_worker(struct devfs_alias *);
139 static int devfs_alias_remove(cdev_t);
140 static int devfs_alias_reap(void);
141 static int devfs_alias_propagate(struct devfs_alias *, int);
142 static int devfs_alias_apply(struct devfs_node *, struct devfs_alias *);
143 static int devfs_alias_check_create(struct devfs_node *);
144 
145 static int devfs_clr_related_flag_worker(cdev_t, uint32_t);
146 static int devfs_destroy_related_without_flag_worker(cdev_t, uint32_t);
147 
148 static void *devfs_reaperp_callback(struct devfs_node *, void *);
149 static void *devfs_gc_dirs_callback(struct devfs_node *, void *);
150 static void *devfs_gc_links_callback(struct devfs_node *, struct devfs_node *);
151 static void *
152 devfs_inode_to_vnode_worker_callback(struct devfs_node *, ino_t *);
153 
154 /*
155  * devfs_debug() is a SYSCTL and TUNABLE controlled debug output function
156  * using kvprintf
157  */
158 int
159 devfs_debug(int level, char *fmt, ...)
160 {
161 	__va_list ap;
162 
163 	__va_start(ap, fmt);
164 	if (level <= devfs_debug_enable)
165 		kvprintf(fmt, ap);
166 	__va_end(ap);
167 
168 	return 0;
169 }
170 
171 /*
172  * devfs_allocp() Allocates a new devfs node with the specified
173  * parameters. The node is also automatically linked into the topology
174  * if a parent is specified. It also calls the rule and alias stuff to
175  * be applied on the new node
176  */
177 struct devfs_node *
178 devfs_allocp(devfs_nodetype devfsnodetype, char *name,
179 	     struct devfs_node *parent, struct mount *mp, cdev_t dev)
180 {
181 	struct devfs_node *node = NULL;
182 	size_t namlen = strlen(name);
183 
184 	node = objcache_get(devfs_node_cache, M_WAITOK);
185 	bzero(node, sizeof(*node));
186 
187 	atomic_add_long(&DEVFS_MNTDATA(mp)->leak_count, 1);
188 
189 	node->d_dev = NULL;
190 	node->nchildren = 1;
191 	node->mp = mp;
192 	node->d_dir.d_ino = devfs_fetch_ino();
193 
194 	/*
195 	 * Cookie jar for children. Leave 0 and 1 for '.' and '..' entries
196 	 * respectively.
197 	 */
198 	node->cookie_jar = 2;
199 
200 	/*
201 	 * Access Control members
202 	 */
203 	node->mode = DEVFS_DEFAULT_MODE;
204 	node->uid = DEVFS_DEFAULT_UID;
205 	node->gid = DEVFS_DEFAULT_GID;
206 
207 	switch (devfsnodetype) {
208 	case Nroot:
209 		/*
210 		 * Ensure that we don't recycle the root vnode by marking it as
211 		 * linked into the topology.
212 		 */
213 		node->flags |= DEVFS_NODE_LINKED;
214 	case Ndir:
215 		TAILQ_INIT(DEVFS_DENODE_HEAD(node));
216 		node->d_dir.d_type = DT_DIR;
217 		node->nchildren = 2;
218 		break;
219 
220 	case Nlink:
221 		node->d_dir.d_type = DT_LNK;
222 		break;
223 
224 	case Nreg:
225 		node->d_dir.d_type = DT_REG;
226 		break;
227 
228 	case Ndev:
229 		if (dev != NULL) {
230 			node->d_dir.d_type = DT_CHR;
231 			node->d_dev = dev;
232 
233 			node->mode = dev->si_perms;
234 			node->uid = dev->si_uid;
235 			node->gid = dev->si_gid;
236 
237 			devfs_alias_check_create(node);
238 		}
239 		break;
240 
241 	default:
242 		panic("devfs_allocp: unknown node type");
243 	}
244 
245 	node->v_node = NULL;
246 	node->node_type = devfsnodetype;
247 
248 	/* Initialize the dirent structure of each devfs vnode */
249 	node->d_dir.d_namlen = namlen;
250 	node->d_dir.d_name = kmalloc(namlen+1, M_DEVFS, M_WAITOK);
251 	memcpy(node->d_dir.d_name, name, namlen);
252 	node->d_dir.d_name[namlen] = '\0';
253 
254 	/* Initialize the parent node element */
255 	node->parent = parent;
256 
257 	/* Initialize *time members */
258 	nanotime(&node->atime);
259 	node->mtime = node->ctime = node->atime;
260 
261 	/*
262 	 * Associate with parent as last step, clean out namecache
263 	 * reference.
264 	 */
265 	if ((parent != NULL) &&
266 	    ((parent->node_type == Nroot) || (parent->node_type == Ndir))) {
267 		parent->nchildren++;
268 		node->cookie = parent->cookie_jar++;
269 		node->flags |= DEVFS_NODE_LINKED;
270 		TAILQ_INSERT_TAIL(DEVFS_DENODE_HEAD(parent), node, link);
271 
272 		/* This forces negative namecache lookups to clear */
273 		++mp->mnt_namecache_gen;
274 	}
275 
276 	/* Apply rules */
277 	devfs_rule_check_apply(node, NULL);
278 
279 	atomic_add_long(&DEVFS_MNTDATA(mp)->file_count, 1);
280 
281 	return node;
282 }
283 
284 /*
285  * devfs_allocv() allocates a new vnode based on a devfs node.
286  */
287 int
288 devfs_allocv(struct vnode **vpp, struct devfs_node *node)
289 {
290 	struct vnode *vp;
291 	int error = 0;
292 
293 	KKASSERT(node);
294 
295 	/*
296 	 * devfs master lock must not be held across a vget() call, we have
297 	 * to hold our ad-hoc vp to avoid a free race from destroying the
298 	 * contents of the structure.  The vget() will interlock recycles
299 	 * for us.
300 	 */
301 try_again:
302 	while ((vp = node->v_node) != NULL) {
303 		vhold(vp);
304 		lockmgr(&devfs_lock, LK_RELEASE);
305 		error = vget(vp, LK_EXCLUSIVE);
306 		vdrop(vp);
307 		lockmgr(&devfs_lock, LK_EXCLUSIVE);
308 		if (error == 0) {
309 			*vpp = vp;
310 			goto out;
311 		}
312 		if (error != ENOENT) {
313 			*vpp = NULL;
314 			goto out;
315 		}
316 	}
317 
318 	/*
319 	 * devfs master lock must not be held across a getnewvnode() call.
320 	 */
321 	lockmgr(&devfs_lock, LK_RELEASE);
322 	if ((error = getnewvnode(VT_DEVFS, node->mp, vpp, 0, 0)) != 0) {
323 		lockmgr(&devfs_lock, LK_EXCLUSIVE);
324 		goto out;
325 	}
326 	lockmgr(&devfs_lock, LK_EXCLUSIVE);
327 
328 	vp = *vpp;
329 
330 	if (node->v_node != NULL) {
331 		vp->v_type = VBAD;
332 		vx_put(vp);
333 		goto try_again;
334 	}
335 
336 	vp->v_data = node;
337 	node->v_node = vp;
338 
339 	switch (node->node_type) {
340 	case Nroot:
341 		vsetflags(vp, VROOT);
342 		/* fall through */
343 	case Ndir:
344 		vp->v_type = VDIR;
345 		break;
346 
347 	case Nlink:
348 		vp->v_type = VLNK;
349 		break;
350 
351 	case Nreg:
352 		vp->v_type = VREG;
353 		break;
354 
355 	case Ndev:
356 		vp->v_type = VCHR;
357 		KKASSERT(node->d_dev);
358 
359 		vp->v_uminor = node->d_dev->si_uminor;
360 		vp->v_umajor = node->d_dev->si_umajor;
361 
362 		v_associate_rdev(vp, node->d_dev);
363 		vp->v_ops = &node->mp->mnt_vn_spec_ops;
364 		break;
365 
366 	default:
367 		panic("devfs_allocv: unknown node type");
368 	}
369 
370 out:
371 	return error;
372 }
373 
374 /*
375  * devfs_allocvp allocates both a devfs node (with the given settings) and a vnode
376  * based on the newly created devfs node.
377  */
378 int
379 devfs_allocvp(struct mount *mp, struct vnode **vpp, devfs_nodetype devfsnodetype,
380 		char *name, struct devfs_node *parent, cdev_t dev)
381 {
382 	struct devfs_node *node;
383 
384 	node = devfs_allocp(devfsnodetype, name, parent, mp, dev);
385 
386 	if (node != NULL)
387 		devfs_allocv(vpp, node);
388 	else
389 		*vpp = NULL;
390 
391 	return 0;
392 }
393 
394 /*
395  * Destroy the devfs_node.  The node must be unlinked from the topology.
396  *
397  * This function will also destroy any vnode association with the node
398  * and device.
399  *
400  * The cdev_t itself remains intact.
401  *
402  * The core lock is not necessarily held on call and must be temporarily
403  * released if it is to avoid a deadlock.
404  */
405 int
406 devfs_freep(struct devfs_node *node)
407 {
408 	struct vnode *vp;
409 	int relock;
410 
411 	KKASSERT(node);
412 	KKASSERT(((node->flags & DEVFS_NODE_LINKED) == 0) ||
413 		 (node->node_type == Nroot));
414 
415 	/*
416 	 * Protect against double frees
417 	 */
418 	KKASSERT((node->flags & DEVFS_DESTROYED) == 0);
419 	node->flags |= DEVFS_DESTROYED;
420 
421 	/*
422 	 * Avoid deadlocks between devfs_lock and the vnode lock when
423 	 * disassociating the vnode (stress2 pty vs ls -la /dev/pts).
424 	 *
425 	 * This also prevents the vnode reclaim code from double-freeing
426 	 * the node.  The vget() is required to safely modified the vp
427 	 * and cycle the refs to terminate an inactive vp.
428 	 */
429 	if (lockstatus(&devfs_lock, curthread) == LK_EXCLUSIVE) {
430 		lockmgr(&devfs_lock, LK_RELEASE);
431 		relock = 1;
432 	} else {
433 		relock = 0;
434 	}
435 
436 	while ((vp = node->v_node) != NULL) {
437 		if (vget(vp, LK_EXCLUSIVE | LK_RETRY) != 0)
438 			break;
439 		v_release_rdev(vp);
440 		vp->v_data = NULL;
441 		node->v_node = NULL;
442 		vput(vp);
443 	}
444 
445 	/*
446 	 * Remaining cleanup
447 	 */
448 	atomic_subtract_long(&DEVFS_MNTDATA(node->mp)->leak_count, 1);
449 	if (node->symlink_name)	{
450 		kfree(node->symlink_name, M_DEVFS);
451 		node->symlink_name = NULL;
452 	}
453 
454 	/*
455 	 * Remove the node from the orphan list if it is still on it.
456 	 */
457 	if (node->flags & DEVFS_ORPHANED)
458 		devfs_tracer_del_orphan(node);
459 
460 	if (node->d_dir.d_name) {
461 		kfree(node->d_dir.d_name, M_DEVFS);
462 		node->d_dir.d_name = NULL;
463 	}
464 	atomic_subtract_long(&DEVFS_MNTDATA(node->mp)->file_count, 1);
465 	objcache_put(devfs_node_cache, node);
466 
467 	if (relock)
468 		lockmgr(&devfs_lock, LK_EXCLUSIVE);
469 
470 	return 0;
471 }
472 
473 /*
474  * Returns a valid vp associated with the devfs alias node or NULL
475  */
476 static void *devfs_alias_getvp(struct devfs_node *node)
477 {
478 	struct devfs_node *found = node;
479 	int depth = 0;
480 
481 	while ((found->node_type == Nlink) && (found->link_target)) {
482 		if (depth >= 8) {
483 			devfs_debug(DEVFS_DEBUG_SHOW, "Recursive link or depth >= 8");
484 			break;
485 		}
486 
487 		found = found->link_target;
488 		++depth;
489 	}
490 
491 	return found->v_node;
492 }
493 
494 /*
495  * Unlink the devfs node from the topology and add it to the orphan list.
496  * The node will later be destroyed by freep.
497  *
498  * Any vnode association, including the v_rdev and v_data, remains intact
499  * until the freep.
