xref: /dragonfly/sys/vfs/devfs/devfs_vnops.c (revision 19b217af)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 2009 The DragonFly Project.  All rights reserved.
5  *
6  * This code is derived from software contributed to The DragonFly Project
7  * by Alex Hornung <ahornung@gmail.com>
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  * 3. Neither the name of The DragonFly Project nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific, prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
27  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  */
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/time.h>
39 #include <sys/kernel.h>
40 #include <sys/lock.h>
41 #include <sys/fcntl.h>
42 #include <sys/proc.h>
43 #include <sys/priv.h>
44 #include <sys/signalvar.h>
45 #include <sys/vnode.h>
46 #include <sys/uio.h>
47 #include <sys/mount.h>
48 #include <sys/file.h>
49 #include <sys/namei.h>
50 #include <sys/dirent.h>
51 #include <sys/malloc.h>
52 #include <sys/stat.h>
53 #include <sys/reg.h>
54 #include <vm/vm_pager.h>
55 #include <vm/vm_zone.h>
56 #include <vm/vm_object.h>
57 #include <sys/filio.h>
58 #include <sys/ttycom.h>
59 #include <sys/tty.h>
60 #include <sys/diskslice.h>
61 #include <sys/sysctl.h>
62 #include <sys/devfs.h>
63 #include <sys/pioctl.h>
64 #include <vfs/fifofs/fifo.h>
65 
66 #include <machine/limits.h>
67 
68 #include <sys/buf2.h>
69 #include <sys/sysref2.h>
70 #include <sys/mplock2.h>
71 #include <vm/vm_page2.h>
72 
73 #ifndef SPEC_CHAIN_DEBUG
74 #define SPEC_CHAIN_DEBUG 0
75 #endif
76 
77 MALLOC_DECLARE(M_DEVFS);
78 #define DEVFS_BADOP	(void *)devfs_vop_badop
79 
80 static int devfs_vop_badop(struct vop_generic_args *);
81 static int devfs_vop_access(struct vop_access_args *);
82 static int devfs_vop_inactive(struct vop_inactive_args *);
83 static int devfs_vop_reclaim(struct vop_reclaim_args *);
84 static int devfs_vop_readdir(struct vop_readdir_args *);
85 static int devfs_vop_getattr(struct vop_getattr_args *);
86 static int devfs_vop_setattr(struct vop_setattr_args *);
87 static int devfs_vop_readlink(struct vop_readlink_args *);
88 static int devfs_vop_print(struct vop_print_args *);
89 
90 static int devfs_vop_nresolve(struct vop_nresolve_args *);
91 static int devfs_vop_nlookupdotdot(struct vop_nlookupdotdot_args *);
92 static int devfs_vop_nmkdir(struct vop_nmkdir_args *);
93 static int devfs_vop_nsymlink(struct vop_nsymlink_args *);
94 static int devfs_vop_nrmdir(struct vop_nrmdir_args *);
95 static int devfs_vop_nremove(struct vop_nremove_args *);
96 
97 static int devfs_spec_open(struct vop_open_args *);
98 static int devfs_spec_close(struct vop_close_args *);
99 static int devfs_spec_fsync(struct vop_fsync_args *);
100 
101 static int devfs_spec_read(struct vop_read_args *);
102 static int devfs_spec_write(struct vop_write_args *);
103 static int devfs_spec_ioctl(struct vop_ioctl_args *);
104 static int devfs_spec_kqfilter(struct vop_kqfilter_args *);
105 static int devfs_spec_strategy(struct vop_strategy_args *);
106 static void devfs_spec_strategy_done(struct bio *);
107 static int devfs_spec_freeblks(struct vop_freeblks_args *);
108 static int devfs_spec_bmap(struct vop_bmap_args *);
109 static int devfs_spec_advlock(struct vop_advlock_args *);
110 static void devfs_spec_getpages_iodone(struct bio *);
111 static int devfs_spec_getpages(struct vop_getpages_args *);
112 
113 static int devfs_fo_close(struct file *);
114 static int devfs_fo_read(struct file *, struct uio *, struct ucred *, int);
115 static int devfs_fo_write(struct file *, struct uio *, struct ucred *, int);
116 static int devfs_fo_stat(struct file *, struct stat *, struct ucred *);
117 static int devfs_fo_kqfilter(struct file *, struct knote *);
118 static int devfs_fo_ioctl(struct file *, u_long, caddr_t,
119 				struct ucred *, struct sysmsg *);
120 static __inline int sequential_heuristic(struct uio *, struct file *);
121 
122 extern struct lock devfs_lock;
123 
124 /*
125  * devfs vnode operations for regular files.  All vnode ops are MPSAFE.
126  */
127 struct vop_ops devfs_vnode_norm_vops = {
128 	.vop_default =		vop_defaultop,
129 	.vop_access =		devfs_vop_access,
130 	.vop_advlock =		DEVFS_BADOP,
131 	.vop_bmap =		DEVFS_BADOP,
132 	.vop_close =		vop_stdclose,
133 	.vop_getattr =		devfs_vop_getattr,
134 	.vop_inactive =		devfs_vop_inactive,
135 	.vop_ncreate =		DEVFS_BADOP,
136 	.vop_nresolve =		devfs_vop_nresolve,
137 	.vop_nlookupdotdot =	devfs_vop_nlookupdotdot,
138 	.vop_nlink =		DEVFS_BADOP,
139 	.vop_nmkdir =		devfs_vop_nmkdir,
140 	.vop_nmknod =		DEVFS_BADOP,
141 	.vop_nremove =		devfs_vop_nremove,
142 	.vop_nrename =		DEVFS_BADOP,
143 	.vop_nrmdir =		devfs_vop_nrmdir,
144 	.vop_nsymlink =		devfs_vop_nsymlink,
145 	.vop_open =		vop_stdopen,
146 	.vop_pathconf =		vop_stdpathconf,
147 	.vop_print =		devfs_vop_print,
148 	.vop_read =		DEVFS_BADOP,
149 	.vop_readdir =		devfs_vop_readdir,
150 	.vop_readlink =		devfs_vop_readlink,
151 	.vop_reclaim =		devfs_vop_reclaim,
152 	.vop_setattr =		devfs_vop_setattr,
153 	.vop_write =		DEVFS_BADOP,
154 	.vop_ioctl =		DEVFS_BADOP
155 };
156 
157 /*
158  * devfs vnode operations for character devices.  All vnode ops are MPSAFE.
159  */
160 struct vop_ops devfs_vnode_dev_vops = {
161 	.vop_default =		vop_defaultop,
162 	.vop_access =		devfs_vop_access,
163 	.vop_advlock =		devfs_spec_advlock,
164 	.vop_bmap =		devfs_spec_bmap,
165 	.vop_close =		devfs_spec_close,
166 	.vop_freeblks =		devfs_spec_freeblks,
167 	.vop_fsync =		devfs_spec_fsync,
168 	.vop_getattr =		devfs_vop_getattr,
169 	.vop_getpages =		devfs_spec_getpages,
170 	.vop_inactive =		devfs_vop_inactive,
171 	.vop_open =		devfs_spec_open,
172 	.vop_pathconf =		vop_stdpathconf,
173 	.vop_print =		devfs_vop_print,
174 	.vop_kqfilter =		devfs_spec_kqfilter,
175 	.vop_read =		devfs_spec_read,
176 	.vop_readdir =		DEVFS_BADOP,
177 	.vop_readlink =		DEVFS_BADOP,
178 	.vop_reclaim =		devfs_vop_reclaim,
179 	.vop_setattr =		devfs_vop_setattr,
180 	.vop_strategy =		devfs_spec_strategy,
181 	.vop_write =		devfs_spec_write,
182 	.vop_ioctl =		devfs_spec_ioctl
183 };
184 
185 /*
186  * devfs file pointer operations.  All fileops are MPSAFE.
187  */
188 struct vop_ops *devfs_vnode_dev_vops_p = &devfs_vnode_dev_vops;
189 
190 struct fileops devfs_dev_fileops = {
191 	.fo_read	= devfs_fo_read,
192 	.fo_write	= devfs_fo_write,
193 	.fo_ioctl	= devfs_fo_ioctl,
194 	.fo_kqfilter	= devfs_fo_kqfilter,
195 	.fo_stat	= devfs_fo_stat,
196 	.fo_close	= devfs_fo_close,
197 	.fo_shutdown	= nofo_shutdown
198 };
199 
200 /*
201  * These two functions are possibly temporary hacks for devices (aka
202  * the pty code) which want to control the node attributes themselves.
203  *
204  * XXX we may ultimately desire to simply remove the uid/gid/mode
205  * from the node entirely.
206  *
207  * MPSAFE - sorta.  Theoretically the overwrite can compete since they
208  *	    are loading from the same fields.
209  */
210 static __inline void
211 node_sync_dev_get(struct devfs_node *node)
212 {
213 	cdev_t dev;
214 
215 	if ((dev = node->d_dev) && (dev->si_flags & SI_OVERRIDE)) {
216 		node->uid = dev->si_uid;
217 		node->gid = dev->si_gid;
218 		node->mode = dev->si_perms;
219 	}
220 }
221 
222 static __inline void
223 node_sync_dev_set(struct devfs_node *node)
224 {
225 	cdev_t dev;
226 
227 	if ((dev = node->d_dev) && (dev->si_flags & SI_OVERRIDE)) {
228 		dev->si_uid = node->uid;
229 		dev->si_gid = node->gid;
230 		dev->si_perms = node->mode;
231 	}
232 }
233 
234 /*
235  * generic entry point for unsupported operations
236  */
237 static int
238 devfs_vop_badop(struct vop_generic_args *ap)
239 {
240 	return (EIO);
241 }
242 
243 
244 static int
245 devfs_vop_access(struct vop_access_args *ap)
246 {
247 	struct devfs_node *node = DEVFS_NODE(ap->a_vp);
248 	int error;
249 
250 	if (!devfs_node_is_accessible(node))
251 		return ENOENT;
252 	node_sync_dev_get(node);
253 	error = vop_helper_access(ap, node->uid, node->gid,
254 				  node->mode, node->flags);
255 
256 	return error;
257 }
258 
259 
260 static int
261 devfs_vop_inactive(struct vop_inactive_args *ap)
262 {
263 	struct devfs_node *node = DEVFS_NODE(ap->a_vp);
264 
265 	if (node == NULL || (node->flags & DEVFS_NODE_LINKED) == 0)
266 		vrecycle(ap->a_vp);
267 	return 0;
268 }
269 
270 
271 static int
272 devfs_vop_reclaim(struct vop_reclaim_args *ap)
273 {
274 	struct devfs_node *node;
275 	struct vnode *vp;
276 	int locked;
277 
278 	/*
279 	 * Check if it is locked already. if not, we acquire the devfs lock
280 	 */
281 	if ((lockstatus(&devfs_lock, curthread)) != LK_EXCLUSIVE) {
282 		lockmgr(&devfs_lock, LK_EXCLUSIVE);
283 		locked = 1;
284 	} else {
285 		locked = 0;
286 	}
287 
288 	/*
289 	 * Get rid of the devfs_node if it is no longer linked into the
290 	 * topology.
