xref: /dragonfly/sys/vfs/devfs/devfs_vnops.c (revision 60e242c5)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 2009 The DragonFly Project.  All rights reserved.
5  *
6  * This code is derived from software contributed to The DragonFly Project
7  * by Alex Hornung <ahornung@gmail.com>
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  * 3. Neither the name of The DragonFly Project nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific, prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
27  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  */
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/time.h>
39 #include <sys/kernel.h>
40 #include <sys/lock.h>
41 #include <sys/fcntl.h>
42 #include <sys/proc.h>
43 #include <sys/caps.h>
44 #include <sys/signalvar.h>
45 #include <sys/vnode.h>
46 #include <sys/uio.h>
47 #include <sys/mount.h>
48 #include <sys/file.h>
49 #include <sys/dirent.h>
50 #include <sys/malloc.h>
51 #include <sys/stat.h>
52 #include <sys/reg.h>
53 #include <vm/vm_pager.h>
54 #include <vm/vm_zone.h>
55 #include <vm/vm_object.h>
56 #include <sys/filio.h>
57 #include <sys/ttycom.h>
58 #include <sys/tty.h>
59 #include <sys/diskslice.h>
60 #include <sys/sysctl.h>
61 #include <sys/devfs.h>
62 #include <sys/pioctl.h>
63 #include <vfs/fifofs/fifo.h>
64 
65 #include <machine/limits.h>
66 
67 #include <sys/buf2.h>
68 #include <vm/vm_page2.h>
69 
70 #ifndef SPEC_CHAIN_DEBUG
71 #define SPEC_CHAIN_DEBUG 0
72 #endif
73 
74 MALLOC_DECLARE(M_DEVFS);
75 #define DEVFS_BADOP	(void *)devfs_vop_badop
76 
77 static int devfs_vop_badop(struct vop_generic_args *);
78 static int devfs_vop_access(struct vop_access_args *);
79 static int devfs_vop_inactive(struct vop_inactive_args *);
80 static int devfs_vop_reclaim(struct vop_reclaim_args *);
81 static int devfs_vop_readdir(struct vop_readdir_args *);
82 static int devfs_vop_getattr(struct vop_getattr_args *);
83 static int devfs_vop_setattr(struct vop_setattr_args *);
84 static int devfs_vop_readlink(struct vop_readlink_args *);
85 static int devfs_vop_print(struct vop_print_args *);
86 
87 static int devfs_vop_nresolve(struct vop_nresolve_args *);
88 static int devfs_vop_nlookupdotdot(struct vop_nlookupdotdot_args *);
89 static int devfs_vop_nmkdir(struct vop_nmkdir_args *);
90 static int devfs_vop_nsymlink(struct vop_nsymlink_args *);
91 static int devfs_vop_nrmdir(struct vop_nrmdir_args *);
92 static int devfs_vop_nremove(struct vop_nremove_args *);
93 
94 static int devfs_spec_open(struct vop_open_args *);
95 static int devfs_spec_close(struct vop_close_args *);
96 static int devfs_spec_fsync(struct vop_fsync_args *);
97 
98 static int devfs_spec_read(struct vop_read_args *);
99 static int devfs_spec_write(struct vop_write_args *);
100 static int devfs_spec_ioctl(struct vop_ioctl_args *);
101 static int devfs_spec_kqfilter(struct vop_kqfilter_args *);
102 static int devfs_spec_strategy(struct vop_strategy_args *);
103 static void devfs_spec_strategy_done(struct bio *);
104 static int devfs_spec_freeblks(struct vop_freeblks_args *);
105 static int devfs_spec_bmap(struct vop_bmap_args *);
106 static int devfs_spec_advlock(struct vop_advlock_args *);
107 static void devfs_spec_getpages_iodone(struct bio *);
108 static int devfs_spec_getpages(struct vop_getpages_args *);
109 
110 static int devfs_fo_close(struct file *);
111 static int devfs_fo_read(struct file *, struct uio *, struct ucred *, int);
112 static int devfs_fo_write(struct file *, struct uio *, struct ucred *, int);
113 static int devfs_fo_stat(struct file *, struct stat *, struct ucred *);
114 static int devfs_fo_kqfilter(struct file *, struct knote *);
115 static int devfs_fo_ioctl(struct file *, u_long, caddr_t,
116 				struct ucred *, struct sysmsg *);
117 static __inline int sequential_heuristic(struct uio *, struct file *);
118 
119 extern struct lock devfs_lock;
120 
121 /*
122  * devfs vnode operations for regular files.  All vnode ops are MPSAFE.
123  */
124 struct vop_ops devfs_vnode_norm_vops = {
125 	.vop_default =		vop_defaultop,
126 	.vop_access =		devfs_vop_access,
127 	.vop_advlock =		DEVFS_BADOP,
128 	.vop_bmap =		DEVFS_BADOP,
129 	.vop_close =		vop_stdclose,
130 	.vop_getattr =		devfs_vop_getattr,
131 	.vop_inactive =		devfs_vop_inactive,
132 	.vop_ncreate =		DEVFS_BADOP,
133 	.vop_nresolve =		devfs_vop_nresolve,
134 	.vop_nlookupdotdot =	devfs_vop_nlookupdotdot,
135 	.vop_nlink =		DEVFS_BADOP,
136 	.vop_nmkdir =		devfs_vop_nmkdir,
137 	.vop_nmknod =		DEVFS_BADOP,
138 	.vop_nremove =		devfs_vop_nremove,
139 	.vop_nrename =		DEVFS_BADOP,
140 	.vop_nrmdir =		devfs_vop_nrmdir,
141 	.vop_nsymlink =		devfs_vop_nsymlink,
142 	.vop_open =		vop_stdopen,
143 	.vop_pathconf =		vop_stdpathconf,
144 	.vop_print =		devfs_vop_print,
145 	.vop_read =		DEVFS_BADOP,
146 	.vop_readdir =		devfs_vop_readdir,
147 	.vop_readlink =		devfs_vop_readlink,
148 	.vop_reallocblks =	DEVFS_BADOP,
149 	.vop_reclaim =		devfs_vop_reclaim,
150 	.vop_setattr =		devfs_vop_setattr,
151 	.vop_write =		DEVFS_BADOP,
152 	.vop_ioctl =		DEVFS_BADOP
153 };
154 
155 /*
156  * devfs vnode operations for character devices.  All vnode ops are MPSAFE.
157  */
158 struct vop_ops devfs_vnode_dev_vops = {
159 	.vop_default =		vop_defaultop,
160 	.vop_access =		devfs_vop_access,
161 	.vop_advlock =		devfs_spec_advlock,
162 	.vop_bmap =		devfs_spec_bmap,
163 	.vop_close =		devfs_spec_close,
164 	.vop_freeblks =		devfs_spec_freeblks,
165 	.vop_fsync =		devfs_spec_fsync,
166 	.vop_getattr =		devfs_vop_getattr,
167 	.vop_getpages =		devfs_spec_getpages,
168 	.vop_inactive =		devfs_vop_inactive,
169 	.vop_open =		devfs_spec_open,
170 	.vop_pathconf =		vop_stdpathconf,
171 	.vop_print =		devfs_vop_print,
172 	.vop_kqfilter =		devfs_spec_kqfilter,
173 	.vop_read =		devfs_spec_read,
174 	.vop_readdir =		DEVFS_BADOP,
175 	.vop_readlink =		DEVFS_BADOP,
176 	.vop_reallocblks =	DEVFS_BADOP,
177 	.vop_reclaim =		devfs_vop_reclaim,
178 	.vop_setattr =		devfs_vop_setattr,
179 	.vop_strategy =		devfs_spec_strategy,
180 	.vop_write =		devfs_spec_write,
181 	.vop_ioctl =		devfs_spec_ioctl
182 };
183 
184 /*
185  * devfs file pointer operations.  All fileops are MPSAFE.
186  */
187 struct vop_ops *devfs_vnode_dev_vops_p = &devfs_vnode_dev_vops;
188 
189 struct fileops devfs_dev_fileops = {
190 	.fo_read	= devfs_fo_read,
191 	.fo_write	= devfs_fo_write,
192 	.fo_ioctl	= devfs_fo_ioctl,
193 	.fo_kqfilter	= devfs_fo_kqfilter,
194 	.fo_stat	= devfs_fo_stat,
195 	.fo_close	= devfs_fo_close,
196 	.fo_shutdown	= nofo_shutdown
197 };
198 
199 /*
200  * These two functions are possibly temporary hacks for devices (aka
201  * the pty code) which want to control the node attributes themselves.
202  *
203  * XXX we may ultimately desire to simply remove the uid/gid/mode
204  * from the node entirely.
205  *
206  * MPSAFE - sorta.  Theoretically the overwrite can compete since they
207  *	    are loading from the same fields.
208  */
209 static __inline void
210 node_sync_dev_get(struct devfs_node *node)
211 {
212 	cdev_t dev;
213 
214 	if ((dev = node->d_dev) && (dev->si_flags & SI_OVERRIDE)) {
215 		node->uid = dev->si_uid;
216 		node->gid = dev->si_gid;
217 		node->mode = dev->si_perms;
218 	}
219 }
220 
221 static __inline void
222 node_sync_dev_set(struct devfs_node *node)
223 {
224 	cdev_t dev;
225 
226 	if ((dev = node->d_dev) && (dev->si_flags & SI_OVERRIDE)) {
227 		dev->si_uid = node->uid;
228 		dev->si_gid = node->gid;
229 		dev->si_perms = node->mode;
230 	}
231 }
232 
233 /*
234  * generic entry point for unsupported operations
235  */
236 static int
237 devfs_vop_badop(struct vop_generic_args *ap)
238 {
239 	return (EIO);
240 }
241 
242 
243 static int
244 devfs_vop_access(struct vop_access_args *ap)
245 {
246 	struct devfs_node *node = DEVFS_NODE(ap->a_vp);
247 	int error;
248 
249 	if (!devfs_node_is_accessible(node))
250 		return ENOENT;
251 	node_sync_dev_get(node);
252 	error = vop_helper_access(ap, node->uid, node->gid,
253 				  node->mode, node->flags);
254 
255 	return error;
256 }
257 
258 
259 static int
260 devfs_vop_inactive(struct vop_inactive_args *ap)
261 {
262 	struct devfs_node *node = DEVFS_NODE(ap->a_vp);
263 
264 	if (node == NULL || (node->flags & DEVFS_NODE_LINKED) == 0)
265 		vrecycle(ap->a_vp);
266 	return 0;
267 }
268 
269 
270 static int
271 devfs_vop_reclaim(struct vop_reclaim_args *ap)
272 {
273 	struct devfs_node *node;
274 	struct vnode *vp;
275 	int locked;
276 
277 	/*
278 	 * Check if it is locked already. if not, we acquire the devfs lock
279 	 */
280 	if ((lockstatus(&devfs_lock, curthread)) != LK_EXCLUSIVE) {
281 		lockmgr(&devfs_lock, LK_EXCLUSIVE);
282 		locked = 1;
283 	} else {
284 		locked = 0;
285 	}
286 
287 	/*
288 	 * Get rid of the devfs_node if it is no longer linked into the
289 	 * topology.  Interlocked by devfs_lock.  However, be careful
290 	 * interposing other operations between cleaning out v_data and
291 	 * devfs_freep() as the node is only protected by devfs_lock
292 	 * once the vnode is disassociated.
