xref: /dragonfly/sys/vfs/devfs/devfs_vnops.c (revision e65bc1c3)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 2009 The DragonFly Project.  All rights reserved.
5  *
6  * This code is derived from software contributed to The DragonFly Project
7  * by Alex Hornung <ahornung@gmail.com>
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  * 3. Neither the name of The DragonFly Project nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific, prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
27  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  */
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/time.h>
39 #include <sys/kernel.h>
40 #include <sys/lock.h>
41 #include <sys/fcntl.h>
42 #include <sys/proc.h>
43 #include <sys/priv.h>
44 #include <sys/signalvar.h>
45 #include <sys/vnode.h>
46 #include <sys/uio.h>
47 #include <sys/mount.h>
48 #include <sys/file.h>
49 #include <sys/namei.h>
50 #include <sys/dirent.h>
51 #include <sys/malloc.h>
52 #include <sys/stat.h>
53 #include <sys/reg.h>
54 #include <vm/vm_pager.h>
55 #include <vm/vm_zone.h>
56 #include <vm/vm_object.h>
57 #include <sys/filio.h>
58 #include <sys/ttycom.h>
59 #include <sys/tty.h>
60 #include <sys/diskslice.h>
61 #include <sys/sysctl.h>
62 #include <sys/devfs.h>
63 #include <sys/pioctl.h>
64 #include <vfs/fifofs/fifo.h>
65 
66 #include <machine/limits.h>
67 
68 #include <sys/buf2.h>
69 #include <sys/sysref2.h>
70 #include <sys/mplock2.h>
71 #include <vm/vm_page2.h>
72 
73 #ifndef SPEC_CHAIN_DEBUG
74 #define SPEC_CHAIN_DEBUG 0
75 #endif
76 
77 MALLOC_DECLARE(M_DEVFS);
78 #define DEVFS_BADOP	(void *)devfs_vop_badop
79 
80 static int devfs_vop_badop(struct vop_generic_args *);
81 static int devfs_vop_access(struct vop_access_args *);
82 static int devfs_vop_inactive(struct vop_inactive_args *);
83 static int devfs_vop_reclaim(struct vop_reclaim_args *);
84 static int devfs_vop_readdir(struct vop_readdir_args *);
85 static int devfs_vop_getattr(struct vop_getattr_args *);
86 static int devfs_vop_setattr(struct vop_setattr_args *);
87 static int devfs_vop_readlink(struct vop_readlink_args *);
88 static int devfs_vop_print(struct vop_print_args *);
89 
90 static int devfs_vop_nresolve(struct vop_nresolve_args *);
91 static int devfs_vop_nlookupdotdot(struct vop_nlookupdotdot_args *);
92 static int devfs_vop_nmkdir(struct vop_nmkdir_args *);
93 static int devfs_vop_nsymlink(struct vop_nsymlink_args *);
94 static int devfs_vop_nrmdir(struct vop_nrmdir_args *);
95 static int devfs_vop_nremove(struct vop_nremove_args *);
96 
97 static int devfs_spec_open(struct vop_open_args *);
98 static int devfs_spec_close(struct vop_close_args *);
99 static int devfs_spec_fsync(struct vop_fsync_args *);
100 
101 static int devfs_spec_read(struct vop_read_args *);
102 static int devfs_spec_write(struct vop_write_args *);
103 static int devfs_spec_ioctl(struct vop_ioctl_args *);
104 static int devfs_spec_kqfilter(struct vop_kqfilter_args *);
105 static int devfs_spec_strategy(struct vop_strategy_args *);
106 static void devfs_spec_strategy_done(struct bio *);
107 static int devfs_spec_freeblks(struct vop_freeblks_args *);
108 static int devfs_spec_bmap(struct vop_bmap_args *);
109 static int devfs_spec_advlock(struct vop_advlock_args *);
110 static void devfs_spec_getpages_iodone(struct bio *);
111 static int devfs_spec_getpages(struct vop_getpages_args *);
112 
113 static int devfs_fo_close(struct file *);
114 static int devfs_fo_read(struct file *, struct uio *, struct ucred *, int);
115 static int devfs_fo_write(struct file *, struct uio *, struct ucred *, int);
116 static int devfs_fo_stat(struct file *, struct stat *, struct ucred *);
117 static int devfs_fo_kqfilter(struct file *, struct knote *);
118 static int devfs_fo_ioctl(struct file *, u_long, caddr_t,
119 				struct ucred *, struct sysmsg *);
120 static __inline int sequential_heuristic(struct uio *, struct file *);
121 
122 extern struct lock devfs_lock;
123 
124 /*
125  * devfs vnode operations for regular files.  All vnode ops are MPSAFE.
