xref: /dragonfly/sys/vfs/devfs/devfs_core.c (revision cfd1aba3)
1 /*
2  * Copyright (c) 2009 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Alex Hornung <ahornung@gmail.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/kernel.h>
37 #include <sys/mount.h>
38 #include <sys/vnode.h>
39 #include <sys/types.h>
40 #include <sys/lock.h>
41 #include <sys/file.h>
42 #include <sys/msgport.h>
43 #include <sys/sysctl.h>
44 #include <sys/ucred.h>
45 #include <sys/devfs.h>
46 #include <sys/devfs_rules.h>
47 #include <sys/udev.h>
48 
49 #include <sys/msgport2.h>
50 #include <sys/spinlock2.h>
51 #include <sys/mplock2.h>
52 #include <sys/sysref2.h>
53 
54 MALLOC_DEFINE(M_DEVFS, "devfs", "Device File System (devfs) allocations");
55 DEVFS_DECLARE_CLONE_BITMAP(ops_id);
56 /*
57  * SYSREF Integration - reference counting, allocation,
58  * sysid and syslink integration.
59  */
60 static void devfs_cdev_terminate(cdev_t dev);
61 static void devfs_cdev_lock(cdev_t dev);
62 static void devfs_cdev_unlock(cdev_t dev);
63 static struct sysref_class     cdev_sysref_class = {
64 	.name =         "cdev",
65 	.mtype =        M_DEVFS,
66 	.proto =        SYSREF_PROTO_DEV,
67 	.offset =       offsetof(struct cdev, si_sysref),
68 	.objsize =      sizeof(struct cdev),
69 	.nom_cache =	32,
70 	.flags =        0,
71 	.ops =  {
72 		.terminate = (sysref_terminate_func_t)devfs_cdev_terminate,
73 		.lock = (sysref_lock_func_t)devfs_cdev_lock,
74 		.unlock = (sysref_unlock_func_t)devfs_cdev_unlock
75 	}
76 };
77 
78 static struct objcache	*devfs_node_cache;
79 static struct objcache 	*devfs_msg_cache;
80 static struct objcache	*devfs_dev_cache;
81 
82 static struct objcache_malloc_args devfs_node_malloc_args = {
83 	sizeof(struct devfs_node), M_DEVFS };
84 struct objcache_malloc_args devfs_msg_malloc_args = {
85 	sizeof(struct devfs_msg), M_DEVFS };
86 struct objcache_malloc_args devfs_dev_malloc_args = {
87 	sizeof(struct cdev), M_DEVFS };
88 
89 static struct devfs_dev_head devfs_dev_list =
90 		TAILQ_HEAD_INITIALIZER(devfs_dev_list);
91 static struct devfs_mnt_head devfs_mnt_list =
92 		TAILQ_HEAD_INITIALIZER(devfs_mnt_list);
93 static struct devfs_chandler_head devfs_chandler_list =
94 		TAILQ_HEAD_INITIALIZER(devfs_chandler_list);
95 static struct devfs_alias_head devfs_alias_list =
96 		TAILQ_HEAD_INITIALIZER(devfs_alias_list);
97 static struct devfs_dev_ops_head devfs_dev_ops_list =
98 		TAILQ_HEAD_INITIALIZER(devfs_dev_ops_list);
99 
100 struct lock 		devfs_lock;
101 static struct lwkt_port devfs_dispose_port;
102 static struct lwkt_port devfs_msg_port;
103 static struct thread 	*td_core;
104 
105 static struct spinlock  ino_lock;
106 static ino_t 	d_ino;
107 static int	devfs_debug_enable;
108 static int	devfs_run;
109 
110 static ino_t devfs_fetch_ino(void);
111 static int devfs_create_all_dev_worker(struct devfs_node *);
112 static int devfs_create_dev_worker(cdev_t, uid_t, gid_t, int);
113 static int devfs_destroy_dev_worker(cdev_t);
114 static int devfs_destroy_related_worker(cdev_t);
115 static int devfs_destroy_dev_by_ops_worker(struct dev_ops *, int);
116 static int devfs_propagate_dev(cdev_t, int);
117 static int devfs_unlink_dev(cdev_t dev);
118 static void devfs_msg_exec(devfs_msg_t msg);
119 
120 static int devfs_chandler_add_worker(const char *, d_clone_t *);
121 static int devfs_chandler_del_worker(const char *);
122 
123 static void devfs_msg_autofree_reply(lwkt_port_t, lwkt_msg_t);
124 static void devfs_msg_core(void *);
125 
126 static int devfs_find_device_by_name_worker(devfs_msg_t);
127 static int devfs_find_device_by_udev_worker(devfs_msg_t);
128 
129 static int devfs_apply_reset_rules_caller(char *, int);
130 
131 static int devfs_scan_callback_worker(devfs_scan_t *, void *);
132 
133 static struct devfs_node *devfs_resolve_or_create_dir(struct devfs_node *,
134 		char *, size_t, int);
135 
136 static int devfs_make_alias_worker(struct devfs_alias *);
137 static int devfs_destroy_alias_worker(struct devfs_alias *);
138 static int devfs_alias_remove(cdev_t);
139 static int devfs_alias_reap(void);
140 static int devfs_alias_propagate(struct devfs_alias *, int);
141 static int devfs_alias_apply(struct devfs_node *, struct devfs_alias *);
142 static int devfs_alias_check_create(struct devfs_node *);
143 
144 static int devfs_clr_related_flag_worker(cdev_t, uint32_t);
145 static int devfs_destroy_related_without_flag_worker(cdev_t, uint32_t);
146 
147 static void *devfs_reaperp_callback(struct devfs_node *, void *);
148 static void *devfs_gc_dirs_callback(struct devfs_node *, void *);
149 static void *devfs_gc_links_callback(struct devfs_node *, struct devfs_node *);
150 static void *
151 devfs_inode_to_vnode_worker_callback(struct devfs_node *, ino_t *);
152 
153 /*
154  * devfs_debug() is a SYSCTL and TUNABLE controlled debug output function
155  * using kvprintf
156  */
157 int
158 devfs_debug(int level, char *fmt, ...)
159 {
160 	__va_list ap;
161 
162 	__va_start(ap, fmt);
163 	if (level <= devfs_debug_enable)
164 		kvprintf(fmt, ap);
165 	__va_end(ap);
166 
167 	return 0;
168 }
169 
170 /*
171  * devfs_allocp() Allocates a new devfs node with the specified
172  * parameters. The node is also automatically linked into the topology
173  * if a parent is specified. It also calls the rule and alias stuff to
174  * be applied on the new node
175  */
176 struct devfs_node *
177 devfs_allocp(devfs_nodetype devfsnodetype, char *name,
178 	     struct devfs_node *parent, struct mount *mp, cdev_t dev)
179 {
180 	struct devfs_node *node = NULL;
181 	size_t namlen = strlen(name);
182 
183 	node = objcache_get(devfs_node_cache, M_WAITOK);
184 	bzero(node, sizeof(*node));
185 
186 	atomic_add_long(&DEVFS_MNTDATA(mp)->leak_count, 1);
187 
188 	node->d_dev = NULL;
189 	node->nchildren = 1;
190 	node->mp = mp;
191 	node->d_dir.d_ino = devfs_fetch_ino();
192 
193 	/*
194 	 * Cookie jar for children. Leave 0 and 1 for '.' and '..' entries
195 	 * respectively.
196 	 */
197 	node->cookie_jar = 2;
198 
199 	/*
200 	 * Access Control members
201 	 */
202 	node->mode = DEVFS_DEFAULT_MODE;
203 	node->uid = DEVFS_DEFAULT_UID;
204 	node->gid = DEVFS_DEFAULT_GID;
205 
206 	switch (devfsnodetype) {
207 	case Nroot:
208 		/*
209 		 * Ensure that we don't recycle the root vnode by marking it as
210 		 * linked into the topology.
211 		 */
212 		node->flags |= DEVFS_NODE_LINKED;
213 	case Ndir:
214 		TAILQ_INIT(DEVFS_DENODE_HEAD(node));
215 		node->d_dir.d_type = DT_DIR;
216 		node->nchildren = 2;
217 		break;
218 
219 	case Nlink:
220 		node->d_dir.d_type = DT_LNK;
221 		break;
222 
223 	case Nreg:
224 		node->d_dir.d_type = DT_REG;
225 		break;
226 
227 	case Ndev:
228 		if (dev != NULL) {
229 			node->d_dir.d_type = DT_CHR;
230 			node->d_dev = dev;
231 
232 			node->mode = dev->si_perms;
233 			node->uid = dev->si_uid;
234 			node->gid = dev->si_gid;
235 
236 			devfs_alias_check_create(node);
237 		}
238 		break;
239 
240 	default:
241 		panic("devfs_allocp: unknown node type");
242 	}
243 
244 	node->v_node = NULL;
245 	node->node_type = devfsnodetype;
246 
247 	/* Initialize the dirent structure of each devfs vnode */
248 	node->d_dir.d_namlen = namlen;
249 	node->d_dir.d_name = kmalloc(namlen+1, M_DEVFS, M_WAITOK);
250 	memcpy(node->d_dir.d_name, name, namlen);
251 	node->d_dir.d_name[namlen] = '\0';
252 
253 	/* Initialize the parent node element */
254 	node->parent = parent;
255 
256 	/* Initialize *time members */
257 	nanotime(&node->atime);
258 	node->mtime = node->ctime = node->atime;
259 
260 	/*
261 	 * Associate with parent as last step, clean out namecache
262 	 * reference.
263 	 */
264 	if ((parent != NULL) &&
265 	    ((parent->node_type == Nroot) || (parent->node_type == Ndir))) {
266 		parent->nchildren++;
267 		node->cookie = parent->cookie_jar++;
268 		node->flags |= DEVFS_NODE_LINKED;
269 		TAILQ_INSERT_TAIL(DEVFS_DENODE_HEAD(parent), node, link);
270 
271 		/* This forces negative namecache lookups to clear */
272 		++mp->mnt_namecache_gen;
273 	}
274 
275 	/* Apply rules */
276 	devfs_rule_check_apply(node, NULL);
277 
278 	atomic_add_long(&DEVFS_MNTDATA(mp)->file_count, 1);
279 
280 	return node;
281 }
282 
283 /*
284  * devfs_allocv() allocates a new vnode based on a devfs node.
285  */
286 int
287 devfs_allocv(struct vnode **vpp, struct devfs_node *node)
288 {
289 	struct vnode *vp;
290 	int error = 0;
291 
292 	KKASSERT(node);
293 
294 	/*
295 	 * devfs master lock must not be held across a vget() call, we have
296 	 * to hold our ad-hoc vp to avoid a free race from destroying the
297 	 * contents of the structure.  The vget() will interlock recycles
298 	 * for us.
299 	 */
300 try_again:
301 	while ((vp = node->v_node) != NULL) {
302 		vhold(vp);
303 		lockmgr(&devfs_lock, LK_RELEASE);
304 		error = vget(vp, LK_EXCLUSIVE);
305 		vdrop(vp);
306 		lockmgr(&devfs_lock, LK_EXCLUSIVE);
307 		if (error == 0) {
308 			*vpp = vp;
309 			goto out;
310 		}
311 		if (error != ENOENT) {
312 			*vpp = NULL;
313 			goto out;
314 		}
315 	}
316 
317 	/*
318 	 * devfs master lock must not be held across a getnewvnode() call.
319 	 */
320 	lockmgr(&devfs_lock, LK_RELEASE);
321 	if ((error = getnewvnode(VT_DEVFS, node->mp, vpp, 0, 0)) != 0) {
322 		lockmgr(&devfs_lock, LK_EXCLUSIVE);
323 		goto out;
324 	}
325 	lockmgr(&devfs_lock, LK_EXCLUSIVE);
326 
327 	vp = *vpp;
328 
329 	if (node->v_node != NULL) {
330 		vp->v_type = VBAD;
331 		vx_put(vp);
332 		goto try_again;
333 	}
334 
335 	vp->v_data = node;
336 	node->v_node = vp;
337 
338 	switch (node->node_type) {
339 	case Nroot:
340 		vsetflags(vp, VROOT);
341 		/* fall through */
342 	case Ndir:
343 		vp->v_type = VDIR;
344 		break;
345 
346 	case Nlink:
347 		vp->v_type = VLNK;
348 		break;
349 
350 	case Nreg:
351 		vp->v_type = VREG;
352 		break;
353 
354 	case Ndev:
355 		vp->v_type = VCHR;
356 		KKASSERT(node->d_dev);
357 
358 		vp->v_uminor = node->d_dev->si_uminor;
359 		vp->v_umajor = node->d_dev->si_umajor;
360 
361 		v_associate_rdev(vp, node->d_dev);
362 		vp->v_ops = &node->mp->mnt_vn_spec_ops;
363 		break;
364 
365 	default:
366 		panic("devfs_allocv: unknown node type");
367 	}
368 
369 out:
370 	return error;
371 }
372 
373 /*
374  * devfs_allocvp allocates both a devfs node (with the given settings) and a vnode
375  * based on the newly created devfs node.