293 	 */
294 	vp = ap->a_vp;
295 	node = DEVFS_NODE(vp);
296 
297 	if (node) {
298 		if (node->v_node != vp) {
299 			kprintf("NODE->V_NODE MISMATCH VP=%p NODEVP=%p\n",
300 				vp, node->v_node);
301 		}
302 		vp->v_data = NULL;
303 		node->v_node = NULL;
304 		if ((node->flags & DEVFS_NODE_LINKED) == 0)
305 			devfs_freep(node);
306 	}
307 	v_release_rdev(vp);
308 
309 	if (locked)
310 		lockmgr(&devfs_lock, LK_RELEASE);
311 
312 	/*
313 	 * v_rdev needs to be properly released using v_release_rdev
314 	 * Make sure v_data is NULL as well.
315 	 */
316 	return 0;
317 }
318 
319 
320 static int
321 devfs_vop_readdir(struct vop_readdir_args *ap)
322 {
323 	struct devfs_node *dnode = DEVFS_NODE(ap->a_vp);
324 	struct devfs_node *node;
325 	int cookie_index;
326 	int ncookies;
327 	int error2;
328 	int error;
329 	int r;
330 	off_t *cookies;
331 	off_t saveoff;
332 
333 	devfs_debug(DEVFS_DEBUG_DEBUG, "devfs_readdir() called!\n");
334 
335 	if (ap->a_uio->uio_offset < 0 || ap->a_uio->uio_offset > INT_MAX)
336 		return (EINVAL);
337 	error = vn_lock(ap->a_vp, LK_EXCLUSIVE | LK_RETRY | LK_FAILRECLAIM);
338 	if (error)
339 		return (error);
340 
341 	if (!devfs_node_is_accessible(dnode)) {
342 		vn_unlock(ap->a_vp);
343 		return ENOENT;
344 	}
345 
346 	lockmgr(&devfs_lock, LK_EXCLUSIVE);
347 
348 	saveoff = ap->a_uio->uio_offset;
349 
350 	if (ap->a_ncookies) {
351 		ncookies = ap->a_uio->uio_resid / 16 + 1; /* Why / 16 ?? */
352 		if (ncookies > 256)
353 			ncookies = 256;
354 		cookies = kmalloc(256 * sizeof(off_t), M_TEMP, M_WAITOK);
355 		cookie_index = 0;
356 	} else {
357 		ncookies = -1;
358 		cookies = NULL;
359 		cookie_index = 0;
360 	}
361 
362 	vfs_timestamp(&dnode->atime);
363 
364 	if (saveoff == 0) {
365 		r = vop_write_dirent(&error, ap->a_uio, dnode->d_dir.d_ino,
366 				     DT_DIR, 1, ".");
367 		if (r)
368 			goto done;
369 		if (cookies)
370 			cookies[cookie_index] = saveoff;
371 		saveoff++;
372 		cookie_index++;
373 		if (cookie_index == ncookies)
374 			goto done;
375 	}
376 
377 	if (saveoff == 1) {
378 		if (dnode->parent) {
379 			r = vop_write_dirent(&error, ap->a_uio,
380 					     dnode->parent->d_dir.d_ino,
381 					     DT_DIR, 2, "..");
382 		} else {
383 			r = vop_write_dirent(&error, ap->a_uio,
384 					     dnode->d_dir.d_ino,
385 					     DT_DIR, 2, "..");
386 		}
387 		if (r)
388 			goto done;
389 		if (cookies)
390 			cookies[cookie_index] = saveoff;
391 		saveoff++;
392 		cookie_index++;
393 		if (cookie_index == ncookies)
394 			goto done;
395 	}
396 
397 	TAILQ_FOREACH(node, DEVFS_DENODE_HEAD(dnode), link) {
398 		if ((node->flags & DEVFS_HIDDEN) ||
399 		    (node->flags & DEVFS_INVISIBLE)) {
400 			continue;
401 		}
402 
403 		/*
404 		 * If the node type is a valid devfs alias, then we make
405 		 * sure that the target isn't hidden. If it is, we don't
406 		 * show the link in the directory listing.
407 		 */
408 		if ((node->node_type == Nlink) && (node->link_target != NULL) &&
409 			(node->link_target->flags & DEVFS_HIDDEN))
410 			continue;
411 
412 		if (node->cookie < saveoff)
413 			continue;
414 
415 		saveoff = node->cookie;
416 
417 		error2 = vop_write_dirent(&error, ap->a_uio, node->d_dir.d_ino,
418 					  node->d_dir.d_type,
419 					  node->d_dir.d_namlen,
420 					  node->d_dir.d_name);
421 
422 		if (error2)
423 			break;
424 
425 		saveoff++;
426 
427 		if (cookies)
428 			cookies[cookie_index] = node->cookie;
429 		++cookie_index;
430 		if (cookie_index == ncookies)
431 			break;
432 	}
433 
434 done:
435 	lockmgr(&devfs_lock, LK_RELEASE);
436 	vn_unlock(ap->a_vp);
437 
438 	ap->a_uio->uio_offset = saveoff;
439 	if (error && cookie_index == 0) {
440 		if (cookies) {
441 			kfree(cookies, M_TEMP);
442 			*ap->a_ncookies = 0;
443 			*ap->a_cookies = NULL;
444 		}
445 	} else {
446 		if (cookies) {
447 			*ap->a_ncookies = cookie_index;
448 			*ap->a_cookies = cookies;
449 		}
450 	}
451 	return (error);
452 }
453 
454 
455 static int
456 devfs_vop_nresolve(struct vop_nresolve_args *ap)
457 {
458 	struct devfs_node *dnode = DEVFS_NODE(ap->a_dvp);
459 	struct devfs_node *node, *found = NULL;
460 	struct namecache *ncp;
461 	struct vnode *vp = NULL;
462 	int error = 0;
463 	int len;
464 	int depth;
465 
466 	ncp = ap->a_nch->ncp;
467 	len = ncp->nc_nlen;
468 
469 	if (!devfs_node_is_accessible(dnode))
470 		return ENOENT;
471 
472 	lockmgr(&devfs_lock, LK_EXCLUSIVE);
473 
474 	if ((dnode->node_type != Nroot) && (dnode->node_type != Ndir)) {
475 		error = ENOENT;
476 		cache_setvp(ap->a_nch, NULL);
477 		goto out;
478 	}
479 
480 	TAILQ_FOREACH(node, DEVFS_DENODE_HEAD(dnode), link) {
481 		if (len == node->d_dir.d_namlen) {
482 			if (!memcmp(ncp->nc_name, node->d_dir.d_name, len)) {
483 				found = node;
484 				break;
485 			}
486 		}
487 	}
488 
489 	if (found) {
490 		depth = 0;
491 		while ((found->node_type == Nlink) && (found->link_target)) {
492 			if (depth >= 8) {
493 				devfs_debug(DEVFS_DEBUG_SHOW, "Recursive link or depth >= 8");
494 				break;
495 			}
496 
497 			found = found->link_target;
498 			++depth;
499 		}
500 
501 		if (!(found->flags & DEVFS_HIDDEN))
502 			devfs_allocv(/*ap->a_dvp->v_mount, */ &vp, found);
503 	}
504 
505 	if (vp == NULL) {
506 		error = ENOENT;
507 		cache_setvp(ap->a_nch, NULL);
508 		goto out;
509 
510 	}
511 	KKASSERT(vp);
512 	vn_unlock(vp);
513 	cache_setvp(ap->a_nch, vp);
514 	vrele(vp);
515 out:
516 	lockmgr(&devfs_lock, LK_RELEASE);
517 
518 	return error;
519 }
520 
521 
522 static int
523 devfs_vop_nlookupdotdot(struct vop_nlookupdotdot_args *ap)
524 {
525 	struct devfs_node *dnode = DEVFS_NODE(ap->a_dvp);
526 
527 	*ap->a_vpp = NULL;
528 	if (!devfs_node_is_accessible(dnode))
529 		return ENOENT;
530 
531 	lockmgr(&devfs_lock, LK_EXCLUSIVE);
532 	if (dnode->parent != NULL) {
533 		devfs_allocv(ap->a_vpp, dnode->parent);
534 		vn_unlock(*ap->a_vpp);
535 	}
536 	lockmgr(&devfs_lock, LK_RELEASE);
537 
538 	return ((*ap->a_vpp == NULL) ? ENOENT : 0);
539 }
540 
541 
542 /*
543  * getattr() - Does not need a lock since the vp is refd
544  */
545 static int
546 devfs_vop_getattr(struct vop_getattr_args *ap)
547 {
548 	struct devfs_node *node = DEVFS_NODE(ap->a_vp);
549 	struct vattr *vap = ap->a_vap;
550 	struct partinfo pinfo;
551 	int error = 0;
552 
553 #if 0
554 	if (!devfs_node_is_accessible(node))
555 		return ENOENT;
556 #endif
557 
558 	/*
559 	 * XXX This is a temporary hack to prevent crashes when the device is
560 	 * being destroyed (and so the underlying node will be gone) while
561 	 * a userland program is blocked in a read().
562 	 */
563 	if (node == NULL)
564 		return EIO;
565 
566 	node_sync_dev_get(node);
567 
568 	/* start by zeroing out the attributes */
569 	VATTR_NULL(vap);
570 
571 	/* next do all the common fields */
572 	vap->va_type = ap->a_vp->v_type;
573 	vap->va_mode = node->mode;
574 	vap->va_fileid = DEVFS_NODE(ap->a_vp)->d_dir.d_ino ;
575 	vap->va_flags = 0;
576 	vap->va_blocksize = DEV_BSIZE;
577 	vap->va_bytes = vap->va_size = 0;
578 
579 	vap->va_fsid = ap->a_vp->v_mount->mnt_stat.f_fsid.val[0];
580 
581 	vap->va_atime = node->atime;
582 	vap->va_mtime = node->mtime;
583 	vap->va_ctime = node->ctime;
584 
585 	vap->va_nlink = 1; /* number of references to file */
586 
587 	vap->va_uid = node->uid;
588 	vap->va_gid = node->gid;
589 
590 	vap->va_rmajor = 0;
591 	vap->va_rminor = 0;
592 
593 	if ((node->node_type == Ndev) && node->d_dev)  {
594 		reference_dev(node->d_dev);
595 		vap->va_rminor = node->d_dev->si_uminor;
596 		release_dev(node->d_dev);
597 	}
598 
599 	/* For a softlink the va_size is the length of the softlink */
600 	if (node->symlink_name != 0) {
601 		vap->va_bytes = vap->va_size = node->symlink_namelen;
602 	}
603 
604 	/*
605 	 * For a disk-type device, va_size is the size of the underlying
606 	 * device, so that lseek() works properly.