126  */
127 struct vop_ops devfs_vnode_norm_vops = {
128 	.vop_default =		vop_defaultop,
129 	.vop_access =		devfs_vop_access,
130 	.vop_advlock =		DEVFS_BADOP,
131 	.vop_bmap =		DEVFS_BADOP,
132 	.vop_close =		vop_stdclose,
133 	.vop_getattr =		devfs_vop_getattr,
134 	.vop_inactive =		devfs_vop_inactive,
135 	.vop_ncreate =		DEVFS_BADOP,
136 	.vop_nresolve =		devfs_vop_nresolve,
137 	.vop_nlookupdotdot =	devfs_vop_nlookupdotdot,
138 	.vop_nlink =		DEVFS_BADOP,
139 	.vop_nmkdir =		devfs_vop_nmkdir,
140 	.vop_nmknod =		DEVFS_BADOP,
141 	.vop_nremove =		devfs_vop_nremove,
142 	.vop_nrename =		DEVFS_BADOP,
143 	.vop_nrmdir =		devfs_vop_nrmdir,
144 	.vop_nsymlink =		devfs_vop_nsymlink,
145 	.vop_open =		vop_stdopen,
146 	.vop_pathconf =		vop_stdpathconf,
147 	.vop_print =		devfs_vop_print,
148 	.vop_read =		DEVFS_BADOP,
149 	.vop_readdir =		devfs_vop_readdir,
150 	.vop_readlink =		devfs_vop_readlink,
151 	.vop_reclaim =		devfs_vop_reclaim,
152 	.vop_setattr =		devfs_vop_setattr,
153 	.vop_write =		DEVFS_BADOP,
154 	.vop_ioctl =		DEVFS_BADOP
155 };
156 
157 /*
158  * devfs vnode operations for character devices.  All vnode ops are MPSAFE.
159  */
160 struct vop_ops devfs_vnode_dev_vops = {
161 	.vop_default =		vop_defaultop,
162 	.vop_access =		devfs_vop_access,
163 	.vop_advlock =		devfs_spec_advlock,
164 	.vop_bmap =		devfs_spec_bmap,
165 	.vop_close =		devfs_spec_close,
166 	.vop_freeblks =		devfs_spec_freeblks,
167 	.vop_fsync =		devfs_spec_fsync,
168 	.vop_getattr =		devfs_vop_getattr,
169 	.vop_getpages =		devfs_spec_getpages,
170 	.vop_inactive =		devfs_vop_inactive,
171 	.vop_open =		devfs_spec_open,
172 	.vop_pathconf =		vop_stdpathconf,
173 	.vop_print =		devfs_vop_print,
174 	.vop_kqfilter =		devfs_spec_kqfilter,
175 	.vop_read =		devfs_spec_read,
176 	.vop_readdir =		DEVFS_BADOP,
177 	.vop_readlink =		DEVFS_BADOP,
178 	.vop_reclaim =		devfs_vop_reclaim,
179 	.vop_setattr =		devfs_vop_setattr,
180 	.vop_strategy =		devfs_spec_strategy,
181 	.vop_write =		devfs_spec_write,
182 	.vop_ioctl =		devfs_spec_ioctl
183 };
184 
185 /*
186  * devfs file pointer operations.  All fileops are MPSAFE.
187  */
188 struct vop_ops *devfs_vnode_dev_vops_p = &devfs_vnode_dev_vops;
189 
190 struct fileops devfs_dev_fileops = {
191 	.fo_read	= devfs_fo_read,
192 	.fo_write	= devfs_fo_write,
193 	.fo_ioctl	= devfs_fo_ioctl,
194 	.fo_kqfilter	= devfs_fo_kqfilter,
195 	.fo_stat	= devfs_fo_stat,
196 	.fo_close	= devfs_fo_close,
197 	.fo_shutdown	= nofo_shutdown
198 };
199 
200 /*
201  * These two functions are possibly temporary hacks for devices (aka
202  * the pty code) which want to control the node attributes themselves.
