xref: /dragonfly/sys/vfs/devfs/devfs_vnops.c (revision e4adeac1)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 2009 The DragonFly Project.  All rights reserved.
5  *
6  * This code is derived from software contributed to The DragonFly Project
7  * by Alex Hornung <ahornung@gmail.com>
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  * 3. Neither the name of The DragonFly Project nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific, prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
27  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  */
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/time.h>
39 #include <sys/kernel.h>
40 #include <sys/lock.h>
41 #include <sys/fcntl.h>
42 #include <sys/proc.h>
43 #include <sys/priv.h>
44 #include <sys/signalvar.h>
45 #include <sys/vnode.h>
46 #include <sys/uio.h>
47 #include <sys/mount.h>
48 #include <sys/file.h>
49 #include <sys/dirent.h>
50 #include <sys/malloc.h>
51 #include <sys/stat.h>
52 #include <sys/reg.h>
53 #include <vm/vm_pager.h>
54 #include <vm/vm_zone.h>
55 #include <vm/vm_object.h>
56 #include <sys/filio.h>
57 #include <sys/ttycom.h>
58 #include <sys/tty.h>
59 #include <sys/diskslice.h>
60 #include <sys/sysctl.h>
61 #include <sys/devfs.h>
62 #include <sys/pioctl.h>
63 #include <vfs/fifofs/fifo.h>
64 
65 #include <machine/limits.h>
66 
67 #include <sys/buf2.h>
68 #include <vm/vm_page2.h>
69 
70 #ifndef SPEC_CHAIN_DEBUG
71 #define SPEC_CHAIN_DEBUG 0
72 #endif
73 
74 MALLOC_DECLARE(M_DEVFS);
75 #define DEVFS_BADOP	(void *)devfs_vop_badop
76 
77 static int devfs_vop_badop(struct vop_generic_args *);
78 static int devfs_vop_access(struct vop_access_args *);
79 static int devfs_vop_inactive(struct vop_inactive_args *);
80 static int devfs_vop_reclaim(struct vop_reclaim_args *);
81 static int devfs_vop_readdir(struct vop_readdir_args *);
82 static int devfs_vop_getattr(struct vop_getattr_args *);
83 static int devfs_vop_setattr(struct vop_setattr_args *);
84 static int devfs_vop_readlink(struct vop_readlink_args *);
85 static int devfs_vop_print(struct vop_print_args *);
86 
87 static int devfs_vop_nresolve(struct vop_nresolve_args *);
88 static int devfs_vop_nlookupdotdot(struct vop_nlookupdotdot_args *);
89 static int devfs_vop_nmkdir(struct vop_nmkdir_args *);
90 static int devfs_vop_nsymlink(struct vop_nsymlink_args *);
91 static int devfs_vop_nrmdir(struct vop_nrmdir_args *);
92 static int devfs_vop_nremove(struct vop_nremove_args *);
93 
94 static int devfs_spec_open(struct vop_open_args *);
95 static int devfs_spec_close(struct vop_close_args *);
96 static int devfs_spec_fsync(struct vop_fsync_args *);
97 
98 static int devfs_spec_read(struct vop_read_args *);
99 static int devfs_spec_write(struct vop_write_args *);
100 static int devfs_spec_ioctl(struct vop_ioctl_args *);
101 static int devfs_spec_kqfilter(struct vop_kqfilter_args *);
102 static int devfs_spec_strategy(struct vop_strategy_args *);
103 static void devfs_spec_strategy_done(struct bio *);
104 static int devfs_spec_freeblks(struct vop_freeblks_args *);
105 static int devfs_spec_bmap(struct vop_bmap_args *);
106 static int devfs_spec_advlock(struct vop_advlock_args *);
107 static void devfs_spec_getpages_iodone(struct bio *);
108 static int devfs_spec_getpages(struct vop_getpages_args *);
109 
110 static int devfs_fo_close(struct file *);
111 static int devfs_fo_read(struct file *, struct uio *, struct ucred *, int);
112 static int devfs_fo_write(struct file *, struct uio *, struct ucred *, int);
113 static int devfs_fo_stat(struct file *, struct stat *, struct ucred *);
114 static int devfs_fo_kqfilter(struct file *, struct knote *);
115 static int devfs_fo_ioctl(struct file *, u_long, caddr_t,
116 				struct ucred *, struct sysmsg *);
117 static __inline int sequential_heuristic(struct uio *, struct file *);
118 
119 extern struct lock devfs_lock;
120 
121 /*
122  * devfs vnode operations for regular files.  All vnode ops are MPSAFE.
123  */
124 struct vop_ops devfs_vnode_norm_vops = {
125 	.vop_default =		vop_defaultop,
126 	.vop_access =		devfs_vop_access,
127 	.vop_advlock =		DEVFS_BADOP,
128 	.vop_bmap =		DEVFS_BADOP,
129 	.vop_close =		vop_stdclose,
130 	.vop_getattr =		devfs_vop_getattr,
131 	.vop_inactive =		devfs_vop_inactive,
132 	.vop_ncreate =		DEVFS_BADOP,
133 	.vop_nresolve =		devfs_vop_nresolve,
134 	.vop_nlookupdotdot =	devfs_vop_nlookupdotdot,
135 	.vop_nlink =		DEVFS_BADOP,
136 	.vop_nmkdir =		devfs_vop_nmkdir,
137 	.vop_nmknod =		DEVFS_BADOP,
138 	.vop_nremove =		devfs_vop_nremove,
139 	.vop_nrename =		DEVFS_BADOP,
140 	.vop_nrmdir =		devfs_vop_nrmdir,
141 	.vop_nsymlink =		devfs_vop_nsymlink,
142 	.vop_open =		vop_stdopen,
143 	.vop_pathconf =		vop_stdpathconf,
144 	.vop_print =		devfs_vop_print,
145 	.vop_read =		DEVFS_BADOP,
146 	.vop_readdir =		devfs_vop_readdir,
147 	.vop_readlink =		devfs_vop_readlink,
148 	.vop_reallocblks =	DEVFS_BADOP,
149 	.vop_reclaim =		devfs_vop_reclaim,
150 	.vop_setattr =		devfs_vop_setattr,
151 	.vop_write =		DEVFS_BADOP,
152 	.vop_ioctl =		DEVFS_BADOP
153 };
154 
155 /*
156  * devfs vnode operations for character devices.  All vnode ops are MPSAFE.
157  */
158 struct vop_ops devfs_vnode_dev_vops = {
159 	.vop_default =		vop_defaultop,
160 	.vop_access =		devfs_vop_access,
161 	.vop_advlock =		devfs_spec_advlock,
162 	.vop_bmap =		devfs_spec_bmap,
163 	.vop_close =		devfs_spec_close,
164 	.vop_freeblks =		devfs_spec_freeblks,
165 	.vop_fsync =		devfs_spec_fsync,
166 	.vop_getattr =		devfs_vop_getattr,
167 	.vop_getpages =		devfs_spec_getpages,
168 	.vop_inactive =		devfs_vop_inactive,
169 	.vop_open =		devfs_spec_open,
170 	.vop_pathconf =		vop_stdpathconf,
171 	.vop_print =		devfs_vop_print,
172 	.vop_kqfilter =		devfs_spec_kqfilter,
173 	.vop_read =		devfs_spec_read,
174 	.vop_readdir =		DEVFS_BADOP,
175 	.vop_readlink =		DEVFS_BADOP,
176 	.vop_reallocblks =	DEVFS_BADOP,
177 	.vop_reclaim =		devfs_vop_reclaim,
178 	.vop_setattr =		devfs_vop_setattr,
179 	.vop_strategy =		devfs_spec_strategy,
180 	.vop_write =		devfs_spec_write,
181 	.vop_ioctl =		devfs_spec_ioctl
182 };
183 
184 /*
185  * devfs file pointer operations.  All fileops are MPSAFE.
186  */
187 struct vop_ops *devfs_vnode_dev_vops_p = &devfs_vnode_dev_vops;
188 
189 struct fileops devfs_dev_fileops = {
190 	.fo_read	= devfs_fo_read,
191 	.fo_write	= devfs_fo_write,
192 	.fo_ioctl	= devfs_fo_ioctl,
193 	.fo_kqfilter	= devfs_fo_kqfilter,
194 	.fo_stat	= devfs_fo_stat,
195 	.fo_close	= devfs_fo_close,
196 	.fo_shutdown	= nofo_shutdown
197 };
198 
199 /*
200  * These two functions are possibly temporary hacks for devices (aka
201  * the pty code) which want to control the node attributes themselves.
202  *
203  * XXX we may ultimately desire to simply remove the uid/gid/mode
204  * from the node entirely.
205  *
206  * MPSAFE - sorta.  Theoretically the overwrite can compete since they
207  *	    are loading from the same fields.
208  */
209 static __inline void
210 node_sync_dev_get(struct devfs_node *node)
211 {
212 	cdev_t dev;
213 
214 	if ((dev = node->d_dev) && (dev->si_flags & SI_OVERRIDE)) {
215 		node->uid = dev->si_uid;
216 		node->gid = dev->si_gid;
217 		node->mode = dev->si_perms;
218 	}
219 }
220 
221 static __inline void
222 node_sync_dev_set(struct devfs_node *node)
223 {
224 	cdev_t dev;
225 
226 	if ((dev = node->d_dev) && (dev->si_flags & SI_OVERRIDE)) {
227 		dev->si_uid = node->uid;
228 		dev->si_gid = node->gid;
229 		dev->si_perms = node->mode;
230 	}
231 }
232 
233 /*
234  * generic entry point for unsupported operations
235  */
236 static int
237 devfs_vop_badop(struct vop_generic_args *ap)
238 {
239 	return (EIO);
240 }
241 
242 
243 static int
244 devfs_vop_access(struct vop_access_args *ap)
245 {
246 	struct devfs_node *node = DEVFS_NODE(ap->a_vp);
247 	int error;
248 
249 	if (!devfs_node_is_accessible(node))
250 		return ENOENT;
251 	node_sync_dev_get(node);
252 	error = vop_helper_access(ap, node->uid, node->gid,
253 				  node->mode, node->flags);
254 
255 	return error;
256 }
257 
258 
259 static int
260 devfs_vop_inactive(struct vop_inactive_args *ap)
261 {
262 	struct devfs_node *node = DEVFS_NODE(ap->a_vp);
263 
264 	if (node == NULL || (node->flags & DEVFS_NODE_LINKED) == 0)
265 		vrecycle(ap->a_vp);
266 	return 0;
267 }
268 
269 
270 static int
271 devfs_vop_reclaim(struct vop_reclaim_args *ap)
272 {
273 	struct devfs_node *node;
274 	struct vnode *vp;
275 	int locked;
276 
277 	/*
278 	 * Check if it is locked already. if not, we acquire the devfs lock
279 	 */
280 	if ((lockstatus(&devfs_lock, curthread)) != LK_EXCLUSIVE) {
281 		lockmgr(&devfs_lock, LK_EXCLUSIVE);
282 		locked = 1;
283 	} else {
284 		locked = 0;
285 	}
286 
287 	/*
288 	 * Get rid of the devfs_node if it is no longer linked into the
289 	 * topology.  Interlocked by devfs_lock.  However, be careful
290 	 * interposing other operations between cleaning out v_data and
291 	 * devfs_freep() as the node is only protected by devfs_lock
292 	 * once the vnode is disassociated.