607 	 */
608 	if ((node->d_dev) && (dev_dflags(node->d_dev) & D_DISK)) {
609 		bzero(&pinfo, sizeof(pinfo));
610 		error = dev_dioctl(node->d_dev, DIOCGPART, (void *)&pinfo,
611 				   0, proc0.p_ucred, NULL, NULL);
612 		if ((error == 0) && (pinfo.media_blksize != 0)) {
613 			vap->va_size = pinfo.media_size;
614 		} else {
615 			vap->va_size = 0;
616 			error = 0;
617 		}
618 	}
619 
620 	return (error);
621 }
622 
623 static int
624 devfs_vop_setattr(struct vop_setattr_args *ap)
625 {
626 	struct devfs_node *node = DEVFS_NODE(ap->a_vp);
627 	struct vattr *vap;
628 	uid_t cur_uid;
629 	gid_t cur_gid;
630 	mode_t cur_mode;
631 	int error = 0;
632 
633 	if (!devfs_node_is_accessible(node))
634 		return ENOENT;
635 	node_sync_dev_get(node);
636 
637 	vap = ap->a_vap;
638 
639 	if ((vap->va_uid != (uid_t)VNOVAL) || (vap->va_gid != (gid_t)VNOVAL)) {
640 		cur_uid = node->uid;
641 		cur_gid = node->gid;
642 		cur_mode = node->mode;
643 		error = vop_helper_chown(ap->a_vp, vap->va_uid, vap->va_gid,
644 		    ap->a_cred, &cur_uid, &cur_gid, &cur_mode);
645 		if (error)
646 			goto out;
647 
648 		if (node->uid != cur_uid || node->gid != cur_gid) {
649 			node->uid = cur_uid;
650 			node->gid = cur_gid;
651 			node->mode = cur_mode;
652 		}
653 	}
654 
655 	if (vap->va_mode != (mode_t)VNOVAL) {
656 		cur_mode = node->mode;
657 		error = vop_helper_chmod(ap->a_vp, vap->va_mode, ap->a_cred,
658 		    node->uid, node->gid, &cur_mode);
659 		if (error == 0 && node->mode != cur_mode) {
660 			node->mode = cur_mode;
661 		}
662 	}
663 
664 out:
665 	node_sync_dev_set(node);
666 	vfs_timestamp(&node->ctime);
667 
668 	return error;
669 }
670 
671 
672 static int
673 devfs_vop_readlink(struct vop_readlink_args *ap)
674 {
675 	struct devfs_node *node = DEVFS_NODE(ap->a_vp);
676 	int ret;
677 
678 	if (!devfs_node_is_accessible(node))
679 		return ENOENT;
680 
681 	lockmgr(&devfs_lock, LK_SHARED);
682 	ret = uiomove(node->symlink_name, node->symlink_namelen, ap->a_uio);
683 	lockmgr(&devfs_lock, LK_RELEASE);
684 
685 	return ret;
686 }
687 
688 
689 static int
690 devfs_vop_print(struct vop_print_args *ap)
691 {
692 	return (0);
693 }
694 
695 static int
696 devfs_vop_nmkdir(struct vop_nmkdir_args *ap)
697 {
698 	struct devfs_node *dnode = DEVFS_NODE(ap->a_dvp);
699 	struct devfs_node *node;
700 
701 	if (!devfs_node_is_accessible(dnode))
702 		return ENOENT;
703 
704 	if ((dnode->node_type != Nroot) && (dnode->node_type != Ndir))
705 		goto out;
706 
707 	lockmgr(&devfs_lock, LK_EXCLUSIVE);
708 	devfs_allocvp(ap->a_dvp->v_mount, ap->a_vpp, Ndir,
709 		      ap->a_nch->ncp->nc_name, dnode, NULL);
710 
711 	if (*ap->a_vpp) {
712 		node = DEVFS_NODE(*ap->a_vpp);
713 		node->flags |= DEVFS_USER_CREATED;
714 		cache_setunresolved(ap->a_nch);
715 		cache_setvp(ap->a_nch, *ap->a_vpp);
716 	}
717 	lockmgr(&devfs_lock, LK_RELEASE);
718 out:
719 	return ((*ap->a_vpp == NULL) ? ENOTDIR : 0);
720 }
721 
722 static int
723 devfs_vop_nsymlink(struct vop_nsymlink_args *ap)
724 {
725 	struct devfs_node *dnode = DEVFS_NODE(ap->a_dvp);
726 	struct devfs_node *node;
727 	size_t targetlen;
728 
729 	if (!devfs_node_is_accessible(dnode))
730 		return ENOENT;
731 
732 	ap->a_vap->va_type = VLNK;
733 
734 	if ((dnode->node_type != Nroot) && (dnode->node_type != Ndir))
735 		goto out;
736 
737 	lockmgr(&devfs_lock, LK_EXCLUSIVE);
738 	devfs_allocvp(ap->a_dvp->v_mount, ap->a_vpp, Nlink,
739 		      ap->a_nch->ncp->nc_name, dnode, NULL);
740 
741 	targetlen = strlen(ap->a_target);
742 	if (*ap->a_vpp) {
743 		node = DEVFS_NODE(*ap->a_vpp);
744 		node->flags |= DEVFS_USER_CREATED;
745 		node->symlink_namelen = targetlen;
746 		node->symlink_name = kmalloc(targetlen + 1, M_DEVFS, M_WAITOK);
747 		memcpy(node->symlink_name, ap->a_target, targetlen);
748 		node->symlink_name[targetlen] = '\0';
749 		cache_setunresolved(ap->a_nch);
750 		cache_setvp(ap->a_nch, *ap->a_vpp);
751 	}
752 	lockmgr(&devfs_lock, LK_RELEASE);
753 out:
754 	return ((*ap->a_vpp == NULL) ? ENOTDIR : 0);
755 }
756 
757 static int
758 devfs_vop_nrmdir(struct vop_nrmdir_args *ap)
759 {
760 	struct devfs_node *dnode = DEVFS_NODE(ap->a_dvp);
761 	struct devfs_node *node;
762 	struct namecache *ncp;
763 	int error = ENOENT;
764 
765 	ncp = ap->a_nch->ncp;
766 
767 	if (!devfs_node_is_accessible(dnode))
768 		return ENOENT;
769 
770 	lockmgr(&devfs_lock, LK_EXCLUSIVE);
771 
772 	if ((dnode->node_type != Nroot) && (dnode->node_type != Ndir))
773 		goto out;
774 
775 	TAILQ_FOREACH(node, DEVFS_DENODE_HEAD(dnode), link) {
776 		if (ncp->nc_nlen != node->d_dir.d_namlen)
777 			continue;
778 		if (memcmp(ncp->nc_name, node->d_dir.d_name, ncp->nc_nlen))
779 			continue;
780 
781 		/*
782 		 * only allow removal of user created dirs
783 		 */
784 		if ((node->flags & DEVFS_USER_CREATED) == 0) {
785 			error = EPERM;
786 			goto out;
787 		} else if (node->node_type != Ndir) {
788 			error = ENOTDIR;
789 			goto out;
790 		} else if (node->nchildren > 2) {
791 			error = ENOTEMPTY;
792 			goto out;
793 		} else {
794 			if (node->v_node)
795 				cache_inval_vp(node->v_node, CINV_DESTROY);
796 			devfs_unlinkp(node);
797 			error = 0;
798 			break;
799 		}
800 	}
801 
802 	cache_unlink(ap->a_nch);
803 out:
804 	lockmgr(&devfs_lock, LK_RELEASE);
805 	return error;
806 }
807 
808 static int
809 devfs_vop_nremove(struct vop_nremove_args *ap)
810 {
811 	struct devfs_node *dnode = DEVFS_NODE(ap->a_dvp);
812 	struct devfs_node *node;
813 	struct namecache *ncp;
814 	int error = ENOENT;
815 
816 	ncp = ap->a_nch->ncp;
817 
818 	if (!devfs_node_is_accessible(dnode))
819 		return ENOENT;
820 
821 	lockmgr(&devfs_lock, LK_EXCLUSIVE);
822 
823 	if ((dnode->node_type != Nroot) && (dnode->node_type != Ndir))
824 		goto out;
825 
826 	TAILQ_FOREACH(node, DEVFS_DENODE_HEAD(dnode), link) {
827 		if (ncp->nc_nlen != node->d_dir.d_namlen)
828 			continue;
829 		if (memcmp(ncp->nc_name, node->d_dir.d_name, ncp->nc_nlen))
830 			continue;
831 
832 		/*
833 		 * only allow removal of user created stuff (e.g. symlinks)
834 		 */
835 		if ((node->flags & DEVFS_USER_CREATED) == 0) {
836 			error = EPERM;
837 			goto out;
838 		} else if (node->node_type == Ndir) {
839 			error = EISDIR;
840 			goto out;
841 		} else {
842 			if (node->v_node)
843 				cache_inval_vp(node->v_node, CINV_DESTROY);
844 			devfs_unlinkp(node);
845 			error = 0;
846 			break;
847 		}
848 	}
849 
850 	cache_unlink(ap->a_nch);
851 out:
852 	lockmgr(&devfs_lock, LK_RELEASE);
853 	return error;
854 }
855 
856 
857 static int
858 devfs_spec_open(struct vop_open_args *ap)
859 {
860 	struct vnode *vp = ap->a_vp;
861 	struct vnode *orig_vp = NULL;
862 	struct devfs_node *node = DEVFS_NODE(vp);
863 	struct devfs_node *newnode;
864 	cdev_t dev, ndev = NULL;
865 	int error = 0;
866 
867 	if (node) {
868 		if (node->d_dev == NULL)
869 			return ENXIO;
870 		if (!devfs_node_is_accessible(node))
871 			return ENOENT;
872 	}
873 
874 	if ((dev = vp->v_rdev) == NULL)
875 		return ENXIO;
876 
877 	/*
878 	 * Simple devices that don't care.  Retain the shared lock.