203  *
204  * XXX we may ultimately desire to simply remove the uid/gid/mode
205  * from the node entirely.
206  *
207  * MPSAFE - sorta.  Theoretically the overwrite can compete since they
208  *	    are loading from the same fields.
209  */
210 static __inline void
211 node_sync_dev_get(struct devfs_node *node)
212 {
213 	cdev_t dev;
214 
215 	if ((dev = node->d_dev) && (dev->si_flags & SI_OVERRIDE)) {
216 		node->uid = dev->si_uid;
217 		node->gid = dev->si_gid;
218 		node->mode = dev->si_perms;
219 	}
220 }
221 
222 static __inline void
223 node_sync_dev_set(struct devfs_node *node)
224 {
225 	cdev_t dev;
226 
227 	if ((dev = node->d_dev) && (dev->si_flags & SI_OVERRIDE)) {
228 		dev->si_uid = node->uid;
229 		dev->si_gid = node->gid;
230 		dev->si_perms = node->mode;
231 	}
232 }
233 
234 /*
235  * generic entry point for unsupported operations
236  */
237 static int
238 devfs_vop_badop(struct vop_generic_args *ap)
239 {
240 	return (EIO);
241 }
242 
243 
244 static int
245 devfs_vop_access(struct vop_access_args *ap)
246 {
247 	struct devfs_node *node = DEVFS_NODE(ap->a_vp);
248 	int error;
249 
250 	if (!devfs_node_is_accessible(node))
251 		return ENOENT;
252 	node_sync_dev_get(node);
253 	error = vop_helper_access(ap, node->uid, node->gid,
254 				  node->mode, node->flags);
255 
256 	return error;
257 }
258 
259 
260 static int
261 devfs_vop_inactive(struct vop_inactive_args *ap)
262 {
263 	struct devfs_node *node = DEVFS_NODE(ap->a_vp);
264 
265 	if (node == NULL || (node->flags & DEVFS_NODE_LINKED) == 0)
266 		vrecycle(ap->a_vp);
267 	return 0;
268 }
269 
270 
271 static int
272 devfs_vop_reclaim(struct vop_reclaim_args *ap)
273 {
274 	struct devfs_node *node;
275 	struct vnode *vp;
276 	int locked;
277 
278 	/*
279 	 * Check if it is locked already. if not, we acquire the devfs lock
280 	 */
281 	if ((lockstatus(&devfs_lock, curthread)) != LK_EXCLUSIVE) {
282 		lockmgr(&devfs_lock, LK_EXCLUSIVE);
283 		locked = 1;
284 	} else {
285 		locked = 0;
286 	}
287 
288 	/*
289 	 * Get rid of the devfs_node if it is no longer linked into the
290 	 * topology.
291 	 */
292 	vp = ap->a_vp;
293 	if ((node = DEVFS_NODE(vp)) != NULL) {
294 		node->v_node = NULL;
295 		if ((node->flags & DEVFS_NODE_LINKED) == 0)
296 			devfs_freep(node);
297 	}
298 
299 	if (locked)
300 		lockmgr(&devfs_lock, LK_RELEASE);
301 
302 	/*
303 	 * v_rdev needs to be properly released using v_release_rdev
304 	 * Make sure v_data is NULL as well.