376  */
377 int
378 devfs_allocvp(struct mount *mp, struct vnode **vpp, devfs_nodetype devfsnodetype,
379 		char *name, struct devfs_node *parent, cdev_t dev)
380 {
381 	struct devfs_node *node;
382 
383 	node = devfs_allocp(devfsnodetype, name, parent, mp, dev);
384 
385 	if (node != NULL)
386 		devfs_allocv(vpp, node);
387 	else
388 		*vpp = NULL;
389 
390 	return 0;
391 }
392 
393 /*
394  * Destroy the devfs_node.  The node must be unlinked from the topology.
395  *
396  * This function will also destroy any vnode association with the node
397  * and device.
398  *
399  * The cdev_t itself remains intact.
400  *
401  * The core lock is not necessarily held on call and must be temporarily
402  * released if it is to avoid a deadlock.
403  */
404 int
405 devfs_freep(struct devfs_node *node)
406 {
407 	struct vnode *vp;
408 	int relock;
409 
410 	KKASSERT(node);
411 	KKASSERT(((node->flags & DEVFS_NODE_LINKED) == 0) ||
412 		 (node->node_type == Nroot));
413 
414 	/*
415 	 * Protect against double frees
416 	 */
417 	KKASSERT((node->flags & DEVFS_DESTROYED) == 0);
418 	node->flags |= DEVFS_DESTROYED;
419 
420 	/*
421 	 * Avoid deadlocks between devfs_lock and the vnode lock when
422 	 * disassociating the vnode (stress2 pty vs ls -la /dev/pts).
423 	 *
424 	 * This also prevents the vnode reclaim code from double-freeing
425 	 * the node.  The vget() is required to safely modified the vp
426 	 * and cycle the refs to terminate an inactive vp.
427 	 */
428 	if (lockstatus(&devfs_lock, curthread) == LK_EXCLUSIVE) {
429 		lockmgr(&devfs_lock, LK_RELEASE);
430 		relock = 1;
431 	} else {
432 		relock = 0;
433 	}
434 
435 	while ((vp = node->v_node) != NULL) {
436 		if (vget(vp, LK_EXCLUSIVE | LK_RETRY) != 0)
437 			break;
438 		v_release_rdev(vp);
439 		vp->v_data = NULL;
440 		node->v_node = NULL;
441 		cache_inval_vp(vp, CINV_DESTROY);
442 		vput(vp);
443 	}
444 
445 	/*
446 	 * Remaining cleanup
447 	 */
448 	atomic_subtract_long(&DEVFS_MNTDATA(node->mp)->leak_count, 1);
449 	if (node->symlink_name)	{
450 		kfree(node->symlink_name, M_DEVFS);
451 		node->symlink_name = NULL;
452 	}
453 
454 	/*
455 	 * Remove the node from the orphan list if it is still on it.
456 	 */
457 	if (node->flags & DEVFS_ORPHANED)
458 		devfs_tracer_del_orphan(node);
459 
460 	if (node->d_dir.d_name) {
461 		kfree(node->d_dir.d_name, M_DEVFS);
462 		node->d_dir.d_name = NULL;
463 	}
464 	atomic_subtract_long(&DEVFS_MNTDATA(node->mp)->file_count, 1);
465 	objcache_put(devfs_node_cache, node);
466 
467 	if (relock)
468 		lockmgr(&devfs_lock, LK_EXCLUSIVE);
469 
470 	return 0;
471 }
472 
473 /*
474  * Unlink the devfs node from the topology and add it to the orphan list.
475  * The node will later be destroyed by freep.
476  *
477  * Any vnode association, including the v_rdev and v_data, remains intact
478  * until the freep.
479  */
480 int
481 devfs_unlinkp(struct devfs_node *node)
482 {
483 	struct devfs_node *parent;
484 	KKASSERT(node);
485 
486 	/*
487 	 * Add the node to the orphan list, so it is referenced somewhere, to
488 	 * so we don't leak it.
489 	 */
490 	devfs_tracer_add_orphan(node);
491 
492 	parent = node->parent;
493 
494 	/*
495 	 * If the parent is known we can unlink the node out of the topology
496 	 */
497 	if (parent)	{
498 		TAILQ_REMOVE(DEVFS_DENODE_HEAD(parent), node, link);
499 		parent->nchildren--;
500 		node->flags &= ~DEVFS_NODE_LINKED;
501 	}
502 
503 	node->parent = NULL;
504 	return 0;
505 }
506 
507 void *
508 devfs_iterate_topology(struct devfs_node *node,
509 		devfs_iterate_callback_t *callback, void *arg1)
510 {
511 	struct devfs_node *node1, *node2;
512 	void *ret = NULL;
513 
514 	if ((node->node_type == Nroot) || (node->node_type == Ndir)) {
515 		if (node->nchildren > 2) {
516 			TAILQ_FOREACH_MUTABLE(node1, DEVFS_DENODE_HEAD(node),
517 							link, node2) {
518 				if ((ret = devfs_iterate_topology(node1, callback, arg1)))
519 					return ret;
520 			}
521 		}
522 	}
523 
524 	ret = callback(node, arg1);
525 	return ret;
526 }
527 
528 /*
529  * devfs_reaperp() is a recursive function that iterates through all the
530  * topology, unlinking and freeing all devfs nodes.
531  */
532 static void *
533 devfs_reaperp_callback(struct devfs_node *node, void *unused)
534 {
535 	devfs_unlinkp(node);
536 	devfs_freep(node);
537 
538 	return NULL;
539 }
540 
541 static void *
542 devfs_gc_dirs_callback(struct devfs_node *node, void *unused)
543 {
544 	if (node->node_type == Ndir) {
545 		if ((node->nchildren == 2) &&
546 		    !(node->flags & DEVFS_USER_CREATED)) {
547 			devfs_unlinkp(node);
548 			devfs_freep(node);
549 		}
550 	}
551 
552 	return NULL;
553 }
554 
555 static void *
556 devfs_gc_links_callback(struct devfs_node *node, struct devfs_node *target)
557 {
558 	if ((node->node_type == Nlink) && (node->link_target == target)) {
559 		devfs_unlinkp(node);
560 		devfs_freep(node);
561 	}
562 
563 	return NULL;
564 }
565 
566 /*
567  * devfs_gc() is devfs garbage collector. It takes care of unlinking and
568  * freeing a node, but also removes empty directories and links that link
569  * via devfs auto-link mechanism to the node being deleted.
570  */
571 int
572 devfs_gc(struct devfs_node *node)
573 {
574 	struct devfs_node *root_node = DEVFS_MNTDATA(node->mp)->root_node;
575 
576 	if (node->nlinks > 0)
577 		devfs_iterate_topology(root_node,
578 				(devfs_iterate_callback_t *)devfs_gc_links_callback, node);
579 
580 	devfs_unlinkp(node);
581 	devfs_iterate_topology(root_node,
582 			(devfs_iterate_callback_t *)devfs_gc_dirs_callback, NULL);
583 
584 	devfs_freep(node);
585 
586 	return 0;
587 }
588 
589 /*
590  * devfs_create_dev() is the asynchronous entry point for device creation.
591  * It just sends a message with the relevant details to the devfs core.
592  *
593  * This function will reference the passed device.  The reference is owned
594  * by devfs and represents all of the device's node associations.
595  */
596 int
597 devfs_create_dev(cdev_t dev, uid_t uid, gid_t gid, int perms)
598 {
599 	reference_dev(dev);
600 	devfs_msg_send_dev(DEVFS_DEVICE_CREATE, dev, uid, gid, perms);
601 
602 	return 0;
603 }
604 
605 /*
606  * devfs_destroy_dev() is the asynchronous entry point for device destruction.
607  * It just sends a message with the relevant details to the devfs core.
608  */
609 int
610 devfs_destroy_dev(cdev_t dev)
611 {
612 	devfs_msg_send_dev(DEVFS_DEVICE_DESTROY, dev, 0, 0, 0);
613 	return 0;
614 }
615 
616 /*
617  * devfs_mount_add() is the synchronous entry point for adding a new devfs
618  * mount.  It sends a synchronous message with the relevant details to the
619  * devfs core.
620  */
621 int
622 devfs_mount_add(struct devfs_mnt_data *mnt)
623 {
624 	devfs_msg_t msg;
625 
626 	msg = devfs_msg_get();
627 	msg->mdv_mnt = mnt;
628 	msg = devfs_msg_send_sync(DEVFS_MOUNT_ADD, msg);
629 	devfs_msg_put(msg);
630 
631 	return 0;
632 }
633 
634 /*
635  * devfs_mount_del() is the synchronous entry point for removing a devfs mount.
636  * It sends a synchronous message with the relevant details to the devfs core.
637  */
638 int
639 devfs_mount_del(struct devfs_mnt_data *mnt)
640 {
641 	devfs_msg_t msg;
642 
643 	msg = devfs_msg_get();
644 	msg->mdv_mnt = mnt;
645 	msg = devfs_msg_send_sync(DEVFS_MOUNT_DEL, msg);
646 	devfs_msg_put(msg);
647 
648 	return 0;
649 }
650 
651 /*
652  * devfs_destroy_related() is the synchronous entry point for device
653  * destruction by subname. It just sends a message with the relevant details to
654  * the devfs core.
655  */
656 int
657 devfs_destroy_related(cdev_t dev)
658 {
659 	devfs_msg_t msg;
660 
661 	msg = devfs_msg_get();
662 	msg->mdv_load = dev;
663 	msg = devfs_msg_send_sync(DEVFS_DESTROY_RELATED, msg);
664 	devfs_msg_put(msg);
665 	return 0;
666 }
667 
668 int
669 devfs_clr_related_flag(cdev_t dev, uint32_t flag)
670 {
671 	devfs_msg_t msg;
672 
673 	msg = devfs_msg_get();
674 	msg->mdv_flags.dev = dev;
675 	msg->mdv_flags.flag = flag;
676 	msg = devfs_msg_send_sync(DEVFS_CLR_RELATED_FLAG, msg);
677 	devfs_msg_put(msg);
678 
679 	return 0;
680 }
681 
682 int
683 devfs_destroy_related_without_flag(cdev_t dev, uint32_t flag)
684 {
685 	devfs_msg_t msg;
686 
687 	msg = devfs_msg_get();
688 	msg->mdv_flags.dev = dev;
689 	msg->mdv_flags.flag = flag;
690 	msg = devfs_msg_send_sync(DEVFS_DESTROY_RELATED_WO_FLAG, msg);
691 	devfs_msg_put(msg);
692 
693 	return 0;
694 }
695 
696 /*
697  * devfs_create_all_dev is the asynchronous entry point to trigger device
698  * node creation.  It just sends a message with the relevant details to
699  * the devfs core.
700  */
701 int
702 devfs_create_all_dev(struct devfs_node *root)
703 {
704 	devfs_msg_send_generic(DEVFS_CREATE_ALL_DEV, root);
705 	return 0;
706 }
707 
708 /*
709  * devfs_destroy_dev_by_ops is the asynchronous entry point to destroy all
710  * devices with a specific set of dev_ops and minor.  It just sends a
711  * message with the relevant details to the devfs core.
712  */
713 int
714 devfs_destroy_dev_by_ops(struct dev_ops *ops, int minor)
715 {
716 	devfs_msg_send_ops(DEVFS_DESTROY_DEV_BY_OPS, ops, minor);
717 	return 0;
718 }
719 
720 /*
721  * devfs_clone_handler_add is the synchronous entry point to add a new
722  * clone handler.  It just sends a message with the relevant details to
723  * the devfs core.