291 	 */
292 	vp = ap->a_vp;
293 	if ((node = DEVFS_NODE(vp)) != NULL) {
294 		node->v_node = NULL;
295 		if ((node->flags & DEVFS_NODE_LINKED) == 0)
296 			devfs_freep(node);
297 	}
298 
299 	if (locked)
300 		lockmgr(&devfs_lock, LK_RELEASE);
301 
302 	/*
303 	 * v_rdev needs to be properly released using v_release_rdev
304 	 * Make sure v_data is NULL as well.
305 	 */
306 	vp->v_data = NULL;
307 	v_release_rdev(vp);
308 	return 0;
309 }
310 
311 
312 static int
313 devfs_vop_readdir(struct vop_readdir_args *ap)
314 {
315 	struct devfs_node *dnode = DEVFS_NODE(ap->a_vp);
316 	struct devfs_node *node;
317 	int cookie_index;
318 	int ncookies;
319 	int error2;
320 	int error;
321 	int r;
322 	off_t *cookies;
323 	off_t saveoff;
324 
325 	devfs_debug(DEVFS_DEBUG_DEBUG, "devfs_readdir() called!\n");
326 
327 	if (ap->a_uio->uio_offset < 0 || ap->a_uio->uio_offset > INT_MAX)
328 		return (EINVAL);
329 	error = vn_lock(ap->a_vp, LK_EXCLUSIVE | LK_RETRY | LK_FAILRECLAIM);
330 	if (error)
331 		return (error);
332 
333 	if (!devfs_node_is_accessible(dnode)) {
334 		vn_unlock(ap->a_vp);
335 		return ENOENT;
336 	}
337 
338 	lockmgr(&devfs_lock, LK_EXCLUSIVE);
339 
340 	saveoff = ap->a_uio->uio_offset;
341 
342 	if (ap->a_ncookies) {
343 		ncookies = ap->a_uio->uio_resid / 16 + 1; /* Why / 16 ?? */
344 		if (ncookies > 256)
345 			ncookies = 256;
346 		cookies = kmalloc(256 * sizeof(off_t), M_TEMP, M_WAITOK);
347 		cookie_index = 0;
348 	} else {
349 		ncookies = -1;
350 		cookies = NULL;
351 		cookie_index = 0;
352 	}
353 
354 	nanotime(&dnode->atime);
355 
356 	if (saveoff == 0) {
357 		r = vop_write_dirent(&error, ap->a_uio, dnode->d_dir.d_ino,
358 				     DT_DIR, 1, ".");
359 		if (r)
360 			goto done;
361 		if (cookies)
362 			cookies[cookie_index] = saveoff;
363 		saveoff++;
364 		cookie_index++;
365 		if (cookie_index == ncookies)
366 			goto done;
367 	}
368 
369 	if (saveoff == 1) {
370 		if (dnode->parent) {
371 			r = vop_write_dirent(&error, ap->a_uio,
372 					     dnode->parent->d_dir.d_ino,
373 					     DT_DIR, 2, "..");
374 		} else {
375 			r = vop_write_dirent(&error, ap->a_uio,
376 					     dnode->d_dir.d_ino,
377 					     DT_DIR, 2, "..");
378 		}
379 		if (r)
380 			goto done;
381 		if (cookies)
382 			cookies[cookie_index] = saveoff;
383 		saveoff++;
384 		cookie_index++;
385 		if (cookie_index == ncookies)
386 			goto done;
387 	}
388 
389 	TAILQ_FOREACH(node, DEVFS_DENODE_HEAD(dnode), link) {
390 		if ((node->flags & DEVFS_HIDDEN) ||
391 		    (node->flags & DEVFS_INVISIBLE)) {
392 			continue;
393 		}
394 
395 		/*
396 		 * If the node type is a valid devfs alias, then we make
397 		 * sure that the target isn't hidden. If it is, we don't
398 		 * show the link in the directory listing.
399 		 */
400 		if ((node->node_type == Nlink) && (node->link_target != NULL) &&
401 			(node->link_target->flags & DEVFS_HIDDEN))
402 			continue;
403 
404 		if (node->cookie < saveoff)
405 			continue;
406 
407 		saveoff = node->cookie;
408 
409 		error2 = vop_write_dirent(&error, ap->a_uio, node->d_dir.d_ino,
410 					  node->d_dir.d_type,
411 					  node->d_dir.d_namlen,
412 					  node->d_dir.d_name);
413 
414 		if (error2)
415 			break;
416 
417 		saveoff++;
418 
419 		if (cookies)
420 			cookies[cookie_index] = node->cookie;
421 		++cookie_index;
422 		if (cookie_index == ncookies)
423 			break;
424 	}
425 
426 done:
427 	lockmgr(&devfs_lock, LK_RELEASE);
428 	vn_unlock(ap->a_vp);
429 
430 	ap->a_uio->uio_offset = saveoff;
431 	if (error && cookie_index == 0) {
432 		if (cookies) {
433 			kfree(cookies, M_TEMP);
434 			*ap->a_ncookies = 0;
435 			*ap->a_cookies = NULL;
436 		}
437 	} else {
438 		if (cookies) {
439 			*ap->a_ncookies = cookie_index;
440 			*ap->a_cookies = cookies;
441 		}
442 	}
443 	return (error);
444 }
445 
446 
447 static int
448 devfs_vop_nresolve(struct vop_nresolve_args *ap)
449 {
450 	struct devfs_node *dnode = DEVFS_NODE(ap->a_dvp);
451 	struct devfs_node *node, *found = NULL;
452 	struct namecache *ncp;
453 	struct vnode *vp = NULL;
454 	int error = 0;
455 	int len;
456 	int depth;
457 
458 	ncp = ap->a_nch->ncp;
459 	len = ncp->nc_nlen;
460 
461 	if (!devfs_node_is_accessible(dnode))
462 		return ENOENT;
463 
464 	lockmgr(&devfs_lock, LK_EXCLUSIVE);
465 
466 	if ((dnode->node_type != Nroot) && (dnode->node_type != Ndir)) {
467 		error = ENOENT;
468 		cache_setvp(ap->a_nch, NULL);
469 		goto out;
470 	}
471 
472 	TAILQ_FOREACH(node, DEVFS_DENODE_HEAD(dnode), link) {
473 		if (len == node->d_dir.d_namlen) {
474 			if (!memcmp(ncp->nc_name, node->d_dir.d_name, len)) {
475 				found = node;
476 				break;
477 			}
478 		}
479 	}
480 
481 	if (found) {
482 		depth = 0;
483 		while ((found->node_type == Nlink) && (found->link_target)) {
484 			if (depth >= 8) {
485 				devfs_debug(DEVFS_DEBUG_SHOW, "Recursive link or depth >= 8");
486 				break;
487 			}
488 
489 			found = found->link_target;
490 			++depth;
491 		}
492 
493 		if (!(found->flags & DEVFS_HIDDEN))
494 			devfs_allocv(/*ap->a_dvp->v_mount, */ &vp, found);
495 	}
496 
497 	if (vp == NULL) {
498 		error = ENOENT;
499 		cache_setvp(ap->a_nch, NULL);
500 		goto out;
501 
502 	}
503 	KKASSERT(vp);
504 	vn_unlock(vp);
505 	cache_setvp(ap->a_nch, vp);
506 	vrele(vp);
507 out:
508 	lockmgr(&devfs_lock, LK_RELEASE);
509 
510 	return error;
511 }
512 
513 
514 static int
515 devfs_vop_nlookupdotdot(struct vop_nlookupdotdot_args *ap)
516 {
517 	struct devfs_node *dnode = DEVFS_NODE(ap->a_dvp);
518 
519 	*ap->a_vpp = NULL;
520 	if (!devfs_node_is_accessible(dnode))
521 		return ENOENT;
522 
523 	lockmgr(&devfs_lock, LK_EXCLUSIVE);
524 	if (dnode->parent != NULL) {
525 		devfs_allocv(ap->a_vpp, dnode->parent);
526 		vn_unlock(*ap->a_vpp);
527 	}
528 	lockmgr(&devfs_lock, LK_RELEASE);
529 
530 	return ((*ap->a_vpp == NULL) ? ENOENT : 0);
531 }
532 
533 
534 static int
535 devfs_vop_getattr(struct vop_getattr_args *ap)
536 {
537 	struct devfs_node *node = DEVFS_NODE(ap->a_vp);
538 	struct vattr *vap = ap->a_vap;
539 	struct partinfo pinfo;
540 	int error = 0;
541 
542 #if 0
543 	if (!devfs_node_is_accessible(node))
544 		return ENOENT;
545 #endif
546 	node_sync_dev_get(node);
547 
548 	lockmgr(&devfs_lock, LK_EXCLUSIVE);
549 
550 	/* start by zeroing out the attributes */
551 	VATTR_NULL(vap);
552 
553 	/* next do all the common fields */
554 	vap->va_type = ap->a_vp->v_type;
555 	vap->va_mode = node->mode;
556 	vap->va_fileid = DEVFS_NODE(ap->a_vp)->d_dir.d_ino ;
557 	vap->va_flags = 0;
558 	vap->va_blocksize = DEV_BSIZE;
559 	vap->va_bytes = vap->va_size = 0;
560 
561 	vap->va_fsid = ap->a_vp->v_mount->mnt_stat.f_fsid.val[0];
562 
563 	vap->va_atime = node->atime;
564 	vap->va_mtime = node->mtime;
565 	vap->va_ctime = node->ctime;
566 
567 	vap->va_nlink = 1; /* number of references to file */
568 
569 	vap->va_uid = node->uid;
570 	vap->va_gid = node->gid;
571 
572 	vap->va_rmajor = 0;
573 	vap->va_rminor = 0;
574 
575 	if ((node->node_type == Ndev) && node->d_dev)  {
576 		reference_dev(node->d_dev);
577 		vap->va_rminor = node->d_dev->si_uminor;
578 		release_dev(node->d_dev);
579 	}
580 
581 	/* For a softlink the va_size is the length of the softlink */
582 	if (node->symlink_name != 0) {
583 		vap->va_bytes = vap->va_size = node->symlink_namelen;
584 	}
585 
586 	/*
587 	 * For a disk-type device, va_size is the size of the underlying
588 	 * device, so that lseek() works properly.