305 	 */
306 	vp->v_data = NULL;
307 	v_release_rdev(vp);
308 	return 0;
309 }
310 
311 
312 static int
313 devfs_vop_readdir(struct vop_readdir_args *ap)
314 {
315 	struct devfs_node *dnode = DEVFS_NODE(ap->a_vp);
316 	struct devfs_node *node;
317 	int cookie_index;
318 	int ncookies;
319 	int error2;
320 	int error;
321 	int r;
322 	off_t *cookies;
323 	off_t saveoff;
324 
325 	devfs_debug(DEVFS_DEBUG_DEBUG, "devfs_readdir() called!\n");
326 
327 	if (ap->a_uio->uio_offset < 0 || ap->a_uio->uio_offset > INT_MAX)
328 		return (EINVAL);
329 	if ((error = vn_lock(ap->a_vp, LK_EXCLUSIVE | LK_RETRY)) != 0)
330 		return (error);
331 
332 	if (!devfs_node_is_accessible(dnode)) {
333 		vn_unlock(ap->a_vp);
334 		return ENOENT;
335 	}
336 
337 	lockmgr(&devfs_lock, LK_EXCLUSIVE);
338 
339 	saveoff = ap->a_uio->uio_offset;
340 
341 	if (ap->a_ncookies) {
342 		ncookies = ap->a_uio->uio_resid / 16 + 1; /* Why / 16 ?? */
343 		if (ncookies > 256)
344 			ncookies = 256;
345 		cookies = kmalloc(256 * sizeof(off_t), M_TEMP, M_WAITOK);
346 		cookie_index = 0;
347 	} else {
348 		ncookies = -1;
349 		cookies = NULL;
350 		cookie_index = 0;
351 	}
352 
353 	nanotime(&dnode->atime);
354 
355 	if (saveoff == 0) {
356 		r = vop_write_dirent(&error, ap->a_uio, dnode->d_dir.d_ino,
357 				     DT_DIR, 1, ".");
358 		if (r)
359 			goto done;
360 		if (cookies)
361 			cookies[cookie_index] = saveoff;
362 		saveoff++;
363 		cookie_index++;
364 		if (cookie_index == ncookies)
365 			goto done;
366 	}
367 
368 	if (saveoff == 1) {
369 		if (dnode->parent) {
370 			r = vop_write_dirent(&error, ap->a_uio,
371 					     dnode->parent->d_dir.d_ino,
372 					     DT_DIR, 2, "..");
373 		} else {
374 			r = vop_write_dirent(&error, ap->a_uio,
375 					     dnode->d_dir.d_ino,
376 					     DT_DIR, 2, "..");
377 		}
378 		if (r)
379 			goto done;
380 		if (cookies)
381 			cookies[cookie_index] = saveoff;
382 		saveoff++;
383 		cookie_index++;
384 		if (cookie_index == ncookies)
385 			goto done;
386 	}
387 
388 	TAILQ_FOREACH(node, DEVFS_DENODE_HEAD(dnode), link) {
389 		if ((node->flags & DEVFS_HIDDEN) ||
390 		    (node->flags & DEVFS_INVISIBLE)) {
391 			continue;
392 		}
393 
394 		/*
395 		 * If the node type is a valid devfs alias, then we make
396 		 * sure that the target isn't hidden. If it is, we don't
397 		 * show the link in the directory listing.
398 		 */
399 		if ((node->node_type == Nlink) && (node->link_target != NULL) &&
400 			(node->link_target->flags & DEVFS_HIDDEN))
401 			continue;
402 
403 		if (node->cookie < saveoff)
404 			continue;
405 
406 		saveoff = node->cookie;
407 
408 		error2 = vop_write_dirent(&error, ap->a_uio, node->d_dir.d_ino,
409 					  node->d_dir.d_type,
410 					  node->d_dir.d_namlen,
411 					  node->d_dir.d_name);
412 
413 		if (error2)
414 			break;
415 
416 		saveoff++;
417 
418 		if (cookies)
419 			cookies[cookie_index] = node->cookie;
420 		++cookie_index;
421 		if (cookie_index == ncookies)
422 			break;
423 	}
424 
425 done:
426 	lockmgr(&devfs_lock, LK_RELEASE);
427 	vn_unlock(ap->a_vp);
428 
429 	ap->a_uio->uio_offset = saveoff;
430 	if (error && cookie_index == 0) {
431 		if (cookies) {
432 			kfree(cookies, M_TEMP);
433 			*ap->a_ncookies = 0;
434 			*ap->a_cookies = NULL;
435 		}
436 	} else {
437 		if (cookies) {
438 			*ap->a_ncookies = cookie_index;
439 			*ap->a_cookies = cookies;
440 		}
441 	}
442 	return (error);
443 }
444 
445 
446 static int
447 devfs_vop_nresolve(struct vop_nresolve_args *ap)
448 {