724  */
725 int
726 devfs_clone_handler_add(const char *name, d_clone_t *nhandler)
727 {
728 	devfs_msg_t msg;
729 
730 	msg = devfs_msg_get();
731 	msg->mdv_chandler.name = name;
732 	msg->mdv_chandler.nhandler = nhandler;
733 	msg = devfs_msg_send_sync(DEVFS_CHANDLER_ADD, msg);
734 	devfs_msg_put(msg);
735 	return 0;
736 }
737 
738 /*
739  * devfs_clone_handler_del is the synchronous entry point to remove a
740  * clone handler.  It just sends a message with the relevant details to
741  * the devfs core.
742  */
743 int
744 devfs_clone_handler_del(const char *name)
745 {
746 	devfs_msg_t msg;
747 
748 	msg = devfs_msg_get();
749 	msg->mdv_chandler.name = name;
750 	msg->mdv_chandler.nhandler = NULL;
751 	msg = devfs_msg_send_sync(DEVFS_CHANDLER_DEL, msg);
752 	devfs_msg_put(msg);
753 	return 0;
754 }
755 
756 /*
757  * devfs_find_device_by_name is the synchronous entry point to find a
758  * device given its name.  It sends a synchronous message with the
759  * relevant details to the devfs core and returns the answer.
760  */
761 cdev_t
762 devfs_find_device_by_name(const char *fmt, ...)
763 {
764 	cdev_t found = NULL;
765 	devfs_msg_t msg;
766 	char *target;
767 	__va_list ap;
768 
769 	if (fmt == NULL)
770 		return NULL;
771 
772 	__va_start(ap, fmt);
773 	kvasnrprintf(&target, PATH_MAX, 10, fmt, ap);
774 	__va_end(ap);
775 
776 	msg = devfs_msg_get();
777 	msg->mdv_name = target;
778 	msg = devfs_msg_send_sync(DEVFS_FIND_DEVICE_BY_NAME, msg);
779 	found = msg->mdv_cdev;
780 	devfs_msg_put(msg);
781 	kvasfree(&target);
782 
783 	return found;
784 }
785 
786 /*
787  * devfs_find_device_by_udev is the synchronous entry point to find a
788  * device given its udev number.  It sends a synchronous message with
789  * the relevant details to the devfs core and returns the answer.
790  */
791 cdev_t
792 devfs_find_device_by_udev(udev_t udev)
793 {
794 	cdev_t found = NULL;
795 	devfs_msg_t msg;
796 
797 	msg = devfs_msg_get();
798 	msg->mdv_udev = udev;
799 	msg = devfs_msg_send_sync(DEVFS_FIND_DEVICE_BY_UDEV, msg);
800 	found = msg->mdv_cdev;
801 	devfs_msg_put(msg);
802 
803 	devfs_debug(DEVFS_DEBUG_DEBUG,
804 		    "devfs_find_device_by_udev found? %s  -end:3-\n",
805 		    ((found) ? found->si_name:"NO"));
806 	return found;
807 }
808 
809 struct vnode *
810 devfs_inode_to_vnode(struct mount *mp, ino_t target)
811 {
812 	struct vnode *vp = NULL;
813 	devfs_msg_t msg;
814 
815 	if (mp == NULL)
816 		return NULL;
817 
818 	msg = devfs_msg_get();
819 	msg->mdv_ino.mp = mp;
820 	msg->mdv_ino.ino = target;
821 	msg = devfs_msg_send_sync(DEVFS_INODE_TO_VNODE, msg);
822 	vp = msg->mdv_ino.vp;
823 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
824 	devfs_msg_put(msg);
825 
826 	return vp;
827 }
828 
829 /*
830  * devfs_make_alias is the asynchronous entry point to register an alias
831  * for a device.  It just sends a message with the relevant details to the
832  * devfs core.
833  */
834 int
835 devfs_make_alias(const char *name, cdev_t dev_target)
836 {
837 	struct devfs_alias *alias;
838 	size_t len;
839 
840 	len = strlen(name);
841 
842 	alias = kmalloc(sizeof(struct devfs_alias), M_DEVFS, M_WAITOK);
843 	alias->name = kstrdup(name, M_DEVFS);
844 	alias->namlen = len;
845 	alias->dev_target = dev_target;
846 
847 	devfs_msg_send_generic(DEVFS_MAKE_ALIAS, alias);
848 	return 0;
849 }
850 
851 /*
852  * devfs_destroy_alias is the asynchronous entry point to deregister an alias
853  * for a device.  It just sends a message with the relevant details to the
854  * devfs core.
855  */
856 int
857 devfs_destroy_alias(const char *name, cdev_t dev_target)
858 {
859 	struct devfs_alias *alias;
860 	size_t len;
861 
862 	len = strlen(name);
863 
864 	alias = kmalloc(sizeof(struct devfs_alias), M_DEVFS, M_WAITOK);
865 	alias->name = kstrdup(name, M_DEVFS);
866 	alias->namlen = len;
867 	alias->dev_target = dev_target;
868 
869 	devfs_msg_send_generic(DEVFS_DESTROY_ALIAS, alias);
870 	return 0;
871 }
872 
873 /*
874  * devfs_apply_rules is the asynchronous entry point to trigger application
875  * of all rules.  It just sends a message with the relevant details to the
876  * devfs core.
877  */
878 int
879 devfs_apply_rules(char *mntto)
880 {
881 	char *new_name;
882 
883 	new_name = kstrdup(mntto, M_DEVFS);
884 	devfs_msg_send_name(DEVFS_APPLY_RULES, new_name);
885 
886 	return 0;
887 }
888 
889 /*
890  * devfs_reset_rules is the asynchronous entry point to trigger reset of all
891  * rules. It just sends a message with the relevant details to the devfs core.
892  */
893 int
894 devfs_reset_rules(char *mntto)
895 {
896 	char *new_name;
897 
898 	new_name = kstrdup(mntto, M_DEVFS);
899 	devfs_msg_send_name(DEVFS_RESET_RULES, new_name);
900 
901 	return 0;
902 }
903 
904 
905 /*
906  * devfs_scan_callback is the asynchronous entry point to call a callback
907  * on all cdevs.
908  * It just sends a message with the relevant details to the devfs core.
909  */
910 int
911 devfs_scan_callback(devfs_scan_t *callback, void *arg)
912 {
913 	devfs_msg_t msg;
914 
915 	KKASSERT(callback);
916 
917 	msg = devfs_msg_get();
918 	msg->mdv_load = callback;
919 	msg->mdv_load2 = arg;
920 	msg = devfs_msg_send_sync(DEVFS_SCAN_CALLBACK, msg);
921 	devfs_msg_put(msg);
922 
923 	return 0;
924 }
925 
926 
927 /*
928  * Acts as a message drain. Any message that is replied to here gets destroyed
929  * and the memory freed.
930  */
931 static void
932 devfs_msg_autofree_reply(lwkt_port_t port, lwkt_msg_t msg)
933 {
934 	devfs_msg_put((devfs_msg_t)msg);
935 }
936 
937 /*
938  * devfs_msg_get allocates a new devfs msg and returns it.
939  */
940 devfs_msg_t
941 devfs_msg_get(void)
942 {
943 	return objcache_get(devfs_msg_cache, M_WAITOK);
944 }
945 
946 /*
947  * devfs_msg_put deallocates a given devfs msg.
948  */
949 int
950 devfs_msg_put(devfs_msg_t msg)
951 {
952 	objcache_put(devfs_msg_cache, msg);
953 	return 0;
954 }
955 
956 /*
957  * devfs_msg_send is the generic asynchronous message sending facility
958  * for devfs. By default the reply port is the automatic disposal port.
959  *
960  * If the current thread is the devfs_msg_port thread we execute the
961  * operation synchronously.
962  */
963 void
964 devfs_msg_send(uint32_t cmd, devfs_msg_t devfs_msg)
965 {
966 	lwkt_port_t port = &devfs_msg_port;
967 
968 	lwkt_initmsg(&devfs_msg->hdr, &devfs_dispose_port, 0);
969 
970 	devfs_msg->hdr.u.ms_result = cmd;
971 
972 	if (port->mpu_td == curthread) {
973 		devfs_msg_exec(devfs_msg);
974 		lwkt_replymsg(&devfs_msg->hdr, 0);
975 	} else {
976 		lwkt_sendmsg(port, (lwkt_msg_t)devfs_msg);
977 	}
978 }
979 
980 /*
981  * devfs_msg_send_sync is the generic synchronous message sending
982  * facility for devfs. It initializes a local reply port and waits
983  * for the core's answer. This answer is then returned.
984  */
985 devfs_msg_t
986 devfs_msg_send_sync(uint32_t cmd, devfs_msg_t devfs_msg)
987 {
988 	struct lwkt_port rep_port;
989 	devfs_msg_t	msg_incoming;
990 	lwkt_port_t port = &devfs_msg_port;
991 
992 	lwkt_initport_thread(&rep_port, curthread);
993 	lwkt_initmsg(&devfs_msg->hdr, &rep_port, 0);
994 
995 	devfs_msg->hdr.u.ms_result = cmd;
996 
997 	lwkt_sendmsg(port, (lwkt_msg_t)devfs_msg);
998 	msg_incoming = lwkt_waitport(&rep_port, 0);
999 
1000 	return msg_incoming;
1001 }
1002 
1003 /*
1004  * sends a message with a generic argument.
1005  */
1006 void
1007 devfs_msg_send_generic(uint32_t cmd, void *load)
1008 {
1009 	devfs_msg_t devfs_msg = devfs_msg_get();
1010 
1011 	devfs_msg->mdv_load = load;
1012 	devfs_msg_send(cmd, devfs_msg);
1013 }
1014 
1015 /*
1016  * sends a message with a name argument.
1017  */
1018 void
1019 devfs_msg_send_name(uint32_t cmd, char *name)
1020 {
1021 	devfs_msg_t devfs_msg = devfs_msg_get();
1022 
1023 	devfs_msg->mdv_name = name;
1024 	devfs_msg_send(cmd, devfs_msg);
1025 }
1026 
1027 /*
1028  * sends a message with a mount argument.
1029  */
1030 void
1031 devfs_msg_send_mount(uint32_t cmd, struct devfs_mnt_data *mnt)
1032 {
1033 	devfs_msg_t devfs_msg = devfs_msg_get();
1034 
1035 	devfs_msg->mdv_mnt = mnt;
1036 	devfs_msg_send(cmd, devfs_msg);
1037 }
1038 
1039 /*
1040  * sends a message with an ops argument.
1041  */
1042 void
1043 devfs_msg_send_ops(uint32_t cmd, struct dev_ops *ops, int minor)
1044 {
1045 	devfs_msg_t devfs_msg = devfs_msg_get();
1046 
1047 	devfs_msg->mdv_ops.ops = ops;
1048 	devfs_msg->mdv_ops.minor = minor;
1049 	devfs_msg_send(cmd, devfs_msg);
1050 }
1051 
1052 /*
1053  * sends a message with a clone handler argument.
1054  */
1055 void
1056 devfs_msg_send_chandler(uint32_t cmd, char *name, d_clone_t handler)
1057 {
1058 	devfs_msg_t devfs_msg = devfs_msg_get();
1059 
1060 	devfs_msg->mdv_chandler.name = name;
1061 	devfs_msg->mdv_chandler.nhandler = handler;
1062 	devfs_msg_send(cmd, devfs_msg);
1063 }
1064 
1065 /*
1066  * sends a message with a device argument.
1067  */
1068 void
1069 devfs_msg_send_dev(uint32_t cmd, cdev_t dev, uid_t uid, gid_t gid, int perms)
1070 {
1071 	devfs_msg_t devfs_msg = devfs_msg_get();
1072 
1073 	devfs_msg->mdv_dev.dev = dev;
1074 	devfs_msg->mdv_dev.uid = uid;
1075 	devfs_msg->mdv_dev.gid = gid;
1076 	devfs_msg->mdv_dev.perms = perms;
1077 
1078 	devfs_msg_send(cmd, devfs_msg);
1079 }
1080 
1081 /*
1082  * sends a message with a link argument.
1083  */
1084 void
1085 devfs_msg_send_link(uint32_t cmd, char *name, char *target, struct mount *mp)
1086 {
1087 	devfs_msg_t devfs_msg = devfs_msg_get();
1088 
1089 	devfs_msg->mdv_link.name = name;
1090 	devfs_msg->mdv_link.target = target;
1091 	devfs_msg->mdv_link.mp = mp;
1092 	devfs_msg_send(cmd, devfs_msg);
1093 }
1094 
1095 /*
1096  * devfs_msg_core is the main devfs thread. It handles all incoming messages
1097  * and calls the relevant worker functions. By using messages it's assured
1098  * that events occur in the correct order.