293 	 */
294 	vp = ap->a_vp;
295 	node = DEVFS_NODE(vp);
296 
297 	if (node) {
298 		if (node->v_node != vp) {
299 			kprintf("NODE->V_NODE MISMATCH VP=%p NODEVP=%p\n",
300 				vp, node->v_node);
301 		}
302 		vp->v_data = NULL;
303 		node->v_node = NULL;
304 		if ((node->flags & DEVFS_NODE_LINKED) == 0)
305 			devfs_freep(node);
306 	}
307 	v_release_rdev(vp);
308 
309 	if (locked)
310 		lockmgr(&devfs_lock, LK_RELEASE);
311 
312 	/*
313 	 * v_rdev needs to be properly released using v_release_rdev
314 	 * Make sure v_data is NULL as well.
315 	 */
316 	return 0;
317 }
318 
319 
320 static int
321 devfs_vop_readdir(struct vop_readdir_args *ap)
322 {
323 	struct devfs_node *dnode = DEVFS_NODE(ap->a_vp);
324 	struct devfs_node *node;
325 	int cookie_index;
326 	int ncookies;
327 	int error2;
328 	int error;
329 	int r;
330 	off_t *cookies;
331 	off_t saveoff;
332 
333 	devfs_debug(DEVFS_DEBUG_DEBUG, "devfs_readdir() called!\n");
334 
335 	if (ap->a_uio->uio_offset < 0 || ap->a_uio->uio_offset > INT_MAX)
336 		return (EINVAL);
337 	error = vn_lock(ap->a_vp, LK_EXCLUSIVE | LK_RETRY | LK_FAILRECLAIM);
338 	if (error)
339 		return (error);
340 
341 	if (!devfs_node_is_accessible(dnode)) {
342 		vn_unlock(ap->a_vp);
343 		return ENOENT;
344 	}
345 
346 	lockmgr(&devfs_lock, LK_EXCLUSIVE);
347 
348 	saveoff = ap->a_uio->uio_offset;
349 
350 	if (ap->a_ncookies) {
351 		ncookies = ap->a_uio->uio_resid / 16 + 1; /* Why / 16 ?? */
352 		if (ncookies > 256)
353 			ncookies = 256;
354 		cookies = kmalloc(256 * sizeof(off_t), M_TEMP, M_WAITOK);
355 		cookie_index = 0;
356 	} else {
357 		ncookies = -1;
358 		cookies = NULL;
359 		cookie_index = 0;
360 	}
361 
362 	vfs_timestamp(&dnode->atime);
363 
364 	if (saveoff == 0) {
365 		r = vop_write_dirent(&error, ap->a_uio, dnode->d_dir.d_ino,
366 				     DT_DIR, 1, ".");
367 		if (r)
368 			goto done;
369 		if (cookies)
370 			cookies[cookie_index] = saveoff;
371 		saveoff++;
372 		cookie_index++;
373 		if (cookie_index == ncookies)
374 			goto done;
375 	}
376 
377 	if (saveoff == 1) {
378 		if (dnode->parent) {
379 			r = vop_write_dirent(&error, ap->a_uio,
380 					     dnode->parent->d_dir.d_ino,
381 					     DT_DIR, 2, "..");
382 		} else {
383 			r = vop_write_dirent(&error, ap->a_uio,
384 					     dnode->d_dir.d_ino,
385 					     DT_DIR, 2, "..");
386 		}
387 		if (r)
388 			goto done;
389 		if (cookies)
390 			cookies[cookie_index] = saveoff;
391 		saveoff++;
392 		cookie_index++;
393 		if (cookie_index == ncookies)
394 			goto done;
395 	}
396 
397 	TAILQ_FOREACH(node, DEVFS_DENODE_HEAD(dnode), link) {
398 		if ((node->flags & DEVFS_HIDDEN) ||
399 		    (node->flags & DEVFS_INVISIBLE)) {
400 			continue;
401 		}
402 
403 		/*
404 		 * If the node type is a valid devfs alias, then we make
405 		 * sure that the target isn't hidden. If it is, we don't
406 		 * show the link in the directory listing.
407 		 */
408 		if ((node->node_type == Nlink) && (node->link_target != NULL) &&
409 			(node->link_target->flags & DEVFS_HIDDEN))
410 			continue;
411 
412 		if (node->cookie < saveoff)
413 			continue;
414 
415 		saveoff = node->cookie;
416 
417 		error2 = vop_write_dirent(&error, ap->a_uio, node->d_dir.d_ino,
418 					  node->d_dir.d_type,
419 					  node->d_dir.d_namlen,
420 					  node->d_dir.d_name);
421 
422 		if (error2)
423 			break;
424 
425 		saveoff++;
426 
427 		if (cookies)
428 			cookies[cookie_index] = node->cookie;
429 		++cookie_index;
430 		if (cookie_index == ncookies)
431 			break;
432 	}
433 
434 done:
435 	lockmgr(&devfs_lock, LK_RELEASE);
436 	vn_unlock(ap->a_vp);
437 
438 	ap->a_uio->uio_offset = saveoff;
439 	if (error && cookie_index == 0) {
440 		if (cookies) {
441 			kfree(cookies, M_TEMP);
442 			*ap->a_ncookies = 0;
443 			*ap->a_cookies = NULL;
444 		}
445 	} else {
446 		if (cookies) {
447 			*ap->a_ncookies = cookie_index;
448 			*ap->a_cookies = cookies;
449 		}
450 	}
451 	return (error);
452 }
453 
454 
455 static int
456 devfs_vop_nresolve(struct vop_nresolve_args *ap)
457 {
458 	struct devfs_node *dnode = DEVFS_NODE(ap->a_dvp);
459 	struct devfs_node *node, *found = NULL;
460 	struct namecache *ncp;
461 	struct vnode *vp = NULL;
462 	int error = 0;
463 	int len;
464 	int depth;
465 
466 	ncp = ap->a_nch->ncp;
467 	len = ncp->nc_nlen;
468 
469 	if (!devfs_node_is_accessible(dnode))
470 		return ENOENT;
471 
472 	lockmgr(&devfs_lock, LK_EXCLUSIVE);
473 
474 	if ((dnode->node_type != Nroot) && (dnode->node_type != Ndir)) {
475 		error = ENOENT;
476 		cache_setvp(ap->a_nch, NULL);
477 		goto out;
478 	}
479 
480 	TAILQ_FOREACH(node, DEVFS_DENODE_HEAD(dnode), link) {
481 		if (len == node->d_dir.d_namlen) {
482 			if (!memcmp(ncp->nc_name, node->d_dir.d_name, len)) {
483 				found = node;
484 				break;
485 			}
486 		}
487 	}
488 
489 	if (found) {
490 		depth = 0;
491 		while ((found->node_type == Nlink) && (found->link_target)) {
492 			if (depth >= 8) {
493 				devfs_debug(DEVFS_DEBUG_SHOW, "Recursive link or depth >= 8");
494 				break;
495 			}
496 
497 			found = found->link_target;
498 			++depth;
499 		}
500 
501 		if (!(found->flags & DEVFS_HIDDEN))
502 			devfs_allocv(/*ap->a_dvp->v_mount, */ &vp, found);
503 	}
504 
505 	if (vp == NULL) {
506 		error = ENOENT;
507 		cache_setvp(ap->a_nch, NULL);
508 		goto out;
509 
510 	}
511 	KKASSERT(vp);
512 	vn_unlock(vp);
513 	cache_setvp(ap->a_nch, vp);
514 	vrele(vp);
515 out:
516 	lockmgr(&devfs_lock, LK_RELEASE);
517 
518 	return error;
519 }
520 
521 
522 static int
523 devfs_vop_nlookupdotdot(struct vop_nlookupdotdot_args *ap)
524 {
525 	struct devfs_node *dnode = DEVFS_NODE(ap->a_dvp);
526 
527 	*ap->a_vpp = NULL;
528 	if (!devfs_node_is_accessible(dnode))
529 		return ENOENT;
530 
531 	lockmgr(&devfs_lock, LK_EXCLUSIVE);
532 	if (dnode->parent != NULL) {
533 		devfs_allocv(ap->a_vpp, dnode->parent);
534 		vn_unlock(*ap->a_vpp);
535 	}
536 	lockmgr(&devfs_lock, LK_RELEASE);
537 
538 	return ((*ap->a_vpp == NULL) ? ENOENT : 0);
539 }
540 
541 
542 /*
543  * getattr() - Does not need a lock since the vp is refd
544  */
545 static int
546 devfs_vop_getattr(struct vop_getattr_args *ap)
547 {
548 	struct devfs_node *node = DEVFS_NODE(ap->a_vp);
549 	struct vattr *vap = ap->a_vap;
550 	struct partinfo pinfo;
551 	int error = 0;
552 
553 #if 0
554 	if (!devfs_node_is_accessible(node))
555 		return ENOENT;
556 #endif
557 
558 	/*
559 	 * XXX This is a temporary hack to prevent crashes when the device is
560 	 * being destroyed (and so the underlying node will be gone) while
561 	 * a userland program is blocked in a read().