589 	 */
590 	if ((node->d_dev) && (dev_dflags(node->d_dev) & D_DISK)) {
591 		bzero(&pinfo, sizeof(pinfo));
592 		error = dev_dioctl(node->d_dev, DIOCGPART, (void *)&pinfo,
593 				   0, proc0.p_ucred, NULL);
594 		if ((error == 0) && (pinfo.media_blksize != 0)) {
595 			vap->va_size = pinfo.media_size;
596 		} else {
597 			vap->va_size = 0;
598 			error = 0;
599 		}
600 	}
601 
602 	lockmgr(&devfs_lock, LK_RELEASE);
603 
604 	return (error);
605 }
606 
607 
608 static int
609 devfs_vop_setattr(struct vop_setattr_args *ap)
610 {
611 	struct devfs_node *node = DEVFS_NODE(ap->a_vp);
612 	struct vattr *vap;
613 	uid_t cur_uid;
614 	gid_t cur_gid;
615 	mode_t cur_mode;
616 	int error = 0;
617 
618 	if (!devfs_node_is_accessible(node))
619 		return ENOENT;
620 	node_sync_dev_get(node);
621 
622 	lockmgr(&devfs_lock, LK_EXCLUSIVE);
623 
624 	vap = ap->a_vap;
625 
626 	if ((vap->va_uid != (uid_t)VNOVAL) || (vap->va_gid != (gid_t)VNOVAL)) {
627 		cur_uid = node->uid;
628 		cur_gid = node->gid;
629 		cur_mode = node->mode;
630 		error = vop_helper_chown(ap->a_vp, vap->va_uid, vap->va_gid,
631 		    ap->a_cred, &cur_uid, &cur_gid, &cur_mode);
632 		if (error)
633 			goto out;
634 
635 		if (node->uid != cur_uid || node->gid != cur_gid) {
636 			node->uid = cur_uid;
637 			node->gid = cur_gid;
638 			node->mode = cur_mode;
639 		}
640 	}
641 
642 	if (vap->va_mode != (mode_t)VNOVAL) {
643 		cur_mode = node->mode;
644 		error = vop_helper_chmod(ap->a_vp, vap->va_mode, ap->a_cred,
645 		    node->uid, node->gid, &cur_mode);
646 		if (error == 0 && node->mode != cur_mode) {
647 			node->mode = cur_mode;
648 		}
649 	}
650 
651 out:
652 	node_sync_dev_set(node);
653 	nanotime(&node->ctime);
654 	lockmgr(&devfs_lock, LK_RELEASE);
655 
656 	return error;
657 }
658 
659 
660 static int
661 devfs_vop_readlink(struct vop_readlink_args *ap)
662 {
663 	struct devfs_node *node = DEVFS_NODE(ap->a_vp);
664 	int ret;
665 
666 	if (!devfs_node_is_accessible(node))
667 		return ENOENT;
668 
669 	lockmgr(&devfs_lock, LK_EXCLUSIVE);
670 	ret = uiomove(node->symlink_name, node->symlink_namelen, ap->a_uio);
671 	lockmgr(&devfs_lock, LK_RELEASE);
672 
673 	return ret;
674 }
675 
676 
677 static int
678 devfs_vop_print(struct vop_print_args *ap)
679 {
680 	return (0);
681 }
682 
683 static int
684 devfs_vop_nmkdir(struct vop_nmkdir_args *ap)
685 {
686 	struct devfs_node *dnode = DEVFS_NODE(ap->a_dvp);
687 	struct devfs_node *node;
688 
689 	if (!devfs_node_is_accessible(dnode))
690 		return ENOENT;
691 
692 	if ((dnode->node_type != Nroot) && (dnode->node_type != Ndir))
693 		goto out;
694 
695 	lockmgr(&devfs_lock, LK_EXCLUSIVE);
696 	devfs_allocvp(ap->a_dvp->v_mount, ap->a_vpp, Ndir,
697 		      ap->a_nch->ncp->nc_name, dnode, NULL);
698 
699 	if (*ap->a_vpp) {
700 		node = DEVFS_NODE(*ap->a_vpp);
701 		node->flags |= DEVFS_USER_CREATED;
702 		cache_setunresolved(ap->a_nch);
703 		cache_setvp(ap->a_nch, *ap->a_vpp);
704 	}
705 	lockmgr(&devfs_lock, LK_RELEASE);
706 out:
707 	return ((*ap->a_vpp == NULL) ? ENOTDIR : 0);
708 }
709 
710 static int
711 devfs_vop_nsymlink(struct vop_nsymlink_args *ap)
712 {
713 	struct devfs_node *dnode = DEVFS_NODE(ap->a_dvp);
714 	struct devfs_node *node;
715 	size_t targetlen;
716 
717 	if (!devfs_node_is_accessible(dnode))
718 		return ENOENT;
719 
720 	ap->a_vap->va_type = VLNK;
721 
722 	if ((dnode->node_type != Nroot) && (dnode->node_type != Ndir))
723 		goto out;
724 
725 	lockmgr(&devfs_lock, LK_EXCLUSIVE);
726 	devfs_allocvp(ap->a_dvp->v_mount, ap->a_vpp, Nlink,
727 		      ap->a_nch->ncp->nc_name, dnode, NULL);
728 
729 	targetlen = strlen(ap->a_target);
730 	if (*ap->a_vpp) {
731 		node = DEVFS_NODE(*ap->a_vpp);
732 		node->flags |= DEVFS_USER_CREATED;
733 		node->symlink_namelen = targetlen;
734 		node->symlink_name = kmalloc(targetlen + 1, M_DEVFS, M_WAITOK);
735 		memcpy(node->symlink_name, ap->a_target, targetlen);
736 		node->symlink_name[targetlen] = '\0';
737 		cache_setunresolved(ap->a_nch);
738 		cache_setvp(ap->a_nch, *ap->a_vpp);
739 	}
740 	lockmgr(&devfs_lock, LK_RELEASE);
741 out:
742 	return ((*ap->a_vpp == NULL) ? ENOTDIR : 0);
743 }
744 
745 static int
746 devfs_vop_nrmdir(struct vop_nrmdir_args *ap)
747 {
748 	struct devfs_node *dnode = DEVFS_NODE(ap->a_dvp);
749 	struct devfs_node *node;
750 	struct namecache *ncp;
751 	int error = ENOENT;
752 
753 	ncp = ap->a_nch->ncp;
754 
755 	if (!devfs_node_is_accessible(dnode))
756 		return ENOENT;
757 
758 	lockmgr(&devfs_lock, LK_EXCLUSIVE);
759 
760 	if ((dnode->node_type != Nroot) && (dnode->node_type != Ndir))
761 		goto out;
762 
763 	TAILQ_FOREACH(node, DEVFS_DENODE_HEAD(dnode), link) {
764 		if (ncp->nc_nlen != node->d_dir.d_namlen)
765 			continue;
766 		if (memcmp(ncp->nc_name, node->d_dir.d_name, ncp->nc_nlen))
767 			continue;
768 
769 		/*
770 		 * only allow removal of user created dirs
771 		 */
772 		if ((node->flags & DEVFS_USER_CREATED) == 0) {
773 			error = EPERM;
774 			goto out;
775 		} else if (node->node_type != Ndir) {
776 			error = ENOTDIR;
777 			goto out;
778 		} else if (node->nchildren > 2) {
779 			error = ENOTEMPTY;
780 			goto out;
781 		} else {
782 			if (node->v_node)
783 				cache_inval_vp(node->v_node, CINV_DESTROY);
784 			devfs_unlinkp(node);
785 			error = 0;
786 			break;
787 		}
788 	}
789 
790 	cache_unlink(ap->a_nch);
791 out:
792 	lockmgr(&devfs_lock, LK_RELEASE);
793 	return error;
794 }
795 
796 static int
797 devfs_vop_nremove(struct vop_nremove_args *ap)
798 {
799 	struct devfs_node *dnode = DEVFS_NODE(ap->a_dvp);
800 	struct devfs_node *node;
801 	struct namecache *ncp;
802 	int error = ENOENT;
803 
804 	ncp = ap->a_nch->ncp;
805 
806 	if (!devfs_node_is_accessible(dnode))
807 		return ENOENT;
808 
809 	lockmgr(&devfs_lock, LK_EXCLUSIVE);
810 
811 	if ((dnode->node_type != Nroot) && (dnode->node_type != Ndir))
812 		goto out;
813 
814 	TAILQ_FOREACH(node, DEVFS_DENODE_HEAD(dnode), link) {
815 		if (ncp->nc_nlen != node->d_dir.d_namlen)
816 			continue;
817 		if (memcmp(ncp->nc_name, node->d_dir.d_name, ncp->nc_nlen))
818 			continue;
819 
820 		/*
821 		 * only allow removal of user created stuff (e.g. symlinks)
822 		 */
823 		if ((node->flags & DEVFS_USER_CREATED) == 0) {
824 			error = EPERM;
825 			goto out;
826 		} else if (node->node_type == Ndir) {
827 			error = EISDIR;
828 			goto out;
829 		} else {
830 			if (node->v_node)
831 				cache_inval_vp(node->v_node, CINV_DESTROY);
832 			devfs_unlinkp(node);
833 			error = 0;
834 			break;
835 		}
836 	}
837 
838 	cache_unlink(ap->a_nch);
839 out:
840 	lockmgr(&devfs_lock, LK_RELEASE);
841 	return error;
842 }
843 
844 
845 static int
846 devfs_spec_open(struct vop_open_args *ap)
847 {
848 	struct vnode *vp = ap->a_vp;
849 	struct vnode *orig_vp = NULL;
850 	struct devfs_node *node = DEVFS_NODE(vp);
851 	struct devfs_node *newnode;
852 	cdev_t dev, ndev = NULL;
853 	int error = 0;
854 
855 	if (node) {
856 		if (node->d_dev == NULL)
857 			return ENXIO;
858 		if (!devfs_node_is_accessible(node))
859 			return ENOENT;
860 	}
861 
862 	if ((dev = vp->v_rdev) == NULL)
863 		return ENXIO;
864 
865 	vn_lock(vp, LK_UPGRADE | LK_RETRY);
866 
867 	if (node && ap->a_fp) {
868 		devfs_debug(DEVFS_DEBUG_DEBUG, "devfs_spec_open: -1.1-\n");
869 		lockmgr(&devfs_lock, LK_EXCLUSIVE);
870 
871 		ndev = devfs_clone(dev, node->d_dir.d_name,
872 				   node->d_dir.d_namlen,
873 				   ap->a_mode, ap->a_cred);
874 		if (ndev != NULL) {
875 			newnode = devfs_create_device_node(
876 					DEVFS_MNTDATA(vp->v_mount)->root_node,
877 					ndev, NULL, NULL);
878 			/* XXX: possibly destroy device if this happens */
879 
880 			if (newnode != NULL) {
881 				dev = ndev;
882 				devfs_link_dev(dev);
883 
884 				devfs_debug(DEVFS_DEBUG_DEBUG,
885 						"parent here is: %s, node is: |%s|\n",
886 						((node->parent->node_type == Nroot) ?