1099  */
1100 static void
1101 devfs_msg_core(void *arg)
1102 {
1103 	devfs_msg_t msg;
1104 
1105 	lwkt_initport_thread(&devfs_msg_port, curthread);
1106 
1107 	lockmgr(&devfs_lock, LK_EXCLUSIVE);
1108 	devfs_run = 1;
1109 	wakeup(td_core);
1110 	lockmgr(&devfs_lock, LK_RELEASE);
1111 
1112 	get_mplock();	/* mpsafe yet? */
1113 
1114 	while (devfs_run) {
1115 		msg = (devfs_msg_t)lwkt_waitport(&devfs_msg_port, 0);
1116 		devfs_debug(DEVFS_DEBUG_DEBUG,
1117 				"devfs_msg_core, new msg: %x\n",
1118 				(unsigned int)msg->hdr.u.ms_result);
1119 		devfs_msg_exec(msg);
1120 		lwkt_replymsg(&msg->hdr, 0);
1121 	}
1122 
1123 	rel_mplock();
1124 	wakeup(td_core);
1125 
1126 	lwkt_exit();
1127 }
1128 
1129 static void
1130 devfs_msg_exec(devfs_msg_t msg)
1131 {
1132 	struct devfs_mnt_data *mnt;
1133 	struct devfs_node *node;
1134 	cdev_t	dev;
1135 
1136 	/*
1137 	 * Acquire the devfs lock to ensure safety of all called functions
1138 	 */
1139 	lockmgr(&devfs_lock, LK_EXCLUSIVE);
1140 
1141 	switch (msg->hdr.u.ms_result) {
1142 	case DEVFS_DEVICE_CREATE:
1143 		dev = msg->mdv_dev.dev;
1144 		devfs_create_dev_worker(dev,
1145 					msg->mdv_dev.uid,
1146 					msg->mdv_dev.gid,
1147 					msg->mdv_dev.perms);
1148 		break;
1149 	case DEVFS_DEVICE_DESTROY:
1150 		dev = msg->mdv_dev.dev;
1151 		devfs_destroy_dev_worker(dev);
1152 		break;
1153 	case DEVFS_DESTROY_RELATED:
1154 		devfs_destroy_related_worker(msg->mdv_load);
1155 		break;
1156 	case DEVFS_DESTROY_DEV_BY_OPS:
1157 		devfs_destroy_dev_by_ops_worker(msg->mdv_ops.ops,
1158 						msg->mdv_ops.minor);
1159 		break;
1160 	case DEVFS_CREATE_ALL_DEV:
1161 		node = (struct devfs_node *)msg->mdv_load;
1162 		devfs_create_all_dev_worker(node);
1163 		break;
1164 	case DEVFS_MOUNT_ADD:
1165 		mnt = msg->mdv_mnt;
1166 		TAILQ_INSERT_TAIL(&devfs_mnt_list, mnt, link);
1167 		devfs_create_all_dev_worker(mnt->root_node);
1168 		break;
1169 	case DEVFS_MOUNT_DEL:
1170 		mnt = msg->mdv_mnt;
1171 		TAILQ_REMOVE(&devfs_mnt_list, mnt, link);
1172 		devfs_iterate_topology(mnt->root_node, devfs_reaperp_callback,
1173 				       NULL);
1174 		if (mnt->leak_count) {
1175 			devfs_debug(DEVFS_DEBUG_SHOW,
1176 				    "Leaked %ld devfs_node elements!\n",
1177 				    mnt->leak_count);
1178 		}
1179 		break;
1180 	case DEVFS_CHANDLER_ADD:
1181 		devfs_chandler_add_worker(msg->mdv_chandler.name,
1182 				msg->mdv_chandler.nhandler);
1183 		break;
1184 	case DEVFS_CHANDLER_DEL:
1185 		devfs_chandler_del_worker(msg->mdv_chandler.name);
1186 		break;
1187 	case DEVFS_FIND_DEVICE_BY_NAME:
1188 		devfs_find_device_by_name_worker(msg);
1189 		break;
1190 	case DEVFS_FIND_DEVICE_BY_UDEV:
1191 		devfs_find_device_by_udev_worker(msg);
1192 		break;
1193 	case DEVFS_MAKE_ALIAS:
1194 		devfs_make_alias_worker((struct devfs_alias *)msg->mdv_load);
1195 		break;
1196 	case DEVFS_DESTROY_ALIAS:
1197 		devfs_destroy_alias_worker((struct devfs_alias *)msg->mdv_load);
1198 		break;
1199 	case DEVFS_APPLY_RULES:
1200 		devfs_apply_reset_rules_caller(msg->mdv_name, 1);
1201 		break;
1202 	case DEVFS_RESET_RULES:
1203 		devfs_apply_reset_rules_caller(msg->mdv_name, 0);
1204 		break;
1205 	case DEVFS_SCAN_CALLBACK:
1206 		devfs_scan_callback_worker((devfs_scan_t *)msg->mdv_load,
1207 			msg->mdv_load2);
1208 		break;
1209 	case DEVFS_CLR_RELATED_FLAG:
1210 		devfs_clr_related_flag_worker(msg->mdv_flags.dev,
1211 				msg->mdv_flags.flag);
1212 		break;
1213 	case DEVFS_DESTROY_RELATED_WO_FLAG:
1214 		devfs_destroy_related_without_flag_worker(msg->mdv_flags.dev,
1215 				msg->mdv_flags.flag);
1216 		break;
1217 	case DEVFS_INODE_TO_VNODE:
1218 		msg->mdv_ino.vp = devfs_iterate_topology(
1219 			DEVFS_MNTDATA(msg->mdv_ino.mp)->root_node,
1220 			(devfs_iterate_callback_t *)devfs_inode_to_vnode_worker_callback,
1221 			&msg->mdv_ino.ino);
1222 		break;
1223 	case DEVFS_TERMINATE_CORE:
1224 		devfs_run = 0;
1225 		break;
1226 	case DEVFS_SYNC:
1227 		break;
1228 	default:
1229 		devfs_debug(DEVFS_DEBUG_WARNING,
1230 			    "devfs_msg_core: unknown message "
1231 			    "received at core\n");
1232 		break;
1233 	}
1234 	lockmgr(&devfs_lock, LK_RELEASE);
1235 }
1236 
1237 /*
1238  * Worker function to insert a new dev into the dev list and initialize its
1239  * permissions. It also calls devfs_propagate_dev which in turn propagates
1240  * the change to all mount points.
1241  *
1242  * The passed dev is already referenced.  This reference is eaten by this
1243  * function and represents the dev's linkage into devfs_dev_list.
1244  */
1245 static int
1246 devfs_create_dev_worker(cdev_t dev, uid_t uid, gid_t gid, int perms)
1247 {
1248 	KKASSERT(dev);
1249 
1250 	dev->si_uid = uid;
1251 	dev->si_gid = gid;
1252 	dev->si_perms = perms;
1253 
1254 	devfs_link_dev(dev);
1255 	devfs_propagate_dev(dev, 1);
1256 
1257 	udev_event_attach(dev, NULL, 0);
1258 
1259 	return 0;
1260 }
1261 
1262 /*
1263  * Worker function to delete a dev from the dev list and free the cdev.
1264  * It also calls devfs_propagate_dev which in turn propagates the change
1265  * to all mount points.
1266  */
1267 static int
1268 devfs_destroy_dev_worker(cdev_t dev)
1269 {
1270 	int error;
1271 
1272 	KKASSERT(dev);
1273 	KKASSERT((lockstatus(&devfs_lock, curthread)) == LK_EXCLUSIVE);
1274 
1275 	error = devfs_unlink_dev(dev);
1276 	devfs_propagate_dev(dev, 0);
1277 
1278 	udev_event_detach(dev, NULL, 0);
1279 
1280 	if (error == 0)
1281 		release_dev(dev);	/* link ref */
1282 	release_dev(dev);
1283 	release_dev(dev);
1284 
1285 	return 0;
1286 }
1287 
1288 /*
1289  * Worker function to destroy all devices with a certain basename.
1290  * Calls devfs_destroy_dev_worker for the actual destruction.
1291  */
1292 static int
1293 devfs_destroy_related_worker(cdev_t needle)
1294 {
1295 	cdev_t dev;
1296 
1297 restart:
1298 	devfs_debug(DEVFS_DEBUG_DEBUG, "related worker: %s\n",
1299 	    needle->si_name);
1300 	TAILQ_FOREACH(dev, &devfs_dev_list, link) {
1301 		if (dev->si_parent == needle) {
1302 			devfs_destroy_related_worker(dev);
1303 			devfs_destroy_dev_worker(dev);
1304 			goto restart;
1305 		}
1306 	}
1307 	return 0;
1308 }
1309 
1310 static int
1311 devfs_clr_related_flag_worker(cdev_t needle, uint32_t flag)
1312 {
1313 	cdev_t dev, dev1;
1314 
1315 	TAILQ_FOREACH_MUTABLE(dev, &devfs_dev_list, link, dev1) {
1316 		if (dev->si_parent == needle) {
1317 			devfs_clr_related_flag_worker(dev, flag);
1318 			dev->si_flags &= ~flag;
1319 		}
1320 	}
1321 
1322 	return 0;
1323 }
1324 
1325 static int
1326 devfs_destroy_related_without_flag_worker(cdev_t needle, uint32_t flag)
1327 {
1328 	cdev_t dev;
1329 
1330 restart:
1331 	devfs_debug(DEVFS_DEBUG_DEBUG, "related_wo_flag: %s\n",
1332 	    needle->si_name);
1333 
1334 	TAILQ_FOREACH(dev, &devfs_dev_list, link) {
1335 		if (dev->si_parent == needle) {
1336 			devfs_destroy_related_without_flag_worker(dev, flag);
1337 			if (!(dev->si_flags & flag)) {
1338 				devfs_destroy_dev_worker(dev);
1339 				devfs_debug(DEVFS_DEBUG_DEBUG,
1340 				    "related_wo_flag: %s restart\n", dev->si_name);
1341 				goto restart;
1342 			}
1343 		}
1344 	}
1345 
1346 	return 0;
1347 }
1348 
1349 /*
1350  * Worker function that creates all device nodes on top of a devfs
1351  * root node.
1352  */
1353 static int
1354 devfs_create_all_dev_worker(struct devfs_node *root)
1355 {
1356 	cdev_t dev;
1357 
1358 	KKASSERT(root);
1359 
1360 	TAILQ_FOREACH(dev, &devfs_dev_list, link) {
1361 		devfs_create_device_node(root, dev, NULL, NULL);
1362 	}
1363 
1364 	return 0;
1365 }
1366 
1367 /*
1368  * Worker function that destroys all devices that match a specific
1369  * dev_ops and/or minor. If minor is less than 0, it is not matched
1370  * against. It also propagates all changes.
1371  */
1372 static int
1373 devfs_destroy_dev_by_ops_worker(struct dev_ops *ops, int minor)
1374 {
1375 	cdev_t dev, dev1;
1376 
1377 	KKASSERT(ops);
1378 
1379 	TAILQ_FOREACH_MUTABLE(dev, &devfs_dev_list, link, dev1) {
1380 		if (dev->si_ops != ops)
1381 			continue;
1382 		if ((minor < 0) || (dev->si_uminor == minor)) {
1383 			devfs_destroy_dev_worker(dev);
1384 		}
1385 	}
1386 
1387 	return 0;
1388 }
1389 
1390 /*
1391  * Worker function that registers a new clone handler in devfs.
1392  */
1393 static int
1394 devfs_chandler_add_worker(const char *name, d_clone_t *nhandler)
1395 {
1396 	struct devfs_clone_handler *chandler = NULL;
1397 	u_char len = strlen(name);
1398 
1399 	if (len == 0)
1400 		return 1;
1401 
1402 	TAILQ_FOREACH(chandler, &devfs_chandler_list, link) {
1403 		if (chandler->namlen != len)
1404 			continue;
1405 
1406 		if (!memcmp(chandler->name, name, len)) {
1407 			/* Clonable basename already exists */
1408 			return 1;
1409 		}
1410 	}
1411 
1412 	chandler = kmalloc(sizeof(*chandler), M_DEVFS, M_WAITOK | M_ZERO);
1413 	chandler->name = kstrdup(name, M_DEVFS);
1414 	chandler->namlen = len;
1415 	chandler->nhandler = nhandler;
1416 
1417 	TAILQ_INSERT_TAIL(&devfs_chandler_list, chandler, link);
1418 	return 0;
1419 }
1420 
1421 /*
1422  * Worker function that removes a given clone handler from the
1423  * clone handler list.