500  */
501 int
502 devfs_unlinkp(struct devfs_node *node)
503 {
504 	struct vnode *vp;
505 	struct devfs_node *parent;
506 	KKASSERT(node);
507 
508 	/*
509 	 * Add the node to the orphan list, so it is referenced somewhere, to
510 	 * so we don't leak it.
511 	 */
512 	devfs_tracer_add_orphan(node);
513 
514 	parent = node->parent;
515 
516 	/*
517 	 * If the parent is known we can unlink the node out of the topology
518 	 */
519 	if (parent)	{
520 		TAILQ_REMOVE(DEVFS_DENODE_HEAD(parent), node, link);
521 		parent->nchildren--;
522 		node->flags &= ~DEVFS_NODE_LINKED;
523 	}
524 
525 	node->parent = NULL;
526 
527 	/*
528 	 * Namecache invalidation.
529 	 * devfs alias nodes are special: their v_node entry is always null
530 	 * and they use the one from their link target.
531 	 * We thus use the target node's vp to invalidate both alias and target
532 	 * entries in the namecache.
533 	 * Doing so for the target is not necessary but it would be more
534 	 * expensive to resolve only the namecache entry of the alias node
535 	 * from the information available in this function.
536 	 */
537 	if (node->node_type == Nlink)
538 		vp = devfs_alias_getvp(node);
539 	else
540 		vp = node->v_node;
541 
542 	if (vp != NULL)
543 		cache_inval_vp(vp, CINV_DESTROY);
544 
545 	return 0;
546 }
547 
548 void *
549 devfs_iterate_topology(struct devfs_node *node,
550 		devfs_iterate_callback_t *callback, void *arg1)
551 {
552 	struct devfs_node *node1, *node2;
553 	void *ret = NULL;
554 
555 	if ((node->node_type == Nroot) || (node->node_type == Ndir)) {
556 		if (node->nchildren > 2) {
557 			TAILQ_FOREACH_MUTABLE(node1, DEVFS_DENODE_HEAD(node),
558 							link, node2) {
559 				if ((ret = devfs_iterate_topology(node1, callback, arg1)))
560 					return ret;
561 			}
562 		}
563 	}
564 
565 	ret = callback(node, arg1);
566 	return ret;
567 }
568 
569 static void *
570 devfs_alias_reaper_callback(struct devfs_node *node, void *unused)
571 {
572 	if (node->node_type == Nlink) {
573 		devfs_unlinkp(node);
574 		devfs_freep(node);
575 	}
576 
577 	return NULL;
578 }
579 
580 /*
581  * devfs_reaperp() is a recursive function that iterates through all the
582  * topology, unlinking and freeing all devfs nodes.
583  */
584 static void *
585 devfs_reaperp_callback(struct devfs_node *node, void *unused)
586 {
587 	devfs_unlinkp(node);
588 	devfs_freep(node);
589 
590 	return NULL;
591 }
592 
593 static void *
594 devfs_gc_dirs_callback(struct devfs_node *node, void *unused)
595 {
596 	if (node->node_type == Ndir) {
597 		if ((node->nchildren == 2) &&
598 		    !(node->flags & DEVFS_USER_CREATED)) {
599 			devfs_unlinkp(node);
600 			devfs_freep(node);
601 		}
602 	}
603 
604 	return NULL;
605 }
606 
607 static void *
608 devfs_gc_links_callback(struct devfs_node *node, struct devfs_node *target)
609 {
610 	if ((node->node_type == Nlink) && (node->link_target == target)) {
611 		devfs_unlinkp(node);
612 		devfs_freep(node);
613 	}
614 
615 	return NULL;
616 }
617 
618 /*
619  * devfs_gc() is devfs garbage collector. It takes care of unlinking and
620  * freeing a node, but also removes empty directories and links that link
621  * via devfs auto-link mechanism to the node being deleted.
622  */
623 int
624 devfs_gc(struct devfs_node *node)
625 {
626 	struct devfs_node *root_node = DEVFS_MNTDATA(node->mp)->root_node;
627 
628 	if (node->nlinks > 0)
629 		devfs_iterate_topology(root_node,
630 				(devfs_iterate_callback_t *)devfs_gc_links_callback, node);
631 
632 	devfs_unlinkp(node);
633 	devfs_iterate_topology(root_node,
634 			(devfs_iterate_callback_t *)devfs_gc_dirs_callback, NULL);
635 
636 	devfs_freep(node);
637 
638 	return 0;
639 }
640 
641 /*
642  * devfs_create_dev() is the asynchronous entry point for device creation.
643  * It just sends a message with the relevant details to the devfs core.
644  *
645  * This function will reference the passed device.  The reference is owned
646  * by devfs and represents all of the device's node associations.
647  */
648 int
649 devfs_create_dev(cdev_t dev, uid_t uid, gid_t gid, int perms)
650 {
651 	reference_dev(dev);
652 	devfs_msg_send_dev(DEVFS_DEVICE_CREATE, dev, uid, gid, perms);
653 
654 	return 0;
655 }
656 
657 /*
658  * devfs_destroy_dev() is the asynchronous entry point for device destruction.
659  * It just sends a message with the relevant details to the devfs core.
660  */
661 int
662 devfs_destroy_dev(cdev_t dev)
663 {
664 	devfs_msg_send_dev(DEVFS_DEVICE_DESTROY, dev, 0, 0, 0);
665 	return 0;
666 }
667 
668 /*
669  * devfs_mount_add() is the synchronous entry point for adding a new devfs
670  * mount.  It sends a synchronous message with the relevant details to the
671  * devfs core.
672  */
673 int
674 devfs_mount_add(struct devfs_mnt_data *mnt)
675 {
676 	devfs_msg_t msg;
677 
678 	msg = devfs_msg_get();
679 	msg->mdv_mnt = mnt;
680 	devfs_msg_send_sync(DEVFS_MOUNT_ADD, msg);
681 	devfs_msg_put(msg);
682 
683 	return 0;
684 }
685 
686 /*
687  * devfs_mount_del() is the synchronous entry point for removing a devfs mount.
688  * It sends a synchronous message with the relevant details to the devfs core.
689  */
690 int
691 devfs_mount_del(struct devfs_mnt_data *mnt)
692 {
693 	devfs_msg_t msg;
694 
695 	msg = devfs_msg_get();
696 	msg->mdv_mnt = mnt;
697 	devfs_msg_send_sync(DEVFS_MOUNT_DEL, msg);
698 	devfs_msg_put(msg);
699 
700 	return 0;
701 }
702 
703 /*
704  * devfs_destroy_related() is the synchronous entry point for device
705  * destruction by subname. It just sends a message with the relevant details to
706  * the devfs core.
707  */
708 int
709 devfs_destroy_related(cdev_t dev)
710 {
711 	devfs_msg_t msg;
712 
713 	msg = devfs_msg_get();
714 	msg->mdv_load = dev;
715 	devfs_msg_send_sync(DEVFS_DESTROY_RELATED, msg);
716 	devfs_msg_put(msg);
717 	return 0;
718 }
719 
720 int
721 devfs_clr_related_flag(cdev_t dev, uint32_t flag)
722 {
723 	devfs_msg_t msg;
724 
725 	msg = devfs_msg_get();
726 	msg->mdv_flags.dev = dev;
727 	msg->mdv_flags.flag = flag;
728 	devfs_msg_send_sync(DEVFS_CLR_RELATED_FLAG, msg);
729 	devfs_msg_put(msg);
730 
731 	return 0;
732 }
733 
734 int
735 devfs_destroy_related_without_flag(cdev_t dev, uint32_t flag)
736 {
737 	devfs_msg_t msg;
738 
739 	msg = devfs_msg_get();
740 	msg->mdv_flags.dev = dev;
741 	msg->mdv_flags.flag = flag;
742 	devfs_msg_send_sync(DEVFS_DESTROY_RELATED_WO_FLAG, msg);
743 	devfs_msg_put(msg);
744 
745 	return 0;
746 }
747 
748 /*
749  * devfs_create_all_dev is the asynchronous entry point to trigger device
750  * node creation.  It just sends a message with the relevant details to
751  * the devfs core.
752  */
753 int
754 devfs_create_all_dev(struct devfs_node *root)
755 {
756 	devfs_msg_send_generic(DEVFS_CREATE_ALL_DEV, root);
757 	return 0;
758 }
759 
760 /*
761  * devfs_destroy_dev_by_ops is the asynchronous entry point to destroy all
762  * devices with a specific set of dev_ops and minor.  It just sends a
763  * message with the relevant details to the devfs core.
764  */
765 int
766 devfs_destroy_dev_by_ops(struct dev_ops *ops, int minor)
767 {
768 	devfs_msg_send_ops(DEVFS_DESTROY_DEV_BY_OPS, ops, minor);
769 	return 0;
770 }
771 
772 /*
773  * devfs_clone_handler_add is the synchronous entry point to add a new
774  * clone handler.  It just sends a message with the relevant details to
775  * the devfs core.
776  */
777 int
778 devfs_clone_handler_add(const char *name, d_clone_t *nhandler)
779 {
780 	devfs_msg_t msg;
781 
782 	msg = devfs_msg_get();
783 	msg->mdv_chandler.name = name;
784 	msg->mdv_chandler.nhandler = nhandler;
785 	devfs_msg_send_sync(DEVFS_CHANDLER_ADD, msg);
786 	devfs_msg_put(msg);
787 	return 0;
788 }
789 
790 /*
791  * devfs_clone_handler_del is the synchronous entry point to remove a
792  * clone handler.  It just sends a message with the relevant details to
793  * the devfs core.
794  */
795 int
796 devfs_clone_handler_del(const char *name)
797 {
798 	devfs_msg_t msg;
799 
800 	msg = devfs_msg_get();
801 	msg->mdv_chandler.name = name;
802 	msg->mdv_chandler.nhandler = NULL;
803 	devfs_msg_send_sync(DEVFS_CHANDLER_DEL, msg);
804 	devfs_msg_put(msg);
805 	return 0;
806 }
807 
808 /*
809  * devfs_find_device_by_name is the synchronous entry point to find a
810  * device given its name.  It sends a synchronous message with the
811  * relevant details to the devfs core and returns the answer.
812  */
813 cdev_t
814 devfs_find_device_by_name(const char *fmt, ...)
815 {
816 	cdev_t found = NULL;
817 	devfs_msg_t msg;
818 	char *target;
819 	__va_list ap;
820 
821 	if (fmt == NULL)
822 		return NULL;
823 
824 	__va_start(ap, fmt);
825 	kvasnrprintf(&target, PATH_MAX, 10, fmt, ap);
826 	__va_end(ap);
827 
828 	msg = devfs_msg_get();
829 	msg->mdv_name = target;
830 	devfs_msg_send_sync(DEVFS_FIND_DEVICE_BY_NAME, msg);
831 	found = msg->mdv_cdev;
832 	devfs_msg_put(msg);
833 	kvasfree(&target);
834 
835 	return found;
836 }
837 
838 /*
839  * devfs_find_device_by_udev is the synchronous entry point to find a
840  * device given its udev number.  It sends a synchronous message with
841  * the relevant details to the devfs core and returns the answer.
842  */
843 cdev_t
844 devfs_find_device_by_udev(udev_t udev)
845 {
846 	cdev_t found = NULL;
847 	devfs_msg_t msg;
848 
849 	msg = devfs_msg_get();
850 	msg->mdv_udev = udev;
851 	devfs_msg_send_sync(DEVFS_FIND_DEVICE_BY_UDEV, msg);
852 	found = msg->mdv_cdev;
853 	devfs_msg_put(msg);
854 
855 	devfs_debug(DEVFS_DEBUG_DEBUG,
856 		    "devfs_find_device_by_udev found? %s  -end:3-\n",
857 		    ((found) ? found->si_name:"NO"));
858 	return found;
859 }
860 
861 struct vnode *
862 devfs_inode_to_vnode(struct mount *mp, ino_t target)
863 {
864 	struct vnode *vp = NULL;
865 	devfs_msg_t msg;
866 
867 	if (mp == NULL)
868 		return NULL;
869 
870 	msg = devfs_msg_get();
871 	msg->mdv_ino.mp = mp;
872 	msg->mdv_ino.ino = target;
873 	devfs_msg_send_sync(DEVFS_INODE_TO_VNODE, msg);
874 	vp = msg->mdv_ino.vp;
875 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
876 	devfs_msg_put(msg);
877 
878 	return vp;
879 }
880 
881 /*
882  * devfs_make_alias is the asynchronous entry point to register an alias
883  * for a device.  It just sends a message with the relevant details to the
884  * devfs core.