887 						"ROOT!" : node->parent->d_dir.d_name),
888 						newnode->d_dir.d_name);
889 				devfs_debug(DEVFS_DEBUG_DEBUG,
890 						"test: %s\n",
891 						((struct devfs_node *)(TAILQ_LAST(DEVFS_DENODE_HEAD(node->parent), devfs_node_head)))->d_dir.d_name);
892 
893 				/*
894 				 * orig_vp is set to the original vp if we cloned.
895 				 */
896 				/* node->flags |= DEVFS_CLONED; */
897 				devfs_allocv(&vp, newnode);
898 				orig_vp = ap->a_vp;
899 				ap->a_vp = vp;
900 			}
901 		}
902 		lockmgr(&devfs_lock, LK_RELEASE);
903 	}
904 
905 	devfs_debug(DEVFS_DEBUG_DEBUG,
906 		    "devfs_spec_open() called on %s! \n",
907 		    dev->si_name);
908 
909 	/*
910 	 * Make this field valid before any I/O in ->d_open
911 	 */
912 	if (!dev->si_iosize_max)
913 		/* XXX: old DFLTPHYS == 64KB dependency */
914 		dev->si_iosize_max = min(MAXPHYS,64*1024);
915 
916 	if (dev_dflags(dev) & D_TTY)
917 		vsetflags(vp, VISTTY);
918 
919 	/*
920 	 * Open underlying device
921 	 */
922 	vn_unlock(vp);
923 	error = dev_dopen(dev, ap->a_mode, S_IFCHR, ap->a_cred);
924 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
925 
926 	/*
927 	 * Clean up any cloned vp if we error out.
928 	 */
929 	if (error) {
930 		if (orig_vp) {
931 			vput(vp);
932 			ap->a_vp = orig_vp;
933 			/* orig_vp = NULL; */
934 		}
935 		return error;
936 	}
937 
938 	/*
939 	 * This checks if the disk device is going to be opened for writing.
940 	 * It will be only allowed in the cases where securelevel permits it
941 	 * and it's not mounted R/W.
942 	 */
943 	if ((dev_dflags(dev) & D_DISK) && (ap->a_mode & FWRITE) &&
944 	    (ap->a_cred != FSCRED)) {
945 
946 		/* Very secure mode. No open for writing allowed */
947 		if (securelevel >= 2)
948 			return EPERM;
949 
950 		/*
951 		 * If it is mounted R/W, do not allow to open for writing.
952 		 * In the case it's mounted read-only but securelevel
953 		 * is >= 1, then do not allow opening for writing either.
954 		 */
955 		if (vfs_mountedon(vp)) {
956 			if (!(dev->si_mountpoint->mnt_flag & MNT_RDONLY))
957 				return EBUSY;
958 			else if (securelevel >= 1)
959 				return EPERM;
960 		}
961 	}
962 
963 	if (dev_dflags(dev) & D_TTY) {
964 		if (dev->si_tty) {
965 			struct tty *tp;
966 			tp = dev->si_tty;
967 			if (!tp->t_stop) {
968 				devfs_debug(DEVFS_DEBUG_DEBUG,
969 					    "devfs: no t_stop\n");
970 				tp->t_stop = nottystop;
971 			}
972 		}
973 	}
974 
975 
976 	if (vn_isdisk(vp, NULL)) {
977 		if (!dev->si_bsize_phys)
978 			dev->si_bsize_phys = DEV_BSIZE;
979 		vinitvmio(vp, IDX_TO_OFF(INT_MAX), PAGE_SIZE, -1);
980 	}
981 
982 	vop_stdopen(ap);
983 #if 0
984 	if (node)
985 		nanotime(&node->atime);
986 #endif
987 
988 	/*
989 	 * If we replaced the vp the vop_stdopen() call will have loaded
990 	 * it into fp->f_data and vref()d the vp, giving us two refs.  So
991 	 * instead of just unlocking it here we have to vput() it.
992 	 */
993 	if (orig_vp)
994 		vput(vp);
995 
996 	/* Ugly pty magic, to make pty devices appear once they are opened */
997 	if (node && (node->flags & DEVFS_PTY) == DEVFS_PTY)
998 		node->flags &= ~DEVFS_INVISIBLE;
999 
1000 	if (ap->a_fp) {
1001 		KKASSERT(ap->a_fp->f_type == DTYPE_VNODE);
1002 		KKASSERT((ap->a_fp->f_flag & FMASK) == (ap->a_mode & FMASK));
1003 		ap->a_fp->f_ops = &devfs_dev_fileops;
1004 		KKASSERT(ap->a_fp->f_data == (void *)vp);
1005 	}
1006 
1007 	return 0;
1008 }
1009 
1010 static int
1011 devfs_spec_close(struct vop_close_args *ap)
1012 {
1013 	struct devfs_node *node;
1014 	struct proc *p = curproc;
1015 	struct vnode *vp = ap->a_vp;
1016 	cdev_t dev = vp->v_rdev;
1017 	int error = 0;
1018 	int needrelock;
1019 
1020 	/*
1021 	 * We do special tests on the opencount so unfortunately we need
1022 	 * an exclusive lock.
1023 	 */
1024 	vn_lock(vp, LK_UPGRADE | LK_RETRY);
1025 
1026 	if (dev)
1027 		devfs_debug(DEVFS_DEBUG_DEBUG,
1028 			    "devfs_spec_close() called on %s! \n",
1029 			    dev->si_name);
1030 	else
1031 		devfs_debug(DEVFS_DEBUG_DEBUG,
1032 			    "devfs_spec_close() called, null vode!\n");
1033 
1034 	/*
1035 	 * A couple of hacks for devices and tty devices.  The
1036 	 * vnode ref count cannot be used to figure out the
1037 	 * last close, but we can use v_opencount now that
1038 	 * revoke works properly.
1039 	 *
1040 	 * Detect the last close on a controlling terminal and clear
1041 	 * the session (half-close).
1042 	 */
1043 	if (dev)
1044 		reference_dev(dev);
1045 
1046 	if (p && vp->v_opencount <= 1 && vp == p->p_session->s_ttyvp) {
1047 		p->p_session->s_ttyvp = NULL;
1048 		vrele(vp);
1049 	}
1050 
1051 	/*
1052 	 * Vnodes can be opened and closed multiple times.  Do not really
1053 	 * close the device unless (1) it is being closed forcibly,
1054 	 * (2) the device wants to track closes, or (3) this is the last
1055 	 * vnode doing its last close on the device.
1056 	 *
1057 	 * XXX the VXLOCK (force close) case can leave vnodes referencing
1058 	 * a closed device.  This might not occur now that our revoke is
1059 	 * fixed.
1060 	 */
1061 	devfs_debug(DEVFS_DEBUG_DEBUG, "devfs_spec_close() -1- \n");
1062 	if (dev && ((vp->v_flag & VRECLAIMED) ||
1063 	    (dev_dflags(dev) & D_TRACKCLOSE) ||
1064 	    (vp->v_opencount == 1))) {
1065 		/*
1066 		 * Ugly pty magic, to make pty devices disappear again once
1067 		 * they are closed.
1068 		 */
1069 		node = DEVFS_NODE(ap->a_vp);
1070 		if (node && (node->flags & DEVFS_PTY))
1071 			node->flags |= DEVFS_INVISIBLE;
1072 
1073 		/*
1074 		 * Unlock around dev_dclose(), unless the vnode is
1075 		 * undergoing a vgone/reclaim (during umount).
1076 		 */
1077 		needrelock = 0;
1078 		if ((vp->v_flag & VRECLAIMED) == 0 && vn_islocked(vp)) {
1079 			needrelock = 1;
1080 			vn_unlock(vp);
1081 		}
1082 
1083 		/*
1084 		 * WARNING!  If the device destroys itself the devfs node
1085 		 *	     can disappear here.
1086 		 *
1087 		 * WARNING!  vn_lock() will fail if the vp is in a VRECLAIM,
1088 		 *	     which can occur during umount.