1424  */
1425 static int
1426 devfs_chandler_del_worker(const char *name)
1427 {
1428 	struct devfs_clone_handler *chandler, *chandler2;
1429 	u_char len = strlen(name);
1430 
1431 	if (len == 0)
1432 		return 1;
1433 
1434 	TAILQ_FOREACH_MUTABLE(chandler, &devfs_chandler_list, link, chandler2) {
1435 		if (chandler->namlen != len)
1436 			continue;
1437 		if (memcmp(chandler->name, name, len))
1438 			continue;
1439 
1440 		TAILQ_REMOVE(&devfs_chandler_list, chandler, link);
1441 		kfree(chandler->name, M_DEVFS);
1442 		kfree(chandler, M_DEVFS);
1443 		break;
1444 	}
1445 
1446 	return 0;
1447 }
1448 
1449 /*
1450  * Worker function that finds a given device name and changes
1451  * the message received accordingly so that when replied to,
1452  * the answer is returned to the caller.
1453  */
1454 static int
1455 devfs_find_device_by_name_worker(devfs_msg_t devfs_msg)
1456 {
1457 	struct devfs_alias *alias;
1458 	cdev_t dev;
1459 	cdev_t found = NULL;
1460 
1461 	TAILQ_FOREACH(dev, &devfs_dev_list, link) {
1462 		if (strcmp(devfs_msg->mdv_name, dev->si_name) == 0) {
1463 			found = dev;
1464 			break;
1465 		}
1466 	}
1467 	if (found == NULL) {
1468 		TAILQ_FOREACH(alias, &devfs_alias_list, link) {
1469 			if (strcmp(devfs_msg->mdv_name, alias->name) == 0) {
1470 				found = alias->dev_target;
1471 				break;
1472 			}
1473 		}
1474 	}
1475 	devfs_msg->mdv_cdev = found;
1476 
1477 	return 0;
1478 }
1479 
1480 /*
1481  * Worker function that finds a given device udev and changes
1482  * the message received accordingly so that when replied to,
1483  * the answer is returned to the caller.
1484  */
1485 static int
1486 devfs_find_device_by_udev_worker(devfs_msg_t devfs_msg)
1487 {
1488 	cdev_t dev, dev1;
1489 	cdev_t found = NULL;
1490 
1491 	TAILQ_FOREACH_MUTABLE(dev, &devfs_dev_list, link, dev1) {
1492 		if (((udev_t)dev->si_inode) == devfs_msg->mdv_udev) {
1493 			found = dev;
1494 			break;
1495 		}
1496 	}
1497 	devfs_msg->mdv_cdev = found;
1498 
1499 	return 0;
1500 }
1501 
1502 /*
1503  * Worker function that inserts a given alias into the
1504  * alias list, and propagates the alias to all mount
1505  * points.
1506  */
1507 static int
1508 devfs_make_alias_worker(struct devfs_alias *alias)
1509 {
1510 	struct devfs_alias *alias2;
1511 	size_t len = strlen(alias->name);
1512 	int found = 0;
1513 
1514 	TAILQ_FOREACH(alias2, &devfs_alias_list, link) {
1515 		if (len != alias2->namlen)
1516 			continue;
1517 
1518 		if (!memcmp(alias->name, alias2->name, len)) {
1519 			found = 1;
1520 			break;
1521 		}
1522 	}
1523 
1524 	if (!found) {
1525 		/*
1526 		 * The alias doesn't exist yet, so we add it to the alias list
1527 		 */
1528 		TAILQ_INSERT_TAIL(&devfs_alias_list, alias, link);
1529 		devfs_alias_propagate(alias, 0);
1530 		udev_event_attach(alias->dev_target, alias->name, 1);
1531 	} else {
1532 		devfs_debug(DEVFS_DEBUG_WARNING,
1533 			    "Warning: duplicate devfs_make_alias for %s\n",
1534 			    alias->name);
1535 		kfree(alias->name, M_DEVFS);
1536 		kfree(alias, M_DEVFS);
1537 	}
1538 
1539 	return 0;
1540 }
1541 
1542 /*
1543  * Worker function that delete a given alias from the
1544  * alias list, and propagates the removal to all mount
1545  * points.
1546  */
1547 static int
1548 devfs_destroy_alias_worker(struct devfs_alias *alias)
1549 {
1550 	struct devfs_alias *alias2;
1551 	int found = 0;
1552 
1553 	TAILQ_FOREACH(alias2, &devfs_alias_list, link) {
1554 		if (alias->dev_target != alias2->dev_target)
1555 			continue;
1556 
1557 		if (devfs_WildCmp(alias->name, alias2->name) == 0) {
1558 			found = 1;
1559 			break;
1560 		}
1561 	}
1562 
1563 	if (!found) {
1564 		devfs_debug(DEVFS_DEBUG_WARNING,
1565 		    "Warning: devfs_destroy_alias for inexistant alias: %s\n",
1566 		    alias->name);
1567 		kfree(alias->name, M_DEVFS);
1568 		kfree(alias, M_DEVFS);
1569 	} else {
1570 		/*
1571 		 * The alias exists, so we delete it from the alias list
1572 		 */
1573 		TAILQ_REMOVE(&devfs_alias_list, alias2, link);
1574 		devfs_alias_propagate(alias2, 1);
1575 		udev_event_detach(alias2->dev_target, alias2->name, 1);
1576 		kfree(alias->name, M_DEVFS);
1577 		kfree(alias, M_DEVFS);
1578 		kfree(alias2->name, M_DEVFS);
1579 		kfree(alias2, M_DEVFS);
1580 	}
1581 
1582 	return 0;
1583 }
1584 
1585 /*
1586  * Function that removes and frees all aliases.
1587  */
1588 static int
1589 devfs_alias_reap(void)
1590 {
1591 	struct devfs_alias *alias, *alias2;
1592 
1593 	TAILQ_FOREACH_MUTABLE(alias, &devfs_alias_list, link, alias2) {
1594 		TAILQ_REMOVE(&devfs_alias_list, alias, link);
1595 		kfree(alias->name, M_DEVFS);
1596 		kfree(alias, M_DEVFS);
1597 	}
1598 	return 0;
1599 }
1600 
1601 /*
1602  * Function that removes an alias matching a specific cdev and frees
1603  * it accordingly.
1604  */
1605 static int
1606 devfs_alias_remove(cdev_t dev)
1607 {
1608 	struct devfs_alias *alias, *alias2;
1609 
1610 	TAILQ_FOREACH_MUTABLE(alias, &devfs_alias_list, link, alias2) {
1611 		if (alias->dev_target == dev) {
1612 			TAILQ_REMOVE(&devfs_alias_list, alias, link);
1613 			udev_event_detach(alias->dev_target, alias->name, 1);
1614 			kfree(alias->name, M_DEVFS);
1615 			kfree(alias, M_DEVFS);
1616 		}
1617 	}
1618 	return 0;
1619 }
1620 
1621 /*
1622  * This function propagates an alias addition or removal to
1623  * all mount points.
1624  */
1625 static int
1626 devfs_alias_propagate(struct devfs_alias *alias, int remove)
1627 {
1628 	struct devfs_mnt_data *mnt;
1629 
1630 	TAILQ_FOREACH(mnt, &devfs_mnt_list, link) {
1631 		if (remove) {
1632 			devfs_destroy_node(mnt->root_node, alias->name);
1633 		} else {
1634 			devfs_alias_apply(mnt->root_node, alias);
1635 		}
1636 	}
1637 	return 0;
1638 }
1639 
1640 /*
1641  * This function is a recursive function iterating through
1642  * all device nodes in the topology and, if applicable,
1643  * creating the relevant alias for a device node.
1644  */
1645 static int
1646 devfs_alias_apply(struct devfs_node *node, struct devfs_alias *alias)
1647 {
1648 	struct devfs_node *node1, *node2;
1649 
1650 	KKASSERT(alias != NULL);
1651 
1652 	if ((node->node_type == Nroot) || (node->node_type == Ndir)) {
1653 		if (node->nchildren > 2) {
1654 			TAILQ_FOREACH_MUTABLE(node1, DEVFS_DENODE_HEAD(node), link, node2) {
1655 				devfs_alias_apply(node1, alias);
1656 			}
1657 		}
1658 	} else {
1659 		if (node->d_dev == alias->dev_target)
1660 			devfs_alias_create(alias->name, node, 0);
1661 	}
1662 	return 0;
1663 }
1664 
1665 /*
1666  * This function checks if any alias possibly is applicable
1667  * to the given node. If so, the alias is created.
1668  */
1669 static int
1670 devfs_alias_check_create(struct devfs_node *node)
1671 {
1672 	struct devfs_alias *alias;
1673 
1674 	TAILQ_FOREACH(alias, &devfs_alias_list, link) {
1675 		if (node->d_dev == alias->dev_target)
1676 			devfs_alias_create(alias->name, node, 0);
1677 	}
1678 	return 0;
1679 }
1680 
1681 /*
1682  * This function creates an alias with a given name
1683  * linking to a given devfs node. It also increments
1684  * the link count on the target node.
1685  */
1686 int
1687 devfs_alias_create(char *name_orig, struct devfs_node *target, int rule_based)
1688 {
1689 	struct mount *mp = target->mp;
1690 	struct devfs_node *parent = DEVFS_MNTDATA(mp)->root_node;
1691 	struct devfs_node *linknode;
1692 	char *create_path = NULL;
1693 	char *name;
1694 	char *name_buf;
1695 	int result = 0;
1696 
1697 	KKASSERT((lockstatus(&devfs_lock, curthread)) == LK_EXCLUSIVE);
1698 
1699 	name_buf = kmalloc(PATH_MAX, M_TEMP, M_WAITOK);
1700 	devfs_resolve_name_path(name_orig, name_buf, &create_path, &name);
1701 
1702 	if (create_path)
1703 		parent = devfs_resolve_or_create_path(parent, create_path, 1);
1704 
1705 
1706 	if (devfs_find_device_node_by_name(parent, name)) {
1707 		devfs_debug(DEVFS_DEBUG_WARNING,
1708 			    "Node already exists: %s "
1709 			    "(devfs_make_alias_worker)!\n",
1710 			    name);
1711 		result = 1;
1712 		goto done;
1713 	}
1714 
1715 	linknode = devfs_allocp(Nlink, name, parent, mp, NULL);
1716 	if (linknode == NULL) {
1717 		result = 1;
1718 		goto done;
1719 	}
1720 
1721 	linknode->link_target = target;
1722 	target->nlinks++;
1723 
1724 	if (rule_based)
1725 		linknode->flags |= DEVFS_RULE_CREATED;
1726 
1727 done:
1728 	kfree(name_buf, M_TEMP);
1729 	return (result);
1730 }
1731 
1732 /*
1733  * This function is called by the core and handles mount point
1734  * strings. It either calls the relevant worker (devfs_apply_
1735  * reset_rules_worker) on all mountpoints or only a specific
1736  * one.
1737  */
1738 static int
1739 devfs_apply_reset_rules_caller(char *mountto, int apply)
1740 {
1741 	struct devfs_mnt_data *mnt;
1742 
1743 	if (mountto[0] == '*') {
1744 		TAILQ_FOREACH(mnt, &devfs_mnt_list, link) {
1745 			devfs_iterate_topology(mnt->root_node,
1746 					(apply)?(devfs_rule_check_apply):(devfs_rule_reset_node),
1747 					NULL);
1748 		}
1749 	} else {
1750 		TAILQ_FOREACH(mnt, &devfs_mnt_list, link) {
1751 			if (!strcmp(mnt->mp->mnt_stat.f_mntonname, mountto)) {
1752 				devfs_iterate_topology(mnt->root_node,
1753 					(apply)?(devfs_rule_check_apply):(devfs_rule_reset_node),
1754 					NULL);
1755 				break;
1756 			}
1757 		}
1758 	}
1759 
1760 	kfree(mountto, M_DEVFS);
1761 	return 0;
1762 }
1763 
1764 /*
1765  * This function calls a given callback function for
1766  * every dev node in the devfs dev list.