879 	 */
880 	if (dev_dflags(dev) & D_QUICK) {
881 		vn_unlock(vp);
882 		error = dev_dopen(dev, ap->a_mode, S_IFCHR,
883 				  ap->a_cred, ap->a_fpp, vp);
884 		vn_lock(vp, LK_SHARED | LK_RETRY);
885 		if (error)
886 			return error;
887 		vop_stdopen(ap);
888 		goto skip;
889 	}
890 
891 	/*
892 	 * Slow code
893 	 */
894 	vn_lock(vp, LK_UPGRADE | LK_RETRY);
895 	if (node && ap->a_fpp) {
896 		int exists;
897 
898 		devfs_debug(DEVFS_DEBUG_DEBUG, "devfs_spec_open: -1.1-\n");
899 		lockmgr(&devfs_lock, LK_SHARED);
900 
901 		ndev = devfs_clone(dev, node->d_dir.d_name,
902 				   node->d_dir.d_namlen,
903 				   ap->a_mode, ap->a_cred);
904 		if (ndev != NULL) {
905 			lockmgr(&devfs_lock, LK_RELEASE);
906 			lockmgr(&devfs_lock, LK_EXCLUSIVE);
907 			newnode = devfs_create_device_node(
908 					DEVFS_MNTDATA(vp->v_mount)->root_node,
909 					ndev, &exists, NULL, NULL);
910 			/* XXX: possibly destroy device if this happens */
911 
912 			if (newnode != NULL) {
913 				dev = ndev;
914 				if (exists == 0)
915 					devfs_link_dev(dev);
916 
917 				devfs_debug(DEVFS_DEBUG_DEBUG,
918 						"parent here is: %s, node is: |%s|\n",
919 						((node->parent->node_type == Nroot) ?
920 						"ROOT!" : node->parent->d_dir.d_name),
921 						newnode->d_dir.d_name);
922 				devfs_debug(DEVFS_DEBUG_DEBUG,
923 						"test: %s\n",
924 						((struct devfs_node *)(TAILQ_LAST(DEVFS_DENODE_HEAD(node->parent), devfs_node_head)))->d_dir.d_name);
925 
926 				/*
927 				 * orig_vp is set to the original vp if we
928 				 * cloned.
929 				 */
930 				/* node->flags |= DEVFS_CLONED; */
931 				devfs_allocv(&vp, newnode);
932 				orig_vp = ap->a_vp;
933 				ap->a_vp = vp;
934 			}
935 		}
936 		lockmgr(&devfs_lock, LK_RELEASE);
937 
938 		/*
939 		 * Synchronize devfs here to make sure that, if the cloned
940 		 * device creates other device nodes in addition to the
941 		 * cloned one, all of them are created by the time we return
942 		 * from opening the cloned one.
943 		 */
944 		if (ndev)
945 			devfs_config();
946 	}
947 
948 	devfs_debug(DEVFS_DEBUG_DEBUG,
949 		    "devfs_spec_open() called on %s! \n",
950 		    dev->si_name);
951 
952 	/*
953 	 * Make this field valid before any I/O in ->d_open
954 	 *
955 	 * NOTE: Shared vnode lock probably held, but its ok as long
956 	 *	 as assignments are consistent.
957 	 */
958 	if (!dev->si_iosize_max)
959 		/* XXX: old DFLTPHYS == 64KB dependency */
960 		dev->si_iosize_max = min(MAXPHYS,64*1024);
961 
962 	if (dev_dflags(dev) & D_TTY)
963 		vsetflags(vp, VISTTY);
964 
965 	/*
966 	 * Open the underlying device.
967 	 *
968 	 * NOTE: If the dev open returns EALREADY it has completed the open
969 	 *	 operation and is returning a fully initialized *a->a_fpp
970 	 *	 (which it may also have replaced).  This includes issuing
971 	 *	 any necessary VOP_OPEN().
972 	 *
973 	 *	 Also, the returned ap->a_fpp might not be DTYPE_VNODE and
974 	 *	 if it is might not be using the vp we supplied to it.
975 	 */
976 	vn_unlock(vp);
977 	error = dev_dopen(dev, ap->a_mode, S_IFCHR,
978 			  ap->a_cred, ap->a_fpp, vp);
979 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
980 
981 	if (__predict_false(error == EALREADY)) {
982 		if (orig_vp)
983 			vput(vp);
984 		return 0;
985 	}
986 
987 	/*
988 	 * Clean up any cloned vp if we error out.
989 	 */
990 	if (__predict_false(error != 0)) {
991 		if (orig_vp) {
992 			vput(vp);
993 			ap->a_vp = orig_vp;
994 			/* orig_vp = NULL; */
995 		}
996 		return error;
997 	}
998 
999 	/*
1000 	 * This checks if the disk device is going to be opened for writing.
1001 	 * It will be only allowed in the cases where securelevel permits it
1002 	 * and it's not mounted R/W.
1003 	 */
1004 	if ((dev_dflags(dev) & D_DISK) && (ap->a_mode & FWRITE) &&
1005 	    (ap->a_cred != FSCRED)) {
1006 
1007 		/* Very secure mode. No open for writing allowed */
1008 		if (securelevel >= 2)
1009 			return EPERM;
1010 
1011 		/*
1012 		 * If it is mounted R/W, do not allow to open for writing.
1013 		 * In the case it's mounted read-only but securelevel
1014 		 * is >= 1, then do not allow opening for writing either.
1015 		 */
1016 		if (vfs_mountedon(vp)) {
1017 			if (!(dev->si_mountpoint->mnt_flag & MNT_RDONLY))
1018 				return EBUSY;
1019 			else if (securelevel >= 1)
1020 				return EPERM;
1021 		}
1022 	}
1023 
1024 	/*
1025 	 * NOTE: vnode is still locked shared.  t_stop assignment should
1026 	 *	 remain consistent so we should be ok.
1027 	 */
1028 	if (dev_dflags(dev) & D_TTY) {
1029 		if (dev->si_tty) {
1030 			struct tty *tp;
1031 			tp = dev->si_tty;
1032 			if (!tp->t_stop) {
1033 				devfs_debug(DEVFS_DEBUG_DEBUG,
1034 					    "devfs: no t_stop\n");
1035 				tp->t_stop = nottystop;
1036 			}
1037 		}
1038 	}
1039 
1040 	/*
1041 	 * NOTE: vnode is still locked shared.  assignments should
1042 	 *	 remain consistent so we should be ok.  However,
1043 	 *	 upgrade to exclusive if we need a VM object.
1044 	 */
1045 	if (vn_isdisk(vp, NULL)) {
1046 		if (!dev->si_bsize_phys)
1047 			dev->si_bsize_phys = DEV_BSIZE;
1048 		vinitvmio(vp, IDX_TO_OFF(INT_MAX), PAGE_SIZE, -1);
1049 	}
1050 
1051 	vop_stdopen(ap);
1052 #if 0
1053 	if (node)
1054 		vfs_timestamp(&node->atime);
1055 #endif
1056 	/*
1057 	 * If we replaced the vp the vop_stdopen() call will have loaded
1058 	 * it into fp->f_data and vref()d the vp, giving us two refs.  So
1059 	 * instead of just unlocking it here we have to vput() it.
1060 	 */
1061 	if (orig_vp)
1062 		vput(vp);
1063 
1064 	/* Ugly pty magic, to make pty devices appear once they are opened */
1065 	if (node && (node->flags & DEVFS_PTY) == DEVFS_PTY) {
1066 		if (node->flags & DEVFS_INVISIBLE)
1067 			node->flags &= ~DEVFS_INVISIBLE;
1068 	}
1069 
1070 skip:
1071 	if (ap->a_fpp) {
1072 		struct file *fp = *ap->a_fpp;
1073 
1074 		KKASSERT(fp->f_type == DTYPE_VNODE);
1075 		KKASSERT((fp->f_flag & FMASK) == (ap->a_mode & FMASK));
1076 		fp->f_ops = &devfs_dev_fileops;
1077 		KKASSERT(fp->f_data == (void *)vp);
1078 	}
1079 
1080 	return 0;
1081 }
1082 
1083 static int
1084 devfs_spec_close(struct vop_close_args *ap)
1085 {
1086 	struct devfs_node *node;
1087 	struct proc *p = curproc;
1088 	struct vnode *vp = ap->a_vp;
1089 	cdev_t dev = vp->v_rdev;
1090 	int error = 0;
1091 	int needrelock;
1092 	int opencount;
1093 
1094 	/*
1095 	 * Devices flagged D_QUICK require no special handling.
1096 	 */
1097 	if (dev && dev_dflags(dev) & D_QUICK) {
1098 		opencount = vp->v_opencount;
1099 		if (opencount <= 1)
1100 			opencount = count_dev(dev);   /* XXX NOT SMP SAFE */
1101 		if (((vp->v_flag & VRECLAIMED) ||
1102 		    (dev_dflags(dev) & D_TRACKCLOSE) ||
1103 		    (opencount == 1))) {
1104 			vn_unlock(vp);
1105 			error = dev_dclose(dev, ap->a_fflag, S_IFCHR, ap->a_fp);
1106 			vn_lock(vp, LK_SHARED | LK_RETRY);
1107 		}
1108 		goto skip;
1109 	}
1110 
1111 	/*
1112 	 * We do special tests on the opencount so unfortunately we need
1113 	 * an exclusive lock.
1114 	 */
1115 	vn_lock(vp, LK_UPGRADE | LK_RETRY);
1116 
1117 	if (dev)
1118 		devfs_debug(DEVFS_DEBUG_DEBUG,
1119 			    "devfs_spec_close() called on %s! \n",
1120 			    dev->si_name);
1121 	else
1122 		devfs_debug(DEVFS_DEBUG_DEBUG,
1123 			    "devfs_spec_close() called, null vode!\n");
1124 
1125 	/*
1126 	 * A couple of hacks for devices and tty devices.  The
1127 	 * vnode ref count cannot be used to figure out the
1128 	 * last close, but we can use v_opencount now that
1129 	 * revoke works properly.
1130 	 *
1131 	 * Detect the last close on a controlling terminal and clear
1132 	 * the session (half-close).
1133 	 *
1134 	 * XXX opencount is not SMP safe.  The vnode is locked but there
1135 	 *     may be multiple vnodes referencing the same device.
1136 	 */
1137 	if (dev) {
1138 		/*
1139 		 * NOTE: Try to avoid global tokens when testing opencount
1140 		 * XXX hack, fixme. needs a struct lock and opencount in
1141 		 * struct cdev itself.