1089 		 */
1090 		error = dev_dclose(dev, ap->a_fflag, S_IFCHR);
1091 		/* node is now stale */
1092 
1093 		if (needrelock) {
1094 			if (vn_lock(vp, LK_EXCLUSIVE |
1095 					LK_RETRY |
1096 					LK_FAILRECLAIM) != 0) {
1097 				panic("devfs_spec_close: vnode %p "
1098 				      "unexpectedly could not be relocked",
1099 				      vp);
1100 			}
1101 		}
1102 	} else {
1103 		error = 0;
1104 	}
1105 	devfs_debug(DEVFS_DEBUG_DEBUG, "devfs_spec_close() -2- \n");
1106 
1107 	/*
1108 	 * Track the actual opens and closes on the vnode.  The last close
1109 	 * disassociates the rdev.  If the rdev is already disassociated or
1110 	 * the opencount is already 0, the vnode might have been revoked
1111 	 * and no further opencount tracking occurs.
1112 	 */
1113 	if (dev)
1114 		release_dev(dev);
1115 	if (vp->v_opencount > 0)
1116 		vop_stdclose(ap);
1117 	return(error);
1118 
1119 }
1120 
1121 
1122 static int
1123 devfs_fo_close(struct file *fp)
1124 {
1125 	struct vnode *vp = (struct vnode *)fp->f_data;
1126 	int error;
1127 
1128 	fp->f_ops = &badfileops;
1129 	error = vn_close(vp, fp->f_flag);
1130 
1131 	return (error);
1132 }
1133 
1134 
1135 /*
1136  * Device-optimized file table vnode read routine.
1137  *
1138  * This bypasses the VOP table and talks directly to the device.  Most
1139  * filesystems just route to specfs and can make this optimization.
1140  *
1141  * MPALMOSTSAFE - acquires mplock
1142  */
1143 static int
1144 devfs_fo_read(struct file *fp, struct uio *uio,
1145 		 struct ucred *cred, int flags)
1146 {
1147 	struct devfs_node *node;
1148 	struct vnode *vp;
1149 	int ioflag;
1150 	int error;
1151 	cdev_t dev;
1152 
1153 	KASSERT(uio->uio_td == curthread,
1154 		("uio_td %p is not td %p", uio->uio_td, curthread));
1155 
1156 	if (uio->uio_resid == 0)
1157 		return 0;
1158 
1159 	vp = (struct vnode *)fp->f_data;
1160 	if (vp == NULL || vp->v_type == VBAD)
1161 		return EBADF;
1162 
1163 	node = DEVFS_NODE(vp);
1164 
1165 	if ((dev = vp->v_rdev) == NULL)
1166 		return EBADF;
1167 
1168 	reference_dev(dev);
1169 
1170 	if ((flags & O_FOFFSET) == 0)
1171 		uio->uio_offset = fp->f_offset;
1172 
1173 	ioflag = 0;
1174 	if (flags & O_FBLOCKING) {
1175 		/* ioflag &= ~IO_NDELAY; */
1176 	} else if (flags & O_FNONBLOCKING) {
1177 		ioflag |= IO_NDELAY;
1178 	} else if (fp->f_flag & FNONBLOCK) {
1179 		ioflag |= IO_NDELAY;
1180 	}
1181 	if (flags & O_FBUFFERED) {
1182 		/* ioflag &= ~IO_DIRECT; */
1183 	} else if (flags & O_FUNBUFFERED) {
1184 		ioflag |= IO_DIRECT;
1185 	} else if (fp->f_flag & O_DIRECT) {
1186 		ioflag |= IO_DIRECT;
1187 	}
1188 	ioflag |= sequential_heuristic(uio, fp);
1189 
1190 	error = dev_dread(dev, uio, ioflag);
1191 
1192 	release_dev(dev);
1193 	if (node)
1194 		nanotime(&node->atime);
1195 	if ((flags & O_FOFFSET) == 0)
1196 		fp->f_offset = uio->uio_offset;
1197 	fp->f_nextoff = uio->uio_offset;
1198 
1199 	return (error);
1200 }
1201 
1202 
1203 static int
1204 devfs_fo_write(struct file *fp, struct uio *uio,
1205 		  struct ucred *cred, int flags)
1206 {
1207 	struct devfs_node *node;
1208 	struct vnode *vp;
1209 	int ioflag;
1210 	int error;
1211 	cdev_t dev;
1212 
1213 	KASSERT(uio->uio_td == curthread,
1214 		("uio_td %p is not p %p", uio->uio_td, curthread));
1215 
1216 	vp = (struct vnode *)fp->f_data;
1217 	if (vp == NULL || vp->v_type == VBAD)
1218 		return EBADF;
1219 
1220 	node = DEVFS_NODE(vp);
1221 
1222 	if (vp->v_type == VREG)
1223 		bwillwrite(uio->uio_resid);
1224 
1225 	vp = (struct vnode *)fp->f_data;
1226 
1227 	if ((dev = vp->v_rdev) == NULL)
1228 		return EBADF;
1229 
1230 	reference_dev(dev);
1231 
1232 	if ((flags & O_FOFFSET) == 0)
1233 		uio->uio_offset = fp->f_offset;
1234 
1235 	ioflag = IO_UNIT;
1236 	if (vp->v_type == VREG &&
1237 	   ((fp->f_flag & O_APPEND) || (flags & O_FAPPEND))) {
1238 		ioflag |= IO_APPEND;
1239 	}
1240 
1241 	if (flags & O_FBLOCKING) {
1242 		/* ioflag &= ~IO_NDELAY; */
1243 	} else if (flags & O_FNONBLOCKING) {
1244 		ioflag |= IO_NDELAY;
1245 	} else if (fp->f_flag & FNONBLOCK) {
1246 		ioflag |= IO_NDELAY;
1247 	}
1248 	if (flags & O_FBUFFERED) {
1249 		/* ioflag &= ~IO_DIRECT; */
1250 	} else if (flags & O_FUNBUFFERED) {
1251 		ioflag |= IO_DIRECT;
1252 	} else if (fp->f_flag & O_DIRECT) {
1253 		ioflag |= IO_DIRECT;
1254 	}
1255 	if (flags & O_FASYNCWRITE) {
1256 		/* ioflag &= ~IO_SYNC; */
1257 	} else if (flags & O_FSYNCWRITE) {
1258 		ioflag |= IO_SYNC;
1259 	} else if (fp->f_flag & O_FSYNC) {
1260 		ioflag |= IO_SYNC;
1261 	}
1262 
1263 	if (vp->v_mount && (vp->v_mount->mnt_flag & MNT_SYNCHRONOUS))
1264 		ioflag |= IO_SYNC;
1265 	ioflag |= sequential_heuristic(uio, fp);
1266 
1267 	error = dev_dwrite(dev, uio, ioflag);
1268 
1269 	release_dev(dev);
1270 	if (node) {
1271 		nanotime(&node->atime);
1272 		nanotime(&node->mtime);
1273 	}
1274 
1275 	if ((flags & O_FOFFSET) == 0)
1276 		fp->f_offset = uio->uio_offset;
1277 	fp->f_nextoff = uio->uio_offset;
1278 
1279 	return (error);
1280 }
1281 
1282 
1283 static int
1284 devfs_fo_stat(struct file *fp, struct stat *sb, struct ucred *cred)
1285 {
1286 	struct vnode *vp;
1287 	struct vattr vattr;
1288 	struct vattr *vap;
1289 	u_short mode;
1290 	cdev_t dev;
1291 	int error;
1292 
1293 	vp = (struct vnode *)fp->f_data;
1294 	if (vp == NULL || vp->v_type == VBAD)
1295 		return EBADF;
1296 
1297 	error = vn_stat(vp, sb, cred);
1298 	if (error)
1299 		return (error);
1300 
1301 	vap = &vattr;
1302 	error = VOP_GETATTR(vp, vap);
1303 	if (error)
1304 		return (error);
1305 
1306 	/*
1307 	 * Zero the spare stat fields
1308 	 */
1309 	sb->st_lspare = 0;
1310 	sb->st_qspare1 = 0;
1311 	sb->st_qspare2 = 0;
1312 
1313 	/*
1314 	 * Copy from vattr table ... or not in case it's a cloned device
1315 	 */
1316 	if (vap->va_fsid != VNOVAL)
1317 		sb->st_dev = vap->va_fsid;
1318 	else
1319 		sb->st_dev = vp->v_mount->mnt_stat.f_fsid.val[0];
1320 
1321 	sb->st_ino = vap->va_fileid;
1322 
1323 	mode = vap->va_mode;
1324 	mode |= S_IFCHR;
1325 	sb->st_mode = mode;
1326 
1327 	if (vap->va_nlink > (nlink_t)-1)
1328 		sb->st_nlink = (nlink_t)-1;
1329 	else
1330 		sb->st_nlink = vap->va_nlink;
1331 
1332 	sb->st_uid = vap->va_uid;
1333 	sb->st_gid = vap->va_gid;
1334 	sb->st_rdev = dev2udev(DEVFS_NODE(vp)->d_dev);
1335 	sb->st_size = vap->va_bytes;
1336 	sb->st_atimespec = vap->va_atime;
1337 	sb->st_mtimespec = vap->va_mtime;
1338 	sb->st_ctimespec = vap->va_ctime;
1339 
1340 	/*
1341 	 * A VCHR and VBLK device may track the last access and last modified
1342 	 * time independantly of the filesystem.  This is particularly true
1343 	 * because device read and write calls may bypass the filesystem.
1344 	 */
1345 	if (vp->v_type == VCHR || vp->v_type == VBLK) {
1346 		dev = vp->v_rdev;
1347 		if (dev != NULL) {
1348 			if (dev->si_lastread) {
1349 				sb->st_atimespec.tv_sec = time_second +
1350 							  (time_uptime -
1351 							   dev->si_lastread);
1352 				sb->st_atimespec.tv_nsec = 0;
1353 			}
1354 			if (dev->si_lastwrite) {
1355 				sb->st_atimespec.tv_sec = time_second +
1356 							  (time_uptime -
1357 							   dev->si_lastwrite);
1358 				sb->st_atimespec.tv_nsec = 0;
1359 			}
1360 		}
1361 	}
1362 
1363         /*
1364 	 * According to www.opengroup.org, the meaning of st_blksize is
1365 	 *   "a filesystem-specific preferred I/O block size for this
1366 	 *    object.  In some filesystem types, this may vary from file
1367 	 *    to file"
1368 	 * Default to PAGE_SIZE after much discussion.