449 	struct devfs_node *dnode = DEVFS_NODE(ap->a_dvp);
450 	struct devfs_node *node, *found = NULL;
451 	struct namecache *ncp;
452 	struct vnode *vp = NULL;
453 	int error = 0;
454 	int len;
455 	int depth;
456 
457 	ncp = ap->a_nch->ncp;
458 	len = ncp->nc_nlen;
459 
460 	if (!devfs_node_is_accessible(dnode))
461 		return ENOENT;
462 
463 	lockmgr(&devfs_lock, LK_EXCLUSIVE);
464 
465 	if ((dnode->node_type != Nroot) && (dnode->node_type != Ndir)) {
466 		error = ENOENT;
467 		cache_setvp(ap->a_nch, NULL);
468 		goto out;
469 	}
470 
471 	TAILQ_FOREACH(node, DEVFS_DENODE_HEAD(dnode), link) {
472 		if (len == node->d_dir.d_namlen) {
473 			if (!memcmp(ncp->nc_name, node->d_dir.d_name, len)) {
474 				found = node;
475 				break;
476 			}
477 		}
478 	}
479 
480 	if (found) {
481 		depth = 0;
482 		while ((found->node_type == Nlink) && (found->link_target)) {
483 			if (depth >= 8) {
484 				devfs_debug(DEVFS_DEBUG_SHOW, "Recursive link or depth >= 8");
485 				break;
486 			}
487 
488 			found = found->link_target;
489 			++depth;
490 		}
491 
492 		if (!(found->flags & DEVFS_HIDDEN))
493 			devfs_allocv(/*ap->a_dvp->v_mount, */ &vp, found);
494 	}
495 
496 	if (vp == NULL) {
497 		error = ENOENT;
498 		cache_setvp(ap->a_nch, NULL);
499 		goto out;
500 
501 	}
502 	KKASSERT(vp);
503 	vn_unlock(vp);
504 	cache_setvp(ap->a_nch, vp);
505 	vrele(vp);
506 out:
507 	lockmgr(&devfs_lock, LK_RELEASE);
508 
509 	return error;
510 }
511 
512 
513 static int
514 devfs_vop_nlookupdotdot(struct vop_nlookupdotdot_args *ap)
515 {
516 	struct devfs_node *dnode = DEVFS_NODE(ap->a_dvp);
517 
518 	*ap->a_vpp = NULL;
519 	if (!devfs_node_is_accessible(dnode))
520 		return ENOENT;
521 
522 	lockmgr(&devfs_lock, LK_EXCLUSIVE);
523 	if (dnode->parent != NULL) {
524 		devfs_allocv(ap->a_vpp, dnode->parent);
525 		vn_unlock(*ap->a_vpp);
526 	}
527 	lockmgr(&devfs_lock, LK_RELEASE);
528 
529 	return ((*ap->a_vpp == NULL) ? ENOENT : 0);
530 }
531 
532 
533 static int
534 devfs_vop_getattr(struct vop_getattr_args *ap)
535 {
536 	struct devfs_node *node = DEVFS_NODE(ap->a_vp);
537 	struct vattr *vap = ap->a_vap;
538 	struct partinfo pinfo;
539 	int error = 0;
540 
541 #if 0
542 	if (!devfs_node_is_accessible(node))
543 		return ENOENT;
544 #endif
545 	node_sync_dev_get(node);
546 
547 	lockmgr(&devfs_lock, LK_EXCLUSIVE);
548 
549 	/* start by zeroing out the attributes */
550 	VATTR_NULL(vap);
551 
552 	/* next do all the common fields */
553 	vap->va_type = ap->a_vp->v_type;
554 	vap->va_mode = node->mode;
555 	vap->va_fileid = DEVFS_NODE(ap->a_vp)->d_dir.d_ino ;
556 	vap->va_flags = 0;
557 	vap->va_blocksize = DEV_BSIZE;
558 	vap->va_bytes = vap->va_size = 0;
559 
560 	vap->va_fsid = ap->a_vp->v_mount->mnt_stat.f_fsid.val[0];
561 
562 	vap->va_atime = node->atime;
563 	vap->va_mtime = node->mtime;
564 	vap->va_ctime = node->ctime;
565 
566 	vap->va_nlink = 1; /* number of references to file */
567 
568 	vap->va_uid = node->uid;
569 	vap->va_gid = node->gid;
570 
571 	vap->va_rmajor = 0;
572 	vap->va_rminor = 0;
573 
574 	if ((node->node_type == Ndev) && node->d_dev)  {
575 		reference_dev(node->d_dev);
576 		vap->va_rminor = node->d_dev->si_uminor;
577 		release_dev(node->d_dev);
578 	}
579 
580 	/* For a softlink the va_size is the length of the softlink */
581 	if (node->symlink_name != 0) {
582 		vap->va_bytes = vap->va_size = node->symlink_namelen;
583 	}
584 
585 	/*
586 	 * For a disk-type device, va_size is the size of the underlying
587 	 * device, so that lseek() works properly.