885  */
886 int
887 devfs_make_alias(const char *name, cdev_t dev_target)
888 {
889 	struct devfs_alias *alias;
890 	size_t len;
891 
892 	len = strlen(name);
893 
894 	alias = kmalloc(sizeof(struct devfs_alias), M_DEVFS, M_WAITOK);
895 	alias->name = kstrdup(name, M_DEVFS);
896 	alias->namlen = len;
897 	alias->dev_target = dev_target;
898 
899 	devfs_msg_send_generic(DEVFS_MAKE_ALIAS, alias);
900 	return 0;
901 }
902 
903 /*
904  * devfs_destroy_alias is the asynchronous entry point to deregister an alias
905  * for a device.  It just sends a message with the relevant details to the
906  * devfs core.
907  */
908 int
909 devfs_destroy_alias(const char *name, cdev_t dev_target)
910 {
911 	struct devfs_alias *alias;
912 	size_t len;
913 
914 	len = strlen(name);
915 
916 	alias = kmalloc(sizeof(struct devfs_alias), M_DEVFS, M_WAITOK);
917 	alias->name = kstrdup(name, M_DEVFS);
918 	alias->namlen = len;
919 	alias->dev_target = dev_target;
920 
921 	devfs_msg_send_generic(DEVFS_DESTROY_ALIAS, alias);
922 	return 0;
923 }
924 
925 /*
926  * devfs_apply_rules is the asynchronous entry point to trigger application
927  * of all rules.  It just sends a message with the relevant details to the
928  * devfs core.
929  */
930 int
931 devfs_apply_rules(char *mntto)
932 {
933 	char *new_name;
934 
935 	new_name = kstrdup(mntto, M_DEVFS);
936 	devfs_msg_send_name(DEVFS_APPLY_RULES, new_name);
937 
938 	return 0;
939 }
940 
941 /*
942  * devfs_reset_rules is the asynchronous entry point to trigger reset of all
943  * rules. It just sends a message with the relevant details to the devfs core.
944  */
945 int
946 devfs_reset_rules(char *mntto)
947 {
948 	char *new_name;
949 
950 	new_name = kstrdup(mntto, M_DEVFS);
951 	devfs_msg_send_name(DEVFS_RESET_RULES, new_name);
952 
953 	return 0;
954 }
955 
956 
957 /*
958  * devfs_scan_callback is the asynchronous entry point to call a callback
959  * on all cdevs.
960  * It just sends a message with the relevant details to the devfs core.
961  */
962 int
963 devfs_scan_callback(devfs_scan_t *callback, void *arg)
964 {
965 	devfs_msg_t msg;
966 
967 	KKASSERT(callback);
968 
969 	msg = devfs_msg_get();
970 	msg->mdv_load = callback;
971 	msg->mdv_load2 = arg;
972 	devfs_msg_send_sync(DEVFS_SCAN_CALLBACK, msg);
973 	devfs_msg_put(msg);
974 
975 	return 0;
976 }
977 
978 
979 /*
980  * Acts as a message drain. Any message that is replied to here gets destroyed
981  * and the memory freed.
982  */
983 static void
984 devfs_msg_autofree_reply(lwkt_port_t port, lwkt_msg_t msg)
985 {
986 	devfs_msg_put((devfs_msg_t)msg);
987 }
988 
989 /*
990  * devfs_msg_get allocates a new devfs msg and returns it.
991  */
992 devfs_msg_t
993 devfs_msg_get(void)
994 {
995 	return objcache_get(devfs_msg_cache, M_WAITOK);
996 }
997 
998 /*
999  * devfs_msg_put deallocates a given devfs msg.
1000  */
1001 int
1002 devfs_msg_put(devfs_msg_t msg)
1003 {
1004 	objcache_put(devfs_msg_cache, msg);
1005 	return 0;
1006 }
1007 
1008 /*
1009  * devfs_msg_send is the generic asynchronous message sending facility
1010  * for devfs. By default the reply port is the automatic disposal port.
1011  *
1012  * If the current thread is the devfs_msg_port thread we execute the
1013  * operation synchronously.
1014  */
1015 void
1016 devfs_msg_send(uint32_t cmd, devfs_msg_t devfs_msg)
1017 {
1018 	lwkt_port_t port = &devfs_msg_port;
1019 
1020 	lwkt_initmsg(&devfs_msg->hdr, &devfs_dispose_port, 0);
1021 
1022 	devfs_msg->hdr.u.ms_result = cmd;
1023 
1024 	if (port->mpu_td == curthread) {
1025 		devfs_msg_exec(devfs_msg);
1026 		lwkt_replymsg(&devfs_msg->hdr, 0);
1027 	} else {
1028 		lwkt_sendmsg(port, (lwkt_msg_t)devfs_msg);
1029 	}
1030 }
1031 
1032 /*
1033  * devfs_msg_send_sync is the generic synchronous message sending
1034  * facility for devfs. It initializes a local reply port and waits
1035  * for the core's answer. The core will write the answer on the same
1036  * message which is sent back as reply. The caller still has a reference
1037  * to the message, so we don't need to return it.
1038  */
1039 int
1040 devfs_msg_send_sync(uint32_t cmd, devfs_msg_t devfs_msg)
1041 {
1042 	struct lwkt_port rep_port;
1043 	int	error;
1044 	lwkt_port_t port = &devfs_msg_port;
1045 
1046 	lwkt_initport_thread(&rep_port, curthread);
1047 	lwkt_initmsg(&devfs_msg->hdr, &rep_port, 0);
1048 
1049 	devfs_msg->hdr.u.ms_result = cmd;
1050 
1051 	error = lwkt_domsg(port, (lwkt_msg_t)devfs_msg, 0);
1052 
1053 	return error;
1054 }
1055 
1056 /*
1057  * sends a message with a generic argument.
1058  */
1059 void
1060 devfs_msg_send_generic(uint32_t cmd, void *load)
1061 {
1062 	devfs_msg_t devfs_msg = devfs_msg_get();
1063 
1064 	devfs_msg->mdv_load = load;
1065 	devfs_msg_send(cmd, devfs_msg);
1066 }
1067 
1068 /*
1069  * sends a message with a name argument.
1070  */
1071 void
1072 devfs_msg_send_name(uint32_t cmd, char *name)
1073 {
1074 	devfs_msg_t devfs_msg = devfs_msg_get();
1075 
1076 	devfs_msg->mdv_name = name;
1077 	devfs_msg_send(cmd, devfs_msg);
1078 }
1079 
1080 /*
1081  * sends a message with a mount argument.
1082  */
1083 void
1084 devfs_msg_send_mount(uint32_t cmd, struct devfs_mnt_data *mnt)
1085 {
1086 	devfs_msg_t devfs_msg = devfs_msg_get();
1087 
1088 	devfs_msg->mdv_mnt = mnt;
1089 	devfs_msg_send(cmd, devfs_msg);
1090 }
1091 
1092 /*
1093  * sends a message with an ops argument.
1094  */
1095 void
1096 devfs_msg_send_ops(uint32_t cmd, struct dev_ops *ops, int minor)
1097 {
1098 	devfs_msg_t devfs_msg = devfs_msg_get();
1099 
1100 	devfs_msg->mdv_ops.ops = ops;
1101 	devfs_msg->mdv_ops.minor = minor;
1102 	devfs_msg_send(cmd, devfs_msg);
1103 }
1104 
1105 /*
1106  * sends a message with a clone handler argument.
1107  */
1108 void
1109 devfs_msg_send_chandler(uint32_t cmd, char *name, d_clone_t handler)
1110 {
1111 	devfs_msg_t devfs_msg = devfs_msg_get();
1112 
1113 	devfs_msg->mdv_chandler.name = name;
1114 	devfs_msg->mdv_chandler.nhandler = handler;
1115 	devfs_msg_send(cmd, devfs_msg);
1116 }
1117 
1118 /*
1119  * sends a message with a device argument.
1120  */
1121 void
1122 devfs_msg_send_dev(uint32_t cmd, cdev_t dev, uid_t uid, gid_t gid, int perms)
1123 {
1124 	devfs_msg_t devfs_msg = devfs_msg_get();
1125 
1126 	devfs_msg->mdv_dev.dev = dev;
1127 	devfs_msg->mdv_dev.uid = uid;
1128 	devfs_msg->mdv_dev.gid = gid;
1129 	devfs_msg->mdv_dev.perms = perms;
1130 
1131 	devfs_msg_send(cmd, devfs_msg);
1132 }
1133 
1134 /*
1135  * sends a message with a link argument.
1136  */
1137 void
1138 devfs_msg_send_link(uint32_t cmd, char *name, char *target, struct mount *mp)
1139 {
1140 	devfs_msg_t devfs_msg = devfs_msg_get();
1141 
1142 	devfs_msg->mdv_link.name = name;
1143 	devfs_msg->mdv_link.target = target;
1144 	devfs_msg->mdv_link.mp = mp;
1145 	devfs_msg_send(cmd, devfs_msg);
1146 }
1147 
1148 /*
1149  * devfs_msg_core is the main devfs thread. It handles all incoming messages
1150  * and calls the relevant worker functions. By using messages it's assured
1151  * that events occur in the correct order.