562 	 */
563 	if (node == NULL)
564 		return EIO;
565 
566 	node_sync_dev_get(node);
567 
568 	/* start by zeroing out the attributes */
569 	VATTR_NULL(vap);
570 
571 	/* next do all the common fields */
572 	vap->va_type = ap->a_vp->v_type;
573 	vap->va_mode = node->mode;
574 	vap->va_fileid = DEVFS_NODE(ap->a_vp)->d_dir.d_ino ;
575 	vap->va_flags = 0;
576 	vap->va_blocksize = DEV_BSIZE;
577 	vap->va_bytes = vap->va_size = 0;
578 
579 	vap->va_fsid = ap->a_vp->v_mount->mnt_stat.f_fsid.val[0];
580 
581 	vap->va_atime = node->atime;
582 	vap->va_mtime = node->mtime;
583 	vap->va_ctime = node->ctime;
584 
585 	vap->va_nlink = 1; /* number of references to file */
586 
587 	vap->va_uid = node->uid;
588 	vap->va_gid = node->gid;
589 
590 	vap->va_rmajor = 0;
591 	vap->va_rminor = 0;
592 
593 	if ((node->node_type == Ndev) && node->d_dev)  {
594 		reference_dev(node->d_dev);
595 		vap->va_rminor = node->d_dev->si_uminor;
596 		release_dev(node->d_dev);
597 	}
598 
599 	/* For a softlink the va_size is the length of the softlink */
600 	if (node->symlink_name != 0) {
601 		vap->va_bytes = vap->va_size = node->symlink_namelen;
602 	}
603 
604 	/*
605 	 * For a disk-type device, va_size is the size of the underlying
606 	 * device, so that lseek() works properly.
607 	 */
608 	if ((node->d_dev) && (dev_dflags(node->d_dev) & D_DISK)) {
609 		bzero(&pinfo, sizeof(pinfo));
610 		error = dev_dioctl(node->d_dev, DIOCGPART, (void *)&pinfo,
611 				   0, proc0.p_ucred, NULL, NULL);
612 		if ((error == 0) && (pinfo.media_blksize != 0)) {
613 			vap->va_size = pinfo.media_size;
614 		} else {
615 			vap->va_size = 0;
616 			error = 0;
617 		}
618 	}
619 
620 	return (error);
621 }
622 
623 static int
624 devfs_vop_setattr(struct vop_setattr_args *ap)
625 {
626 	struct devfs_node *node = DEVFS_NODE(ap->a_vp);
627 	struct vattr *vap;
628 	uid_t cur_uid;
629 	gid_t cur_gid;
630 	mode_t cur_mode;
631 	int error = 0;
632 
633 	if (!devfs_node_is_accessible(node))
634 		return ENOENT;
635 	node_sync_dev_get(node);
636 
637 	vap = ap->a_vap;
638 
639 	if ((vap->va_uid != (uid_t)VNOVAL) || (vap->va_gid != (gid_t)VNOVAL)) {
640 		cur_uid = node->uid;
641 		cur_gid = node->gid;
642 		cur_mode = node->mode;
643 		error = vop_helper_chown(ap->a_vp, vap->va_uid, vap->va_gid,
644 		    ap->a_cred, &cur_uid, &cur_gid, &cur_mode);
645 		if (error)
646 			goto out;
647 
648 		if (node->uid != cur_uid || node->gid != cur_gid) {
649 			node->uid = cur_uid;
650 			node->gid = cur_gid;
651 			node->mode = cur_mode;
652 		}
653 	}
654 
655 	if (vap->va_mode != (mode_t)VNOVAL) {
656 		cur_mode = node->mode;
657 		error = vop_helper_chmod(ap->a_vp, vap->va_mode, ap->a_cred,
658 		    node->uid, node->gid, &cur_mode);
659 		if (error == 0 && node->mode != cur_mode) {
660 			node->mode = cur_mode;
661 		}
662 	}
663 
664 out:
665 	node_sync_dev_set(node);
666 	vfs_timestamp(&node->ctime);
667 
668 	return error;
669 }
670 
671 
672 static int
673 devfs_vop_readlink(struct vop_readlink_args *ap)
674 {
675 	struct devfs_node *node = DEVFS_NODE(ap->a_vp);
676 	int ret;
677 
678 	if (!devfs_node_is_accessible(node))
679 		return ENOENT;
680 
681 	lockmgr(&devfs_lock, LK_SHARED);
682 	ret = uiomove(node->symlink_name, node->symlink_namelen, ap->a_uio);
683 	lockmgr(&devfs_lock, LK_RELEASE);
684 
685 	return ret;
686 }
687 
688 
689 static int
690 devfs_vop_print(struct vop_print_args *ap)
691 {
692 	return (0);
693 }
694 
695 static int
696 devfs_vop_nmkdir(struct vop_nmkdir_args *ap)
697 {
698 	struct devfs_node *dnode = DEVFS_NODE(ap->a_dvp);
699 	struct devfs_node *node;
700 
701 	if (!devfs_node_is_accessible(dnode))
702 		return ENOENT;
703 
704 	if ((dnode->node_type != Nroot) && (dnode->node_type != Ndir))
705 		goto out;
706 
707 	lockmgr(&devfs_lock, LK_EXCLUSIVE);
708 	devfs_allocvp(ap->a_dvp->v_mount, ap->a_vpp, Ndir,
709 		      ap->a_nch->ncp->nc_name, dnode, NULL);
710 
711 	if (*ap->a_vpp) {
712 		node = DEVFS_NODE(*ap->a_vpp);
713 		node->flags |= DEVFS_USER_CREATED;
714 		cache_setunresolved(ap->a_nch);
715 		cache_setvp(ap->a_nch, *ap->a_vpp);
716 	}
717 	lockmgr(&devfs_lock, LK_RELEASE);
718 out:
719 	return ((*ap->a_vpp == NULL) ? ENOTDIR : 0);
720 }
721 
722 static int
723 devfs_vop_nsymlink(struct vop_nsymlink_args *ap)
724 {
725 	struct devfs_node *dnode = DEVFS_NODE(ap->a_dvp);
726 	struct devfs_node *node;
727 	size_t targetlen;
728 
729 	if (!devfs_node_is_accessible(dnode))
730 		return ENOENT;
731 
732 	ap->a_vap->va_type = VLNK;
733 
734 	if ((dnode->node_type != Nroot) && (dnode->node_type != Ndir))
735 		goto out;
736 
737 	lockmgr(&devfs_lock, LK_EXCLUSIVE);
738 	devfs_allocvp(ap->a_dvp->v_mount, ap->a_vpp, Nlink,
739 		      ap->a_nch->ncp->nc_name, dnode, NULL);
740 
741 	targetlen = strlen(ap->a_target);
742 	if (*ap->a_vpp) {
743 		node = DEVFS_NODE(*ap->a_vpp);
744 		node->flags |= DEVFS_USER_CREATED;
745 		node->symlink_namelen = targetlen;
746 		node->symlink_name = kmalloc(targetlen + 1, M_DEVFS, M_WAITOK);
747 		memcpy(node->symlink_name, ap->a_target, targetlen);
748 		node->symlink_name[targetlen] = '\0';
749 		cache_setunresolved(ap->a_nch);
750 		cache_setvp(ap->a_nch, *ap->a_vpp);
751 	}
752 	lockmgr(&devfs_lock, LK_RELEASE);
753 out:
754 	return ((*ap->a_vpp == NULL) ? ENOTDIR : 0);
755 }
756 
757 static int
758 devfs_vop_nrmdir(struct vop_nrmdir_args *ap)
759 {
760 	struct devfs_node *dnode = DEVFS_NODE(ap->a_dvp);
761 	struct devfs_node *node;
762 	struct namecache *ncp;
763 	int error = ENOENT;
764 
765 	ncp = ap->a_nch->ncp;
766 
767 	if (!devfs_node_is_accessible(dnode))
768 		return ENOENT;
769 
770 	lockmgr(&devfs_lock, LK_EXCLUSIVE);
771 
772 	if ((dnode->node_type != Nroot) && (dnode->node_type != Ndir))
773 		goto out;
774 
775 	TAILQ_FOREACH(node, DEVFS_DENODE_HEAD(dnode), link) {
776 		if (ncp->nc_nlen != node->d_dir.d_namlen)
777 			continue;
778 		if (memcmp(ncp->nc_name, node->d_dir.d_name, ncp->nc_nlen))
779 			continue;
780 
781 		/*
782 		 * only allow removal of user created dirs
783 		 */
784 		if ((node->flags & DEVFS_USER_CREATED) == 0) {
785 			error = EPERM;
786 			goto out;
787 		} else if (node->node_type != Ndir) {
788 			error = ENOTDIR;
789 			goto out;
790 		} else if (node->nchildren > 2) {
791 			error = ENOTEMPTY;
792 			goto out;
793 		} else {
794 			if (node->v_node)
795 				cache_inval_vp(node->v_node, CINV_DESTROY);
796 			devfs_unlinkp(node);
797 			error = 0;
798 			break;
799 		}
800 	}
801 
802 	cache_unlink(ap->a_nch);
803 out:
804 	lockmgr(&devfs_lock, LK_RELEASE);
805 	return error;
806 }
807 
808 static int
809 devfs_vop_nremove(struct vop_nremove_args *ap)
810 {
811 	struct devfs_node *dnode = DEVFS_NODE(ap->a_dvp);
812 	struct devfs_node *node;
813 	struct namecache *ncp;
814 	int error = ENOENT;
815 
816 	ncp = ap->a_nch->ncp;
817 
818 	if (!devfs_node_is_accessible(dnode))
819 		return ENOENT;
820 
821 	lockmgr(&devfs_lock, LK_EXCLUSIVE);
822 
823 	if ((dnode->node_type != Nroot) && (dnode->node_type != Ndir))
824 		goto out;
825 
826 	TAILQ_FOREACH(node, DEVFS_DENODE_HEAD(dnode), link) {
827 		if (ncp->nc_nlen != node->d_dir.d_namlen)
828 			continue;
829 		if (memcmp(ncp->nc_name, node->d_dir.d_name, ncp->nc_nlen))
830 			continue;
831 
832 		/*
833 		 * only allow removal of user created stuff (e.g. symlinks)
834 		 */
835 		if ((node->flags & DEVFS_USER_CREATED) == 0) {
836 			error = EPERM;
837 			goto out;
838 		} else if (node->node_type == Ndir) {
839 			error = EISDIR;
840 			goto out;
841 		} else {
842 			if (node->v_node)
843 				cache_inval_vp(node->v_node, CINV_DESTROY);
844 			devfs_unlinkp(node);
845 			error = 0;
846 			break;
847 		}
848 	}
849 
850 	cache_unlink(ap->a_nch);
851 out:
852 	lockmgr(&devfs_lock, LK_RELEASE);
853 	return error;
854 }
855 
856 
857 static int
858 devfs_spec_open(struct vop_open_args *ap)
859 {
860 	struct vnode *vp = ap->a_vp;
861 	struct vnode *orig_vp = NULL;
862 	struct devfs_node *node = DEVFS_NODE(vp);
863 	struct devfs_node *newnode;
864 	cdev_t dev, ndev = NULL;
865 	int error = 0;
866 
867 	if (node) {
868 		if (node->d_dev == NULL)
869 			return ENXIO;
870 		if (!devfs_node_is_accessible(node))
871 			return ENOENT;
872 	}
873 
874 	if ((dev = vp->v_rdev) == NULL)
875 		return ENXIO;
876 
877 	/*
878 	 * Simple devices that don't care.  Retain the shared lock.