1767  */
1768 static int
1769 devfs_scan_callback_worker(devfs_scan_t *callback, void *arg)
1770 {
1771 	cdev_t dev, dev1;
1772 	struct devfs_alias *alias, *alias1;
1773 
1774 	TAILQ_FOREACH_MUTABLE(dev, &devfs_dev_list, link, dev1) {
1775 		callback(dev->si_name, dev, false, arg);
1776 	}
1777 	TAILQ_FOREACH_MUTABLE(alias, &devfs_alias_list, link, alias1) {
1778 		callback(alias->name, alias->dev_target, true, arg);
1779 	}
1780 
1781 	return 0;
1782 }
1783 
1784 /*
1785  * This function tries to resolve a given directory, or if not
1786  * found and creation requested, creates the given directory.
1787  */
1788 static struct devfs_node *
1789 devfs_resolve_or_create_dir(struct devfs_node *parent, char *dir_name,
1790 			    size_t name_len, int create)
1791 {
1792 	struct devfs_node *node, *found = NULL;
1793 
1794 	TAILQ_FOREACH(node, DEVFS_DENODE_HEAD(parent), link) {
1795 		if (name_len != node->d_dir.d_namlen)
1796 			continue;
1797 
1798 		if (!memcmp(dir_name, node->d_dir.d_name, name_len)) {
1799 			found = node;
1800 			break;
1801 		}
1802 	}
1803 
1804 	if ((found == NULL) && (create)) {
1805 		found = devfs_allocp(Ndir, dir_name, parent, parent->mp, NULL);
1806 	}
1807 
1808 	return found;
1809 }
1810 
1811 /*
1812  * This function tries to resolve a complete path. If creation is requested,
1813  * if a given part of the path cannot be resolved (because it doesn't exist),
1814  * it is created.
1815  */
1816 struct devfs_node *
1817 devfs_resolve_or_create_path(struct devfs_node *parent, char *path, int create)
1818 {
1819 	struct devfs_node *node = parent;
1820 	char *buf;
1821 	size_t idx = 0;
1822 
1823 	if (path == NULL)
1824 		return parent;
1825 
1826 	buf = kmalloc(PATH_MAX, M_TEMP, M_WAITOK);
1827 
1828 	while (*path && idx < PATH_MAX - 1) {
1829 		if (*path != '/') {
1830 			buf[idx++] = *path;
1831 		} else {
1832 			buf[idx] = '\0';
1833 			node = devfs_resolve_or_create_dir(node, buf, idx, create);
1834 			if (node == NULL) {
1835 				kfree(buf, M_TEMP);
1836 				return NULL;
1837 			}
1838 			idx = 0;
1839 		}
1840 		++path;
1841 	}
1842 	buf[idx] = '\0';
1843 	node = devfs_resolve_or_create_dir(node, buf, idx, create);
1844 	kfree (buf, M_TEMP);
1845 	return (node);
1846 }
1847 
1848 /*
1849  * Takes a full path and strips it into a directory path and a name.
1850  * For a/b/c/foo, it returns foo in namep and a/b/c in pathp. It
1851  * requires a working buffer with enough size to keep the whole
1852  * fullpath.
1853  */
1854 int
1855 devfs_resolve_name_path(char *fullpath, char *buf, char **pathp, char **namep)
1856 {
1857 	char *name = NULL;
1858 	char *path = NULL;
1859 	size_t len = strlen(fullpath) + 1;
1860 	int i;
1861 
1862 	KKASSERT((fullpath != NULL) && (buf != NULL));
1863 	KKASSERT((pathp != NULL) && (namep != NULL));
1864 
1865 	memcpy(buf, fullpath, len);
1866 
1867 	for (i = len-1; i>= 0; i--) {
1868 		if (buf[i] == '/') {
1869 			buf[i] = '\0';
1870 			name = &(buf[i+1]);
1871 			path = buf;
1872 			break;
1873 		}
1874 	}
1875 
1876 	*pathp = path;
1877 
1878 	if (name) {
1879 		*namep = name;
1880 	} else {
1881 		*namep = buf;
1882 	}
1883 
1884 	return 0;
1885 }
1886 
1887 /*
1888  * This function creates a new devfs node for a given device.  It can
1889  * handle a complete path as device name, and accordingly creates
1890  * the path and the final device node.
1891  *
1892  * The reference count on the passed dev remains unchanged.
1893  */
1894 struct devfs_node *
1895 devfs_create_device_node(struct devfs_node *root, cdev_t dev,
1896 			 char *dev_name, char *path_fmt, ...)
1897 {
1898 	struct devfs_node *parent, *node = NULL;
1899 	char *path = NULL;
1900 	char *name;
1901 	char *name_buf;
1902 	__va_list ap;
1903 	int i, found;
1904 	char *create_path = NULL;
1905 	char *names = "pqrsPQRS";
1906 
1907 	name_buf = kmalloc(PATH_MAX, M_TEMP, M_WAITOK);
1908 
1909 	if (path_fmt != NULL) {
1910 		__va_start(ap, path_fmt);
1911 		kvasnrprintf(&path, PATH_MAX, 10, path_fmt, ap);
1912 		__va_end(ap);
1913 	}
1914 
1915 	parent = devfs_resolve_or_create_path(root, path, 1);
1916 	KKASSERT(parent);
1917 
1918 	devfs_resolve_name_path(
1919 			((dev_name == NULL) && (dev))?(dev->si_name):(dev_name),
1920 			name_buf, &create_path, &name);
1921 
1922 	if (create_path)
1923 		parent = devfs_resolve_or_create_path(parent, create_path, 1);
1924 
1925 
1926 	if (devfs_find_device_node_by_name(parent, name)) {
1927 		devfs_debug(DEVFS_DEBUG_WARNING, "devfs_create_device_node: "
1928 			"DEVICE %s ALREADY EXISTS!!! Ignoring creation request.\n", name);
1929 		goto out;
1930 	}
1931 
1932 	node = devfs_allocp(Ndev, name, parent, parent->mp, dev);
1933 	nanotime(&parent->mtime);
1934 
1935 	/*
1936 	 * Ugly unix98 pty magic, to hide pty master (ptm) devices and their
1937 	 * directory
1938 	 */
1939 	if ((dev) && (strlen(dev->si_name) >= 4) &&
1940 			(!memcmp(dev->si_name, "ptm/", 4))) {
1941 		node->parent->flags |= DEVFS_HIDDEN;
1942 		node->flags |= DEVFS_HIDDEN;
1943 	}
1944 
1945 	/*
1946 	 * Ugly pty magic, to tag pty devices as such and hide them if needed.
1947 	 */
1948 	if ((strlen(name) >= 3) && (!memcmp(name, "pty", 3)))
1949 		node->flags |= (DEVFS_PTY | DEVFS_INVISIBLE);
1950 
1951 	if ((strlen(name) >= 3) && (!memcmp(name, "tty", 3))) {
1952 		found = 0;
1953 		for (i = 0; i < strlen(names); i++) {
1954 			if (name[3] == names[i]) {
1955 				found = 1;
1956 				break;
1957 			}
1958 		}
1959 		if (found)
1960 			node->flags |= (DEVFS_PTY | DEVFS_INVISIBLE);
1961 	}
1962 
1963 out:
1964 	kfree(name_buf, M_TEMP);
1965 	kvasfree(&path);
1966 	return node;
1967 }
1968 
1969 /*
1970  * This function finds a given device node in the topology with a given
1971  * cdev.
1972  */
1973 void *
1974 devfs_find_device_node_callback(struct devfs_node *node, cdev_t target)
1975 {
1976 	if ((node->node_type == Ndev) && (node->d_dev == target)) {
1977 		return node;
1978 	}
1979 
1980 	return NULL;
1981 }
1982 
1983 /*
1984  * This function finds a device node in the given parent directory by its
1985  * name and returns it.
1986  */
1987 struct devfs_node *
1988 devfs_find_device_node_by_name(struct devfs_node *parent, char *target)
1989 {
1990 	struct devfs_node *node, *found = NULL;
1991 	size_t len = strlen(target);
1992 
1993 	TAILQ_FOREACH(node, DEVFS_DENODE_HEAD(parent), link) {
1994 		if (len != node->d_dir.d_namlen)
1995 			continue;
1996 
1997 		if (!memcmp(node->d_dir.d_name, target, len)) {
1998 			found = node;
1999 			break;
2000 		}
2001 	}
2002 
2003 	return found;
2004 }
2005 
2006 static void *
2007 devfs_inode_to_vnode_worker_callback(struct devfs_node *node, ino_t *inop)
2008 {
2009 	struct vnode *vp = NULL;
2010 	ino_t target = *inop;
2011 
2012 	if (node->d_dir.d_ino == target) {
2013 		if (node->v_node) {
2014 			vp = node->v_node;
2015 			vget(vp, LK_EXCLUSIVE | LK_RETRY);
2016 			vn_unlock(vp);
2017 		} else {
2018 			devfs_allocv(&vp, node);
2019 			vn_unlock(vp);
2020 		}
2021 	}
2022 
2023 	return vp;
2024 }
2025 
2026 /*
2027  * This function takes a cdev and removes its devfs node in the
2028  * given topology.  The cdev remains intact.
2029  */
2030 int
2031 devfs_destroy_device_node(struct devfs_node *root, cdev_t target)
2032 {
2033 	KKASSERT(target != NULL);
2034 	return devfs_destroy_node(root, target->si_name);
2035 }
2036 
2037 /*
2038  * This function takes a path to a devfs node, resolves it and
2039  * removes the devfs node from the given topology.
2040  */
2041 int
2042 devfs_destroy_node(struct devfs_node *root, char *target)
2043 {
2044 	struct devfs_node *node, *parent;
2045 	char *name;
2046 	char *name_buf;
2047 	char *create_path = NULL;
2048 
2049 	KKASSERT(target);
2050 
2051 	name_buf = kmalloc(PATH_MAX, M_TEMP, M_WAITOK);
2052 	ksnprintf(name_buf, PATH_MAX, "%s", target);
2053 
2054 	devfs_resolve_name_path(target, name_buf, &create_path, &name);
2055 
2056 	if (create_path)
2057 		parent = devfs_resolve_or_create_path(root, create_path, 0);
2058 	else
2059 		parent = root;
2060 
2061 	if (parent == NULL) {
2062 		kfree(name_buf, M_TEMP);
2063 		return 1;
2064 	}
2065 
2066 	node = devfs_find_device_node_by_name(parent, name);
2067 
2068 	if (node) {
2069 		nanotime(&node->parent->mtime);
2070 		devfs_gc(node);
2071 	}
2072 
2073 	kfree(name_buf, M_TEMP);
2074 
2075 	return 0;
2076 }
2077 
2078 /*
2079  * Just set perms and ownership for given node.
2080  */
2081 int
2082 devfs_set_perms(struct devfs_node *node, uid_t uid, gid_t gid,
2083 		u_short mode, u_long flags)
2084 {
2085 	node->mode = mode;
2086 	node->uid = uid;
2087 	node->gid = gid;
2088 
2089 	return 0;
2090 }
2091 
2092 /*
2093  * Propagates a device attach/detach to all mount
2094  * points. Also takes care of automatic alias removal
2095  * for a deleted cdev.
2096  */
2097 static int
2098 devfs_propagate_dev(cdev_t dev, int attach)
2099 {
2100 	struct devfs_mnt_data *mnt;
2101 
2102 	TAILQ_FOREACH(mnt, &devfs_mnt_list, link) {
2103 		if (attach) {
2104 			/* Device is being attached */
2105 			devfs_create_device_node(mnt->root_node, dev,
2106 						 NULL, NULL );
2107 		} else {
2108 			/* Device is being detached */
2109 			devfs_alias_remove(dev);
2110 			devfs_destroy_device_node(mnt->root_node, dev);
2111 		}
2112 	}
2113 	return 0;
2114 }
2115 
2116 /*
2117  * devfs_clone either returns a basename from a complete name by
2118  * returning the length of the name without trailing digits, or,
2119  * if clone != 0, calls the device's clone handler to get a new
2120  * device, which in turn is returned in devp.