1369 	 */
1370 
1371 	sb->st_blksize = PAGE_SIZE;
1372 
1373 	sb->st_flags = vap->va_flags;
1374 
1375 	error = priv_check_cred(cred, PRIV_VFS_GENERATION, 0);
1376 	if (error)
1377 		sb->st_gen = 0;
1378 	else
1379 		sb->st_gen = (u_int32_t)vap->va_gen;
1380 
1381 	sb->st_blocks = vap->va_bytes / S_BLKSIZE;
1382 
1383 	return (0);
1384 }
1385 
1386 
1387 static int
1388 devfs_fo_kqfilter(struct file *fp, struct knote *kn)
1389 {
1390 	struct vnode *vp;
1391 	int error;
1392 	cdev_t dev;
1393 
1394 	vp = (struct vnode *)fp->f_data;
1395 	if (vp == NULL || vp->v_type == VBAD) {
1396 		error = EBADF;
1397 		goto done;
1398 	}
1399 	if ((dev = vp->v_rdev) == NULL) {
1400 		error = EBADF;
1401 		goto done;
1402 	}
1403 	reference_dev(dev);
1404 
1405 	error = dev_dkqfilter(dev, kn);
1406 
1407 	release_dev(dev);
1408 
1409 done:
1410 	return (error);
1411 }
1412 
1413 /*
1414  * MPALMOSTSAFE - acquires mplock
1415  */
1416 static int
1417 devfs_fo_ioctl(struct file *fp, u_long com, caddr_t data,
1418 		  struct ucred *ucred, struct sysmsg *msg)
1419 {
1420 #if 0
1421 	struct devfs_node *node;
1422 #endif
1423 	struct vnode *vp;
1424 	struct vnode *ovp;
1425 	cdev_t	dev;
1426 	int error;
1427 	struct fiodname_args *name_args;
1428 	size_t namlen;
1429 	const char *name;
1430 
1431 	vp = ((struct vnode *)fp->f_data);
1432 
1433 	if ((dev = vp->v_rdev) == NULL)
1434 		return EBADF;		/* device was revoked */
1435 
1436 	reference_dev(dev);
1437 
1438 #if 0
1439 	node = DEVFS_NODE(vp);
1440 #endif
1441 
1442 	devfs_debug(DEVFS_DEBUG_DEBUG,
1443 		    "devfs_fo_ioctl() called! for dev %s\n",
1444 		    dev->si_name);
1445 
1446 	if (com == FIODTYPE) {
1447 		*(int *)data = dev_dflags(dev) & D_TYPEMASK;
1448 		error = 0;
1449 		goto out;
1450 	} else if (com == FIODNAME) {
1451 		name_args = (struct fiodname_args *)data;
1452 		name = dev->si_name;
1453 		namlen = strlen(name) + 1;
1454 
1455 		devfs_debug(DEVFS_DEBUG_DEBUG,
1456 			    "ioctl, got: FIODNAME for %s\n", name);
1457 
1458 		if (namlen <= name_args->len)
1459 			error = copyout(dev->si_name, name_args->name, namlen);
1460 		else
1461 			error = EINVAL;
1462 
1463 		devfs_debug(DEVFS_DEBUG_DEBUG,
1464 			    "ioctl stuff: error: %d\n", error);
1465 		goto out;
1466 	}
1467 
1468 	error = dev_dioctl(dev, com, data, fp->f_flag, ucred, msg);
1469 
1470 #if 0
1471 	if (node) {
1472 		nanotime(&node->atime);
1473 		nanotime(&node->mtime);
1474 	}
1475 #endif
1476 	if (com == TIOCSCTTY) {
1477 		devfs_debug(DEVFS_DEBUG_DEBUG,
1478 			    "devfs_fo_ioctl: got TIOCSCTTY on %s\n",
1479 			    dev->si_name);
1480 	}
1481 	if (error == 0 && com == TIOCSCTTY) {
1482 		struct proc *p = curthread->td_proc;
1483 		struct session *sess;
1484 
1485 		devfs_debug(DEVFS_DEBUG_DEBUG,
1486 			    "devfs_fo_ioctl: dealing with TIOCSCTTY on %s\n",
1487 			    dev->si_name);
1488 		if (p == NULL) {
1489 			error = ENOTTY;
1490 			goto out;
1491 		}
1492 		sess = p->p_session;
1493 
1494 		/*
1495 		 * Do nothing if reassigning same control tty
1496 		 */
1497 		if (sess->s_ttyvp == vp) {
1498 			error = 0;
1499 			goto out;
1500 		}
1501 
1502 		/*
1503 		 * Get rid of reference to old control tty
1504 		 */
1505 		ovp = sess->s_ttyvp;
1506 		vref(vp);
1507 		sess->s_ttyvp = vp;
1508 		if (ovp)
1509 			vrele(ovp);
1510 	}
1511 
1512 out:
1513 	release_dev(dev);
1514 	devfs_debug(DEVFS_DEBUG_DEBUG, "devfs_fo_ioctl() finished! \n");
1515 	return (error);
1516 }
1517 
1518 
1519 static int
1520 devfs_spec_fsync(struct vop_fsync_args *ap)
1521 {
1522 	struct vnode *vp = ap->a_vp;
1523 	int error;
1524 
1525 	if (!vn_isdisk(vp, NULL))
1526 		return (0);
1527 
1528 	/*
1529 	 * Flush all dirty buffers associated with a block device.
1530 	 */
1531 	error = vfsync(vp, ap->a_waitfor, 10000, NULL, NULL);
1532 	return (error);
1533 }
1534 
1535 static int
1536 devfs_spec_read(struct vop_read_args *ap)
1537 {
1538 	struct devfs_node *node;
1539 	struct vnode *vp;
1540 	struct uio *uio;
1541 	cdev_t dev;
1542 	int error;
1543 
1544 	vp = ap->a_vp;
1545 	dev = vp->v_rdev;
1546 	uio = ap->a_uio;
1547 	node = DEVFS_NODE(vp);
1548 
1549 	if (dev == NULL)		/* device was revoked */
1550 		return (EBADF);
1551 	if (uio->uio_resid == 0)
1552 		return (0);
1553 
1554 	vn_unlock(vp);
1555 	error = dev_dread(dev, uio, ap->a_ioflag);
1556 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1557 
1558 	if (node)
1559 		nanotime(&node->atime);
1560 
1561 	return (error);
1562 }
1563 
1564 /*
1565  * Vnode op for write
1566  *
1567  * spec_write(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
1568  *	      struct ucred *a_cred)
1569  */
1570 static int
1571 devfs_spec_write(struct vop_write_args *ap)
1572 {
1573 	struct devfs_node *node;
1574 	struct vnode *vp;
1575 	struct uio *uio;
1576 	cdev_t dev;
1577 	int error;
1578 
1579 	vp = ap->a_vp;
1580 	dev = vp->v_rdev;
1581 	uio = ap->a_uio;
1582 	node = DEVFS_NODE(vp);
1583 
1584 	KKASSERT(uio->uio_segflg != UIO_NOCOPY);
1585 
1586 	if (dev == NULL)		/* device was revoked */
1587 		return (EBADF);
1588 
1589 	vn_unlock(vp);
1590 	error = dev_dwrite(dev, uio, ap->a_ioflag);
1591 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1592 
1593 	if (node) {
1594 		nanotime(&node->atime);
1595 		nanotime(&node->mtime);
1596 	}
1597 
1598 	return (error);
1599 }
1600 
1601 /*
1602  * Device ioctl operation.
1603  *
1604  * spec_ioctl(struct vnode *a_vp, int a_command, caddr_t a_data,
1605  *	      int a_fflag, struct ucred *a_cred, struct sysmsg *msg)
1606  */
1607 static int
1608 devfs_spec_ioctl(struct vop_ioctl_args *ap)
1609 {
1610 	struct vnode *vp = ap->a_vp;
1611 #if 0
1612 	struct devfs_node *node;
1613 #endif
1614 	cdev_t dev;
1615 
1616 	if ((dev = vp->v_rdev) == NULL)
1617 		return (EBADF);		/* device was revoked */
1618 #if 0
1619 	node = DEVFS_NODE(vp);
1620 
1621 	if (node) {
1622 		nanotime(&node->atime);
1623 		nanotime(&node->mtime);
1624 	}
1625 #endif
1626 
1627 	return (dev_dioctl(dev, ap->a_command, ap->a_data, ap->a_fflag,
1628 			   ap->a_cred, ap->a_sysmsg));
1629 }
1630 
1631 /*
1632  * spec_kqfilter(struct vnode *a_vp, struct knote *a_kn)
1633  */
1634 /* ARGSUSED */
1635 static int
1636 devfs_spec_kqfilter(struct vop_kqfilter_args *ap)
1637 {
1638 	struct vnode *vp = ap->a_vp;
1639 #if 0
1640 	struct devfs_node *node;
1641 #endif
1642 	cdev_t dev;
1643 
1644 	if ((dev = vp->v_rdev) == NULL)
1645 		return (EBADF);		/* device was revoked (EBADF) */
1646 #if 0
1647 	node = DEVFS_NODE(vp);
1648 
1649 	if (node)
1650 		nanotime(&node->atime);
1651 #endif
1652 
1653 	return (dev_dkqfilter(dev, ap->a_kn));
1654 }
1655 
1656 /*
1657  * Convert a vnode strategy call into a device strategy call.  Vnode strategy
1658  * calls are not limited to device DMA limits so we have to deal with the
1659  * case.
1660  *
1661  * spec_strategy(struct vnode *a_vp, struct bio *a_bio)
1662  */
1663 static int
1664 devfs_spec_strategy(struct vop_strategy_args *ap)
1665 {
1666 	struct bio *bio = ap->a_bio;
1667 	struct buf *bp = bio->bio_buf;
1668 	struct buf *nbp;
1669 	struct vnode *vp;
1670 	struct mount *mp;
1671 	int chunksize;
1672 	int maxiosize;
1673 
1674 	if (bp->b_cmd != BUF_CMD_READ && LIST_FIRST(&bp->b_dep) != NULL)
1675 		buf_start(bp);
1676 
1677 	/*
1678 	 * Collect statistics on synchronous and asynchronous read
1679 	 * and write counts for disks that have associated filesystems.