1152  */
1153 static void
1154 devfs_msg_core(void *arg)
1155 {
1156 	devfs_msg_t msg;
1157 
1158 	lwkt_initport_thread(&devfs_msg_port, curthread);
1159 
1160 	lockmgr(&devfs_lock, LK_EXCLUSIVE);
1161 	devfs_run = 1;
1162 	wakeup(td_core);
1163 	lockmgr(&devfs_lock, LK_RELEASE);
1164 
1165 	get_mplock();	/* mpsafe yet? */
1166 
1167 	while (devfs_run) {
1168 		msg = (devfs_msg_t)lwkt_waitport(&devfs_msg_port, 0);
1169 		devfs_debug(DEVFS_DEBUG_DEBUG,
1170 				"devfs_msg_core, new msg: %x\n",
1171 				(unsigned int)msg->hdr.u.ms_result);
1172 		devfs_msg_exec(msg);
1173 		lwkt_replymsg(&msg->hdr, 0);
1174 	}
1175 
1176 	rel_mplock();
1177 	wakeup(td_core);
1178 
1179 	lwkt_exit();
1180 }
1181 
1182 static void
1183 devfs_msg_exec(devfs_msg_t msg)
1184 {
1185 	struct devfs_mnt_data *mnt;
1186 	struct devfs_node *node;
1187 	cdev_t	dev;
1188 
1189 	/*
1190 	 * Acquire the devfs lock to ensure safety of all called functions
1191 	 */
1192 	lockmgr(&devfs_lock, LK_EXCLUSIVE);
1193 
1194 	switch (msg->hdr.u.ms_result) {
1195 	case DEVFS_DEVICE_CREATE:
1196 		dev = msg->mdv_dev.dev;
1197 		devfs_create_dev_worker(dev,
1198 					msg->mdv_dev.uid,
1199 					msg->mdv_dev.gid,
1200 					msg->mdv_dev.perms);
1201 		break;
1202 	case DEVFS_DEVICE_DESTROY:
1203 		dev = msg->mdv_dev.dev;
1204 		devfs_destroy_dev_worker(dev);
1205 		break;
1206 	case DEVFS_DESTROY_RELATED:
1207 		devfs_destroy_related_worker(msg->mdv_load);
1208 		break;
1209 	case DEVFS_DESTROY_DEV_BY_OPS:
1210 		devfs_destroy_dev_by_ops_worker(msg->mdv_ops.ops,
1211 						msg->mdv_ops.minor);
1212 		break;
1213 	case DEVFS_CREATE_ALL_DEV:
1214 		node = (struct devfs_node *)msg->mdv_load;
1215 		devfs_create_all_dev_worker(node);
1216 		break;
1217 	case DEVFS_MOUNT_ADD:
1218 		mnt = msg->mdv_mnt;
1219 		TAILQ_INSERT_TAIL(&devfs_mnt_list, mnt, link);
1220 		devfs_create_all_dev_worker(mnt->root_node);
1221 		break;
1222 	case DEVFS_MOUNT_DEL:
1223 		mnt = msg->mdv_mnt;
1224 		TAILQ_REMOVE(&devfs_mnt_list, mnt, link);
1225 		/* Be sure to remove all the aliases first */
1226 		devfs_iterate_topology(mnt->root_node, devfs_alias_reaper_callback,
1227 				       NULL);
1228 		devfs_iterate_topology(mnt->root_node, devfs_reaperp_callback,
1229 				       NULL);
1230 		if (mnt->leak_count) {
1231 			devfs_debug(DEVFS_DEBUG_SHOW,
1232 				    "Leaked %ld devfs_node elements!\n",
1233 				    mnt->leak_count);
1234 		}
1235 		break;
1236 	case DEVFS_CHANDLER_ADD:
1237 		devfs_chandler_add_worker(msg->mdv_chandler.name,
1238 				msg->mdv_chandler.nhandler);
1239 		break;
1240 	case DEVFS_CHANDLER_DEL:
1241 		devfs_chandler_del_worker(msg->mdv_chandler.name);
1242 		break;
1243 	case DEVFS_FIND_DEVICE_BY_NAME:
1244 		devfs_find_device_by_name_worker(msg);
1245 		break;
1246 	case DEVFS_FIND_DEVICE_BY_UDEV:
1247 		devfs_find_device_by_udev_worker(msg);
1248 		break;
1249 	case DEVFS_MAKE_ALIAS:
1250 		devfs_make_alias_worker((struct devfs_alias *)msg->mdv_load);
1251 		break;
1252 	case DEVFS_DESTROY_ALIAS:
1253 		devfs_destroy_alias_worker((struct devfs_alias *)msg->mdv_load);
1254 		break;
1255 	case DEVFS_APPLY_RULES:
1256 		devfs_apply_reset_rules_caller(msg->mdv_name, 1);
1257 		break;
1258 	case DEVFS_RESET_RULES:
1259 		devfs_apply_reset_rules_caller(msg->mdv_name, 0);
1260 		break;
1261 	case DEVFS_SCAN_CALLBACK:
1262 		devfs_scan_callback_worker((devfs_scan_t *)msg->mdv_load,
1263 			msg->mdv_load2);
1264 		break;
1265 	case DEVFS_CLR_RELATED_FLAG:
1266 		devfs_clr_related_flag_worker(msg->mdv_flags.dev,
1267 				msg->mdv_flags.flag);
1268 		break;
1269 	case DEVFS_DESTROY_RELATED_WO_FLAG:
1270 		devfs_destroy_related_without_flag_worker(msg->mdv_flags.dev,
1271 				msg->mdv_flags.flag);
1272 		break;
1273 	case DEVFS_INODE_TO_VNODE:
1274 		msg->mdv_ino.vp = devfs_iterate_topology(
1275 			DEVFS_MNTDATA(msg->mdv_ino.mp)->root_node,
1276 			(devfs_iterate_callback_t *)devfs_inode_to_vnode_worker_callback,
1277 			&msg->mdv_ino.ino);
1278 		break;
1279 	case DEVFS_TERMINATE_CORE:
1280 		devfs_run = 0;
1281 		break;
1282 	case DEVFS_SYNC:
1283 		break;
1284 	default:
1285 		devfs_debug(DEVFS_DEBUG_WARNING,
1286 			    "devfs_msg_core: unknown message "
1287 			    "received at core\n");
1288 		break;
1289 	}
1290 	lockmgr(&devfs_lock, LK_RELEASE);
1291 }
1292 
1293 static void
1294 devfs_devctl_notify(cdev_t dev, const char *ev)
1295 {
1296 	static const char prefix[] = "cdev=";
1297 	char *data;
1298 	int namelen;
1299 
1300 	namelen = strlen(dev->si_name);
1301 	data = kmalloc(namelen + sizeof(prefix), M_TEMP, M_WAITOK);
1302 	memcpy(data, prefix, sizeof(prefix) - 1);
1303 	memcpy(data + sizeof(prefix) - 1, dev->si_name, namelen + 1);
1304 	devctl_notify("DEVFS", "CDEV", ev, data);
1305 	kfree(data, M_TEMP);
1306 }
1307 
1308 /*
1309  * Worker function to insert a new dev into the dev list and initialize its
1310  * permissions. It also calls devfs_propagate_dev which in turn propagates
1311  * the change to all mount points.
1312  *
1313  * The passed dev is already referenced.  This reference is eaten by this
1314  * function and represents the dev's linkage into devfs_dev_list.
1315  */
1316 static int
1317 devfs_create_dev_worker(cdev_t dev, uid_t uid, gid_t gid, int perms)
1318 {
1319 	KKASSERT(dev);
1320 
1321 	dev->si_uid = uid;
1322 	dev->si_gid = gid;
1323 	dev->si_perms = perms;
1324 
1325 	devfs_link_dev(dev);
1326 	devfs_propagate_dev(dev, 1);
1327 
1328 	udev_event_attach(dev, NULL, 0);
1329 	devfs_devctl_notify(dev, "CREATE");
1330 
1331 	return 0;
1332 }
1333 
1334 /*
1335  * Worker function to delete a dev from the dev list and free the cdev.
1336  * It also calls devfs_propagate_dev which in turn propagates the change
1337  * to all mount points.
1338  */
1339 static int
1340 devfs_destroy_dev_worker(cdev_t dev)
1341 {
1342 	int error;
1343 
1344 	KKASSERT(dev);
1345 	KKASSERT((lockstatus(&devfs_lock, curthread)) == LK_EXCLUSIVE);
1346 
1347 	error = devfs_unlink_dev(dev);
1348 	devfs_propagate_dev(dev, 0);
1349 
1350 	devfs_devctl_notify(dev, "DESTROY");
1351 	udev_event_detach(dev, NULL, 0);
1352 
1353 	if (error == 0)
1354 		release_dev(dev);	/* link ref */
1355 	release_dev(dev);
1356 	release_dev(dev);
1357 
1358 	return 0;
1359 }
1360 
1361 /*
1362  * Worker function to destroy all devices with a certain basename.
1363  * Calls devfs_destroy_dev_worker for the actual destruction.
1364  */
1365 static int
1366 devfs_destroy_related_worker(cdev_t needle)
1367 {
1368 	cdev_t dev;
1369 
1370 restart:
1371 	devfs_debug(DEVFS_DEBUG_DEBUG, "related worker: %s\n",
1372 	    needle->si_name);
1373 	TAILQ_FOREACH(dev, &devfs_dev_list, link) {
1374 		if (dev->si_parent == needle) {
1375 			devfs_destroy_related_worker(dev);
1376 			devfs_destroy_dev_worker(dev);
1377 			goto restart;
1378 		}
1379 	}
1380 	return 0;
1381 }
1382 
1383 static int
1384 devfs_clr_related_flag_worker(cdev_t needle, uint32_t flag)
1385 {
1386 	cdev_t dev, dev1;
1387 
1388 	TAILQ_FOREACH_MUTABLE(dev, &devfs_dev_list, link, dev1) {
1389 		if (dev->si_parent == needle) {
1390 			devfs_clr_related_flag_worker(dev, flag);
1391 			dev->si_flags &= ~flag;
1392 		}
1393 	}
1394 
1395 	return 0;
1396 }
1397 
1398 static int
1399 devfs_destroy_related_without_flag_worker(cdev_t needle, uint32_t flag)
1400 {
1401 	cdev_t dev;
1402 
1403 restart:
1404 	devfs_debug(DEVFS_DEBUG_DEBUG, "related_wo_flag: %s\n",
1405 	    needle->si_name);
1406 
1407 	TAILQ_FOREACH(dev, &devfs_dev_list, link) {
1408 		if (dev->si_parent == needle) {
1409 			devfs_destroy_related_without_flag_worker(dev, flag);
1410 			if (!(dev->si_flags & flag)) {
1411 				devfs_destroy_dev_worker(dev);
1412 				devfs_debug(DEVFS_DEBUG_DEBUG,
1413 				    "related_wo_flag: %s restart\n", dev->si_name);
1414 				goto restart;
1415 			}
1416 		}
1417 	}
1418 
1419 	return 0;
1420 }
1421 
1422 /*
1423  * Worker function that creates all device nodes on top of a devfs
1424  * root node.
1425  */
1426 static int
1427 devfs_create_all_dev_worker(struct devfs_node *root)
1428 {
1429 	cdev_t dev;
1430 
1431 	KKASSERT(root);
1432 
1433 	TAILQ_FOREACH(dev, &devfs_dev_list, link) {
1434 		devfs_create_device_node(root, dev, NULL, NULL, NULL);
1435 	}
1436 
1437 	return 0;
1438 }
1439 
1440 /*
1441  * Worker function that destroys all devices that match a specific
1442  * dev_ops and/or minor. If minor is less than 0, it is not matched
1443  * against. It also propagates all changes.
1444  */
1445 static int
1446 devfs_destroy_dev_by_ops_worker(struct dev_ops *ops, int minor)
1447 {
1448 	cdev_t dev, dev1;
1449 
1450 	KKASSERT(ops);
1451 
1452 	TAILQ_FOREACH_MUTABLE(dev, &devfs_dev_list, link, dev1) {
1453 		if (dev->si_ops != ops)
1454 			continue;
1455 		if ((minor < 0) || (dev->si_uminor == minor)) {
1456 			devfs_destroy_dev_worker(dev);
1457 		}
1458 	}
1459 
1460 	return 0;
1461 }
1462 
1463 /*
1464  * Worker function that registers a new clone handler in devfs.
1465  */
1466 static int
1467 devfs_chandler_add_worker(const char *name, d_clone_t *nhandler)
1468 {
1469 	struct devfs_clone_handler *chandler = NULL;
1470 	u_char len = strlen(name);
1471 
1472 	if (len == 0)
1473 		return 1;
1474 
1475 	TAILQ_FOREACH(chandler, &devfs_chandler_list, link) {
1476 		if (chandler->namlen != len)
1477 			continue;
1478 
1479 		if (!memcmp(chandler->name, name, len)) {
1480 			/* Clonable basename already exists */
1481 			return 1;
1482 		}
1483 	}
1484 
1485 	chandler = kmalloc(sizeof(*chandler), M_DEVFS, M_WAITOK | M_ZERO);
1486 	chandler->name = kstrdup(name, M_DEVFS);
1487 	chandler->namlen = len;
1488 	chandler->nhandler = nhandler;
1489 
1490 	TAILQ_INSERT_TAIL(&devfs_chandler_list, chandler, link);
1491 	return 0;
1492 }
1493 
1494 /*
1495  * Worker function that removes a given clone handler from the
1496  * clone handler list.
1497  */
1498 static int
1499 devfs_chandler_del_worker(const char *name)
1500 {
1501 	struct devfs_clone_handler *chandler, *chandler2;
1502 	u_char len = strlen(name);
1503 
1504 	if (len == 0)
1505 		return 1;
1506 
1507 	TAILQ_FOREACH_MUTABLE(chandler, &devfs_chandler_list, link, chandler2) {
1508 		if (chandler->namlen != len)
1509 			continue;
1510 		if (memcmp(chandler->name, name, len))
1511 			continue;
1512 
1513 		TAILQ_REMOVE(&devfs_chandler_list, chandler, link);
1514 		kfree(chandler->name, M_DEVFS);
1515 		kfree(chandler, M_DEVFS);
1516 		break;
1517 	}
1518 
1519 	return 0;
1520 }
1521 
1522 /*
1523  * Worker function that finds a given device name and changes
1524  * the message received accordingly so that when replied to,
1525  * the answer is returned to the caller.