2121  */
2122 cdev_t
2123 devfs_clone(cdev_t dev, const char *name, size_t len, int mode,
2124 		struct ucred *cred)
2125 {
2126 	int error;
2127 	struct devfs_clone_handler *chandler;
2128 	struct dev_clone_args ap;
2129 
2130 	TAILQ_FOREACH(chandler, &devfs_chandler_list, link) {
2131 		if (chandler->namlen != len)
2132 			continue;
2133 		if ((!memcmp(chandler->name, name, len)) && (chandler->nhandler)) {
2134 			lockmgr(&devfs_lock, LK_RELEASE);
2135 			devfs_config();
2136 			lockmgr(&devfs_lock, LK_EXCLUSIVE);
2137 
2138 			ap.a_head.a_dev = dev;
2139 			ap.a_dev = NULL;
2140 			ap.a_name = name;
2141 			ap.a_namelen = len;
2142 			ap.a_mode = mode;
2143 			ap.a_cred = cred;
2144 			error = (chandler->nhandler)(&ap);
2145 			if (error)
2146 				continue;
2147 
2148 			return ap.a_dev;
2149 		}
2150 	}
2151 
2152 	return NULL;
2153 }
2154 
2155 
2156 /*
2157  * Registers a new orphan in the orphan list.
2158  */
2159 void
2160 devfs_tracer_add_orphan(struct devfs_node *node)
2161 {
2162 	struct devfs_orphan *orphan;
2163 
2164 	KKASSERT(node);
2165 	orphan = kmalloc(sizeof(struct devfs_orphan), M_DEVFS, M_WAITOK);
2166 	orphan->node = node;
2167 
2168 	KKASSERT((node->flags & DEVFS_ORPHANED) == 0);
2169 	node->flags |= DEVFS_ORPHANED;
2170 	TAILQ_INSERT_TAIL(DEVFS_ORPHANLIST(node->mp), orphan, link);
2171 }
2172 
2173 /*
2174  * Removes an orphan from the orphan list.
2175  */
2176 void
2177 devfs_tracer_del_orphan(struct devfs_node *node)
2178 {
2179 	struct devfs_orphan *orphan;
2180 
2181 	KKASSERT(node);
2182 
2183 	TAILQ_FOREACH(orphan, DEVFS_ORPHANLIST(node->mp), link)	{
2184 		if (orphan->node == node) {
2185 			node->flags &= ~DEVFS_ORPHANED;
2186 			TAILQ_REMOVE(DEVFS_ORPHANLIST(node->mp), orphan, link);
2187 			kfree(orphan, M_DEVFS);
2188 			break;
2189 		}
2190 	}
2191 }
2192 
2193 /*
2194  * Counts the orphans in the orphan list, and if cleanup
2195  * is specified, also frees the orphan and removes it from
2196  * the list.
2197  */
2198 size_t
2199 devfs_tracer_orphan_count(struct mount *mp, int cleanup)
2200 {
2201 	struct devfs_orphan *orphan, *orphan2;
2202 	size_t count = 0;
2203 
2204 	TAILQ_FOREACH_MUTABLE(orphan, DEVFS_ORPHANLIST(mp), link, orphan2)	{
2205 		count++;
2206 		/*
2207 		 * If we are instructed to clean up, we do so.
2208 		 */
2209 		if (cleanup) {
2210 			TAILQ_REMOVE(DEVFS_ORPHANLIST(mp), orphan, link);
2211 			orphan->node->flags &= ~DEVFS_ORPHANED;
2212 			devfs_freep(orphan->node);
2213 			kfree(orphan, M_DEVFS);
2214 		}
2215 	}
2216 
2217 	return count;
2218 }
2219 
2220 /*
2221  * Fetch an ino_t from the global d_ino by increasing it
2222  * while spinlocked.
2223  */
2224 static ino_t
2225 devfs_fetch_ino(void)
2226 {
2227 	ino_t	ret;
2228 
2229 	spin_lock(&ino_lock);
2230 	ret = d_ino++;
2231 	spin_unlock(&ino_lock);
2232 
2233 	return ret;
2234 }
2235 
2236 /*
2237  * Allocates a new cdev and initializes it's most basic
2238  * fields.
2239  */
2240 cdev_t
2241 devfs_new_cdev(struct dev_ops *ops, int minor, struct dev_ops *bops)
2242 {
2243 	cdev_t dev = sysref_alloc(&cdev_sysref_class);
2244 
2245 	sysref_activate(&dev->si_sysref);
2246 	reference_dev(dev);
2247 	bzero(dev, offsetof(struct cdev, si_sysref));
2248 
2249 	dev->si_uid = 0;
2250 	dev->si_gid = 0;
2251 	dev->si_perms = 0;
2252 	dev->si_drv1 = NULL;
2253 	dev->si_drv2 = NULL;
2254 	dev->si_lastread = 0;		/* time_uptime */
2255 	dev->si_lastwrite = 0;		/* time_uptime */
2256 
2257 	dev->si_dict = NULL;
2258 	dev->si_parent = NULL;
2259 	dev->si_ops = ops;
2260 	dev->si_flags = 0;
2261 	dev->si_uminor = minor;
2262 	dev->si_bops = bops;
2263 
2264 	/*
2265 	 * Since the disk subsystem is in the way, we need to
2266 	 * propagate the D_CANFREE from bops (and ops) to
2267 	 * si_flags.
2268 	 */
2269 	if (bops && (bops->head.flags & D_CANFREE)) {
2270 		dev->si_flags |= SI_CANFREE;
2271 	} else if (ops->head.flags & D_CANFREE) {
2272 		dev->si_flags |= SI_CANFREE;
2273 	}
2274 
2275 	/* If there is a backing device, we reference its ops */
2276 	dev->si_inode = makeudev(
2277 		    devfs_reference_ops((bops)?(bops):(ops)),
2278 		    minor );
2279 	dev->si_umajor = umajor(dev->si_inode);
2280 
2281 	return dev;
2282 }
2283 
2284 static void
2285 devfs_cdev_terminate(cdev_t dev)
2286 {
2287 	int locked = 0;
2288 
2289 	/* Check if it is locked already. if not, we acquire the devfs lock */
2290 	if ((lockstatus(&devfs_lock, curthread)) != LK_EXCLUSIVE) {
2291 		lockmgr(&devfs_lock, LK_EXCLUSIVE);
2292 		locked = 1;
2293 	}
2294 
2295 	/*
2296 	 * Make sure the node isn't linked anymore. Otherwise we've screwed
2297 	 * up somewhere, since normal devs are unlinked on the call to
2298 	 * destroy_dev and only-cdevs that have not been used for cloning
2299 	 * are not linked in the first place. only-cdevs used for cloning
2300 	 * will be linked in, too, and should only be destroyed via
2301 	 * destroy_dev, not destroy_only_dev, so we catch that problem, too.
2302 	 */
2303 	KKASSERT((dev->si_flags & SI_DEVFS_LINKED) == 0);
2304 
2305 	/* If we acquired the lock, we also get rid of it */
2306 	if (locked)
2307 		lockmgr(&devfs_lock, LK_RELEASE);
2308 
2309 	/* If there is a backing device, we release the backing device's ops */
2310 	devfs_release_ops((dev->si_bops)?(dev->si_bops):(dev->si_ops));
2311 
2312 	/* Finally destroy the device */
2313 	sysref_put(&dev->si_sysref);
2314 }
2315 
2316 /*
2317  * Dummies for now (individual locks for MPSAFE)
2318  */
2319 static void
2320 devfs_cdev_lock(cdev_t dev)
2321 {
2322 }
2323 
2324 static void
2325 devfs_cdev_unlock(cdev_t dev)
2326 {
2327 }
2328 
2329 static int
2330 devfs_detached_filter_eof(struct knote *kn, long hint)
2331 {
2332 	kn->kn_flags |= (EV_EOF | EV_NODATA);
2333 	return (1);
2334 }
2335 
2336 static void
2337 devfs_detached_filter_detach(struct knote *kn)
2338 {
2339 	cdev_t dev = (cdev_t)kn->kn_hook;
2340 
2341 	knote_remove(&dev->si_kqinfo.ki_note, kn);
2342 }
2343 
2344 static struct filterops devfs_detached_filterops =
2345 	{ FILTEROP_ISFD, NULL,
2346 	  devfs_detached_filter_detach,
2347 	  devfs_detached_filter_eof };
2348 
2349 /*
2350  * Delegates knote filter handling responsibility to devfs
2351  *
2352  * Any device that implements kqfilter event handling and could be detached
2353  * or shut down out from under the kevent subsystem must allow devfs to
2354  * assume responsibility for any knotes it may hold.
2355  */
2356 void
2357 devfs_assume_knotes(cdev_t dev, struct kqinfo *kqi)
2358 {
2359 	/*
2360 	 * Let kern/kern_event.c do the heavy lifting.
2361 	 */
2362 	knote_assume_knotes(kqi, &dev->si_kqinfo,
2363 			    &devfs_detached_filterops, (void *)dev);
2364 
2365 	/*
2366 	 * These should probably be activated individually, but doing so
2367 	 * would require refactoring kq's public in-kernel interface.
2368 	 */
2369 	KNOTE(&dev->si_kqinfo.ki_note, 0);
2370 }
2371 
2372 /*
2373  * Links a given cdev into the dev list.
2374  */
2375 int
2376 devfs_link_dev(cdev_t dev)
2377 {
2378 	KKASSERT((dev->si_flags & SI_DEVFS_LINKED) == 0);
2379 	dev->si_flags |= SI_DEVFS_LINKED;
2380 	TAILQ_INSERT_TAIL(&devfs_dev_list, dev, link);
2381 
2382 	return 0;
2383 }
2384 
2385 /*
2386  * Removes a given cdev from the dev list.  The caller is responsible for
2387  * releasing the reference on the device associated with the linkage.
2388  *
2389  * Returns EALREADY if the dev has already been unlinked.
2390  */
2391 static int
2392 devfs_unlink_dev(cdev_t dev)
2393 {
2394 	if ((dev->si_flags & SI_DEVFS_LINKED)) {
2395 		TAILQ_REMOVE(&devfs_dev_list, dev, link);
2396 		dev->si_flags &= ~SI_DEVFS_LINKED;
2397 		return (0);
2398 	}
2399 	return (EALREADY);
2400 }
2401 
2402 int
2403 devfs_node_is_accessible(struct devfs_node *node)
2404 {
2405 	if ((node) && (!(node->flags & DEVFS_HIDDEN)))
2406 		return 1;
2407 	else
2408 		return 0;
2409 }
2410 
2411 int
2412 devfs_reference_ops(struct dev_ops *ops)
2413 {
2414 	int unit;
2415 	struct devfs_dev_ops *found = NULL;
2416 	struct devfs_dev_ops *devops;
2417 
2418 	TAILQ_FOREACH(devops, &devfs_dev_ops_list, link) {
2419 		if (devops->ops == ops) {
2420 			found = devops;
2421 			break;
2422 		}
2423 	}
2424 
2425 	if (!found) {
2426 		found = kmalloc(sizeof(struct devfs_dev_ops), M_DEVFS, M_WAITOK);
2427 		found->ops = ops;
2428 		found->ref_count = 0;
2429 		TAILQ_INSERT_TAIL(&devfs_dev_ops_list, found, link);
2430 	}
2431 
2432 	KKASSERT(found);
2433 
2434 	if (found->ref_count == 0) {
2435 		found->id = devfs_clone_bitmap_get(&DEVFS_CLONE_BITMAP(ops_id), 255);
2436 		if (found->id == -1) {
2437 			/* Ran out of unique ids */
2438 			devfs_debug(DEVFS_DEBUG_WARNING,
2439 					"devfs_reference_ops: WARNING: ran out of unique ids\n");
2440 		}
2441 	}
2442 	unit = found->id;
2443 	++found->ref_count;
2444 
2445 	return unit;
2446 }
2447 
2448 void
2449 devfs_release_ops(struct dev_ops *ops)
2450 {
2451 	struct devfs_dev_ops *found = NULL;
2452 	struct devfs_dev_ops *devops;
2453 
2454 	TAILQ_FOREACH(devops, &devfs_dev_ops_list, link) {
2455 		if (devops->ops == ops) {
2456 			found = devops;
2457 			break;
2458 		}
2459 	}
2460 
2461 	KKASSERT(found);
2462 
2463 	--found->ref_count;
2464 
2465 	if (found->ref_count == 0) {
2466 		TAILQ_REMOVE(&devfs_dev_ops_list, found, link);
2467 		devfs_clone_bitmap_put(&DEVFS_CLONE_BITMAP(ops_id), found->id);
2468 		kfree(found, M_DEVFS);
2469 	}
2470 }
2471 
2472 /*
2473  * Wait for asynchronous messages to complete in the devfs helper
2474  * thread, then return.  Do nothing if the helper thread is dead
2475  * or we are being indirectly called from the helper thread itself.