879 	 */
880 	if (dev_dflags(dev) & D_QUICK) {
881 		vn_unlock(vp);
882 		error = dev_dopen(dev, ap->a_mode, S_IFCHR,
883 				  ap->a_cred, ap->a_fp, vp);
884 		vn_lock(vp, LK_SHARED | LK_RETRY);
885 		vop_stdopen(ap);
886 		goto skip;
887 	}
888 
889 	/*
890 	 * Slow code
891 	 */
892 	vn_lock(vp, LK_UPGRADE | LK_RETRY);
893 	if (node && ap->a_fp) {
894 		int exists;
895 
896 		devfs_debug(DEVFS_DEBUG_DEBUG, "devfs_spec_open: -1.1-\n");
897 		lockmgr(&devfs_lock, LK_SHARED);
898 
899 		ndev = devfs_clone(dev, node->d_dir.d_name,
900 				   node->d_dir.d_namlen,
901 				   ap->a_mode, ap->a_cred);
902 		if (ndev != NULL) {
903 			lockmgr(&devfs_lock, LK_RELEASE);
904 			lockmgr(&devfs_lock, LK_EXCLUSIVE);
905 			newnode = devfs_create_device_node(
906 					DEVFS_MNTDATA(vp->v_mount)->root_node,
907 					ndev, &exists, NULL, NULL);
908 			/* XXX: possibly destroy device if this happens */
909 
910 			if (newnode != NULL) {
911 				dev = ndev;
912 				if (exists == 0)
913 					devfs_link_dev(dev);
914 
915 				devfs_debug(DEVFS_DEBUG_DEBUG,
916 						"parent here is: %s, node is: |%s|\n",
917 						((node->parent->node_type == Nroot) ?
918 						"ROOT!" : node->parent->d_dir.d_name),
919 						newnode->d_dir.d_name);
920 				devfs_debug(DEVFS_DEBUG_DEBUG,
921 						"test: %s\n",
922 						((struct devfs_node *)(TAILQ_LAST(DEVFS_DENODE_HEAD(node->parent), devfs_node_head)))->d_dir.d_name);
923 
924 				/*
925 				 * orig_vp is set to the original vp if we
926 				 * cloned.
927 				 */
928 				/* node->flags |= DEVFS_CLONED; */
929 				devfs_allocv(&vp, newnode);
930 				orig_vp = ap->a_vp;
931 				ap->a_vp = vp;
932 			}
933 		}
934 		lockmgr(&devfs_lock, LK_RELEASE);
935 
936 		/*
937 		 * Synchronize devfs here to make sure that, if the cloned
938 		 * device creates other device nodes in addition to the
939 		 * cloned one, all of them are created by the time we return
940 		 * from opening the cloned one.
941 		 */
942 		if (ndev)
943 			devfs_config();
944 	}
945 
946 	devfs_debug(DEVFS_DEBUG_DEBUG,
947 		    "devfs_spec_open() called on %s! \n",
948 		    dev->si_name);
949 
950 	/*
951 	 * Make this field valid before any I/O in ->d_open
952 	 *
953 	 * NOTE: Shared vnode lock probably held, but its ok as long
954 	 *	 as assignments are consistent.
955 	 */
956 	if (!dev->si_iosize_max)
957 		/* XXX: old DFLTPHYS == 64KB dependency */
958 		dev->si_iosize_max = min(MAXPHYS,64*1024);
959 
960 	if (dev_dflags(dev) & D_TTY)
961 		vsetflags(vp, VISTTY);
962 
963 	/*
964 	 * Open the underlying device
965 	 */
966 	vn_unlock(vp);
967 	error = dev_dopen(dev, ap->a_mode, S_IFCHR, ap->a_cred, ap->a_fp, vp);
968 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
969 
970 	/*
971 	 * Clean up any cloned vp if we error out.
972 	 */
973 	if (error) {
974 		if (orig_vp) {
975 			vput(vp);
976 			ap->a_vp = orig_vp;
977 			/* orig_vp = NULL; */
978 		}
979 		return error;
980 	}
981 
982 	/*
983 	 * This checks if the disk device is going to be opened for writing.
984 	 * It will be only allowed in the cases where securelevel permits it
985 	 * and it's not mounted R/W.
986 	 */
987 	if ((dev_dflags(dev) & D_DISK) && (ap->a_mode & FWRITE) &&
988 	    (ap->a_cred != FSCRED)) {
989 
990 		/* Very secure mode. No open for writing allowed */
991 		if (securelevel >= 2)
992 			return EPERM;
993 
994 		/*
995 		 * If it is mounted R/W, do not allow to open for writing.
996 		 * In the case it's mounted read-only but securelevel
997 		 * is >= 1, then do not allow opening for writing either.
998 		 */
999 		if (vfs_mountedon(vp)) {
1000 			if (!(dev->si_mountpoint->mnt_flag & MNT_RDONLY))
1001 				return EBUSY;
1002 			else if (securelevel >= 1)
1003 				return EPERM;
1004 		}
1005 	}
1006 
1007 	/*
1008 	 * NOTE: vnode is still locked shared.  t_stop assignment should
1009 	 *	 remain consistent so we should be ok.
1010 	 */
1011 	if (dev_dflags(dev) & D_TTY) {
1012 		if (dev->si_tty) {
1013 			struct tty *tp;
1014 			tp = dev->si_tty;
1015 			if (!tp->t_stop) {
1016 				devfs_debug(DEVFS_DEBUG_DEBUG,
1017 					    "devfs: no t_stop\n");
1018 				tp->t_stop = nottystop;
1019 			}
1020 		}
1021 	}
1022 
1023 	/*
1024 	 * NOTE: vnode is still locked shared.  assignments should
1025 	 *	 remain consistent so we should be ok.  However,
1026 	 *	 upgrade to exclusive if we need a VM object.
1027 	 */
1028 	if (vn_isdisk(vp, NULL)) {
1029 		if (!dev->si_bsize_phys)
1030 			dev->si_bsize_phys = DEV_BSIZE;
1031 		vinitvmio(vp, IDX_TO_OFF(INT_MAX), PAGE_SIZE, -1);
1032 	}
1033 
1034 	vop_stdopen(ap);
1035 #if 0
1036 	if (node)
1037 		vfs_timestamp(&node->atime);
1038 #endif
1039 	/*
1040 	 * If we replaced the vp the vop_stdopen() call will have loaded
1041 	 * it into fp->f_data and vref()d the vp, giving us two refs.  So
1042 	 * instead of just unlocking it here we have to vput() it.
1043 	 */
1044 	if (orig_vp)
1045 		vput(vp);
1046 
1047 	/* Ugly pty magic, to make pty devices appear once they are opened */
1048 	if (node && (node->flags & DEVFS_PTY) == DEVFS_PTY) {
1049 		if (node->flags & DEVFS_INVISIBLE)
1050 			node->flags &= ~DEVFS_INVISIBLE;
1051 	}
1052 
1053 skip:
1054 	if (ap->a_fp) {
1055 		KKASSERT(ap->a_fp->f_type == DTYPE_VNODE);
1056 		KKASSERT((ap->a_fp->f_flag & FMASK) == (ap->a_mode & FMASK));
1057 		ap->a_fp->f_ops = &devfs_dev_fileops;
1058 		KKASSERT(ap->a_fp->f_data == (void *)vp);
1059 	}
1060 
1061 	return 0;
1062 }
1063 
1064 static int
1065 devfs_spec_close(struct vop_close_args *ap)
1066 {
1067 	struct devfs_node *node;
1068 	struct proc *p = curproc;
1069 	struct vnode *vp = ap->a_vp;
1070 	cdev_t dev = vp->v_rdev;
1071 	int error = 0;
1072 	int needrelock;
1073 	int opencount;
1074 
1075 	/*
1076 	 * Devices flagged D_QUICK require no special handling.
1077 	 */
1078 	if (dev && dev_dflags(dev) & D_QUICK) {
1079 		opencount = vp->v_opencount;
1080 		if (opencount <= 1)
1081 			opencount = count_dev(dev);   /* XXX NOT SMP SAFE */
1082 		if (((vp->v_flag & VRECLAIMED) ||
1083 		    (dev_dflags(dev) & D_TRACKCLOSE) ||
1084 		    (opencount == 1))) {
1085 			vn_unlock(vp);
1086 			error = dev_dclose(dev, ap->a_fflag, S_IFCHR, ap->a_fp);
1087 			vn_lock(vp, LK_SHARED | LK_RETRY);
1088 		}
1089 		goto skip;
1090 	}
1091 
1092 	/*
1093 	 * We do special tests on the opencount so unfortunately we need
1094 	 * an exclusive lock.
1095 	 */
1096 	vn_lock(vp, LK_UPGRADE | LK_RETRY);
1097 
1098 	if (dev)
1099 		devfs_debug(DEVFS_DEBUG_DEBUG,
1100 			    "devfs_spec_close() called on %s! \n",
1101 			    dev->si_name);
1102 	else
1103 		devfs_debug(DEVFS_DEBUG_DEBUG,
1104 			    "devfs_spec_close() called, null vode!\n");
1105 
1106 	/*
1107 	 * A couple of hacks for devices and tty devices.  The
1108 	 * vnode ref count cannot be used to figure out the
1109 	 * last close, but we can use v_opencount now that
1110 	 * revoke works properly.
1111 	 *
1112 	 * Detect the last close on a controlling terminal and clear
1113 	 * the session (half-close).
1114 	 *
1115 	 * XXX opencount is not SMP safe.  The vnode is locked but there
1116 	 *     may be multiple vnodes referencing the same device.
1117 	 */
1118 	if (dev) {
1119 		/*
1120 		 * NOTE: Try to avoid global tokens when testing opencount
1121 		 * XXX hack, fixme. needs a struct lock and opencount in
1122 		 * struct cdev itself.
1123 		 */
1124 		reference_dev(dev);
1125 		opencount = vp->v_opencount;
1126 		if (opencount <= 1)
1127 			opencount = count_dev(dev);   /* XXX NOT SMP SAFE */
1128 	} else {
1129 		opencount = 0;
1130 	}
1131 
1132 	if (p && vp->v_opencount <= 1 && vp == p->p_session->s_ttyvp) {
1133 		p->p_session->s_ttyvp = NULL;
1134 		vrele(vp);
1135 	}
1136 
1137 	/*
1138 	 * Vnodes can be opened and closed multiple times.  Do not really
1139 	 * close the device unless (1) it is being closed forcibly,
1140 	 * (2) the device wants to track closes, or (3) this is the last
1141 	 * vnode doing its last close on the device.