1526  */
1527 static int
1528 devfs_find_device_by_name_worker(devfs_msg_t devfs_msg)
1529 {
1530 	struct devfs_alias *alias;
1531 	cdev_t dev;
1532 	cdev_t found = NULL;
1533 
1534 	TAILQ_FOREACH(dev, &devfs_dev_list, link) {
1535 		if (strcmp(devfs_msg->mdv_name, dev->si_name) == 0) {
1536 			found = dev;
1537 			break;
1538 		}
1539 	}
1540 	if (found == NULL) {
1541 		TAILQ_FOREACH(alias, &devfs_alias_list, link) {
1542 			if (strcmp(devfs_msg->mdv_name, alias->name) == 0) {
1543 				found = alias->dev_target;
1544 				break;
1545 			}
1546 		}
1547 	}
1548 	devfs_msg->mdv_cdev = found;
1549 
1550 	return 0;
1551 }
1552 
1553 /*
1554  * Worker function that finds a given device udev and changes
1555  * the message received accordingly so that when replied to,
1556  * the answer is returned to the caller.
1557  */
1558 static int
1559 devfs_find_device_by_udev_worker(devfs_msg_t devfs_msg)
1560 {
1561 	cdev_t dev, dev1;
1562 	cdev_t found = NULL;
1563 
1564 	TAILQ_FOREACH_MUTABLE(dev, &devfs_dev_list, link, dev1) {
1565 		if (((udev_t)dev->si_inode) == devfs_msg->mdv_udev) {
1566 			found = dev;
1567 			break;
1568 		}
1569 	}
1570 	devfs_msg->mdv_cdev = found;
1571 
1572 	return 0;
1573 }
1574 
1575 /*
1576  * Worker function that inserts a given alias into the
1577  * alias list, and propagates the alias to all mount
1578  * points.
1579  */
1580 static int
1581 devfs_make_alias_worker(struct devfs_alias *alias)
1582 {
1583 	struct devfs_alias *alias2;
1584 	size_t len = strlen(alias->name);
1585 	int found = 0;
1586 
1587 	TAILQ_FOREACH(alias2, &devfs_alias_list, link) {
1588 		if (len != alias2->namlen)
1589 			continue;
1590 
1591 		if (!memcmp(alias->name, alias2->name, len)) {
1592 			found = 1;
1593 			break;
1594 		}
1595 	}
1596 
1597 	if (!found) {
1598 		/*
1599 		 * The alias doesn't exist yet, so we add it to the alias list
1600 		 */
1601 		TAILQ_INSERT_TAIL(&devfs_alias_list, alias, link);
1602 		devfs_alias_propagate(alias, 0);
1603 		udev_event_attach(alias->dev_target, alias->name, 1);
1604 	} else {
1605 		devfs_debug(DEVFS_DEBUG_WARNING,
1606 			    "Warning: duplicate devfs_make_alias for %s\n",
1607 			    alias->name);
1608 		kfree(alias->name, M_DEVFS);
1609 		kfree(alias, M_DEVFS);
1610 	}
1611 
1612 	return 0;
1613 }
1614 
1615 /*
1616  * Worker function that delete a given alias from the
1617  * alias list, and propagates the removal to all mount
1618  * points.
1619  */
1620 static int
1621 devfs_destroy_alias_worker(struct devfs_alias *alias)
1622 {
1623 	struct devfs_alias *alias2;
1624 	int found = 0;
1625 
1626 	TAILQ_FOREACH(alias2, &devfs_alias_list, link) {
1627 		if (alias->dev_target != alias2->dev_target)
1628 			continue;
1629 
1630 		if (devfs_WildCmp(alias->name, alias2->name) == 0) {
1631 			found = 1;
1632 			break;
1633 		}
1634 	}
1635 
1636 	if (!found) {
1637 		devfs_debug(DEVFS_DEBUG_WARNING,
1638 		    "Warning: devfs_destroy_alias for inexistant alias: %s\n",
1639 		    alias->name);
1640 		kfree(alias->name, M_DEVFS);
1641 		kfree(alias, M_DEVFS);
1642 	} else {
1643 		/*
1644 		 * The alias exists, so we delete it from the alias list
1645 		 */
1646 		TAILQ_REMOVE(&devfs_alias_list, alias2, link);
1647 		devfs_alias_propagate(alias2, 1);
1648 		udev_event_detach(alias2->dev_target, alias2->name, 1);
1649 		kfree(alias->name, M_DEVFS);
1650 		kfree(alias, M_DEVFS);
1651 		kfree(alias2->name, M_DEVFS);
1652 		kfree(alias2, M_DEVFS);
1653 	}
1654 
1655 	return 0;
1656 }
1657 
1658 /*
1659  * Function that removes and frees all aliases.
1660  */
1661 static int
1662 devfs_alias_reap(void)
1663 {
1664 	struct devfs_alias *alias, *alias2;
1665 
1666 	TAILQ_FOREACH_MUTABLE(alias, &devfs_alias_list, link, alias2) {
1667 		TAILQ_REMOVE(&devfs_alias_list, alias, link);
1668 		kfree(alias->name, M_DEVFS);
1669 		kfree(alias, M_DEVFS);
1670 	}
1671 	return 0;
1672 }
1673 
1674 /*
1675  * Function that removes an alias matching a specific cdev and frees
1676  * it accordingly.
1677  */
1678 static int
1679 devfs_alias_remove(cdev_t dev)
1680 {
1681 	struct devfs_alias *alias, *alias2;
1682 
1683 	TAILQ_FOREACH_MUTABLE(alias, &devfs_alias_list, link, alias2) {
1684 		if (alias->dev_target == dev) {
1685 			TAILQ_REMOVE(&devfs_alias_list, alias, link);
1686 			udev_event_detach(alias->dev_target, alias->name, 1);
1687 			kfree(alias->name, M_DEVFS);
1688 			kfree(alias, M_DEVFS);
1689 		}
1690 	}
1691 	return 0;
1692 }
1693 
1694 /*
1695  * This function propagates an alias addition or removal to
1696  * all mount points.
1697  */
1698 static int
1699 devfs_alias_propagate(struct devfs_alias *alias, int remove)
1700 {
1701 	struct devfs_mnt_data *mnt;
1702 
1703 	TAILQ_FOREACH(mnt, &devfs_mnt_list, link) {
1704 		if (remove) {
1705 			devfs_destroy_node(mnt->root_node, alias->name);
1706 		} else {
1707 			devfs_alias_apply(mnt->root_node, alias);
1708 		}
1709 	}
1710 	return 0;
1711 }
1712 
1713 /*
1714  * This function is a recursive function iterating through
1715  * all device nodes in the topology and, if applicable,
1716  * creating the relevant alias for a device node.
1717  */
1718 static int
1719 devfs_alias_apply(struct devfs_node *node, struct devfs_alias *alias)
1720 {
1721 	struct devfs_node *node1, *node2;
1722 
1723 	KKASSERT(alias != NULL);
1724 
1725 	if ((node->node_type == Nroot) || (node->node_type == Ndir)) {
1726 		if (node->nchildren > 2) {
1727 			TAILQ_FOREACH_MUTABLE(node1, DEVFS_DENODE_HEAD(node), link, node2) {
1728 				devfs_alias_apply(node1, alias);
1729 			}
1730 		}
1731 	} else {
1732 		if (node->d_dev == alias->dev_target)
1733 			devfs_alias_create(alias->name, node, 0);
1734 	}
1735 	return 0;
1736 }
1737 
1738 /*
1739  * This function checks if any alias possibly is applicable
1740  * to the given node. If so, the alias is created.
1741  */
1742 static int
1743 devfs_alias_check_create(struct devfs_node *node)
1744 {
1745 	struct devfs_alias *alias;
1746 
1747 	TAILQ_FOREACH(alias, &devfs_alias_list, link) {
1748 		if (node->d_dev == alias->dev_target)
1749 			devfs_alias_create(alias->name, node, 0);
1750 	}
1751 	return 0;
1752 }
1753 
1754 /*
1755  * This function creates an alias with a given name
1756  * linking to a given devfs node. It also increments
1757  * the link count on the target node.
1758  */
1759 int
1760 devfs_alias_create(char *name_orig, struct devfs_node *target, int rule_based)
1761 {
1762 	struct mount *mp = target->mp;
1763 	struct devfs_node *parent = DEVFS_MNTDATA(mp)->root_node;
1764 	struct devfs_node *linknode;
1765 	char *create_path = NULL;
1766 	char *name;
1767 	char *name_buf;
1768 	int result = 0;
1769 
1770 	KKASSERT((lockstatus(&devfs_lock, curthread)) == LK_EXCLUSIVE);
1771 
1772 	name_buf = kmalloc(PATH_MAX, M_TEMP, M_WAITOK);
1773 	devfs_resolve_name_path(name_orig, name_buf, &create_path, &name);
1774 
1775 	if (create_path)
1776 		parent = devfs_resolve_or_create_path(parent, create_path, 1);
1777 
1778 
1779 	if (devfs_find_device_node_by_name(parent, name)) {
1780 		devfs_debug(DEVFS_DEBUG_WARNING,
1781 			    "Node already exists: %s "
1782 			    "(devfs_make_alias_worker)!\n",
1783 			    name);
1784 		result = 1;
1785 		goto done;
1786 	}
1787 
1788 	linknode = devfs_allocp(Nlink, name, parent, mp, NULL);
1789 	if (linknode == NULL) {
1790 		result = 1;
1791 		goto done;
1792 	}
1793 
1794 	linknode->link_target = target;
1795 	target->nlinks++;
1796 
1797 	if (rule_based)
1798 		linknode->flags |= DEVFS_RULE_CREATED;
1799 
1800 done:
1801 	kfree(name_buf, M_TEMP);
1802 	return (result);
1803 }
1804 
1805 /*
1806  * This function is called by the core and handles mount point
1807  * strings. It either calls the relevant worker (devfs_apply_
1808  * reset_rules_worker) on all mountpoints or only a specific
1809  * one.
1810  */
1811 static int
1812 devfs_apply_reset_rules_caller(char *mountto, int apply)
1813 {
1814 	struct devfs_mnt_data *mnt;
1815 
1816 	if (mountto[0] == '*') {
1817 		TAILQ_FOREACH(mnt, &devfs_mnt_list, link) {
1818 			devfs_iterate_topology(mnt->root_node,
1819 					(apply)?(devfs_rule_check_apply):(devfs_rule_reset_node),
1820 					NULL);
1821 		}
1822 	} else {
1823 		TAILQ_FOREACH(mnt, &devfs_mnt_list, link) {
1824 			if (!strcmp(mnt->mp->mnt_stat.f_mntonname, mountto)) {
1825 				devfs_iterate_topology(mnt->root_node,
1826 					(apply)?(devfs_rule_check_apply):(devfs_rule_reset_node),
1827 					NULL);
1828 				break;
1829 			}
1830 		}
1831 	}
1832 
1833 	kfree(mountto, M_DEVFS);
1834 	return 0;
1835 }
1836 
1837 /*
1838  * This function calls a given callback function for
1839  * every dev node in the devfs dev list.
1840  */
1841 static int
1842 devfs_scan_callback_worker(devfs_scan_t *callback, void *arg)
1843 {
1844 	cdev_t dev, dev1;
1845 	struct devfs_alias *alias, *alias1;
1846 
1847 	TAILQ_FOREACH_MUTABLE(dev, &devfs_dev_list, link, dev1) {
1848 		callback(dev->si_name, dev, false, arg);
1849 	}
1850 	TAILQ_FOREACH_MUTABLE(alias, &devfs_alias_list, link, alias1) {
1851 		callback(alias->name, alias->dev_target, true, arg);
1852 	}
1853 
1854 	return 0;
1855 }
1856 
1857 /*
1858  * This function tries to resolve a given directory, or if not
1859  * found and creation requested, creates the given directory.
1860  */
1861 static struct devfs_node *
1862 devfs_resolve_or_create_dir(struct devfs_node *parent, char *dir_name,
1863 			    size_t name_len, int create)
1864 {
1865 	struct devfs_node *node, *found = NULL;
1866 
1867 	TAILQ_FOREACH(node, DEVFS_DENODE_HEAD(parent), link) {
1868 		if (name_len != node->d_dir.d_namlen)
1869 			continue;
1870 
1871 		if (!memcmp(dir_name, node->d_dir.d_name, name_len)) {
1872 			found = node;
1873 			break;
1874 		}
1875 	}
1876 
1877 	if ((found == NULL) && (create)) {
1878 		found = devfs_allocp(Ndir, dir_name, parent, parent->mp, NULL);
1879 	}
1880 
1881 	return found;
1882 }
1883 
1884 /*
1885  * This function tries to resolve a complete path. If creation is requested,
1886  * if a given part of the path cannot be resolved (because it doesn't exist),
1887  * it is created.