1142 		 */
1143 		reference_dev(dev);
1144 		opencount = vp->v_opencount;
1145 		if (opencount <= 1)
1146 			opencount = count_dev(dev);   /* XXX NOT SMP SAFE */
1147 	} else {
1148 		opencount = 0;
1149 	}
1150 
1151 	if (p && vp->v_opencount <= 1 && vp == p->p_session->s_ttyvp) {
1152 		p->p_session->s_ttyvp = NULL;
1153 		vrele(vp);
1154 	}
1155 
1156 	/*
1157 	 * Vnodes can be opened and closed multiple times.  Do not really
1158 	 * close the device unless (1) it is being closed forcibly,
1159 	 * (2) the device wants to track closes, or (3) this is the last
1160 	 * vnode doing its last close on the device.
1161 	 *
1162 	 * XXX the VXLOCK (force close) case can leave vnodes referencing
1163 	 * a closed device.  This might not occur now that our revoke is
1164 	 * fixed.
1165 	 */
1166 	devfs_debug(DEVFS_DEBUG_DEBUG, "devfs_spec_close() -1- \n");
1167 	if (dev && ((vp->v_flag & VRECLAIMED) ||
1168 		    (dev_dflags(dev) & D_TRACKCLOSE) ||
1169 		    (opencount == 1))) {
1170 		/*
1171 		 * Ugly pty magic, to make pty devices disappear again once
1172 		 * they are closed.
1173 		 */
1174 		node = DEVFS_NODE(ap->a_vp);
1175 		if (node && (node->flags & DEVFS_PTY))
1176 			node->flags |= DEVFS_INVISIBLE;
1177 
1178 		/*
1179 		 * Unlock around dev_dclose(), unless the vnode is
1180 		 * undergoing a vgone/reclaim (during umount).
1181 		 */
1182 		needrelock = 0;
1183 		if ((vp->v_flag & VRECLAIMED) == 0 && vn_islocked(vp)) {
1184 			needrelock = 1;
1185 			vn_unlock(vp);
1186 		}
1187 
1188 		/*
1189 		 * WARNING!  If the device destroys itself the devfs node
1190 		 *	     can disappear here.
1191 		 *
1192 		 * WARNING!  vn_lock() will fail if the vp is in a VRECLAIM,
1193 		 *	     which can occur during umount.
1194 		 */
1195 		error = dev_dclose(dev, ap->a_fflag, S_IFCHR, ap->a_fp);
1196 		/* node is now stale */
1197 
1198 		if (needrelock) {
1199 			if (vn_lock(vp, LK_EXCLUSIVE |
1200 					LK_RETRY |
1201 					LK_FAILRECLAIM) != 0) {
1202 				panic("devfs_spec_close: vnode %p "
1203 				      "unexpectedly could not be relocked",
1204 				      vp);
1205 			}
1206 		}
1207 	} else {
1208 		error = 0;
1209 	}
1210 	devfs_debug(DEVFS_DEBUG_DEBUG, "devfs_spec_close() -2- \n");
1211 
1212 	/*
1213 	 * Track the actual opens and closes on the vnode.  The last close
1214 	 * disassociates the rdev.  If the rdev is already disassociated or
1215 	 * the opencount is already 0, the vnode might have been revoked
1216 	 * and no further opencount tracking occurs.
1217 	 */
1218 	if (dev)
1219 		release_dev(dev);
1220 skip:
1221 	if (vp->v_opencount > 0)
1222 		vop_stdclose(ap);
1223 	return(error);
1224 
1225 }
1226 
1227 
1228 static int
1229 devfs_fo_close(struct file *fp)
1230 {
1231 	struct vnode *vp = (struct vnode *)fp->f_data;
1232 	int error;
1233 
1234 	fp->f_ops = &badfileops;
1235 	error = vn_close(vp, fp->f_flag, fp);
1236 	devfs_clear_cdevpriv(fp);
1237 
1238 	return (error);
1239 }
1240 
1241 
1242 /*
1243  * Device-optimized file table vnode read routine.
1244  *
1245  * This bypasses the VOP table and talks directly to the device.  Most
1246  * filesystems just route to specfs and can make this optimization.
1247  */
1248 static int
1249 devfs_fo_read(struct file *fp, struct uio *uio,
1250 		 struct ucred *cred, int flags)
1251 {
1252 	struct devfs_node *node;
1253 	struct vnode *vp;
1254 	int ioflag;
1255 	int error;
1256 	cdev_t dev;
1257 
1258 	KASSERT(uio->uio_td == curthread,
1259 		("uio_td %p is not td %p", uio->uio_td, curthread));
1260 
1261 	if (uio->uio_resid == 0)
1262 		return 0;
1263 
1264 	vp = (struct vnode *)fp->f_data;
1265 	if (vp == NULL || vp->v_type == VBAD)
1266 		return EBADF;
1267 
1268 	node = DEVFS_NODE(vp);
1269 
1270 	if ((dev = vp->v_rdev) == NULL)
1271 		return EBADF;
1272 
1273 	reference_dev(dev);
1274 
1275 	if ((flags & O_FOFFSET) == 0)
1276 		uio->uio_offset = fp->f_offset;
1277 
1278 	ioflag = 0;
1279 	if (flags & O_FBLOCKING) {
1280 		/* ioflag &= ~IO_NDELAY; */
1281 	} else if (flags & O_FNONBLOCKING) {
1282 		ioflag |= IO_NDELAY;
1283 	} else if (fp->f_flag & FNONBLOCK) {
1284 		ioflag |= IO_NDELAY;
1285 	}
1286 	if (fp->f_flag & O_DIRECT) {
1287 		ioflag |= IO_DIRECT;
1288 	}
1289 	ioflag |= sequential_heuristic(uio, fp);
1290 
1291 	error = dev_dread(dev, uio, ioflag, fp);
1292 
1293 	release_dev(dev);
1294 	if (node)
1295 		vfs_timestamp(&node->atime);
1296 	if ((flags & O_FOFFSET) == 0)
1297 		fp->f_offset = uio->uio_offset;
1298 	fp->f_nextoff = uio->uio_offset;
1299 
1300 	return (error);
1301 }
1302 
1303 
1304 static int
1305 devfs_fo_write(struct file *fp, struct uio *uio,
1306 		  struct ucred *cred, int flags)
1307 {
1308 	struct devfs_node *node;
1309 	struct vnode *vp;
1310 	int ioflag;
1311 	int error;
1312 	cdev_t dev;
1313 
1314 	KASSERT(uio->uio_td == curthread,
1315 		("uio_td %p is not p %p", uio->uio_td, curthread));
1316 
1317 	vp = (struct vnode *)fp->f_data;
1318 	if (vp == NULL || vp->v_type == VBAD)
1319 		return EBADF;
1320 
1321 	node = DEVFS_NODE(vp);
1322 
1323 	if (vp->v_type == VREG)
1324 		bwillwrite(uio->uio_resid);
1325 
1326 	vp = (struct vnode *)fp->f_data;
1327 
1328 	if ((dev = vp->v_rdev) == NULL)
1329 		return EBADF;
1330 
1331 	reference_dev(dev);
1332 
1333 	if ((flags & O_FOFFSET) == 0)
1334 		uio->uio_offset = fp->f_offset;
1335 
1336 	ioflag = IO_UNIT;
1337 	if (vp->v_type == VREG &&
1338 	   ((fp->f_flag & O_APPEND) || (flags & O_FAPPEND))) {
1339 		ioflag |= IO_APPEND;
1340 	}
1341 
1342 	if (flags & O_FBLOCKING) {
1343 		/* ioflag &= ~IO_NDELAY; */
1344 	} else if (flags & O_FNONBLOCKING) {
1345 		ioflag |= IO_NDELAY;
1346 	} else if (fp->f_flag & FNONBLOCK) {
1347 		ioflag |= IO_NDELAY;
1348 	}
1349 	if (fp->f_flag & O_DIRECT) {
1350 		ioflag |= IO_DIRECT;
1351 	}
1352 	if (flags & O_FASYNCWRITE) {
1353 		/* ioflag &= ~IO_SYNC; */
1354 	} else if (flags & O_FSYNCWRITE) {
1355 		ioflag |= IO_SYNC;
1356 	} else if (fp->f_flag & O_FSYNC) {
1357 		ioflag |= IO_SYNC;
1358 	}
1359 
1360 	if (vp->v_mount && (vp->v_mount->mnt_flag & MNT_SYNCHRONOUS))
1361 		ioflag |= IO_SYNC;
1362 	ioflag |= sequential_heuristic(uio, fp);
1363 
1364 	error = dev_dwrite(dev, uio, ioflag, fp);
1365 
1366 	release_dev(dev);
1367 	if (node) {
1368 		vfs_timestamp(&node->atime);
1369 		vfs_timestamp(&node->mtime);
1370 	}
1371 
1372 	if ((flags & O_FOFFSET) == 0)
1373 		fp->f_offset = uio->uio_offset;
1374 	fp->f_nextoff = uio->uio_offset;
1375 
1376 	return (error);
1377 }
1378 
1379 
1380 static int
1381 devfs_fo_stat(struct file *fp, struct stat *sb, struct ucred *cred)
1382 {
1383 	struct vnode *vp;
1384 	struct vattr vattr;
1385 	struct vattr *vap;
1386 	u_short mode;
1387 	cdev_t dev;
1388 	int error;
1389 
1390 	vp = (struct vnode *)fp->f_data;
1391 	if (vp == NULL || vp->v_type == VBAD)
1392 		return EBADF;
1393 
1394 	error = vn_stat(vp, sb, cred);
1395 	if (error)
1396 		return (error);
1397 
1398 	vap = &vattr;
1399 	error = VOP_GETATTR(vp, vap);
1400 	if (error)
1401 		return (error);
1402 
1403 	/*
1404 	 * Zero the spare stat fields
1405 	 */
1406 	sb->st_lspare = 0;
1407 	sb->st_qspare2 = 0;
1408 
1409 	/*
1410 	 * Copy from vattr table ... or not in case it's a cloned device
1411 	 */
1412 	if (vap->va_fsid != VNOVAL)
1413 		sb->st_dev = vap->va_fsid;
1414 	else
1415 		sb->st_dev = vp->v_mount->mnt_stat.f_fsid.val[0];
1416 
1417 	sb->st_ino = vap->va_fileid;
1418 
1419 	mode = vap->va_mode;
1420 	mode |= S_IFCHR;
1421 	sb->st_mode = mode;
1422 
1423 	if (vap->va_nlink > (nlink_t)-1)
1424 		sb->st_nlink = (nlink_t)-1;
1425 	else
1426 		sb->st_nlink = vap->va_nlink;
1427 
1428 	sb->st_uid = vap->va_uid;
1429 	sb->st_gid = vap->va_gid;
1430 	sb->st_rdev = devid_from_dev(DEVFS_NODE(vp)->d_dev);
1431 	sb->st_size = vap->va_bytes;
1432 	sb->st_atimespec = vap->va_atime;
1433 	sb->st_mtimespec = vap->va_mtime;
1434 	sb->st_ctimespec = vap->va_ctime;
1435 
1436 	/*
1437 	 * A VCHR and VBLK device may track the last access and last modified
1438 	 * time independantly of the filesystem.  This is particularly true
1439 	 * because device read and write calls may bypass the filesystem.