1142 	 *
1143 	 * XXX the VXLOCK (force close) case can leave vnodes referencing
1144 	 * a closed device.  This might not occur now that our revoke is
1145 	 * fixed.
1146 	 */
1147 	devfs_debug(DEVFS_DEBUG_DEBUG, "devfs_spec_close() -1- \n");
1148 	if (dev && ((vp->v_flag & VRECLAIMED) ||
1149 		    (dev_dflags(dev) & D_TRACKCLOSE) ||
1150 		    (opencount == 1))) {
1151 		/*
1152 		 * Ugly pty magic, to make pty devices disappear again once
1153 		 * they are closed.
1154 		 */
1155 		node = DEVFS_NODE(ap->a_vp);
1156 		if (node && (node->flags & DEVFS_PTY))
1157 			node->flags |= DEVFS_INVISIBLE;
1158 
1159 		/*
1160 		 * Unlock around dev_dclose(), unless the vnode is
1161 		 * undergoing a vgone/reclaim (during umount).
1162 		 */
1163 		needrelock = 0;
1164 		if ((vp->v_flag & VRECLAIMED) == 0 && vn_islocked(vp)) {
1165 			needrelock = 1;
1166 			vn_unlock(vp);
1167 		}
1168 
1169 		/*
1170 		 * WARNING!  If the device destroys itself the devfs node
1171 		 *	     can disappear here.
1172 		 *
1173 		 * WARNING!  vn_lock() will fail if the vp is in a VRECLAIM,
1174 		 *	     which can occur during umount.
1175 		 */
1176 		error = dev_dclose(dev, ap->a_fflag, S_IFCHR, ap->a_fp);
1177 		/* node is now stale */
1178 
1179 		if (needrelock) {
1180 			if (vn_lock(vp, LK_EXCLUSIVE |
1181 					LK_RETRY |
1182 					LK_FAILRECLAIM) != 0) {
1183 				panic("devfs_spec_close: vnode %p "
1184 				      "unexpectedly could not be relocked",
1185 				      vp);
1186 			}
1187 		}
1188 	} else {
1189 		error = 0;
1190 	}
1191 	devfs_debug(DEVFS_DEBUG_DEBUG, "devfs_spec_close() -2- \n");
1192 
1193 	/*
1194 	 * Track the actual opens and closes on the vnode.  The last close
1195 	 * disassociates the rdev.  If the rdev is already disassociated or
1196 	 * the opencount is already 0, the vnode might have been revoked
1197 	 * and no further opencount tracking occurs.
1198 	 */
1199 	if (dev)
1200 		release_dev(dev);
1201 skip:
1202 	if (vp->v_opencount > 0)
1203 		vop_stdclose(ap);
1204 	return(error);
1205 
1206 }
1207 
1208 
1209 static int
1210 devfs_fo_close(struct file *fp)
1211 {
1212 	struct vnode *vp = (struct vnode *)fp->f_data;
1213 	int error;
1214 
1215 	fp->f_ops = &badfileops;
1216 	error = vn_close(vp, fp->f_flag, fp);
1217 	devfs_clear_cdevpriv(fp);
1218 
1219 	return (error);
1220 }
1221 
1222 
1223 /*
1224  * Device-optimized file table vnode read routine.
1225  *
1226  * This bypasses the VOP table and talks directly to the device.  Most
1227  * filesystems just route to specfs and can make this optimization.
1228  */
1229 static int
1230 devfs_fo_read(struct file *fp, struct uio *uio,
1231 		 struct ucred *cred, int flags)
1232 {
1233 	struct devfs_node *node;
1234 	struct vnode *vp;
1235 	int ioflag;
1236 	int error;
1237 	cdev_t dev;
1238 
1239 	KASSERT(uio->uio_td == curthread,
1240 		("uio_td %p is not td %p", uio->uio_td, curthread));
1241 
1242 	if (uio->uio_resid == 0)
1243 		return 0;
1244 
1245 	vp = (struct vnode *)fp->f_data;
1246 	if (vp == NULL || vp->v_type == VBAD)
1247 		return EBADF;
1248 
1249 	node = DEVFS_NODE(vp);
1250 
1251 	if ((dev = vp->v_rdev) == NULL)
1252 		return EBADF;
1253 
1254 	reference_dev(dev);
1255 
1256 	if ((flags & O_FOFFSET) == 0)
1257 		uio->uio_offset = fp->f_offset;
1258 
1259 	ioflag = 0;
1260 	if (flags & O_FBLOCKING) {
1261 		/* ioflag &= ~IO_NDELAY; */
1262 	} else if (flags & O_FNONBLOCKING) {
1263 		ioflag |= IO_NDELAY;
1264 	} else if (fp->f_flag & FNONBLOCK) {
1265 		ioflag |= IO_NDELAY;
1266 	}
1267 	if (fp->f_flag & O_DIRECT) {
1268 		ioflag |= IO_DIRECT;
1269 	}
1270 	ioflag |= sequential_heuristic(uio, fp);
1271 
1272 	error = dev_dread(dev, uio, ioflag, fp);
1273 
1274 	release_dev(dev);
1275 	if (node)
1276 		vfs_timestamp(&node->atime);
1277 	if ((flags & O_FOFFSET) == 0)
1278 		fp->f_offset = uio->uio_offset;
1279 	fp->f_nextoff = uio->uio_offset;
1280 
1281 	return (error);
1282 }
1283 
1284 
1285 static int
1286 devfs_fo_write(struct file *fp, struct uio *uio,
1287 		  struct ucred *cred, int flags)
1288 {
1289 	struct devfs_node *node;
1290 	struct vnode *vp;
1291 	int ioflag;
1292 	int error;
1293 	cdev_t dev;
1294 
1295 	KASSERT(uio->uio_td == curthread,
1296 		("uio_td %p is not p %p", uio->uio_td, curthread));
1297 
1298 	vp = (struct vnode *)fp->f_data;
1299 	if (vp == NULL || vp->v_type == VBAD)
1300 		return EBADF;
1301 
1302 	node = DEVFS_NODE(vp);
1303 
1304 	if (vp->v_type == VREG)
1305 		bwillwrite(uio->uio_resid);
1306 
1307 	vp = (struct vnode *)fp->f_data;
1308 
1309 	if ((dev = vp->v_rdev) == NULL)
1310 		return EBADF;
1311 
1312 	reference_dev(dev);
1313 
1314 	if ((flags & O_FOFFSET) == 0)
1315 		uio->uio_offset = fp->f_offset;
1316 
1317 	ioflag = IO_UNIT;
1318 	if (vp->v_type == VREG &&
1319 	   ((fp->f_flag & O_APPEND) || (flags & O_FAPPEND))) {
1320 		ioflag |= IO_APPEND;
1321 	}
1322 
1323 	if (flags & O_FBLOCKING) {
1324 		/* ioflag &= ~IO_NDELAY; */
1325 	} else if (flags & O_FNONBLOCKING) {
1326 		ioflag |= IO_NDELAY;
1327 	} else if (fp->f_flag & FNONBLOCK) {
1328 		ioflag |= IO_NDELAY;
1329 	}
1330 	if (fp->f_flag & O_DIRECT) {
1331 		ioflag |= IO_DIRECT;
1332 	}
1333 	if (flags & O_FASYNCWRITE) {
1334 		/* ioflag &= ~IO_SYNC; */
1335 	} else if (flags & O_FSYNCWRITE) {
1336 		ioflag |= IO_SYNC;
1337 	} else if (fp->f_flag & O_FSYNC) {
1338 		ioflag |= IO_SYNC;
1339 	}
1340 
1341 	if (vp->v_mount && (vp->v_mount->mnt_flag & MNT_SYNCHRONOUS))
1342 		ioflag |= IO_SYNC;
1343 	ioflag |= sequential_heuristic(uio, fp);
1344 
1345 	error = dev_dwrite(dev, uio, ioflag, fp);
1346 
1347 	release_dev(dev);
1348 	if (node) {
1349 		vfs_timestamp(&node->atime);
1350 		vfs_timestamp(&node->mtime);
1351 	}
1352 
1353 	if ((flags & O_FOFFSET) == 0)
1354 		fp->f_offset = uio->uio_offset;
1355 	fp->f_nextoff = uio->uio_offset;
1356 
1357 	return (error);
1358 }
1359 
1360 
1361 static int
1362 devfs_fo_stat(struct file *fp, struct stat *sb, struct ucred *cred)
1363 {
1364 	struct vnode *vp;
1365 	struct vattr vattr;
1366 	struct vattr *vap;
1367 	u_short mode;
1368 	cdev_t dev;
1369 	int error;
1370 
1371 	vp = (struct vnode *)fp->f_data;
1372 	if (vp == NULL || vp->v_type == VBAD)
1373 		return EBADF;
1374 
1375 	error = vn_stat(vp, sb, cred);
1376 	if (error)
1377 		return (error);
1378 
1379 	vap = &vattr;
1380 	error = VOP_GETATTR(vp, vap);
1381 	if (error)
1382 		return (error);
1383 
1384 	/*
1385 	 * Zero the spare stat fields
1386 	 */
1387 	sb->st_lspare = 0;
1388 	sb->st_qspare2 = 0;
1389 
1390 	/*
1391 	 * Copy from vattr table ... or not in case it's a cloned device
1392 	 */
1393 	if (vap->va_fsid != VNOVAL)
1394 		sb->st_dev = vap->va_fsid;
1395 	else
1396 		sb->st_dev = vp->v_mount->mnt_stat.f_fsid.val[0];
1397 
1398 	sb->st_ino = vap->va_fileid;
1399 
1400 	mode = vap->va_mode;
1401 	mode |= S_IFCHR;
1402 	sb->st_mode = mode;
1403 
1404 	if (vap->va_nlink > (nlink_t)-1)
1405 		sb->st_nlink = (nlink_t)-1;
1406 	else
1407 		sb->st_nlink = vap->va_nlink;
1408 
1409 	sb->st_uid = vap->va_uid;
1410 	sb->st_gid = vap->va_gid;
1411 	sb->st_rdev = devid_from_dev(DEVFS_NODE(vp)->d_dev);
1412 	sb->st_size = vap->va_bytes;
1413 	sb->st_atimespec = vap->va_atime;
1414 	sb->st_mtimespec = vap->va_mtime;
1415 	sb->st_ctimespec = vap->va_ctime;
1416 
1417 	/*
1418 	 * A VCHR and VBLK device may track the last access and last modified
1419 	 * time independantly of the filesystem.  This is particularly true
1420 	 * because device read and write calls may bypass the filesystem.