588 	 */
589 	if ((node->d_dev) && (dev_dflags(node->d_dev) & D_DISK)) {
590 		bzero(&pinfo, sizeof(pinfo));
591 		error = dev_dioctl(node->d_dev, DIOCGPART, (void *)&pinfo,
592 				   0, proc0.p_ucred, NULL);
593 		if ((error == 0) && (pinfo.media_blksize != 0)) {
594 			vap->va_size = pinfo.media_size;
595 		} else {
596 			vap->va_size = 0;
597 			error = 0;
598 		}
599 	}
600 
601 	lockmgr(&devfs_lock, LK_RELEASE);
602 
603 	return (error);
604 }
605 
606 
607 static int
608 devfs_vop_setattr(struct vop_setattr_args *ap)
609 {
610 	struct devfs_node *node = DEVFS_NODE(ap->a_vp);
611 	struct vattr *vap;
612 	uid_t cur_uid;
613 	gid_t cur_gid;
614 	mode_t cur_mode;
615 	int error = 0;
616 
617 	if (!devfs_node_is_accessible(node))
618 		return ENOENT;
619 	node_sync_dev_get(node);
620 
621 	lockmgr(&devfs_lock, LK_EXCLUSIVE);
622 
623 	vap = ap->a_vap;
624 
625 	if ((vap->va_uid != (uid_t)VNOVAL) || (vap->va_gid != (gid_t)VNOVAL)) {
626 		cur_uid = node->uid;
627 		cur_gid = node->gid;
628 		cur_mode = node->mode;
629 		error = vop_helper_chown(ap->a_vp, vap->va_uid, vap->va_gid,
630 		    ap->a_cred, &cur_uid, &cur_gid, &cur_mode);
631 		if (error)
632 			goto out;
633 
634 		if (node->uid != cur_uid || node->gid != cur_gid) {
635 			node->uid = cur_uid;
636 			node->gid = cur_gid;
637 			node->mode = cur_mode;
638 		}
639 	}
640 
641 	if (vap->va_mode != (mode_t)VNOVAL) {
642 		cur_mode = node->mode;
643 		error = vop_helper_chmod(ap->a_vp, vap->va_mode, ap->a_cred,
644 		    node->uid, node->gid, &cur_mode);
645 		if (error == 0 && node->mode != cur_mode) {
646 			node->mode = cur_mode;
647 		}
648 	}
649 
650 out:
651 	node_sync_dev_set(node);
652 	nanotime(&node->ctime);
653 	lockmgr(&devfs_lock, LK_RELEASE);
654 
655 	return error;
656 }
657 
658 
659 static int
660 devfs_vop_readlink(struct vop_readlink_args *ap)
661 {
662 	struct devfs_node *node = DEVFS_NODE(ap->a_vp);
663 	int ret;
664 
665 	if (!devfs_node_is_accessible(node))
666 		return ENOENT;
667 
668 	lockmgr(&devfs_lock, LK_EXCLUSIVE);
669 	ret = uiomove(node->symlink_name, node->symlink_namelen, ap->a_uio);
670 	lockmgr(&devfs_lock, LK_RELEASE);
671 
672 	return ret;
673 }
674 
675 
676 static int
677 devfs_vop_print(struct vop_print_args *ap)
678 {
679 	return (0);
680 }
681 
682 static int
683 devfs_vop_nmkdir(struct vop_nmkdir_args *ap)
684 {
685 	struct devfs_node *dnode = DEVFS_NODE(ap->a_dvp);
686 	struct devfs_node *node;
687 
688 	if (!devfs_node_is_accessible(dnode))
689 		return ENOENT;
690 
691 	if ((dnode->node_type != Nroot) && (dnode->node_type != Ndir))
692 		goto out;
693 
694 	lockmgr(&devfs_lock, LK_EXCLUSIVE);
695 	devfs_allocvp(ap->a_dvp->v_mount, ap->a_vpp, Ndir,
696 		      ap->a_nch->ncp->nc_name, dnode, NULL);
697 
698 	if (*ap->a_vpp) {
699 		node = DEVFS_NODE(*ap->a_vpp);