1680 	 */
1681 	vp = ap->a_vp;
1682 	KKASSERT(vp->v_rdev != NULL);	/* XXX */
1683 	if (vn_isdisk(vp, NULL) && (mp = vp->v_rdev->si_mountpoint) != NULL) {
1684 		if (bp->b_cmd == BUF_CMD_READ) {
1685 			if (bp->b_flags & BIO_SYNC)
1686 				mp->mnt_stat.f_syncreads++;
1687 			else
1688 				mp->mnt_stat.f_asyncreads++;
1689 		} else {
1690 			if (bp->b_flags & BIO_SYNC)
1691 				mp->mnt_stat.f_syncwrites++;
1692 			else
1693 				mp->mnt_stat.f_asyncwrites++;
1694 		}
1695 	}
1696 
1697         /*
1698          * Device iosize limitations only apply to read and write.  Shortcut
1699          * the I/O if it fits.
1700          */
1701 	if ((maxiosize = vp->v_rdev->si_iosize_max) == 0) {
1702 		devfs_debug(DEVFS_DEBUG_DEBUG,
1703 			    "%s: si_iosize_max not set!\n",
1704 			    dev_dname(vp->v_rdev));
1705 		maxiosize = MAXPHYS;
1706 	}
1707 #if SPEC_CHAIN_DEBUG & 2
1708 	maxiosize = 4096;
1709 #endif
1710         if (bp->b_bcount <= maxiosize ||
1711             (bp->b_cmd != BUF_CMD_READ && bp->b_cmd != BUF_CMD_WRITE)) {
1712                 dev_dstrategy_chain(vp->v_rdev, bio);
1713                 return (0);
1714         }
1715 
1716 	/*
1717 	 * Clone the buffer and set up an I/O chain to chunk up the I/O.
1718 	 */
1719 	nbp = kmalloc(sizeof(*bp), M_DEVBUF, M_INTWAIT|M_ZERO);
1720 	initbufbio(nbp);
1721 	buf_dep_init(nbp);
1722 	BUF_LOCK(nbp, LK_EXCLUSIVE);
1723 	BUF_KERNPROC(nbp);
1724 	nbp->b_vp = vp;
1725 	nbp->b_flags = B_PAGING | (bp->b_flags & B_BNOCLIP);
1726 	nbp->b_data = bp->b_data;
1727 	nbp->b_bio1.bio_done = devfs_spec_strategy_done;
1728 	nbp->b_bio1.bio_offset = bio->bio_offset;
1729 	nbp->b_bio1.bio_caller_info1.ptr = bio;
1730 
1731 	/*
1732 	 * Start the first transfer
1733 	 */
1734 	if (vn_isdisk(vp, NULL))
1735 		chunksize = vp->v_rdev->si_bsize_phys;
1736 	else
1737 		chunksize = DEV_BSIZE;
1738 	chunksize = maxiosize / chunksize * chunksize;
1739 #if SPEC_CHAIN_DEBUG & 1
1740 	devfs_debug(DEVFS_DEBUG_DEBUG,
1741 		    "spec_strategy chained I/O chunksize=%d\n",
1742 		    chunksize);
1743 #endif
1744 	nbp->b_cmd = bp->b_cmd;
1745 	nbp->b_bcount = chunksize;
1746 	nbp->b_bufsize = chunksize;	/* used to detect a short I/O */
1747 	nbp->b_bio1.bio_caller_info2.index = chunksize;
1748 
1749 #if SPEC_CHAIN_DEBUG & 1
1750 	devfs_debug(DEVFS_DEBUG_DEBUG,
1751 		    "spec_strategy: chain %p offset %d/%d bcount %d\n",
1752 		    bp, 0, bp->b_bcount, nbp->b_bcount);
1753 #endif
1754 
1755 	dev_dstrategy(vp->v_rdev, &nbp->b_bio1);
1756 
1757 	if (DEVFS_NODE(vp)) {
1758 		nanotime(&DEVFS_NODE(vp)->atime);
1759 		nanotime(&DEVFS_NODE(vp)->mtime);
1760 	}
1761 
1762 	return (0);
1763 }
1764 
1765 /*
1766  * Chunked up transfer completion routine - chain transfers until done
1767  *
1768  * NOTE: MPSAFE callback.
1769  */
1770 static
1771 void
1772 devfs_spec_strategy_done(struct bio *nbio)
1773 {
1774 	struct buf *nbp = nbio->bio_buf;
1775 	struct bio *bio = nbio->bio_caller_info1.ptr;	/* original bio */
1776 	struct buf *bp = bio->bio_buf;			/* original bp */
1777 	int chunksize = nbio->bio_caller_info2.index;	/* chunking */
1778 	int boffset = nbp->b_data - bp->b_data;
1779 
1780 	if (nbp->b_flags & B_ERROR) {
1781 		/*
1782 		 * An error terminates the chain, propogate the error back
1783 		 * to the original bp
1784 		 */
1785 		bp->b_flags |= B_ERROR;
1786 		bp->b_error = nbp->b_error;
1787 		bp->b_resid = bp->b_bcount - boffset +
1788 			      (nbp->b_bcount - nbp->b_resid);
1789 #if SPEC_CHAIN_DEBUG & 1
1790 		devfs_debug(DEVFS_DEBUG_DEBUG,
1791 			    "spec_strategy: chain %p error %d bcount %d/%d\n",
1792 			    bp, bp->b_error, bp->b_bcount,
1793 			    bp->b_bcount - bp->b_resid);
1794 #endif
1795 	} else if (nbp->b_resid) {
1796 		/*
1797 		 * A short read or write terminates the chain
1798 		 */
1799 		bp->b_error = nbp->b_error;
1800 		bp->b_resid = bp->b_bcount - boffset +
1801 			      (nbp->b_bcount - nbp->b_resid);
1802 #if SPEC_CHAIN_DEBUG & 1
1803 		devfs_debug(DEVFS_DEBUG_DEBUG,
1804 			    "spec_strategy: chain %p short read(1) "
1805 			    "bcount %d/%d\n",
1806 			    bp, bp->b_bcount - bp->b_resid, bp->b_bcount);
1807 #endif
1808 	} else if (nbp->b_bcount != nbp->b_bufsize) {
1809 		/*
1810 		 * A short read or write can also occur by truncating b_bcount
1811 		 */
1812 #if SPEC_CHAIN_DEBUG & 1
1813 		devfs_debug(DEVFS_DEBUG_DEBUG,
1814 			    "spec_strategy: chain %p short read(2) "
1815 			    "bcount %d/%d\n",
1816 			    bp, nbp->b_bcount + boffset, bp->b_bcount);
1817 #endif
1818 		bp->b_error = 0;
1819 		bp->b_bcount = nbp->b_bcount + boffset;
1820 		bp->b_resid = nbp->b_resid;
1821 	} else if (nbp->b_bcount + boffset == bp->b_bcount) {
1822 		/*
1823 		 * No more data terminates the chain
1824 		 */
1825 #if SPEC_CHAIN_DEBUG & 1
1826 		devfs_debug(DEVFS_DEBUG_DEBUG,
1827 			    "spec_strategy: chain %p finished bcount %d\n",
1828 			    bp, bp->b_bcount);
1829 #endif
1830 		bp->b_error = 0;
1831 		bp->b_resid = 0;
1832 	} else {
1833 		/*
1834 		 * Continue the chain
1835 		 */
1836 		boffset += nbp->b_bcount;
1837 		nbp->b_data = bp->b_data + boffset;
1838 		nbp->b_bcount = bp->b_bcount - boffset;
1839 		if (nbp->b_bcount > chunksize)
1840 			nbp->b_bcount = chunksize;
1841 		nbp->b_bio1.bio_done = devfs_spec_strategy_done;
1842 		nbp->b_bio1.bio_offset = bio->bio_offset + boffset;
1843 
1844 #if SPEC_CHAIN_DEBUG & 1
1845 		devfs_debug(DEVFS_DEBUG_DEBUG,
1846 			    "spec_strategy: chain %p offset %d/%d bcount %d\n",
1847 			    bp, boffset, bp->b_bcount, nbp->b_bcount);
1848 #endif
1849 
1850 		dev_dstrategy(nbp->b_vp->v_rdev, &nbp->b_bio1);
1851 		return;
1852 	}
1853 
1854 	/*
1855 	 * Fall through to here on termination.  biodone(bp) and
1856 	 * clean up and free nbp.
1857 	 */
1858 	biodone(bio);
1859 	BUF_UNLOCK(nbp);
1860 	uninitbufbio(nbp);
1861 	kfree(nbp, M_DEVBUF);
1862 }
1863 
1864 /*
1865  * spec_freeblks(struct vnode *a_vp, daddr_t a_addr, daddr_t a_length)
1866  */
1867 static int
1868 devfs_spec_freeblks(struct vop_freeblks_args *ap)
1869 {
1870 	struct buf *bp;
1871 
1872 	/*
1873 	 * XXX: This assumes that strategy does the deed right away.
1874 	 * XXX: this may not be TRTTD.
1875 	 */
1876 	KKASSERT(ap->a_vp->v_rdev != NULL);
1877 	if ((ap->a_vp->v_rdev->si_flags & SI_CANFREE) == 0)
1878 		return (0);
1879 	bp = geteblk(ap->a_length);
1880 	bp->b_cmd = BUF_CMD_FREEBLKS;
1881 	bp->b_bio1.bio_offset = ap->a_offset;
1882 	bp->b_bcount = ap->a_length;
1883 	dev_dstrategy(ap->a_vp->v_rdev, &bp->b_bio1);
1884 	return (0);
1885 }
1886 
1887 /*
1888  * Implement degenerate case where the block requested is the block
1889  * returned, and assume that the entire device is contiguous in regards
1890  * to the contiguous block range (runp and runb).