1421 	 */
1422 	if (vp->v_type == VCHR || vp->v_type == VBLK) {
1423 		dev = vp->v_rdev;
1424 		if (dev != NULL) {
1425 			if (dev->si_lastread) {
1426 				sb->st_atimespec.tv_sec = time_second +
1427 							  (dev->si_lastread -
1428 							   time_uptime);
1429 				sb->st_atimespec.tv_nsec = 0;
1430 			}
1431 			if (dev->si_lastwrite) {
1432 				sb->st_mtimespec.tv_sec = time_second +
1433 							  (dev->si_lastwrite -
1434 							   time_uptime);
1435 				sb->st_mtimespec.tv_nsec = 0;
1436 			}
1437 		}
1438 	}
1439 
1440         /*
1441 	 * According to www.opengroup.org, the meaning of st_blksize is
1442 	 *   "a filesystem-specific preferred I/O block size for this
1443 	 *    object.  In some filesystem types, this may vary from file
1444 	 *    to file"
1445 	 * Default to PAGE_SIZE after much discussion.
1446 	 */
1447 
1448 	sb->st_blksize = PAGE_SIZE;
1449 
1450 	sb->st_flags = vap->va_flags;
1451 
1452 	error = priv_check_cred(cred, PRIV_VFS_GENERATION, 0);
1453 	if (error)
1454 		sb->st_gen = 0;
1455 	else
1456 		sb->st_gen = (u_int32_t)vap->va_gen;
1457 
1458 	sb->st_blocks = vap->va_bytes / S_BLKSIZE;
1459 
1460 	/*
1461 	 * This is for ABI compatibility <= 5.7 (for ABI change made in
1462 	 * 5.7 master).
1463 	 */
1464 	sb->__old_st_blksize = sb->st_blksize;
1465 
1466 	return (0);
1467 }
1468 
1469 
1470 static int
1471 devfs_fo_kqfilter(struct file *fp, struct knote *kn)
1472 {
1473 	struct vnode *vp;
1474 	int error;
1475 	cdev_t dev;
1476 
1477 	vp = (struct vnode *)fp->f_data;
1478 	if (vp == NULL || vp->v_type == VBAD) {
1479 		error = EBADF;
1480 		goto done;
1481 	}
1482 	if ((dev = vp->v_rdev) == NULL) {
1483 		error = EBADF;
1484 		goto done;
1485 	}
1486 	reference_dev(dev);
1487 
1488 	error = dev_dkqfilter(dev, kn, fp);
1489 
1490 	release_dev(dev);
1491 
1492 done:
1493 	return (error);
1494 }
1495 
1496 static int
1497 devfs_fo_ioctl(struct file *fp, u_long com, caddr_t data,
1498 		  struct ucred *ucred, struct sysmsg *msg)
1499 {
1500 #if 0
1501 	struct devfs_node *node;
1502 #endif
1503 	struct vnode *vp;
1504 	struct vnode *ovp;
1505 	cdev_t	dev;
1506 	int error;
1507 	struct fiodname_args *name_args;
1508 	size_t namlen;
1509 	const char *name;
1510 
1511 	vp = ((struct vnode *)fp->f_data);
1512 
1513 	if ((dev = vp->v_rdev) == NULL)
1514 		return EBADF;		/* device was revoked */
1515 
1516 	reference_dev(dev);
1517 
1518 #if 0
1519 	node = DEVFS_NODE(vp);
1520 #endif
1521 
1522 	devfs_debug(DEVFS_DEBUG_DEBUG,
1523 		    "devfs_fo_ioctl() called! for dev %s\n",
1524 		    dev->si_name);
1525 
1526 	if (com == FIODTYPE) {
1527 		*(int *)data = dev_dflags(dev) & D_TYPEMASK;
1528 		error = 0;
1529 		goto out;
1530 	} else if (com == FIODNAME) {
1531 		name_args = (struct fiodname_args *)data;
1532 		name = dev->si_name;
1533 		namlen = strlen(name) + 1;
1534 
1535 		devfs_debug(DEVFS_DEBUG_DEBUG,
1536 			    "ioctl, got: FIODNAME for %s\n", name);
1537 
1538 		if (namlen <= name_args->len)
1539 			error = copyout(dev->si_name, name_args->name, namlen);
1540 		else
1541 			error = EINVAL;
1542 
1543 		devfs_debug(DEVFS_DEBUG_DEBUG,
1544 			    "ioctl stuff: error: %d\n", error);
1545 		goto out;
1546 	}
1547 
1548 	error = dev_dioctl(dev, com, data, fp->f_flag, ucred, msg, fp);
1549 
1550 #if 0
1551 	if (node) {
1552 		vfs_timestamp(&node->atime);
1553 		vfs_timestamp(&node->mtime);
1554 	}
1555 #endif
1556 	if (com == TIOCSCTTY) {
1557 		devfs_debug(DEVFS_DEBUG_DEBUG,
1558 			    "devfs_fo_ioctl: got TIOCSCTTY on %s\n",
1559 			    dev->si_name);
1560 	}
1561 	if (error == 0 && com == TIOCSCTTY) {
1562 		struct proc *p = curthread->td_proc;
1563 		struct session *sess;
1564 
1565 		devfs_debug(DEVFS_DEBUG_DEBUG,
1566 			    "devfs_fo_ioctl: dealing with TIOCSCTTY on %s\n",
1567 			    dev->si_name);
1568 		if (p == NULL) {
1569 			error = ENOTTY;
1570 			goto out;
1571 		}
1572 		sess = p->p_session;
1573 
1574 		/*
1575 		 * Do nothing if reassigning same control tty
1576 		 */
1577 		if (sess->s_ttyvp == vp) {
1578 			error = 0;
1579 			goto out;
1580 		}
1581 
1582 		/*
1583 		 * Get rid of reference to old control tty
1584 		 */
1585 		ovp = sess->s_ttyvp;
1586 		vref(vp);
1587 		sess->s_ttyvp = vp;
1588 		if (ovp)
1589 			vrele(ovp);
1590 	}
1591 
1592 out:
1593 	release_dev(dev);
1594 	devfs_debug(DEVFS_DEBUG_DEBUG, "devfs_fo_ioctl() finished! \n");
1595 	return (error);
1596 }
1597 
1598 
1599 static int
1600 devfs_spec_fsync(struct vop_fsync_args *ap)
1601 {
1602 	struct vnode *vp = ap->a_vp;
1603 	int error;
1604 
1605 	if (!vn_isdisk(vp, NULL))
1606 		return (0);
1607 
1608 	/*
1609 	 * Flush all dirty buffers associated with a block device.
1610 	 */
1611 	error = vfsync(vp, ap->a_waitfor, 10000, NULL, NULL);
1612 	return (error);
1613 }
1614 
1615 static int
1616 devfs_spec_read(struct vop_read_args *ap)
1617 {
1618 	struct devfs_node *node;
1619 	struct vnode *vp;
1620 	struct uio *uio;
1621 	cdev_t dev;
1622 	int error;
1623 
1624 	vp = ap->a_vp;
1625 	dev = vp->v_rdev;
1626 	uio = ap->a_uio;
1627 	node = DEVFS_NODE(vp);
1628 
1629 	if (dev == NULL)		/* device was revoked */
1630 		return (EBADF);
1631 	if (uio->uio_resid == 0)
1632 		return (0);
1633 
1634 	vn_unlock(vp);
1635 	error = dev_dread(dev, uio, ap->a_ioflag, NULL);
1636 	vn_lock(vp, LK_SHARED | LK_RETRY);
1637 
1638 	if (node)
1639 		vfs_timestamp(&node->atime);
1640 
1641 	return (error);
1642 }
1643 
1644 /*
1645  * Vnode op for write
1646  *
1647  * spec_write(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
1648  *	      struct ucred *a_cred)
1649  */
1650 static int
1651 devfs_spec_write(struct vop_write_args *ap)
1652 {
1653 	struct devfs_node *node;
1654 	struct vnode *vp;
1655 	struct uio *uio;
1656 	cdev_t dev;
1657 	int error;
1658 
1659 	vp = ap->a_vp;
1660 	dev = vp->v_rdev;
1661 	uio = ap->a_uio;
1662 	node = DEVFS_NODE(vp);
1663 
1664 	KKASSERT(uio->uio_segflg != UIO_NOCOPY);
1665 
1666 	if (dev == NULL)		/* device was revoked */
1667 		return (EBADF);
1668 
1669 	vn_unlock(vp);
1670 	error = dev_dwrite(dev, uio, ap->a_ioflag, NULL);
1671 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1672 
1673 	if (node) {
1674 		vfs_timestamp(&node->atime);
1675 		vfs_timestamp(&node->mtime);
1676 	}
1677 
1678 	return (error);
1679 }
1680 
1681 /*
1682  * Device ioctl operation.
1683  *
1684  * spec_ioctl(struct vnode *a_vp, int a_command, caddr_t a_data,
1685  *	      int a_fflag, struct ucred *a_cred, struct sysmsg *msg)
1686  */
1687 static int
1688 devfs_spec_ioctl(struct vop_ioctl_args *ap)
1689 {
1690 	struct vnode *vp = ap->a_vp;
1691 #if 0
1692 	struct devfs_node *node;
1693 #endif
1694 	cdev_t dev;
1695 
1696 	if ((dev = vp->v_rdev) == NULL)
1697 		return (EBADF);		/* device was revoked */
1698 #if 0
1699 	node = DEVFS_NODE(vp);
1700 
1701 	if (node) {
1702 		vfs_timestamp(&node->atime);
1703 		vfs_timestamp(&node->mtime);
1704 	}
1705 #endif
1706 
1707 	return (dev_dioctl(dev, ap->a_command, ap->a_data, ap->a_fflag,
1708 			   ap->a_cred, ap->a_sysmsg, NULL));
1709 }
1710 
1711 /*
1712  * spec_kqfilter(struct vnode *a_vp, struct knote *a_kn)
1713  */
1714 /* ARGSUSED */
1715 static int
1716 devfs_spec_kqfilter(struct vop_kqfilter_args *ap)
1717 {
1718 	struct vnode *vp = ap->a_vp;
1719 #if 0
1720 	struct devfs_node *node;
1721 #endif
1722 	cdev_t dev;
1723 
1724 	if ((dev = vp->v_rdev) == NULL)
1725 		return (EBADF);		/* device was revoked (EBADF) */
1726 #if 0
1727 	node = DEVFS_NODE(vp);
1728 
1729 	if (node)
1730 		vfs_timestamp(&node->atime);
1731 #endif
1732 
1733 	return (dev_dkqfilter(dev, ap->a_kn, NULL));
1734 }
1735 
1736 /*
1737  * Convert a vnode strategy call into a device strategy call.  Vnode strategy
1738  * calls are not limited to device DMA limits so we have to deal with the
1739  * case.