1888  */
1889 struct devfs_node *
1890 devfs_resolve_or_create_path(struct devfs_node *parent, char *path, int create)
1891 {
1892 	struct devfs_node *node = parent;
1893 	char *buf;
1894 	size_t idx = 0;
1895 
1896 	if (path == NULL)
1897 		return parent;
1898 
1899 	buf = kmalloc(PATH_MAX, M_TEMP, M_WAITOK);
1900 
1901 	while (*path && idx < PATH_MAX - 1) {
1902 		if (*path != '/') {
1903 			buf[idx++] = *path;
1904 		} else {
1905 			buf[idx] = '\0';
1906 			node = devfs_resolve_or_create_dir(node, buf, idx, create);
1907 			if (node == NULL) {
1908 				kfree(buf, M_TEMP);
1909 				return NULL;
1910 			}
1911 			idx = 0;
1912 		}
1913 		++path;
1914 	}
1915 	buf[idx] = '\0';
1916 	node = devfs_resolve_or_create_dir(node, buf, idx, create);
1917 	kfree (buf, M_TEMP);
1918 	return (node);
1919 }
1920 
1921 /*
1922  * Takes a full path and strips it into a directory path and a name.
1923  * For a/b/c/foo, it returns foo in namep and a/b/c in pathp. It
1924  * requires a working buffer with enough size to keep the whole
1925  * fullpath.
1926  */
1927 int
1928 devfs_resolve_name_path(char *fullpath, char *buf, char **pathp, char **namep)
1929 {
1930 	char *name = NULL;
1931 	char *path = NULL;
1932 	size_t len = strlen(fullpath) + 1;
1933 	int i;
1934 
1935 	KKASSERT((fullpath != NULL) && (buf != NULL));
1936 	KKASSERT((pathp != NULL) && (namep != NULL));
1937 
1938 	memcpy(buf, fullpath, len);
1939 
1940 	for (i = len-1; i>= 0; i--) {
1941 		if (buf[i] == '/') {
1942 			buf[i] = '\0';
1943 			name = &(buf[i+1]);
1944 			path = buf;
1945 			break;
1946 		}
1947 	}
1948 
1949 	*pathp = path;
1950 
1951 	if (name) {
1952 		*namep = name;
1953 	} else {
1954 		*namep = buf;
1955 	}
1956 
1957 	return 0;
1958 }
1959 
1960 /*
1961  * This function creates a new devfs node for a given device.  It can
1962  * handle a complete path as device name, and accordingly creates
1963  * the path and the final device node.
1964  *
1965  * The reference count on the passed dev remains unchanged.
1966  */
1967 struct devfs_node *
1968 devfs_create_device_node(struct devfs_node *root, cdev_t dev,
1969 			 int *existsp, char *dev_name, char *path_fmt, ...)
1970 {
1971 	struct devfs_node *parent, *node = NULL;
1972 	char *path = NULL;
1973 	char *name;
1974 	char *name_buf;
1975 	__va_list ap;
1976 	int i, found;
1977 	char *create_path = NULL;
1978 	char *names = "pqrsPQRS";
1979 
1980 	name_buf = kmalloc(PATH_MAX, M_TEMP, M_WAITOK);
1981 
1982 	if (existsp)
1983 		*existsp = 0;
1984 
1985 	if (path_fmt != NULL) {
1986 		__va_start(ap, path_fmt);
1987 		kvasnrprintf(&path, PATH_MAX, 10, path_fmt, ap);
1988 		__va_end(ap);
1989 	}
1990 
1991 	parent = devfs_resolve_or_create_path(root, path, 1);
1992 	KKASSERT(parent);
1993 
1994 	devfs_resolve_name_path(
1995 			((dev_name == NULL) && (dev))?(dev->si_name):(dev_name),
1996 			name_buf, &create_path, &name);
1997 
1998 	if (create_path)
1999 		parent = devfs_resolve_or_create_path(parent, create_path, 1);
2000 
2001 
2002 	node = devfs_find_device_node_by_name(parent, name);
2003 	if (node) {
2004 		if (node->d_dev == dev) {
2005 			/*
2006 			 * Allow case where device caches dev after the
2007 			 * close and might desire to reuse it.
2008 			 */
2009 			if (existsp)
2010 				*existsp = 1;
2011 		} else {
2012 			devfs_debug(DEVFS_DEBUG_WARNING,
2013 				    "devfs_create_device_node: "
2014 				    "DEVICE %s ALREADY EXISTS!!! "
2015 				    "Ignoring creation request.\n",
2016 				    name);
2017 			node = NULL;
2018 		}
2019 		goto out;
2020 	}
2021 
2022 	node = devfs_allocp(Ndev, name, parent, parent->mp, dev);
2023 	nanotime(&parent->mtime);
2024 
2025 	/*
2026 	 * Ugly unix98 pty magic, to hide pty master (ptm) devices and their
2027 	 * directory
2028 	 */
2029 	if ((dev) && (strlen(dev->si_name) >= 4) &&
2030 			(!memcmp(dev->si_name, "ptm/", 4))) {
2031 		node->parent->flags |= DEVFS_HIDDEN;
2032 		node->flags |= DEVFS_HIDDEN;
2033 	}
2034 
2035 	/*
2036 	 * Ugly pty magic, to tag pty devices as such and hide them if needed.
2037 	 */
2038 	if ((strlen(name) >= 3) && (!memcmp(name, "pty", 3)))
2039 		node->flags |= (DEVFS_PTY | DEVFS_INVISIBLE);
2040 
2041 	if ((strlen(name) >= 3) && (!memcmp(name, "tty", 3))) {
2042 		found = 0;
2043 		for (i = 0; i < strlen(names); i++) {
2044 			if (name[3] == names[i]) {
2045 				found = 1;
2046 				break;
2047 			}
2048 		}
2049 		if (found)
2050 			node->flags |= (DEVFS_PTY | DEVFS_INVISIBLE);
2051 	}
2052 
2053 out:
2054 	kfree(name_buf, M_TEMP);
2055 	kvasfree(&path);
2056 	return node;
2057 }
2058 
2059 /*
2060  * This function finds a given device node in the topology with a given
2061  * cdev.
2062  */
2063 void *
2064 devfs_find_device_node_callback(struct devfs_node *node, cdev_t target)
2065 {
2066 	if ((node->node_type == Ndev) && (node->d_dev == target)) {
2067 		return node;
2068 	}
2069 
2070 	return NULL;
2071 }
2072 
2073 /*
2074  * This function finds a device node in the given parent directory by its
2075  * name and returns it.
2076  */
2077 struct devfs_node *
2078 devfs_find_device_node_by_name(struct devfs_node *parent, char *target)
2079 {
2080 	struct devfs_node *node, *found = NULL;
2081 	size_t len = strlen(target);
2082 
2083 	TAILQ_FOREACH(node, DEVFS_DENODE_HEAD(parent), link) {
2084 		if (len != node->d_dir.d_namlen)
2085 			continue;
2086 
2087 		if (!memcmp(node->d_dir.d_name, target, len)) {
2088 			found = node;
2089 			break;
2090 		}
2091 	}
2092 
2093 	return found;
2094 }
2095 
2096 static void *
2097 devfs_inode_to_vnode_worker_callback(struct devfs_node *node, ino_t *inop)
2098 {
2099 	struct vnode *vp = NULL;
2100 	ino_t target = *inop;
2101 
2102 	if (node->d_dir.d_ino == target) {
2103 		if (node->v_node) {
2104 			vp = node->v_node;
2105 			vget(vp, LK_EXCLUSIVE | LK_RETRY);
2106 			vn_unlock(vp);
2107 		} else {
2108 			devfs_allocv(&vp, node);
2109 			vn_unlock(vp);
2110 		}
2111 	}
2112 
2113 	return vp;
2114 }
2115 
2116 /*
2117  * This function takes a cdev and removes its devfs node in the
2118  * given topology.  The cdev remains intact.
2119  */
2120 int
2121 devfs_destroy_device_node(struct devfs_node *root, cdev_t target)
2122 {
2123 	KKASSERT(target != NULL);
2124 	return devfs_destroy_node(root, target->si_name);
2125 }
2126 
2127 /*
2128  * This function takes a path to a devfs node, resolves it and
2129  * removes the devfs node from the given topology.
2130  */
2131 int
2132 devfs_destroy_node(struct devfs_node *root, char *target)
2133 {
2134 	struct devfs_node *node, *parent;
2135 	char *name;
2136 	char *name_buf;
2137 	char *create_path = NULL;
2138 
2139 	KKASSERT(target);
2140 
2141 	name_buf = kmalloc(PATH_MAX, M_TEMP, M_WAITOK);
2142 	ksnprintf(name_buf, PATH_MAX, "%s", target);
2143 
2144 	devfs_resolve_name_path(target, name_buf, &create_path, &name);
2145 
2146 	if (create_path)
2147 		parent = devfs_resolve_or_create_path(root, create_path, 0);
2148 	else
2149 		parent = root;
2150 
2151 	if (parent == NULL) {
2152 		kfree(name_buf, M_TEMP);
2153 		return 1;
2154 	}
2155 
2156 	node = devfs_find_device_node_by_name(parent, name);
2157 
2158 	if (node) {
2159 		nanotime(&node->parent->mtime);
2160 		devfs_gc(node);
2161 	}
2162 
2163 	kfree(name_buf, M_TEMP);
2164 
2165 	return 0;
2166 }
2167 
2168 /*
2169  * Just set perms and ownership for given node.
2170  */
2171 int
2172 devfs_set_perms(struct devfs_node *node, uid_t uid, gid_t gid,
2173 		u_short mode, u_long flags)
2174 {
2175 	node->mode = mode;
2176 	node->uid = uid;
2177 	node->gid = gid;
2178 
2179 	return 0;
2180 }
2181 
2182 /*
2183  * Propagates a device attach/detach to all mount
2184  * points. Also takes care of automatic alias removal
2185  * for a deleted cdev.
2186  */
2187 static int
2188 devfs_propagate_dev(cdev_t dev, int attach)
2189 {
2190 	struct devfs_mnt_data *mnt;
2191 
2192 	TAILQ_FOREACH(mnt, &devfs_mnt_list, link) {
2193 		if (attach) {
2194 			/* Device is being attached */
2195 			devfs_create_device_node(mnt->root_node, dev,
2196 						 NULL, NULL, NULL);
2197 		} else {
2198 			/* Device is being detached */
2199 			devfs_alias_remove(dev);
2200 			devfs_destroy_device_node(mnt->root_node, dev);
2201 		}
2202 	}
2203 	return 0;
2204 }
2205 
2206 /*
2207  * devfs_clone either returns a basename from a complete name by
2208  * returning the length of the name without trailing digits, or,
2209  * if clone != 0, calls the device's clone handler to get a new
2210  * device, which in turn is returned in devp.
2211  */
2212 cdev_t
2213 devfs_clone(cdev_t dev, const char *name, size_t len, int mode,
2214 		struct ucred *cred)
2215 {
2216 	int error;
2217 	struct devfs_clone_handler *chandler;
2218 	struct dev_clone_args ap;
2219 
2220 	TAILQ_FOREACH(chandler, &devfs_chandler_list, link) {
2221 		if (chandler->namlen != len)
2222 			continue;
2223 		if ((!memcmp(chandler->name, name, len)) && (chandler->nhandler)) {
2224 			lockmgr(&devfs_lock, LK_RELEASE);
2225 			devfs_config();
2226 			lockmgr(&devfs_lock, LK_EXCLUSIVE);
2227 
2228 			ap.a_head.a_dev = dev;
2229 			ap.a_dev = NULL;
2230 			ap.a_name = name;
2231 			ap.a_namelen = len;
2232 			ap.a_mode = mode;
2233 			ap.a_cred = cred;
2234 			error = (chandler->nhandler)(&ap);
2235 			if (error)
2236 				continue;
2237 
2238 			return ap.a_dev;
2239 		}
2240 	}
2241 
2242 	return NULL;
2243 }
2244 
2245 
2246 /*
2247  * Registers a new orphan in the orphan list.