1440 	 */
1441 	if (vp->v_type == VCHR || vp->v_type == VBLK) {
1442 		dev = vp->v_rdev;
1443 		if (dev != NULL) {
1444 			if (dev->si_lastread) {
1445 				sb->st_atimespec.tv_sec = time_second +
1446 							  (dev->si_lastread -
1447 							   time_uptime);
1448 				sb->st_atimespec.tv_nsec = 0;
1449 			}
1450 			if (dev->si_lastwrite) {
1451 				sb->st_mtimespec.tv_sec = time_second +
1452 							  (dev->si_lastwrite -
1453 							   time_uptime);
1454 				sb->st_mtimespec.tv_nsec = 0;
1455 			}
1456 		}
1457 	}
1458 
1459         /*
1460 	 * According to www.opengroup.org, the meaning of st_blksize is
1461 	 *   "a filesystem-specific preferred I/O block size for this
1462 	 *    object.  In some filesystem types, this may vary from file
1463 	 *    to file"
1464 	 * Default to PAGE_SIZE after much discussion.
1465 	 */
1466 
1467 	sb->st_blksize = PAGE_SIZE;
1468 
1469 	sb->st_flags = vap->va_flags;
1470 
1471 	error = caps_priv_check(cred, SYSCAP_NOVFS_GENERATION);
1472 	if (error)
1473 		sb->st_gen = 0;
1474 	else
1475 		sb->st_gen = (u_int32_t)vap->va_gen;
1476 
1477 	sb->st_blocks = vap->va_bytes / S_BLKSIZE;
1478 
1479 	/*
1480 	 * This is for ABI compatibility <= 5.7 (for ABI change made in
1481 	 * 5.7 master).
1482 	 */
1483 	sb->__old_st_blksize = sb->st_blksize;
1484 
1485 	return (0);
1486 }
1487 
1488 
1489 static int
1490 devfs_fo_kqfilter(struct file *fp, struct knote *kn)
1491 {
1492 	struct vnode *vp;
1493 	int error;
1494 	cdev_t dev;
1495 
1496 	vp = (struct vnode *)fp->f_data;
1497 	if (vp == NULL || vp->v_type == VBAD) {
1498 		error = EBADF;
1499 		goto done;
1500 	}
1501 	if ((dev = vp->v_rdev) == NULL) {
1502 		error = EBADF;
1503 		goto done;
1504 	}
1505 	reference_dev(dev);
1506 
1507 	error = dev_dkqfilter(dev, kn, fp);
1508 
1509 	release_dev(dev);
1510 
1511 done:
1512 	return (error);
1513 }
1514 
1515 static int
1516 devfs_fo_ioctl(struct file *fp, u_long com, caddr_t data,
1517 		  struct ucred *ucred, struct sysmsg *msg)
1518 {
1519 #if 0
1520 	struct devfs_node *node;
1521 #endif
1522 	struct vnode *vp;
1523 	struct vnode *ovp;
1524 	cdev_t	dev;
1525 	int error;
1526 	struct fiodname_args *name_args;
1527 	size_t namlen;
1528 	const char *name;
1529 
1530 	vp = ((struct vnode *)fp->f_data);
1531 
1532 	if ((dev = vp->v_rdev) == NULL)
1533 		return EBADF;		/* device was revoked */
1534 
1535 	reference_dev(dev);
1536 
1537 #if 0
1538 	node = DEVFS_NODE(vp);
1539 #endif
1540 
1541 	devfs_debug(DEVFS_DEBUG_DEBUG,
1542 		    "devfs_fo_ioctl() called! for dev %s\n",
1543 		    dev->si_name);
1544 
1545 	if (com == FIODTYPE) {
1546 		*(int *)data = dev_dflags(dev) & D_TYPEMASK;
1547 		error = 0;
1548 		goto out;
1549 	} else if (com == FIODNAME) {
1550 		name_args = (struct fiodname_args *)data;
1551 		name = dev->si_name;
1552 		namlen = strlen(name) + 1;
1553 
1554 		devfs_debug(DEVFS_DEBUG_DEBUG,
1555 			    "ioctl, got: FIODNAME for %s\n", name);
1556 
1557 		if (namlen <= name_args->len)
1558 			error = copyout(dev->si_name, name_args->name, namlen);
1559 		else
1560 			error = EINVAL;
1561 
1562 		devfs_debug(DEVFS_DEBUG_DEBUG,
1563 			    "ioctl stuff: error: %d\n", error);
1564 		goto out;
1565 	}
1566 
1567 	error = dev_dioctl(dev, com, data, fp->f_flag, ucred, msg, fp);
1568 
1569 #if 0
1570 	if (node) {
1571 		vfs_timestamp(&node->atime);
1572 		vfs_timestamp(&node->mtime);
1573 	}
1574 #endif
1575 	if (com == TIOCSCTTY) {
1576 		devfs_debug(DEVFS_DEBUG_DEBUG,
1577 			    "devfs_fo_ioctl: got TIOCSCTTY on %s\n",
1578 			    dev->si_name);
1579 	}
1580 	if (error == 0 && com == TIOCSCTTY) {
1581 		struct proc *p = curthread->td_proc;
1582 		struct session *sess;
1583 
1584 		devfs_debug(DEVFS_DEBUG_DEBUG,
1585 			    "devfs_fo_ioctl: dealing with TIOCSCTTY on %s\n",
1586 			    dev->si_name);
1587 		if (p == NULL) {
1588 			error = ENOTTY;
1589 			goto out;
1590 		}
1591 		sess = p->p_session;
1592 
1593 		/*
1594 		 * Do nothing if reassigning same control tty
1595 		 */
1596 		if (sess->s_ttyvp == vp) {
1597 			error = 0;
1598 			goto out;
1599 		}
1600 
1601 		/*
1602 		 * Get rid of reference to old control tty
1603 		 */
1604 		ovp = sess->s_ttyvp;
1605 		vref(vp);
1606 		sess->s_ttyvp = vp;
1607 		if (ovp)
1608 			vrele(ovp);
1609 	}
1610 
1611 out:
1612 	release_dev(dev);
1613 	devfs_debug(DEVFS_DEBUG_DEBUG, "devfs_fo_ioctl() finished! \n");
1614 	return (error);
1615 }
1616 
1617 
1618 static int
1619 devfs_spec_fsync(struct vop_fsync_args *ap)
1620 {
1621 	struct vnode *vp = ap->a_vp;
1622 	int error;
1623 
1624 	if (!vn_isdisk(vp, NULL))
1625 		return (0);
1626 
1627 	/*
1628 	 * Flush all dirty buffers associated with a block device.
1629 	 */
1630 	error = vfsync(vp, ap->a_waitfor, 10000, NULL, NULL);
1631 	return (error);
1632 }
1633 
1634 static int
1635 devfs_spec_read(struct vop_read_args *ap)
1636 {
1637 	struct devfs_node *node;
1638 	struct vnode *vp;
1639 	struct uio *uio;
1640 	cdev_t dev;
1641 	int error;
1642 
1643 	vp = ap->a_vp;
1644 	dev = vp->v_rdev;
1645 	uio = ap->a_uio;
1646 	node = DEVFS_NODE(vp);
1647 
1648 	if (dev == NULL)		/* device was revoked */
1649 		return (EBADF);
1650 	if (uio->uio_resid == 0)
1651 		return (0);
1652 
1653 	vn_unlock(vp);
1654 	error = dev_dread(dev, uio, ap->a_ioflag, NULL);
1655 	vn_lock(vp, LK_SHARED | LK_RETRY);
1656 
1657 	if (node)
1658 		vfs_timestamp(&node->atime);
1659 
1660 	return (error);
1661 }
1662 
1663 /*
1664  * Vnode op for write
1665  *
1666  * spec_write(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
1667  *	      struct ucred *a_cred)
1668  */
1669 static int
1670 devfs_spec_write(struct vop_write_args *ap)
1671 {
1672 	struct devfs_node *node;
1673 	struct vnode *vp;
1674 	struct uio *uio;
1675 	cdev_t dev;
1676 	int error;
1677 
1678 	vp = ap->a_vp;
1679 	dev = vp->v_rdev;
1680 	uio = ap->a_uio;
1681 	node = DEVFS_NODE(vp);
1682 
1683 	KKASSERT(uio->uio_segflg != UIO_NOCOPY);
1684 
1685 	if (dev == NULL)		/* device was revoked */
1686 		return (EBADF);
1687 
1688 	vn_unlock(vp);
1689 	error = dev_dwrite(dev, uio, ap->a_ioflag, NULL);
1690 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1691 
1692 	if (node) {
1693 		vfs_timestamp(&node->atime);
1694 		vfs_timestamp(&node->mtime);
1695 	}
1696 
1697 	return (error);
1698 }
1699 
1700 /*
1701  * Device ioctl operation.
1702  *
1703  * spec_ioctl(struct vnode *a_vp, int a_command, caddr_t a_data,
1704  *	      int a_fflag, struct ucred *a_cred, struct sysmsg *msg)
1705  */
1706 static int
1707 devfs_spec_ioctl(struct vop_ioctl_args *ap)
1708 {
1709 	struct vnode *vp = ap->a_vp;
1710 #if 0
1711 	struct devfs_node *node;
1712 #endif
1713 	cdev_t dev;
1714 
1715 	if ((dev = vp->v_rdev) == NULL)
1716 		return (EBADF);		/* device was revoked */
1717 #if 0
1718 	node = DEVFS_NODE(vp);
1719 
1720 	if (node) {
1721 		vfs_timestamp(&node->atime);
1722 		vfs_timestamp(&node->mtime);
1723 	}
1724 #endif
1725 
1726 	return (dev_dioctl(dev, ap->a_command, ap->a_data, ap->a_fflag,
1727 			   ap->a_cred, ap->a_sysmsg, NULL));
1728 }
1729 
1730 /*
1731  * spec_kqfilter(struct vnode *a_vp, struct knote *a_kn)
1732  */
1733 /* ARGSUSED */
1734 static int
1735 devfs_spec_kqfilter(struct vop_kqfilter_args *ap)
1736 {
1737 	struct vnode *vp = ap->a_vp;
1738 #if 0
1739 	struct devfs_node *node;
1740 #endif
1741 	cdev_t dev;
1742 
1743 	if ((dev = vp->v_rdev) == NULL)
1744 		return (EBADF);		/* device was revoked (EBADF) */
1745 #if 0
1746 	node = DEVFS_NODE(vp);
1747 
1748 	if (node)
1749 		vfs_timestamp(&node->atime);
1750 #endif
1751 
1752 	return (dev_dkqfilter(dev, ap->a_kn, NULL));
1753 }
1754 
1755 /*
1756  * Convert a vnode strategy call into a device strategy call.  Vnode strategy
1757  * calls are not limited to device DMA limits so we have to deal with the
1758  * case.