1740  *
1741  * spec_strategy(struct vnode *a_vp, struct bio *a_bio)
1742  */
1743 static int
1744 devfs_spec_strategy(struct vop_strategy_args *ap)
1745 {
1746 	struct bio *bio = ap->a_bio;
1747 	struct buf *bp = bio->bio_buf;
1748 	struct buf *nbp;
1749 	struct vnode *vp;
1750 	struct mount *mp;
1751 	int chunksize;
1752 	int maxiosize;
1753 
1754 	if (bp->b_cmd != BUF_CMD_READ && LIST_FIRST(&bp->b_dep) != NULL)
1755 		buf_start(bp);
1756 
1757 	/*
1758 	 * Collect statistics on synchronous and asynchronous read
1759 	 * and write counts for disks that have associated filesystems.
1760 	 */
1761 	vp = ap->a_vp;
1762 	KKASSERT(vp->v_rdev != NULL);	/* XXX */
1763 	if (vn_isdisk(vp, NULL) && (mp = vp->v_rdev->si_mountpoint) != NULL) {
1764 		if (bp->b_cmd == BUF_CMD_READ) {
1765 			if (bp->b_flags & BIO_SYNC)
1766 				mp->mnt_stat.f_syncreads++;
1767 			else
1768 				mp->mnt_stat.f_asyncreads++;
1769 		} else {
1770 			if (bp->b_flags & BIO_SYNC)
1771 				mp->mnt_stat.f_syncwrites++;
1772 			else
1773 				mp->mnt_stat.f_asyncwrites++;
1774 		}
1775 	}
1776 
1777         /*
1778          * Device iosize limitations only apply to read and write.  Shortcut
1779          * the I/O if it fits.
1780          */
1781 	if ((maxiosize = vp->v_rdev->si_iosize_max) == 0) {
1782 		devfs_debug(DEVFS_DEBUG_DEBUG,
1783 			    "%s: si_iosize_max not set!\n",
1784 			    dev_dname(vp->v_rdev));
1785 		maxiosize = MAXPHYS;
1786 	}
1787 #if SPEC_CHAIN_DEBUG & 2
1788 	maxiosize = 4096;
1789 #endif
1790         if (bp->b_bcount <= maxiosize ||
1791             (bp->b_cmd != BUF_CMD_READ && bp->b_cmd != BUF_CMD_WRITE)) {
1792                 dev_dstrategy_chain(vp->v_rdev, bio);
1793                 return (0);
1794         }
1795 
1796 	/*
1797 	 * Clone the buffer and set up an I/O chain to chunk up the I/O.
1798 	 */
1799 	nbp = kmalloc(sizeof(*bp), M_DEVBUF, M_INTWAIT|M_ZERO);
1800 	initbufbio(nbp);
1801 	buf_dep_init(nbp);
1802 	BUF_LOCK(nbp, LK_EXCLUSIVE);
1803 	BUF_KERNPROC(nbp);
1804 	nbp->b_vp = vp;
1805 	nbp->b_flags = B_PAGING | B_KVABIO | (bp->b_flags & B_BNOCLIP);
1806 	nbp->b_cpumask = bp->b_cpumask;
1807 	nbp->b_data = bp->b_data;
1808 	nbp->b_bio1.bio_done = devfs_spec_strategy_done;
1809 	nbp->b_bio1.bio_offset = bio->bio_offset;
1810 	nbp->b_bio1.bio_caller_info1.ptr = bio;
1811 
1812 	/*
1813 	 * Start the first transfer
1814 	 */
1815 	if (vn_isdisk(vp, NULL))
1816 		chunksize = vp->v_rdev->si_bsize_phys;
1817 	else
1818 		chunksize = DEV_BSIZE;
1819 	chunksize = rounddown(maxiosize, chunksize);
1820 #if SPEC_CHAIN_DEBUG & 1
1821 	devfs_debug(DEVFS_DEBUG_DEBUG,
1822 		    "spec_strategy chained I/O chunksize=%d\n",
1823 		    chunksize);
1824 #endif
1825 	nbp->b_cmd = bp->b_cmd;
1826 	nbp->b_bcount = chunksize;
1827 	nbp->b_bufsize = chunksize;	/* used to detect a short I/O */
1828 	nbp->b_bio1.bio_caller_info2.index = chunksize;
1829 
1830 #if SPEC_CHAIN_DEBUG & 1
1831 	devfs_debug(DEVFS_DEBUG_DEBUG,
1832 		    "spec_strategy: chain %p offset %d/%d bcount %d\n",
1833 		    bp, 0, bp->b_bcount, nbp->b_bcount);
1834 #endif
1835 
1836 	dev_dstrategy(vp->v_rdev, &nbp->b_bio1);
1837 
1838 	if (DEVFS_NODE(vp)) {
1839 		vfs_timestamp(&DEVFS_NODE(vp)->atime);
1840 		vfs_timestamp(&DEVFS_NODE(vp)->mtime);
1841 	}
1842 
1843 	return (0);
1844 }
1845 
1846 /*
1847  * Chunked up transfer completion routine - chain transfers until done
1848  *
1849  * NOTE: MPSAFE callback.
1850  */
1851 static
1852 void
1853 devfs_spec_strategy_done(struct bio *nbio)
1854 {
1855 	struct buf *nbp = nbio->bio_buf;
1856 	struct bio *bio = nbio->bio_caller_info1.ptr;	/* original bio */
1857 	struct buf *bp = bio->bio_buf;			/* original bp */
1858 	int chunksize = nbio->bio_caller_info2.index;	/* chunking */
1859 	int boffset = nbp->b_data - bp->b_data;
1860 
1861 	if (nbp->b_flags & B_ERROR) {
1862 		/*
1863 		 * An error terminates the chain, propogate the error back
1864 		 * to the original bp
1865 		 */
1866 		bp->b_flags |= B_ERROR;
1867 		bp->b_error = nbp->b_error;
1868 		bp->b_resid = bp->b_bcount - boffset +
1869 			      (nbp->b_bcount - nbp->b_resid);
1870 #if SPEC_CHAIN_DEBUG & 1
1871 		devfs_debug(DEVFS_DEBUG_DEBUG,
1872 			    "spec_strategy: chain %p error %d bcount %d/%d\n",
1873 			    bp, bp->b_error, bp->b_bcount,
1874 			    bp->b_bcount - bp->b_resid);
1875 #endif
1876 	} else if (nbp->b_resid) {
1877 		/*
1878 		 * A short read or write terminates the chain
1879 		 */
1880 		bp->b_error = nbp->b_error;
1881 		bp->b_resid = bp->b_bcount - boffset +
1882 			      (nbp->b_bcount - nbp->b_resid);
1883 #if SPEC_CHAIN_DEBUG & 1
1884 		devfs_debug(DEVFS_DEBUG_DEBUG,
1885 			    "spec_strategy: chain %p short read(1) "
1886 			    "bcount %d/%d\n",
1887 			    bp, bp->b_bcount - bp->b_resid, bp->b_bcount);
1888 #endif
1889 	} else if (nbp->b_bcount != nbp->b_bufsize) {
1890 		/*
1891 		 * A short read or write can also occur by truncating b_bcount
1892 		 */
1893 #if SPEC_CHAIN_DEBUG & 1
1894 		devfs_debug(DEVFS_DEBUG_DEBUG,
1895 			    "spec_strategy: chain %p short read(2) "
1896 			    "bcount %d/%d\n",
1897 			    bp, nbp->b_bcount + boffset, bp->b_bcount);
1898 #endif
1899 		bp->b_error = 0;
1900 		bp->b_bcount = nbp->b_bcount + boffset;
1901 		bp->b_resid = nbp->b_resid;
1902 	} else if (nbp->b_bcount + boffset == bp->b_bcount) {
1903 		/*
1904 		 * No more data terminates the chain
1905 		 */
1906 #if SPEC_CHAIN_DEBUG & 1
1907 		devfs_debug(DEVFS_DEBUG_DEBUG,
1908 			    "spec_strategy: chain %p finished bcount %d\n",
1909 			    bp, bp->b_bcount);
1910 #endif
1911 		bp->b_error = 0;
1912 		bp->b_resid = 0;
1913 	} else {
1914 		/*
1915 		 * Continue the chain
1916 		 */
1917 		boffset += nbp->b_bcount;
1918 		nbp->b_data = bp->b_data + boffset;
1919 		nbp->b_bcount = bp->b_bcount - boffset;
1920 		if (nbp->b_bcount > chunksize)
1921 			nbp->b_bcount = chunksize;
1922 		nbp->b_bio1.bio_done = devfs_spec_strategy_done;
1923 		nbp->b_bio1.bio_offset = bio->bio_offset + boffset;
1924 
1925 #if SPEC_CHAIN_DEBUG & 1
1926 		devfs_debug(DEVFS_DEBUG_DEBUG,
1927 			    "spec_strategy: chain %p offset %d/%d bcount %d\n",
1928 			    bp, boffset, bp->b_bcount, nbp->b_bcount);
1929 #endif
1930 
1931 		dev_dstrategy(nbp->b_vp->v_rdev, &nbp->b_bio1);
1932 		return;
1933 	}
1934 
1935 	/*
1936 	 * Fall through to here on termination.  biodone(bp) and
1937 	 * clean up and free nbp.
1938 	 */
1939 	biodone(bio);
1940 	BUF_UNLOCK(nbp);
1941 	uninitbufbio(nbp);
1942 	kfree(nbp, M_DEVBUF);
1943 }
1944 
1945 /*
1946  * spec_freeblks(struct vnode *a_vp, daddr_t a_addr, daddr_t a_length)
1947  */
1948 static int
1949 devfs_spec_freeblks(struct vop_freeblks_args *ap)
1950 {
1951 	struct buf *bp;
1952 
1953 	/*
1954 	 * Must be a synchronous operation
1955 	 */
1956 	KKASSERT(ap->a_vp->v_rdev != NULL);
1957 	if ((ap->a_vp->v_rdev->si_flags & SI_CANFREE) == 0)
1958 		return (0);
1959 	bp = getpbuf(NULL);
1960 	bp->b_cmd = BUF_CMD_FREEBLKS;
1961 	bp->b_bio1.bio_flags |= BIO_SYNC;
1962 	bp->b_bio1.bio_offset = ap->a_offset;
1963 	bp->b_bio1.bio_done = biodone_sync;
1964 	bp->b_bcount = ap->a_length;
1965 	dev_dstrategy(ap->a_vp->v_rdev, &bp->b_bio1);
1966 	biowait(&bp->b_bio1, "TRIM");
1967 	relpbuf(bp, NULL);
1968 
1969 	return (0);
1970 }
1971 
1972 /*
1973  * Implement degenerate case where the block requested is the block
1974  * returned, and assume that the entire device is contiguous in regards
1975  * to the contiguous block range (runp and runb).