2248  */
2249 void
2250 devfs_tracer_add_orphan(struct devfs_node *node)
2251 {
2252 	struct devfs_orphan *orphan;
2253 
2254 	KKASSERT(node);
2255 	orphan = kmalloc(sizeof(struct devfs_orphan), M_DEVFS, M_WAITOK);
2256 	orphan->node = node;
2257 
2258 	KKASSERT((node->flags & DEVFS_ORPHANED) == 0);
2259 	node->flags |= DEVFS_ORPHANED;
2260 	TAILQ_INSERT_TAIL(DEVFS_ORPHANLIST(node->mp), orphan, link);
2261 }
2262 
2263 /*
2264  * Removes an orphan from the orphan list.
2265  */
2266 void
2267 devfs_tracer_del_orphan(struct devfs_node *node)
2268 {
2269 	struct devfs_orphan *orphan;
2270 
2271 	KKASSERT(node);
2272 
2273 	TAILQ_FOREACH(orphan, DEVFS_ORPHANLIST(node->mp), link)	{
2274 		if (orphan->node == node) {
2275 			node->flags &= ~DEVFS_ORPHANED;
2276 			TAILQ_REMOVE(DEVFS_ORPHANLIST(node->mp), orphan, link);
2277 			kfree(orphan, M_DEVFS);
2278 			break;
2279 		}
2280 	}
2281 }
2282 
2283 /*
2284  * Counts the orphans in the orphan list, and if cleanup
2285  * is specified, also frees the orphan and removes it from
2286  * the list.
2287  */
2288 size_t
2289 devfs_tracer_orphan_count(struct mount *mp, int cleanup)
2290 {
2291 	struct devfs_orphan *orphan, *orphan2;
2292 	size_t count = 0;
2293 
2294 	TAILQ_FOREACH_MUTABLE(orphan, DEVFS_ORPHANLIST(mp), link, orphan2)	{
2295 		count++;
2296 		/*
2297 		 * If we are instructed to clean up, we do so.
2298 		 */
2299 		if (cleanup) {
2300 			TAILQ_REMOVE(DEVFS_ORPHANLIST(mp), orphan, link);
2301 			orphan->node->flags &= ~DEVFS_ORPHANED;
2302 			devfs_freep(orphan->node);
2303 			kfree(orphan, M_DEVFS);
2304 		}
2305 	}
2306 
2307 	return count;
2308 }
2309 
2310 /*
2311  * Fetch an ino_t from the global d_ino by increasing it
2312  * while spinlocked.
2313  */
2314 static ino_t
2315 devfs_fetch_ino(void)
2316 {
2317 	ino_t	ret;
2318 
2319 	spin_lock(&ino_lock);
2320 	ret = d_ino++;
2321 	spin_unlock(&ino_lock);
2322 
2323 	return ret;
2324 }
2325 
2326 /*
2327  * Allocates a new cdev and initializes it's most basic
2328  * fields.
2329  */
2330 cdev_t
2331 devfs_new_cdev(struct dev_ops *ops, int minor, struct dev_ops *bops)
2332 {
2333 	cdev_t dev = sysref_alloc(&cdev_sysref_class);
2334 
2335 	sysref_activate(&dev->si_sysref);
2336 	reference_dev(dev);
2337 	bzero(dev, offsetof(struct cdev, si_sysref));
2338 
2339 	dev->si_uid = 0;
2340 	dev->si_gid = 0;
2341 	dev->si_perms = 0;
2342 	dev->si_drv1 = NULL;
2343 	dev->si_drv2 = NULL;
2344 	dev->si_lastread = 0;		/* time_uptime */
2345 	dev->si_lastwrite = 0;		/* time_uptime */
2346 
2347 	dev->si_dict = NULL;
2348 	dev->si_parent = NULL;
2349 	dev->si_ops = ops;
2350 	dev->si_flags = 0;
2351 	dev->si_uminor = minor;
2352 	dev->si_bops = bops;
2353 
2354 	/*
2355 	 * Since the disk subsystem is in the way, we need to
2356 	 * propagate the D_CANFREE from bops (and ops) to
2357 	 * si_flags.
2358 	 */
2359 	if (bops && (bops->head.flags & D_CANFREE)) {
2360 		dev->si_flags |= SI_CANFREE;
2361 	} else if (ops->head.flags & D_CANFREE) {
2362 		dev->si_flags |= SI_CANFREE;
2363 	}
2364 
2365 	/* If there is a backing device, we reference its ops */
2366 	dev->si_inode = makeudev(
2367 		    devfs_reference_ops((bops)?(bops):(ops)),
2368 		    minor );
2369 	dev->si_umajor = umajor(dev->si_inode);
2370 
2371 	return dev;
2372 }
2373 
2374 static void
2375 devfs_cdev_terminate(cdev_t dev)
2376 {
2377 	int locked = 0;
2378 
2379 	/* Check if it is locked already. if not, we acquire the devfs lock */
2380 	if ((lockstatus(&devfs_lock, curthread)) != LK_EXCLUSIVE) {
2381 		lockmgr(&devfs_lock, LK_EXCLUSIVE);
2382 		locked = 1;
2383 	}
2384 
2385 	/*
2386 	 * Make sure the node isn't linked anymore. Otherwise we've screwed
2387 	 * up somewhere, since normal devs are unlinked on the call to
2388 	 * destroy_dev and only-cdevs that have not been used for cloning
2389 	 * are not linked in the first place. only-cdevs used for cloning
2390 	 * will be linked in, too, and should only be destroyed via
2391 	 * destroy_dev, not destroy_only_dev, so we catch that problem, too.
2392 	 */
2393 	KKASSERT((dev->si_flags & SI_DEVFS_LINKED) == 0);
2394 
2395 	/* If we acquired the lock, we also get rid of it */
2396 	if (locked)
2397 		lockmgr(&devfs_lock, LK_RELEASE);
2398 
2399 	/* If there is a backing device, we release the backing device's ops */
2400 	devfs_release_ops((dev->si_bops)?(dev->si_bops):(dev->si_ops));
2401 
2402 	/* Finally destroy the device */
2403 	sysref_put(&dev->si_sysref);
2404 }
2405 
2406 /*
2407  * Dummies for now (individual locks for MPSAFE)
2408  */
2409 static void
2410 devfs_cdev_lock(cdev_t dev)
2411 {
2412 }
2413 
2414 static void
2415 devfs_cdev_unlock(cdev_t dev)
2416 {
2417 }
2418 
2419 static int
2420 devfs_detached_filter_eof(struct knote *kn, long hint)
2421 {
2422 	kn->kn_flags |= (EV_EOF | EV_NODATA);
2423 	return (1);
2424 }
2425 
2426 static void
2427 devfs_detached_filter_detach(struct knote *kn)
2428 {
2429 	cdev_t dev = (cdev_t)kn->kn_hook;
2430 
2431 	knote_remove(&dev->si_kqinfo.ki_note, kn);
2432 }
2433 
2434 static struct filterops devfs_detached_filterops =
2435 	{ FILTEROP_ISFD, NULL,
2436 	  devfs_detached_filter_detach,
2437 	  devfs_detached_filter_eof };
2438 
2439 /*
2440  * Delegates knote filter handling responsibility to devfs
2441  *
2442  * Any device that implements kqfilter event handling and could be detached
2443  * or shut down out from under the kevent subsystem must allow devfs to
2444  * assume responsibility for any knotes it may hold.
2445  */
2446 void
2447 devfs_assume_knotes(cdev_t dev, struct kqinfo *kqi)
2448 {
2449 	/*
2450 	 * Let kern/kern_event.c do the heavy lifting.
2451 	 */
2452 	knote_assume_knotes(kqi, &dev->si_kqinfo,
2453 			    &devfs_detached_filterops, (void *)dev);
2454 
2455 	/*
2456 	 * These should probably be activated individually, but doing so
2457 	 * would require refactoring kq's public in-kernel interface.
2458 	 */
2459 	KNOTE(&dev->si_kqinfo.ki_note, 0);
2460 }
2461 
2462 /*
2463  * Links a given cdev into the dev list.
2464  */
2465 int
2466 devfs_link_dev(cdev_t dev)
2467 {
2468 	KKASSERT((dev->si_flags & SI_DEVFS_LINKED) == 0);
2469 	dev->si_flags |= SI_DEVFS_LINKED;
2470 	TAILQ_INSERT_TAIL(&devfs_dev_list, dev, link);
2471 
2472 	return 0;
2473 }
2474 
2475 /*
2476  * Removes a given cdev from the dev list.  The caller is responsible for
2477  * releasing the reference on the device associated with the linkage.
2478  *
2479  * Returns EALREADY if the dev has already been unlinked.
2480  */
2481 static int
2482 devfs_unlink_dev(cdev_t dev)
2483 {
2484 	if ((dev->si_flags & SI_DEVFS_LINKED)) {
2485 		TAILQ_REMOVE(&devfs_dev_list, dev, link);
2486 		dev->si_flags &= ~SI_DEVFS_LINKED;
2487 		return (0);
2488 	}
2489 	return (EALREADY);
2490 }
2491 
2492 int
2493 devfs_node_is_accessible(struct devfs_node *node)
2494 {
2495 	if ((node) && (!(node->flags & DEVFS_HIDDEN)))
2496 		return 1;
2497 	else
2498 		return 0;
2499 }
2500 
2501 int
2502 devfs_reference_ops(struct dev_ops *ops)
2503 {
2504 	int unit;
2505 	struct devfs_dev_ops *found = NULL;
2506 	struct devfs_dev_ops *devops;
2507 
2508 	TAILQ_FOREACH(devops, &devfs_dev_ops_list, link) {
2509 		if (devops->ops == ops) {
2510 			found = devops;
2511 			break;
2512 		}
2513 	}
2514 
2515 	if (!found) {
2516 		found = kmalloc(sizeof(struct devfs_dev_ops), M_DEVFS, M_WAITOK);
2517 		found->ops = ops;
2518 		found->ref_count = 0;
2519 		TAILQ_INSERT_TAIL(&devfs_dev_ops_list, found, link);
2520 	}
2521 
2522 	KKASSERT(found);
2523 
2524 	if (found->ref_count == 0) {
2525 		found->id = devfs_clone_bitmap_get(&DEVFS_CLONE_BITMAP(ops_id), 255);
2526 		if (found->id == -1) {
2527 			/* Ran out of unique ids */
2528 			devfs_debug(DEVFS_DEBUG_WARNING,
2529 					"devfs_reference_ops: WARNING: ran out of unique ids\n");
2530 		}
2531 	}
2532 	unit = found->id;
2533 	++found->ref_count;
2534 
2535 	return unit;
2536 }
2537 
2538 void
2539 devfs_release_ops(struct dev_ops *ops)
2540 {
2541 	struct devfs_dev_ops *found = NULL;
2542 	struct devfs_dev_ops *devops;
2543 
2544 	TAILQ_FOREACH(devops, &devfs_dev_ops_list, link) {
2545 		if (devops->ops == ops) {
2546 			found = devops;
2547 			break;
2548 		}
2549 	}
2550 
2551 	KKASSERT(found);
2552 
2553 	--found->ref_count;
2554 
2555 	if (found->ref_count == 0) {
2556 		TAILQ_REMOVE(&devfs_dev_ops_list, found, link);
2557 		devfs_clone_bitmap_put(&DEVFS_CLONE_BITMAP(ops_id), found->id);
2558 		kfree(found, M_DEVFS);
2559 	}
2560 }
2561 
2562 /*
2563  * Wait for asynchronous messages to complete in the devfs helper
2564  * thread, then return.  Do nothing if the helper thread is dead
2565  * or we are being indirectly called from the helper thread itself.
2566  */
2567 void
2568 devfs_config(void)
2569 {
2570 	devfs_msg_t msg;
2571 
2572 	if (devfs_run && curthread != td_core) {
2573 		msg = devfs_msg_get();
2574 		devfs_msg_send_sync(DEVFS_SYNC, msg);
2575 		devfs_msg_put(msg);
2576 	}
2577 }
2578 
2579 /*
2580  * Called on init of devfs; creates the objcaches and
2581  * spawns off the devfs core thread. Also initializes
2582  * locks.