1891  *
1892  * spec_bmap(struct vnode *a_vp, off_t a_loffset,
1893  *	     off_t *a_doffsetp, int *a_runp, int *a_runb)
1894  */
1895 static int
1896 devfs_spec_bmap(struct vop_bmap_args *ap)
1897 {
1898 	if (ap->a_doffsetp != NULL)
1899 		*ap->a_doffsetp = ap->a_loffset;
1900 	if (ap->a_runp != NULL)
1901 		*ap->a_runp = MAXBSIZE;
1902 	if (ap->a_runb != NULL) {
1903 		if (ap->a_loffset < MAXBSIZE)
1904 			*ap->a_runb = (int)ap->a_loffset;
1905 		else
1906 			*ap->a_runb = MAXBSIZE;
1907 	}
1908 	return (0);
1909 }
1910 
1911 
1912 /*
1913  * Special device advisory byte-level locks.
1914  *
1915  * spec_advlock(struct vnode *a_vp, caddr_t a_id, int a_op,
1916  *		struct flock *a_fl, int a_flags)
1917  */
1918 /* ARGSUSED */
1919 static int
1920 devfs_spec_advlock(struct vop_advlock_args *ap)
1921 {
1922 	return ((ap->a_flags & F_POSIX) ? EINVAL : EOPNOTSUPP);
1923 }
1924 
1925 /*
1926  * NOTE: MPSAFE callback.
1927  */
1928 static void
1929 devfs_spec_getpages_iodone(struct bio *bio)
1930 {
1931 	bio->bio_buf->b_cmd = BUF_CMD_DONE;
1932 	wakeup(bio->bio_buf);
1933 }
1934 
1935 /*
1936  * spec_getpages() - get pages associated with device vnode.
1937  *
1938  * Note that spec_read and spec_write do not use the buffer cache, so we
1939  * must fully implement getpages here.
1940  */
1941 static int
1942 devfs_spec_getpages(struct vop_getpages_args *ap)
1943 {
1944 	vm_offset_t kva;
1945 	int error;
1946 	int i, pcount, size;
1947 	struct buf *bp;
1948 	vm_page_t m;
1949 	vm_ooffset_t offset;
1950 	int toff, nextoff, nread;
1951 	struct vnode *vp = ap->a_vp;
1952 	int blksiz;
1953 	int gotreqpage;
1954 
1955 	error = 0;
1956 	pcount = round_page(ap->a_count) / PAGE_SIZE;
1957 
1958 	/*
1959 	 * Calculate the offset of the transfer and do sanity check.
1960 	 */
1961 	offset = IDX_TO_OFF(ap->a_m[0]->pindex) + ap->a_offset;
1962 
1963 	/*
1964 	 * Round up physical size for real devices.  We cannot round using
1965 	 * v_mount's block size data because v_mount has nothing to do with
1966 	 * the device.  i.e. it's usually '/dev'.  We need the physical block
1967 	 * size for the device itself.
1968 	 *
1969 	 * We can't use v_rdev->si_mountpoint because it only exists when the
1970 	 * block device is mounted.  However, we can use v_rdev.
1971 	 */
1972 	if (vn_isdisk(vp, NULL))
1973 		blksiz = vp->v_rdev->si_bsize_phys;
1974 	else
1975 		blksiz = DEV_BSIZE;
1976 
1977 	size = (ap->a_count + blksiz - 1) & ~(blksiz - 1);
1978 
1979 	bp = getpbuf_kva(NULL);
1980 	kva = (vm_offset_t)bp->b_data;
1981 
1982 	/*
1983 	 * Map the pages to be read into the kva.
1984 	 */
1985 	pmap_qenter(kva, ap->a_m, pcount);
1986 
1987 	/* Build a minimal buffer header. */
1988 	bp->b_cmd = BUF_CMD_READ;
1989 	bp->b_bcount = size;
1990 	bp->b_resid = 0;
1991 	bsetrunningbufspace(bp, size);
1992 
1993 	bp->b_bio1.bio_offset = offset;
1994 	bp->b_bio1.bio_done = devfs_spec_getpages_iodone;
1995 
1996 	mycpu->gd_cnt.v_vnodein++;
1997 	mycpu->gd_cnt.v_vnodepgsin += pcount;
1998 
1999 	/* Do the input. */
2000 	vn_strategy(ap->a_vp, &bp->b_bio1);
2001 
2002 	crit_enter();
2003 
2004 	/* We definitely need to be at splbio here. */
2005 	while (bp->b_cmd != BUF_CMD_DONE)
2006 		tsleep(bp, 0, "spread", 0);
2007 
2008 	crit_exit();
2009 
2010 	if (bp->b_flags & B_ERROR) {
2011 		if (bp->b_error)
2012 			error = bp->b_error;
2013 		else
2014 			error = EIO;
2015 	}
2016 
2017 	/*
2018 	 * If EOF is encountered we must zero-extend the result in order
2019 	 * to ensure that the page does not contain garabge.  When no
2020 	 * error occurs, an early EOF is indicated if b_bcount got truncated.
2021 	 * b_resid is relative to b_bcount and should be 0, but some devices
2022 	 * might indicate an EOF with b_resid instead of truncating b_bcount.
2023 	 */
2024 	nread = bp->b_bcount - bp->b_resid;
2025 	if (nread < ap->a_count)
2026 		bzero((caddr_t)kva + nread, ap->a_count - nread);
2027 	pmap_qremove(kva, pcount);
2028 
2029 	gotreqpage = 0;
2030 	for (i = 0, toff = 0; i < pcount; i++, toff = nextoff) {
2031 		nextoff = toff + PAGE_SIZE;
2032 		m = ap->a_m[i];
2033 
2034 		m->flags &= ~PG_ZERO;
2035 
2036 		/*
2037 		 * NOTE: vm_page_undirty/clear_dirty etc do not clear the
2038 		 *	 pmap modified bit.  pmap modified bit should have
2039 		 *	 already been cleared.
2040 		 */
2041 		if (nextoff <= nread) {
2042 			m->valid = VM_PAGE_BITS_ALL;
2043 			vm_page_undirty(m);
2044 		} else if (toff < nread) {
2045 			/*
2046 			 * Since this is a VM request, we have to supply the
2047 			 * unaligned offset to allow vm_page_set_valid()
2048 			 * to zero sub-DEV_BSIZE'd portions of the page.
2049 			 */
2050 			vm_page_set_valid(m, 0, nread - toff);
2051 			vm_page_clear_dirty_end_nonincl(m, 0, nread - toff);
2052 		} else {
2053 			m->valid = 0;
2054 			vm_page_undirty(m);
2055 		}
2056 
2057 		if (i != ap->a_reqpage) {
2058 			/*
2059 			 * Just in case someone was asking for this page we
2060 			 * now tell them that it is ok to use.
2061 			 */
2062 			if (!error || (m->valid == VM_PAGE_BITS_ALL)) {
2063 				if (m->valid) {
2064 					if (m->flags & PG_REFERENCED) {
2065 						vm_page_activate(m);
2066 					} else {
2067 						vm_page_deactivate(m);
2068 					}
2069 					vm_page_wakeup(m);
2070 				} else {
2071 					vm_page_free(m);
2072 				}
2073 			} else {
2074 				vm_page_free(m);
2075 			}
2076 		} else if (m->valid) {
2077 			gotreqpage = 1;
2078 			/*
2079 			 * Since this is a VM request, we need to make the
2080 			 * entire page presentable by zeroing invalid sections.
2081 			 */
2082 			if (m->valid != VM_PAGE_BITS_ALL)
2083 			    vm_page_zero_invalid(m, FALSE);
2084 		}
2085 	}
2086 	if (!gotreqpage) {
2087 		m = ap->a_m[ap->a_reqpage];
2088 		devfs_debug(DEVFS_DEBUG_WARNING,
2089 	    "spec_getpages:(%s) I/O read failure: (error=%d) bp %p vp %p\n",
2090 			devtoname(vp->v_rdev), error, bp, bp->b_vp);
2091 		devfs_debug(DEVFS_DEBUG_WARNING,
2092 	    "               size: %d, resid: %d, a_count: %d, valid: 0x%x\n",
2093 		    size, bp->b_resid, ap->a_count, m->valid);
2094 		devfs_debug(DEVFS_DEBUG_WARNING,
2095 	    "               nread: %d, reqpage: %d, pindex: %lu, pcount: %d\n",
2096 		    nread, ap->a_reqpage, (u_long)m->pindex, pcount);
2097 		/*
2098 		 * Free the buffer header back to the swap buffer pool.
2099 		 */
2100 		relpbuf(bp, NULL);
2101 		return VM_PAGER_ERROR;
2102 	}
2103 	/*
2104 	 * Free the buffer header back to the swap buffer pool.
2105 	 */
2106 	relpbuf(bp, NULL);
2107 	if (DEVFS_NODE(ap->a_vp))
2108 		nanotime(&DEVFS_NODE(ap->a_vp)->mtime);
2109 	return VM_PAGER_OK;
2110 }
2111 
2112 static __inline
2113 int
2114 sequential_heuristic(struct uio *uio, struct file *fp)
2115 {
2116 	/*
2117 	 * Sequential heuristic - detect sequential operation
2118 	 */
2119 	if ((uio->uio_offset == 0 && fp->f_seqcount > 0) ||
2120 	    uio->uio_offset == fp->f_nextoff) {
2121 		/*
2122 		 * XXX we assume that the filesystem block size is
2123 		 * the default.  Not true, but still gives us a pretty
2124 		 * good indicator of how sequential the read operations
2125 		 * are.
2126 		 */
2127 		int tmpseq = fp->f_seqcount;
2128 
2129 		tmpseq += (uio->uio_resid + BKVASIZE - 1) / BKVASIZE;
2130 		if (tmpseq > IO_SEQMAX)
2131 			tmpseq = IO_SEQMAX;
2132 		fp->f_seqcount = tmpseq;
2133 		return(fp->f_seqcount << IO_SEQSHIFT);
2134 	}
2135 
2136 	/*
2137 	 * Not sequential, quick draw-down of seqcount
2138 	 */
2139 	if (fp->f_seqcount > 1)
2140 		fp->f_seqcount = 1;
2141 	else
2142 		fp->f_seqcount = 0;
2143 	return(0);
2144 }
2145