1759  *
1760  * spec_strategy(struct vnode *a_vp, struct bio *a_bio)
1761  */
1762 static int
1763 devfs_spec_strategy(struct vop_strategy_args *ap)
1764 {
1765 	struct bio *bio = ap->a_bio;
1766 	struct buf *bp = bio->bio_buf;
1767 	struct buf *nbp;
1768 	struct vnode *vp;
1769 	struct mount *mp;
1770 	int chunksize;
1771 	int maxiosize;
1772 
1773 	if (bp->b_cmd != BUF_CMD_READ && LIST_FIRST(&bp->b_dep) != NULL)
1774 		buf_start(bp);
1775 
1776 	/*
1777 	 * Collect statistics on synchronous and asynchronous read
1778 	 * and write counts for disks that have associated filesystems.
1779 	 */
1780 	vp = ap->a_vp;
1781 	KKASSERT(vp->v_rdev != NULL);	/* XXX */
1782 	if (vn_isdisk(vp, NULL) && (mp = vp->v_rdev->si_mountpoint) != NULL) {
1783 		if (bp->b_cmd == BUF_CMD_READ) {
1784 			if (bp->b_flags & BIO_SYNC)
1785 				mp->mnt_stat.f_syncreads++;
1786 			else
1787 				mp->mnt_stat.f_asyncreads++;
1788 		} else {
1789 			if (bp->b_flags & BIO_SYNC)
1790 				mp->mnt_stat.f_syncwrites++;
1791 			else
1792 				mp->mnt_stat.f_asyncwrites++;
1793 		}
1794 	}
1795 
1796         /*
1797          * Device iosize limitations only apply to read and write.  Shortcut
1798          * the I/O if it fits.
1799          */
1800 	if ((maxiosize = vp->v_rdev->si_iosize_max) == 0) {
1801 		devfs_debug(DEVFS_DEBUG_DEBUG,
1802 			    "%s: si_iosize_max not set!\n",
1803 			    dev_dname(vp->v_rdev));
1804 		maxiosize = MAXPHYS;
1805 	}
1806 #if SPEC_CHAIN_DEBUG & 2
1807 	maxiosize = 4096;
1808 #endif
1809         if (bp->b_bcount <= maxiosize ||
1810             (bp->b_cmd != BUF_CMD_READ && bp->b_cmd != BUF_CMD_WRITE)) {
1811                 dev_dstrategy_chain(vp->v_rdev, bio);
1812                 return (0);
1813         }
1814 
1815 	/*
1816 	 * Clone the buffer and set up an I/O chain to chunk up the I/O.
1817 	 */
1818 	nbp = kmalloc(sizeof(*bp), M_DEVBUF, M_INTWAIT|M_ZERO);
1819 	initbufbio(nbp);
1820 	buf_dep_init(nbp);
1821 	BUF_LOCK(nbp, LK_EXCLUSIVE);
1822 	BUF_KERNPROC(nbp);
1823 	nbp->b_vp = vp;
1824 	nbp->b_flags = B_PAGING | B_KVABIO | (bp->b_flags & B_BNOCLIP);
1825 	nbp->b_cpumask = bp->b_cpumask;
1826 	nbp->b_data = bp->b_data;
1827 	nbp->b_bio1.bio_done = devfs_spec_strategy_done;
1828 	nbp->b_bio1.bio_offset = bio->bio_offset;
1829 	nbp->b_bio1.bio_caller_info1.ptr = bio;
1830 
1831 	/*
1832 	 * Start the first transfer
1833 	 */
1834 	if (vn_isdisk(vp, NULL))
1835 		chunksize = vp->v_rdev->si_bsize_phys;
1836 	else
1837 		chunksize = DEV_BSIZE;
1838 	chunksize = rounddown(maxiosize, chunksize);
1839 #if SPEC_CHAIN_DEBUG & 1
1840 	devfs_debug(DEVFS_DEBUG_DEBUG,
1841 		    "spec_strategy chained I/O chunksize=%d\n",
1842 		    chunksize);
1843 #endif
1844 	nbp->b_cmd = bp->b_cmd;
1845 	nbp->b_bcount = chunksize;
1846 	nbp->b_bufsize = chunksize;	/* used to detect a short I/O */
1847 	nbp->b_bio1.bio_caller_info2.index = chunksize;
1848 
1849 #if SPEC_CHAIN_DEBUG & 1
1850 	devfs_debug(DEVFS_DEBUG_DEBUG,
1851 		    "spec_strategy: chain %p offset %d/%d bcount %d\n",
1852 		    bp, 0, bp->b_bcount, nbp->b_bcount);
1853 #endif
1854 
1855 	dev_dstrategy(vp->v_rdev, &nbp->b_bio1);
1856 
1857 	if (DEVFS_NODE(vp)) {
1858 		vfs_timestamp(&DEVFS_NODE(vp)->atime);
1859 		vfs_timestamp(&DEVFS_NODE(vp)->mtime);
1860 	}
1861 
1862 	return (0);
1863 }
1864 
1865 /*
1866  * Chunked up transfer completion routine - chain transfers until done
1867  *
1868  * NOTE: MPSAFE callback.
1869  */
1870 static
1871 void
1872 devfs_spec_strategy_done(struct bio *nbio)
1873 {
1874 	struct buf *nbp = nbio->bio_buf;
1875 	struct bio *bio = nbio->bio_caller_info1.ptr;	/* original bio */
1876 	struct buf *bp = bio->bio_buf;			/* original bp */
1877 	int chunksize = nbio->bio_caller_info2.index;	/* chunking */
1878 	int boffset = nbp->b_data - bp->b_data;
1879 
1880 	if (nbp->b_flags & B_ERROR) {
1881 		/*
1882 		 * An error terminates the chain, propogate the error back
1883 		 * to the original bp
1884 		 */
1885 		bp->b_flags |= B_ERROR;
1886 		bp->b_error = nbp->b_error;
1887 		bp->b_resid = bp->b_bcount - boffset +
1888 			      (nbp->b_bcount - nbp->b_resid);
1889 #if SPEC_CHAIN_DEBUG & 1
1890 		devfs_debug(DEVFS_DEBUG_DEBUG,
1891 			    "spec_strategy: chain %p error %d bcount %d/%d\n",
1892 			    bp, bp->b_error, bp->b_bcount,
1893 			    bp->b_bcount - bp->b_resid);
1894 #endif
1895 	} else if (nbp->b_resid) {
1896 		/*
1897 		 * A short read or write terminates the chain
1898 		 */
1899 		bp->b_error = nbp->b_error;
1900 		bp->b_resid = bp->b_bcount - boffset +
1901 			      (nbp->b_bcount - nbp->b_resid);
1902 #if SPEC_CHAIN_DEBUG & 1
1903 		devfs_debug(DEVFS_DEBUG_DEBUG,
1904 			    "spec_strategy: chain %p short read(1) "
1905 			    "bcount %d/%d\n",
1906 			    bp, bp->b_bcount - bp->b_resid, bp->b_bcount);
1907 #endif
1908 	} else if (nbp->b_bcount != nbp->b_bufsize) {
1909 		/*
1910 		 * A short read or write can also occur by truncating b_bcount
1911 		 */
1912 #if SPEC_CHAIN_DEBUG & 1
1913 		devfs_debug(DEVFS_DEBUG_DEBUG,
1914 			    "spec_strategy: chain %p short read(2) "
1915 			    "bcount %d/%d\n",
1916 			    bp, nbp->b_bcount + boffset, bp->b_bcount);
1917 #endif
1918 		bp->b_error = 0;
1919 		bp->b_bcount = nbp->b_bcount + boffset;
1920 		bp->b_resid = nbp->b_resid;
1921 	} else if (nbp->b_bcount + boffset == bp->b_bcount) {
1922 		/*
1923 		 * No more data terminates the chain
1924 		 */
1925 #if SPEC_CHAIN_DEBUG & 1
1926 		devfs_debug(DEVFS_DEBUG_DEBUG,
1927 			    "spec_strategy: chain %p finished bcount %d\n",
1928 			    bp, bp->b_bcount);
1929 #endif
1930 		bp->b_error = 0;
1931 		bp->b_resid = 0;
1932 	} else {
1933 		/*
1934 		 * Continue the chain
1935 		 */
1936 		boffset += nbp->b_bcount;
1937 		nbp->b_data = bp->b_data + boffset;
1938 		nbp->b_bcount = bp->b_bcount - boffset;
1939 		if (nbp->b_bcount > chunksize)
1940 			nbp->b_bcount = chunksize;
1941 		nbp->b_bio1.bio_done = devfs_spec_strategy_done;
1942 		nbp->b_bio1.bio_offset = bio->bio_offset + boffset;
1943 
1944 #if SPEC_CHAIN_DEBUG & 1
1945 		devfs_debug(DEVFS_DEBUG_DEBUG,
1946 			    "spec_strategy: chain %p offset %d/%d bcount %d\n",
1947 			    bp, boffset, bp->b_bcount, nbp->b_bcount);
1948 #endif
1949 
1950 		dev_dstrategy(nbp->b_vp->v_rdev, &nbp->b_bio1);
1951 		return;
1952 	}
1953 
1954 	/*
1955 	 * Fall through to here on termination.  biodone(bp) and
1956 	 * clean up and free nbp.
1957 	 */
1958 	biodone(bio);
1959 	BUF_UNLOCK(nbp);
1960 	uninitbufbio(nbp);
1961 	kfree(nbp, M_DEVBUF);
1962 }
1963 
1964 /*
1965  * spec_freeblks(struct vnode *a_vp, daddr_t a_addr, daddr_t a_length)
1966  */
1967 static int
1968 devfs_spec_freeblks(struct vop_freeblks_args *ap)
1969 {
1970 	struct buf *bp;
1971 
1972 	/*
1973 	 * Must be a synchronous operation
1974 	 */
1975 	KKASSERT(ap->a_vp->v_rdev != NULL);
1976 	if ((ap->a_vp->v_rdev->si_flags & SI_CANFREE) == 0)
1977 		return (0);
1978 	bp = getpbuf(NULL);
1979 	bp->b_cmd = BUF_CMD_FREEBLKS;
1980 	bp->b_bio1.bio_flags |= BIO_SYNC;
1981 	bp->b_bio1.bio_offset = ap->a_offset;
1982 	bp->b_bio1.bio_done = biodone_sync;
1983 	bp->b_bcount = ap->a_length;
1984 	dev_dstrategy(ap->a_vp->v_rdev, &bp->b_bio1);
1985 	biowait(&bp->b_bio1, "TRIM");
1986 	relpbuf(bp, NULL);
1987 
1988 	return (0);
1989 }
1990 
1991 /*
1992  * Implement degenerate case where the block requested is the block
1993  * returned, and assume that the entire device is contiguous in regards
1994  * to the contiguous block range (runp and runb).