1976  *
1977  * spec_bmap(struct vnode *a_vp, off_t a_loffset,
1978  *	     off_t *a_doffsetp, int *a_runp, int *a_runb)
1979  */
1980 static int
1981 devfs_spec_bmap(struct vop_bmap_args *ap)
1982 {
1983 	if (ap->a_doffsetp != NULL)
1984 		*ap->a_doffsetp = ap->a_loffset;
1985 	if (ap->a_runp != NULL)
1986 		*ap->a_runp = MAXBSIZE;
1987 	if (ap->a_runb != NULL) {
1988 		if (ap->a_loffset < MAXBSIZE)
1989 			*ap->a_runb = (int)ap->a_loffset;
1990 		else
1991 			*ap->a_runb = MAXBSIZE;
1992 	}
1993 	return (0);
1994 }
1995 
1996 
1997 /*
1998  * Special device advisory byte-level locks.
1999  *
2000  * spec_advlock(struct vnode *a_vp, caddr_t a_id, int a_op,
2001  *		struct flock *a_fl, int a_flags)
2002  */
2003 /* ARGSUSED */
2004 static int
2005 devfs_spec_advlock(struct vop_advlock_args *ap)
2006 {
2007 	return ((ap->a_flags & F_POSIX) ? EINVAL : EOPNOTSUPP);
2008 }
2009 
2010 /*
2011  * NOTE: MPSAFE callback.
2012  */
2013 static void
2014 devfs_spec_getpages_iodone(struct bio *bio)
2015 {
2016 	bio->bio_buf->b_cmd = BUF_CMD_DONE;
2017 	wakeup(bio->bio_buf);
2018 }
2019 
2020 /*
2021  * spec_getpages() - get pages associated with device vnode.
2022  *
2023  * Note that spec_read and spec_write do not use the buffer cache, so we
2024  * must fully implement getpages here.
2025  */
2026 static int
2027 devfs_spec_getpages(struct vop_getpages_args *ap)
2028 {
2029 	vm_offset_t kva;
2030 	int error;
2031 	int i, pcount, size;
2032 	struct buf *bp;
2033 	vm_page_t m;
2034 	vm_ooffset_t offset;
2035 	int toff, nextoff, nread;
2036 	struct vnode *vp = ap->a_vp;
2037 	int blksiz;
2038 	int gotreqpage;
2039 
2040 	error = 0;
2041 	pcount = round_page(ap->a_count) / PAGE_SIZE;
2042 
2043 	/*
2044 	 * Calculate the offset of the transfer and do sanity check.
2045 	 */
2046 	offset = IDX_TO_OFF(ap->a_m[0]->pindex) + ap->a_offset;
2047 
2048 	/*
2049 	 * Round up physical size for real devices.  We cannot round using
2050 	 * v_mount's block size data because v_mount has nothing to do with
2051 	 * the device.  i.e. it's usually '/dev'.  We need the physical block
2052 	 * size for the device itself.
2053 	 *
2054 	 * We can't use v_rdev->si_mountpoint because it only exists when the
2055 	 * block device is mounted.  However, we can use v_rdev.
2056 	 */
2057 	if (vn_isdisk(vp, NULL))
2058 		blksiz = vp->v_rdev->si_bsize_phys;
2059 	else
2060 		blksiz = DEV_BSIZE;
2061 
2062 	size = roundup2(ap->a_count, blksiz);
2063 
2064 	bp = getpbuf_kva(NULL);
2065 	kva = (vm_offset_t)bp->b_data;
2066 
2067 	/*
2068 	 * Map the pages to be read into the kva.
2069 	 */
2070 	pmap_qenter_noinval(kva, ap->a_m, pcount);
2071 
2072 	/* Build a minimal buffer header. */
2073 	bp->b_cmd = BUF_CMD_READ;
2074 	bp->b_flags |= B_KVABIO;
2075 	bp->b_bcount = size;
2076 	bp->b_resid = 0;
2077 	bsetrunningbufspace(bp, size);
2078 
2079 	bp->b_bio1.bio_offset = offset;
2080 	bp->b_bio1.bio_done = devfs_spec_getpages_iodone;
2081 
2082 	mycpu->gd_cnt.v_vnodein++;
2083 	mycpu->gd_cnt.v_vnodepgsin += pcount;
2084 
2085 	/* Do the input. */
2086 	vn_strategy(ap->a_vp, &bp->b_bio1);
2087 
2088 	crit_enter();
2089 
2090 	/* We definitely need to be at splbio here. */
2091 	while (bp->b_cmd != BUF_CMD_DONE)
2092 		tsleep(bp, 0, "spread", 0);
2093 
2094 	crit_exit();
2095 
2096 	if (bp->b_flags & B_ERROR) {
2097 		if (bp->b_error)
2098 			error = bp->b_error;
2099 		else
2100 			error = EIO;
2101 	}
2102 
2103 	/*
2104 	 * If EOF is encountered we must zero-extend the result in order
2105 	 * to ensure that the page does not contain garabge.  When no
2106 	 * error occurs, an early EOF is indicated if b_bcount got truncated.
2107 	 * b_resid is relative to b_bcount and should be 0, but some devices
2108 	 * might indicate an EOF with b_resid instead of truncating b_bcount.
2109 	 */
2110 	nread = bp->b_bcount - bp->b_resid;
2111 	if (nread < ap->a_count) {
2112 		bkvasync(bp);
2113 		bzero((caddr_t)kva + nread, ap->a_count - nread);
2114 	}
2115 	pmap_qremove_noinval(kva, pcount);
2116 
2117 	gotreqpage = 0;
2118 	for (i = 0, toff = 0; i < pcount; i++, toff = nextoff) {
2119 		nextoff = toff + PAGE_SIZE;
2120 		m = ap->a_m[i];
2121 
2122 		/*
2123 		 * NOTE: vm_page_undirty/clear_dirty etc do not clear the
2124 		 *	 pmap modified bit.  pmap modified bit should have
2125 		 *	 already been cleared.
2126 		 */
2127 		if (nextoff <= nread) {
2128 			m->valid = VM_PAGE_BITS_ALL;
2129 			vm_page_undirty(m);
2130 		} else if (toff < nread) {
2131 			/*
2132 			 * Since this is a VM request, we have to supply the
2133 			 * unaligned offset to allow vm_page_set_valid()
2134 			 * to zero sub-DEV_BSIZE'd portions of the page.
2135 			 */
2136 			vm_page_set_valid(m, 0, nread - toff);
2137 			vm_page_clear_dirty_end_nonincl(m, 0, nread - toff);
2138 		} else {
2139 			m->valid = 0;
2140 			vm_page_undirty(m);
2141 		}
2142 
2143 		if (i != ap->a_reqpage) {
2144 			/*
2145 			 * Just in case someone was asking for this page we
2146 			 * now tell them that it is ok to use.
2147 			 */
2148 			if (!error || (m->valid == VM_PAGE_BITS_ALL)) {
2149 				if (m->valid) {
2150 					if (m->flags & PG_REFERENCED) {
2151 						vm_page_activate(m);
2152 					} else {
2153 						vm_page_deactivate(m);
2154 					}
2155 					vm_page_wakeup(m);
2156 				} else {
2157 					vm_page_free(m);
2158 				}
2159 			} else {
2160 				vm_page_free(m);
2161 			}
2162 		} else if (m->valid) {
2163 			gotreqpage = 1;
2164 			/*
2165 			 * Since this is a VM request, we need to make the
2166 			 * entire page presentable by zeroing invalid sections.
2167 			 */
2168 			if (m->valid != VM_PAGE_BITS_ALL)
2169 			    vm_page_zero_invalid(m, FALSE);
2170 		}
2171 	}
2172 	if (!gotreqpage) {
2173 		m = ap->a_m[ap->a_reqpage];
2174 		devfs_debug(DEVFS_DEBUG_WARNING,
2175 	    "spec_getpages:(%s) I/O read failure: (error=%d) bp %p vp %p\n",
2176 			devtoname(vp->v_rdev), error, bp, bp->b_vp);
2177 		devfs_debug(DEVFS_DEBUG_WARNING,
2178 	    "               size: %d, resid: %d, a_count: %d, valid: 0x%x\n",
2179 		    size, bp->b_resid, ap->a_count, m->valid);
2180 		devfs_debug(DEVFS_DEBUG_WARNING,
2181 	    "               nread: %d, reqpage: %d, pindex: %lu, pcount: %d\n",
2182 		    nread, ap->a_reqpage, (u_long)m->pindex, pcount);
2183 		/*
2184 		 * Free the buffer header back to the swap buffer pool.
2185 		 */
2186 		relpbuf(bp, NULL);
2187 		return VM_PAGER_ERROR;
2188 	}
2189 	/*
2190 	 * Free the buffer header back to the swap buffer pool.
2191 	 */
2192 	relpbuf(bp, NULL);
2193 	if (DEVFS_NODE(ap->a_vp))
2194 		vfs_timestamp(&DEVFS_NODE(ap->a_vp)->mtime);
2195 	return VM_PAGER_OK;
2196 }
2197 
2198 static __inline
2199 int
2200 sequential_heuristic(struct uio *uio, struct file *fp)
2201 {
2202 	/*
2203 	 * Sequential heuristic - detect sequential operation
2204 	 */
2205 	if ((uio->uio_offset == 0 && fp->f_seqcount > 0) ||
2206 	    uio->uio_offset == fp->f_nextoff) {
2207 		/*
2208 		 * XXX we assume that the filesystem block size is
2209 		 * the default.  Not true, but still gives us a pretty
2210 		 * good indicator of how sequential the read operations
2211 		 * are.
2212 		 */
2213 		int tmpseq = fp->f_seqcount;
2214 
2215 		tmpseq += howmany(uio->uio_resid, MAXBSIZE);
2216 		if (tmpseq > IO_SEQMAX)
2217 			tmpseq = IO_SEQMAX;
2218 		fp->f_seqcount = tmpseq;
2219 		return(fp->f_seqcount << IO_SEQSHIFT);
2220 	}
2221 
2222 	/*
2223 	 * Not sequential, quick draw-down of seqcount
2224 	 */
2225 	if (fp->f_seqcount > 1)
2226 		fp->f_seqcount = 1;
2227 	else
2228 		fp->f_seqcount = 0;
2229 	return(0);
2230 }
2231