2583  */
2584 static void
2585 devfs_init(void)
2586 {
2587 	devfs_debug(DEVFS_DEBUG_DEBUG, "devfs_init() called\n");
2588 	/* Create objcaches for nodes, msgs and devs */
2589 	devfs_node_cache = objcache_create("devfs-node-cache", 0, 0,
2590 					   NULL, NULL, NULL,
2591 					   objcache_malloc_alloc,
2592 					   objcache_malloc_free,
2593 					   &devfs_node_malloc_args );
2594 
2595 	devfs_msg_cache = objcache_create("devfs-msg-cache", 0, 0,
2596 					  NULL, NULL, NULL,
2597 					  objcache_malloc_alloc,
2598 					  objcache_malloc_free,
2599 					  &devfs_msg_malloc_args );
2600 
2601 	devfs_dev_cache = objcache_create("devfs-dev-cache", 0, 0,
2602 					  NULL, NULL, NULL,
2603 					  objcache_malloc_alloc,
2604 					  objcache_malloc_free,
2605 					  &devfs_dev_malloc_args );
2606 
2607 	devfs_clone_bitmap_init(&DEVFS_CLONE_BITMAP(ops_id));
2608 
2609 	/* Initialize the reply-only port which acts as a message drain */
2610 	lwkt_initport_replyonly(&devfs_dispose_port, devfs_msg_autofree_reply);
2611 
2612 	/* Initialize *THE* devfs lock */
2613 	lockinit(&devfs_lock, "devfs_core lock", 0, 0);
2614 
2615 	lockmgr(&devfs_lock, LK_EXCLUSIVE);
2616 	lwkt_create(devfs_msg_core, /*args*/NULL, &td_core, NULL,
2617 		    0, -1, "devfs_msg_core");
2618 	while (devfs_run == 0)
2619 		lksleep(td_core, &devfs_lock, 0, "devfsc", 0);
2620 	lockmgr(&devfs_lock, LK_RELEASE);
2621 
2622 	devfs_debug(DEVFS_DEBUG_DEBUG, "devfs_init finished\n");
2623 }
2624 
2625 /*
2626  * Called on unload of devfs; takes care of destroying the core
2627  * and the objcaches. Also removes aliases that are no longer needed.
2628  */
2629 static void
2630 devfs_uninit(void)
2631 {
2632 	devfs_debug(DEVFS_DEBUG_DEBUG, "devfs_uninit() called\n");
2633 
2634 	devfs_msg_send(DEVFS_TERMINATE_CORE, NULL);
2635 	while (devfs_run)
2636 		tsleep(td_core, 0, "devfsc", hz*10);
2637 	tsleep(td_core, 0, "devfsc", hz);
2638 
2639 	devfs_clone_bitmap_uninit(&DEVFS_CLONE_BITMAP(ops_id));
2640 
2641 	/* Destroy the objcaches */
2642 	objcache_destroy(devfs_msg_cache);
2643 	objcache_destroy(devfs_node_cache);
2644 	objcache_destroy(devfs_dev_cache);
2645 
2646 	devfs_alias_reap();
2647 }
2648 
2649 /*
2650  * This is a sysctl handler to assist userland devname(3) to
2651  * find the device name for a given udev.
2652  */
2653 static int
2654 devfs_sysctl_devname_helper(SYSCTL_HANDLER_ARGS)
2655 {
2656 	udev_t 	udev;
2657 	cdev_t	found;
2658 	int		error;
2659 
2660 
2661 	if ((error = SYSCTL_IN(req, &udev, sizeof(udev_t))))
2662 		return (error);
2663 
2664 	devfs_debug(DEVFS_DEBUG_DEBUG, "devfs sysctl, received udev: %d\n", udev);
2665 
2666 	if (udev == NOUDEV)
2667 		return(EINVAL);
2668 
2669 	if ((found = devfs_find_device_by_udev(udev)) == NULL)
2670 		return(ENOENT);
2671 
2672 	return(SYSCTL_OUT(req, found->si_name, strlen(found->si_name) + 1));
2673 }
2674 
2675 
2676 SYSCTL_PROC(_kern, OID_AUTO, devname, CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_ANYBODY,
2677 			NULL, 0, devfs_sysctl_devname_helper, "", "helper for devname(3)");
2678 
2679 SYSCTL_NODE(_vfs, OID_AUTO, devfs, CTLFLAG_RW, 0, "devfs");
2680 TUNABLE_INT("vfs.devfs.debug", &devfs_debug_enable);
2681 SYSCTL_INT(_vfs_devfs, OID_AUTO, debug, CTLFLAG_RW, &devfs_debug_enable,
2682 		0, "Enable DevFS debugging");
2683 
2684 SYSINIT(vfs_devfs_register, SI_SUB_PRE_DRIVERS, SI_ORDER_FIRST,
2685 		devfs_init, NULL);
2686 SYSUNINIT(vfs_devfs_register, SI_SUB_PRE_DRIVERS, SI_ORDER_ANY,
2687 		devfs_uninit, NULL);
2688 
2689 /*
2690  * WildCmp() - compare wild string to sane string
2691  *
2692  *	Returns 0 on success, -1 on failure.
2693  */
2694 static int
2695 wildCmp(const char **mary, int d, const char *w, const char *s)
2696 {
2697     int i;
2698 
2699     /*
2700      * skip fixed portion
2701      */
2702     for (;;) {
2703 	switch(*w) {
2704 	case '*':
2705 	    /*
2706 	     * optimize terminator
2707 	     */
2708 	    if (w[1] == 0)
2709 		return(0);
2710 	    if (w[1] != '?' && w[1] != '*') {
2711 		/*
2712 		 * optimize * followed by non-wild
2713 		 */
2714 		for (i = 0; s + i < mary[d]; ++i) {
2715 		    if (s[i] == w[1] && wildCmp(mary, d + 1, w + 1, s + i) == 0)
2716 			return(0);
2717 		}
2718 	    } else {
2719 		/*
2720 		 * less-optimal
2721 		 */
2722 		for (i = 0; s + i < mary[d]; ++i) {
2723 		    if (wildCmp(mary, d + 1, w + 1, s + i) == 0)
2724 			return(0);
2725 		}
2726 	    }
2727 	    mary[d] = s;
2728 	    return(-1);
2729 	case '?':
2730 	    if (*s == 0)
2731 		return(-1);
2732 	    ++w;
2733 	    ++s;
2734 	    break;
2735 	default:
2736 	    if (*w != *s)
2737 		return(-1);
2738 	    if (*w == 0)	/* terminator */
2739 		return(0);
2740 	    ++w;
2741 	    ++s;
2742 	    break;
2743 	}
2744     }
2745     /* not reached */
2746     return(-1);
2747 }
2748 
2749 
2750 /*
2751  * WildCaseCmp() - compare wild string to sane string, case insensitive
2752  *
2753  *	Returns 0 on success, -1 on failure.
2754  */
2755 static int
2756 wildCaseCmp(const char **mary, int d, const char *w, const char *s)
2757 {
2758     int i;
2759 
2760     /*
2761      * skip fixed portion
2762      */
2763     for (;;) {
2764 	switch(*w) {
2765 	case '*':
2766 	    /*
2767 	     * optimize terminator
2768 	     */
2769 	    if (w[1] == 0)
2770 		return(0);
2771 	    if (w[1] != '?' && w[1] != '*') {
2772 		/*
2773 		 * optimize * followed by non-wild
2774 		 */
2775 		for (i = 0; s + i < mary[d]; ++i) {
2776 		    if (s[i] == w[1] && wildCaseCmp(mary, d + 1, w + 1, s + i) == 0)
2777 			return(0);
2778 		}
2779 	    } else {
2780 		/*
2781 		 * less-optimal
2782 		 */
2783 		for (i = 0; s + i < mary[d]; ++i) {
2784 		    if (wildCaseCmp(mary, d + 1, w + 1, s + i) == 0)
2785 			return(0);
2786 		}
2787 	    }
2788 	    mary[d] = s;
2789 	    return(-1);
2790 	case '?':
2791 	    if (*s == 0)
2792 		return(-1);
2793 	    ++w;
2794 	    ++s;
2795 	    break;
2796 	default:
2797 	    if (*w != *s) {
2798 #define tolower(x)	((x >= 'A' && x <= 'Z')?(x+('a'-'A')):(x))
2799 		if (tolower(*w) != tolower(*s))
2800 		    return(-1);
2801 	    }
2802 	    if (*w == 0)	/* terminator */
2803 		return(0);
2804 	    ++w;
2805 	    ++s;
2806 	    break;
2807 	}
2808     }
2809     /* not reached */
2810     return(-1);
2811 }
2812 
2813 struct cdev_privdata {
2814 	void		*cdpd_data;
2815 	cdevpriv_dtr_t	cdpd_dtr;
2816 };
2817 
2818 int
2819 devfs_get_cdevpriv(struct file *fp, void **datap)
2820 {
2821 	int error;
2822 
2823 	if (fp == NULL)
2824 		return(EBADF);
2825 
2826 	spin_lock_shared(&fp->f_spin);
2827 	if (fp->f_data1 == NULL) {
2828 		*datap = NULL;
2829 		error = ENOENT;
2830 	} else {
2831 		struct cdev_privdata *p = fp->f_data1;
2832 
2833 		*datap = p->cdpd_data;
2834 		error = 0;
2835 	}
2836 	spin_unlock_shared(&fp->f_spin);
2837 
2838 	return (error);
2839 }
2840 
2841 int
2842 devfs_set_cdevpriv(struct file *fp, void *priv, cdevpriv_dtr_t dtr)
2843 {
2844 	struct cdev_privdata *p;
2845 	int error;
2846 
2847 	if (fp == NULL)
2848 		return (ENOENT);
2849 
2850 	p = kmalloc(sizeof(struct cdev_privdata), M_DEVFS, M_WAITOK);
2851 	p->cdpd_data = priv;
2852 	p->cdpd_dtr = dtr;
2853 
2854 	spin_lock(&fp->f_spin);
2855 	if (fp->f_data1 == NULL) {
2856 		fp->f_data1 = p;
2857 		error = 0;
2858 	} else {
2859 		error = EBUSY;
2860 	}
2861 	spin_unlock(&fp->f_spin);
2862 
2863 	if (error)
2864 		kfree(p, M_DEVFS);
2865 
2866 	return error;
2867 }
2868 
2869 void
2870 devfs_clear_cdevpriv(struct file *fp)
2871 {
2872 	struct cdev_privdata *p;
2873 
2874 	if (fp == NULL)
2875 		return;
2876 
2877 	spin_lock(&fp->f_spin);
2878 	p = fp->f_data1;
2879 	fp->f_data1 = NULL;
2880 	spin_unlock(&fp->f_spin);
2881 
2882 	if (p != NULL) {
2883 		p->cdpd_dtr(p->cdpd_data);
2884 		kfree(p, M_DEVFS);
2885 	}
2886 }
2887 
2888 int
2889 devfs_WildCmp(const char *w, const char *s)
2890 {
2891     int i;
2892     int c;
2893     int slen = strlen(s);
2894     const char **mary;
2895 
2896     for (i = c = 0; w[i]; ++i) {
2897 	if (w[i] == '*')
2898 	    ++c;
2899     }
2900     mary = kmalloc(sizeof(char *) * (c + 1), M_DEVFS, M_WAITOK);
2901     for (i = 0; i < c; ++i)
2902 	mary[i] = s + slen;
2903     i = wildCmp(mary, 0, w, s);
2904     kfree(mary, M_DEVFS);
2905     return(i);
2906 }
2907 
2908 int
2909 devfs_WildCaseCmp(const char *w, const char *s)
2910 {
2911     int i;
2912     int c;
2913     int slen = strlen(s);
2914     const char **mary;
2915 
2916     for (i = c = 0; w[i]; ++i) {
2917 	if (w[i] == '*')
2918 	    ++c;
2919     }
2920     mary = kmalloc(sizeof(char *) * (c + 1), M_DEVFS, M_WAITOK);
2921     for (i = 0; i < c; ++i)
2922 	mary[i] = s + slen;
2923     i = wildCaseCmp(mary, 0, w, s);
2924     kfree(mary, M_DEVFS);
2925     return(i);
2926 }
2927 
2928