1995  *
1996  * spec_bmap(struct vnode *a_vp, off_t a_loffset,
1997  *	     off_t *a_doffsetp, int *a_runp, int *a_runb)
1998  */
1999 static int
2000 devfs_spec_bmap(struct vop_bmap_args *ap)
2001 {
2002 	if (ap->a_doffsetp != NULL)
2003 		*ap->a_doffsetp = ap->a_loffset;
2004 	if (ap->a_runp != NULL)
2005 		*ap->a_runp = MAXBSIZE;
2006 	if (ap->a_runb != NULL) {
2007 		if (ap->a_loffset < MAXBSIZE)
2008 			*ap->a_runb = (int)ap->a_loffset;
2009 		else
2010 			*ap->a_runb = MAXBSIZE;
2011 	}
2012 	return (0);
2013 }
2014 
2015 
2016 /*
2017  * Special device advisory byte-level locks.
2018  *
2019  * spec_advlock(struct vnode *a_vp, caddr_t a_id, int a_op,
2020  *		struct flock *a_fl, int a_flags)
2021  */
2022 /* ARGSUSED */
2023 static int
2024 devfs_spec_advlock(struct vop_advlock_args *ap)
2025 {
2026 	return ((ap->a_flags & F_POSIX) ? EINVAL : EOPNOTSUPP);
2027 }
2028 
2029 /*
2030  * NOTE: MPSAFE callback.
2031  */
2032 static void
2033 devfs_spec_getpages_iodone(struct bio *bio)
2034 {
2035 	bio->bio_buf->b_cmd = BUF_CMD_DONE;
2036 	wakeup(bio->bio_buf);
2037 }
2038 
2039 /*
2040  * spec_getpages() - get pages associated with device vnode.
2041  *
2042  * Note that spec_read and spec_write do not use the buffer cache, so we
2043  * must fully implement getpages here.
2044  */
2045 static int
2046 devfs_spec_getpages(struct vop_getpages_args *ap)
2047 {
2048 	vm_offset_t kva;
2049 	int error;
2050 	int i, pcount, size;
2051 	struct buf *bp;
2052 	vm_page_t m;
2053 	vm_ooffset_t offset;
2054 	int toff, nextoff, nread;
2055 	struct vnode *vp = ap->a_vp;
2056 	int blksiz;
2057 	int gotreqpage;
2058 
2059 	error = 0;
2060 	pcount = round_page(ap->a_count) / PAGE_SIZE;
2061 
2062 	/*
2063 	 * Calculate the offset of the transfer and do sanity check.
2064 	 */
2065 	offset = IDX_TO_OFF(ap->a_m[0]->pindex) + ap->a_offset;
2066 
2067 	/*
2068 	 * Round up physical size for real devices.  We cannot round using
2069 	 * v_mount's block size data because v_mount has nothing to do with
2070 	 * the device.  i.e. it's usually '/dev'.  We need the physical block
2071 	 * size for the device itself.
2072 	 *
2073 	 * We can't use v_rdev->si_mountpoint because it only exists when the
2074 	 * block device is mounted.  However, we can use v_rdev.
2075 	 */
2076 	if (vn_isdisk(vp, NULL))
2077 		blksiz = vp->v_rdev->si_bsize_phys;
2078 	else
2079 		blksiz = DEV_BSIZE;
2080 
2081 	size = roundup2(ap->a_count, blksiz);
2082 
2083 	bp = getpbuf_kva(NULL);
2084 	kva = (vm_offset_t)bp->b_data;
2085 
2086 	/*
2087 	 * Map the pages to be read into the kva.
2088 	 */
2089 	pmap_qenter_noinval(kva, ap->a_m, pcount);
2090 
2091 	/* Build a minimal buffer header. */
2092 	bp->b_cmd = BUF_CMD_READ;
2093 	bp->b_flags |= B_KVABIO;
2094 	bp->b_bcount = size;
2095 	bp->b_resid = 0;
2096 	bsetrunningbufspace(bp, size);
2097 
2098 	bp->b_bio1.bio_offset = offset;
2099 	bp->b_bio1.bio_done = devfs_spec_getpages_iodone;
2100 
2101 	mycpu->gd_cnt.v_vnodein++;
2102 	mycpu->gd_cnt.v_vnodepgsin += pcount;
2103 
2104 	/* Do the input. */
2105 	vn_strategy(ap->a_vp, &bp->b_bio1);
2106 
2107 	crit_enter();
2108 
2109 	/* We definitely need to be at splbio here. */
2110 	while (bp->b_cmd != BUF_CMD_DONE)
2111 		tsleep(bp, 0, "spread", 0);
2112 
2113 	crit_exit();
2114 
2115 	if (bp->b_flags & B_ERROR) {
2116 		if (bp->b_error)
2117 			error = bp->b_error;
2118 		else
2119 			error = EIO;
2120 	}
2121 
2122 	/*
2123 	 * If EOF is encountered we must zero-extend the result in order
2124 	 * to ensure that the page does not contain garabge.  When no
2125 	 * error occurs, an early EOF is indicated if b_bcount got truncated.
2126 	 * b_resid is relative to b_bcount and should be 0, but some devices
2127 	 * might indicate an EOF with b_resid instead of truncating b_bcount.
2128 	 */
2129 	nread = bp->b_bcount - bp->b_resid;
2130 	if (nread < ap->a_count) {
2131 		bkvasync(bp);
2132 		bzero((caddr_t)kva + nread, ap->a_count - nread);
2133 	}
2134 	pmap_qremove_noinval(kva, pcount);
2135 
2136 	gotreqpage = 0;
2137 	for (i = 0, toff = 0; i < pcount; i++, toff = nextoff) {
2138 		nextoff = toff + PAGE_SIZE;
2139 		m = ap->a_m[i];
2140 
2141 		/*
2142 		 * NOTE: vm_page_undirty/clear_dirty etc do not clear the
2143 		 *	 pmap modified bit.  pmap modified bit should have
2144 		 *	 already been cleared.
2145 		 */
2146 		if (nextoff <= nread) {
2147 			m->valid = VM_PAGE_BITS_ALL;
2148 			vm_page_undirty(m);
2149 		} else if (toff < nread) {
2150 			/*
2151 			 * Since this is a VM request, we have to supply the
2152 			 * unaligned offset to allow vm_page_set_valid()
2153 			 * to zero sub-DEV_BSIZE'd portions of the page.
2154 			 */
2155 			vm_page_set_valid(m, 0, nread - toff);
2156 			vm_page_clear_dirty_end_nonincl(m, 0, nread - toff);
2157 		} else {
2158 			m->valid = 0;
2159 			vm_page_undirty(m);
2160 		}
2161 
2162 		if (i != ap->a_reqpage) {
2163 			/*
2164 			 * Just in case someone was asking for this page we
2165 			 * now tell them that it is ok to use.
2166 			 */
2167 			if (!error || (m->valid == VM_PAGE_BITS_ALL)) {
2168 				if (m->valid) {
2169 					if (m->flags & PG_REFERENCED) {
2170 						vm_page_activate(m);
2171 					} else {
2172 						vm_page_deactivate(m);
2173 					}
2174 					vm_page_wakeup(m);
2175 				} else {
2176 					vm_page_free(m);
2177 				}
2178 			} else {
2179 				vm_page_free(m);
2180 			}
2181 		} else if (m->valid) {
2182 			gotreqpage = 1;
2183 			/*
2184 			 * Since this is a VM request, we need to make the
2185 			 * entire page presentable by zeroing invalid sections.
2186 			 */
2187 			if (m->valid != VM_PAGE_BITS_ALL)
2188 			    vm_page_zero_invalid(m, FALSE);
2189 		}
2190 	}
2191 	if (!gotreqpage) {
2192 		m = ap->a_m[ap->a_reqpage];
2193 		devfs_debug(DEVFS_DEBUG_WARNING,
2194 	    "spec_getpages:(%s) I/O read failure: (error=%d) bp %p vp %p\n",
2195 			devtoname(vp->v_rdev), error, bp, bp->b_vp);
2196 		devfs_debug(DEVFS_DEBUG_WARNING,
2197 	    "               size: %d, resid: %d, a_count: %d, valid: 0x%x\n",
2198 		    size, bp->b_resid, ap->a_count, m->valid);
2199 		devfs_debug(DEVFS_DEBUG_WARNING,
2200 	    "               nread: %d, reqpage: %d, pindex: %lu, pcount: %d\n",
2201 		    nread, ap->a_reqpage, (u_long)m->pindex, pcount);
2202 		/*
2203 		 * Free the buffer header back to the swap buffer pool.
2204 		 */
2205 		relpbuf(bp, NULL);
2206 		return VM_PAGER_ERROR;
2207 	}
2208 	/*
2209 	 * Free the buffer header back to the swap buffer pool.
2210 	 */
2211 	relpbuf(bp, NULL);
2212 	if (DEVFS_NODE(ap->a_vp))
2213 		vfs_timestamp(&DEVFS_NODE(ap->a_vp)->mtime);
2214 	return VM_PAGER_OK;
2215 }
2216 
2217 static __inline
2218 int
2219 sequential_heuristic(struct uio *uio, struct file *fp)
2220 {
2221 	/*
2222 	 * Sequential heuristic - detect sequential operation
2223 	 */
2224 	if ((uio->uio_offset == 0 && fp->f_seqcount > 0) ||
2225 	    uio->uio_offset == fp->f_nextoff) {
2226 		/*
2227 		 * XXX we assume that the filesystem block size is
2228 		 * the default.  Not true, but still gives us a pretty
2229 		 * good indicator of how sequential the read operations
2230 		 * are.
2231 		 */
2232 		int tmpseq = fp->f_seqcount;
2233 
2234 		tmpseq += howmany(uio->uio_resid, MAXBSIZE);
2235 		if (tmpseq > IO_SEQMAX)
2236 			tmpseq = IO_SEQMAX;
2237 		fp->f_seqcount = tmpseq;
2238 		return(fp->f_seqcount << IO_SEQSHIFT);
2239 	}
2240 
2241 	/*
2242 	 * Not sequential, quick draw-down of seqcount
2243 	 */
2244 	if (fp->f_seqcount > 1)
2245 		fp->f_seqcount = 1;
2246 	else
2247 		fp->f_seqcount = 0;
2248 	return(0);
2249 }
2250