2476  */
2477 void
2478 devfs_config(void)
2479 {
2480 	devfs_msg_t msg;
2481 
2482 	if (devfs_run && curthread != td_core) {
2483 		msg = devfs_msg_get();
2484 		msg = devfs_msg_send_sync(DEVFS_SYNC, msg);
2485 		devfs_msg_put(msg);
2486 	}
2487 }
2488 
2489 /*
2490  * Called on init of devfs; creates the objcaches and
2491  * spawns off the devfs core thread. Also initializes
2492  * locks.
2493  */
2494 static void
2495 devfs_init(void)
2496 {
2497 	devfs_debug(DEVFS_DEBUG_DEBUG, "devfs_init() called\n");
2498 	/* Create objcaches for nodes, msgs and devs */
2499 	devfs_node_cache = objcache_create("devfs-node-cache", 0, 0,
2500 					   NULL, NULL, NULL,
2501 					   objcache_malloc_alloc,
2502 					   objcache_malloc_free,
2503 					   &devfs_node_malloc_args );
2504 
2505 	devfs_msg_cache = objcache_create("devfs-msg-cache", 0, 0,
2506 					  NULL, NULL, NULL,
2507 					  objcache_malloc_alloc,
2508 					  objcache_malloc_free,
2509 					  &devfs_msg_malloc_args );
2510 
2511 	devfs_dev_cache = objcache_create("devfs-dev-cache", 0, 0,
2512 					  NULL, NULL, NULL,
2513 					  objcache_malloc_alloc,
2514 					  objcache_malloc_free,
2515 					  &devfs_dev_malloc_args );
2516 
2517 	devfs_clone_bitmap_init(&DEVFS_CLONE_BITMAP(ops_id));
2518 
2519 	/* Initialize the reply-only port which acts as a message drain */
2520 	lwkt_initport_replyonly(&devfs_dispose_port, devfs_msg_autofree_reply);
2521 
2522 	/* Initialize *THE* devfs lock */
2523 	lockinit(&devfs_lock, "devfs_core lock", 0, 0);
2524 
2525 	lockmgr(&devfs_lock, LK_EXCLUSIVE);
2526 	lwkt_create(devfs_msg_core, /*args*/NULL, &td_core, NULL,
2527 		    0, -1, "devfs_msg_core");
2528 	while (devfs_run == 0)
2529 		lksleep(td_core, &devfs_lock, 0, "devfsc", 0);
2530 	lockmgr(&devfs_lock, LK_RELEASE);
2531 
2532 	devfs_debug(DEVFS_DEBUG_DEBUG, "devfs_init finished\n");
2533 }
2534 
2535 /*
2536  * Called on unload of devfs; takes care of destroying the core
2537  * and the objcaches. Also removes aliases that are no longer needed.
2538  */
2539 static void
2540 devfs_uninit(void)
2541 {
2542 	devfs_debug(DEVFS_DEBUG_DEBUG, "devfs_uninit() called\n");
2543 
2544 	devfs_msg_send(DEVFS_TERMINATE_CORE, NULL);
2545 	while (devfs_run)
2546 		tsleep(td_core, 0, "devfsc", hz*10);
2547 	tsleep(td_core, 0, "devfsc", hz);
2548 
2549 	devfs_clone_bitmap_uninit(&DEVFS_CLONE_BITMAP(ops_id));
2550 
2551 	/* Destroy the objcaches */
2552 	objcache_destroy(devfs_msg_cache);
2553 	objcache_destroy(devfs_node_cache);
2554 	objcache_destroy(devfs_dev_cache);
2555 
2556 	devfs_alias_reap();
2557 }
2558 
2559 /*
2560  * This is a sysctl handler to assist userland devname(3) to
2561  * find the device name for a given udev.
2562  */
2563 static int
2564 devfs_sysctl_devname_helper(SYSCTL_HANDLER_ARGS)
2565 {
2566 	udev_t 	udev;
2567 	cdev_t	found;
2568 	int		error;
2569 
2570 
2571 	if ((error = SYSCTL_IN(req, &udev, sizeof(udev_t))))
2572 		return (error);
2573 
2574 	devfs_debug(DEVFS_DEBUG_DEBUG, "devfs sysctl, received udev: %d\n", udev);
2575 
2576 	if (udev == NOUDEV)
2577 		return(EINVAL);
2578 
2579 	if ((found = devfs_find_device_by_udev(udev)) == NULL)
2580 		return(ENOENT);
2581 
2582 	return(SYSCTL_OUT(req, found->si_name, strlen(found->si_name) + 1));
2583 }
2584 
2585 
2586 SYSCTL_PROC(_kern, OID_AUTO, devname, CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_ANYBODY,
2587 			NULL, 0, devfs_sysctl_devname_helper, "", "helper for devname(3)");
2588 
2589 SYSCTL_NODE(_vfs, OID_AUTO, devfs, CTLFLAG_RW, 0, "devfs");
2590 TUNABLE_INT("vfs.devfs.debug", &devfs_debug_enable);
2591 SYSCTL_INT(_vfs_devfs, OID_AUTO, debug, CTLFLAG_RW, &devfs_debug_enable,
2592 		0, "Enable DevFS debugging");
2593 
2594 SYSINIT(vfs_devfs_register, SI_SUB_PRE_DRIVERS, SI_ORDER_FIRST,
2595 		devfs_init, NULL);
2596 SYSUNINIT(vfs_devfs_register, SI_SUB_PRE_DRIVERS, SI_ORDER_ANY,
2597 		devfs_uninit, NULL);
2598 
2599 /*
2600  * WildCmp() - compare wild string to sane string
2601  *
2602  *	Returns 0 on success, -1 on failure.
2603  */
2604 static int
2605 wildCmp(const char **mary, int d, const char *w, const char *s)
2606 {
2607     int i;
2608 
2609     /*
2610      * skip fixed portion
2611      */
2612     for (;;) {
2613 	switch(*w) {
2614 	case '*':
2615 	    /*
2616 	     * optimize terminator
2617 	     */
2618 	    if (w[1] == 0)
2619 		return(0);
2620 	    if (w[1] != '?' && w[1] != '*') {
2621 		/*
2622 		 * optimize * followed by non-wild
2623 		 */
2624 		for (i = 0; s + i < mary[d]; ++i) {
2625 		    if (s[i] == w[1] && wildCmp(mary, d + 1, w + 1, s + i) == 0)
2626 			return(0);
2627 		}
2628 	    } else {
2629 		/*
2630 		 * less-optimal
2631 		 */
2632 		for (i = 0; s + i < mary[d]; ++i) {
2633 		    if (wildCmp(mary, d + 1, w + 1, s + i) == 0)
2634 			return(0);
2635 		}
2636 	    }
2637 	    mary[d] = s;
2638 	    return(-1);
2639 	case '?':
2640 	    if (*s == 0)
2641 		return(-1);
2642 	    ++w;
2643 	    ++s;
2644 	    break;
2645 	default:
2646 	    if (*w != *s)
2647 		return(-1);
2648 	    if (*w == 0)	/* terminator */
2649 		return(0);
2650 	    ++w;
2651 	    ++s;
2652 	    break;
2653 	}
2654     }
2655     /* not reached */
2656     return(-1);
2657 }
2658 
2659 
2660 /*
2661  * WildCaseCmp() - compare wild string to sane string, case insensitive
2662  *
2663  *	Returns 0 on success, -1 on failure.
2664  */
2665 static int
2666 wildCaseCmp(const char **mary, int d, const char *w, const char *s)
2667 {
2668     int i;
2669 
2670     /*
2671      * skip fixed portion
2672      */
2673     for (;;) {
2674 	switch(*w) {
2675 	case '*':
2676 	    /*
2677 	     * optimize terminator
2678 	     */
2679 	    if (w[1] == 0)
2680 		return(0);
2681 	    if (w[1] != '?' && w[1] != '*') {
2682 		/*
2683 		 * optimize * followed by non-wild
2684 		 */
2685 		for (i = 0; s + i < mary[d]; ++i) {
2686 		    if (s[i] == w[1] && wildCaseCmp(mary, d + 1, w + 1, s + i) == 0)
2687 			return(0);
2688 		}
2689 	    } else {
2690 		/*
2691 		 * less-optimal
2692 		 */
2693 		for (i = 0; s + i < mary[d]; ++i) {
2694 		    if (wildCaseCmp(mary, d + 1, w + 1, s + i) == 0)
2695 			return(0);
2696 		}
2697 	    }
2698 	    mary[d] = s;
2699 	    return(-1);
2700 	case '?':
2701 	    if (*s == 0)
2702 		return(-1);
2703 	    ++w;
2704 	    ++s;
2705 	    break;
2706 	default:
2707 	    if (*w != *s) {
2708 #define tolower(x)	((x >= 'A' && x <= 'Z')?(x+('a'-'A')):(x))
2709 		if (tolower(*w) != tolower(*s))
2710 		    return(-1);
2711 	    }
2712 	    if (*w == 0)	/* terminator */
2713 		return(0);
2714 	    ++w;
2715 	    ++s;
2716 	    break;
2717 	}
2718     }
2719     /* not reached */
2720     return(-1);
2721 }
2722 
2723 struct cdev_privdata {
2724 	void		*cdpd_data;
2725 	cdevpriv_dtr_t	cdpd_dtr;
2726 };
2727 
2728 int devfs_get_cdevpriv(struct file *fp, void **datap)
2729 {
2730 	struct cdev_privdata *p;
2731 	int error;
2732 
2733 	if (fp == NULL)
2734 		return(EBADF);
2735 	p  = (struct cdev_privdata*) fp->f_data1;
2736 	if (p != NULL) {
2737 		error = 0;
2738 		*datap = p->cdpd_data;
2739 	} else
2740 		error = ENOENT;
2741 	return (error);
2742 }
2743 
2744 int devfs_set_cdevpriv(struct file *fp, void *priv, cdevpriv_dtr_t dtr)
2745 {
2746 	struct cdev_privdata *p;
2747 	int error;
2748 
2749 	if (fp == NULL)
2750 		return (ENOENT);
2751 
2752 	p = kmalloc(sizeof(struct cdev_privdata), M_DEVFS, M_WAITOK);
2753 	p->cdpd_data = priv;
2754 	p->cdpd_dtr = dtr;
2755 
2756 	spin_lock(&fp->f_spin);
2757 	if (fp->f_data1 == NULL) {
2758 		fp->f_data1 = p;
2759 		error = 0;
2760 	} else
2761 		error = EBUSY;
2762 	spin_unlock(&fp->f_spin);
2763 
2764 	if (error)
2765 		kfree(p, M_DEVFS);
2766 
2767 	return error;
2768 }
2769 
2770 void devfs_clear_cdevpriv(struct file *fp)
2771 {
2772 	struct cdev_privdata *p;
2773 
2774 	if (fp == NULL)
2775 		return;
2776 
2777 	spin_lock(&fp->f_spin);
2778 	p = fp->f_data1;
2779 	fp->f_data1 = NULL;
2780 	spin_unlock(&fp->f_spin);
2781 
2782 	if (p != NULL) {
2783 		(p->cdpd_dtr)(p->cdpd_data);
2784 		kfree(p, M_DEVFS);
2785 	}
2786 }
2787 
2788 int
2789 devfs_WildCmp(const char *w, const char *s)
2790 {
2791     int i;
2792     int c;
2793     int slen = strlen(s);
2794     const char **mary;
2795 
2796     for (i = c = 0; w[i]; ++i) {
2797 	if (w[i] == '*')
2798 	    ++c;
2799     }
2800     mary = kmalloc(sizeof(char *) * (c + 1), M_DEVFS, M_WAITOK);
2801     for (i = 0; i < c; ++i)
2802 	mary[i] = s + slen;
2803     i = wildCmp(mary, 0, w, s);
2804     kfree(mary, M_DEVFS);
2805     return(i);
2806 }
2807 
2808 int
2809 devfs_WildCaseCmp(const char *w, const char *s)
2810 {
2811     int i;
2812     int c;
2813     int slen = strlen(s);
2814     const char **mary;
2815 
2816     for (i = c = 0; w[i]; ++i) {
2817 	if (w[i] == '*')
2818 	    ++c;
2819     }
2820     mary = kmalloc(sizeof(char *) * (c + 1), M_DEVFS, M_WAITOK);
2821     for (i = 0; i < c; ++i)
2822 	mary[i] = s + slen;
2823     i = wildCaseCmp(mary, 0, w, s);
2824     kfree(mary, M_DEVFS);
2825     return(i);
2826 }
2827 
2828