700 		node->flags |= DEVFS_USER_CREATED;
701 		cache_setunresolved(ap->a_nch);
702 		cache_setvp(ap->a_nch, *ap->a_vpp);
703 	}
704 	lockmgr(&devfs_lock, LK_RELEASE);
705 out:
706 	return ((*ap->a_vpp == NULL) ? ENOTDIR : 0);
707 }
708 
709 static int
710 devfs_vop_nsymlink(struct vop_nsymlink_args *ap)
711 {
712 	struct devfs_node *dnode = DEVFS_NODE(ap->a_dvp);
713 	struct devfs_node *node;
714 	size_t targetlen;
715 
716 	if (!devfs_node_is_accessible(dnode))
717 		return ENOENT;
718 
719 	ap->a_vap->va_type = VLNK;
720 
721 	if ((dnode->node_type != Nroot) && (dnode->node_type != Ndir))
722 		goto out;
723 
724 	lockmgr(&devfs_lock, LK_EXCLUSIVE);
725 	devfs_allocvp(ap->a_dvp->v_mount, ap->a_vpp, Nlink,
726 		      ap->a_nch->ncp->nc_name, dnode, NULL);
727 
728 	targetlen = strlen(ap->a_target);
729 	if (*ap->a_vpp) {
730 		node = DEVFS_NODE(*ap->a_vpp);
731 		node->flags |= DEVFS_USER_CREATED;
732 		node->symlink_namelen = targetlen;
733 		node->symlink_name = kmalloc(targetlen + 1, M_DEVFS, M_WAITOK);
734 		memcpy(node->symlink_name, ap->a_target, targetlen);
735 		node->symlink_name[targetlen] = '\0';
736 		cache_setunresolved(ap->a_nch);
737 		cache_setvp(ap->a_nch, *ap->a_vpp);
738 	}
739 	lockmgr(&devfs_lock, LK_RELEASE);
740 out:
741 	return ((*ap->a_vpp == NULL) ? ENOTDIR : 0);
742 }
743 
744 static int
745 devfs_vop_nrmdir(struct vop_nrmdir_args *ap)
746 {
747 	struct devfs_node *dnode = DEVFS_NODE(ap->a_dvp);
748 	struct devfs_node *node;
749 	struct namecache *ncp;
750 	int error = ENOENT;
751 
752 	ncp = ap->a_nch->ncp;
753 
754 	if (!devfs_node_is_accessible(dnode))
755 		return ENOENT;
756 
757 	lockmgr(&devfs_lock, LK_EXCLUSIVE);
758 
759 	if ((dnode->node_type != Nroot) && (dnode->node_type != Ndir))
760 		goto out;
761 
762 	TAILQ_FOREACH(node, DEVFS_DENODE_HEAD(dnode), link) {
763 		if (ncp->nc_nlen != node->d_dir.d_namlen)
764 			continue;
765 		if (memcmp(ncp->nc_name, node->d_dir.d_name, ncp->nc_nlen))
766 			continue;
767 
768 		/*
769 		 * only allow removal of user created dirs
770 		 */
771 		if ((node->flags & DEVFS_USER_CREATED) == 0) {
772 			error = EPERM;
773 			goto out;
774 		} else if (node->node_type != Ndir) {
775 			error = ENOTDIR;
776 			goto out;
777 		} else if (node->nchildren > 2) {
778 			error = ENOTEMPTY;
779 			goto out;
780 		} else {
781 			if (node->v_node)
782 				cache_inval_vp(node->v_node, CINV_DESTROY);
783 			devfs_unlinkp(node);
784 			error = 0;
785 			break;
786 		}
787 	}
788 
789 	cache_unlink(ap->a_nch);
790 out:
791 	lockmgr(&devfs_lock, LK_RELEASE);
792 	return error;
793 }
794 
795 static int
796 devfs_vop_nremove(struct vop_nremove_args *ap)
797 {
798 	struct devfs_node *dnode = DEVFS_NODE(ap->a_dvp);
799 	struct devfs_node *node;
800 	struct namecache *ncp;
801 	int error = ENOENT;
802 
803 	ncp = ap->a_nch->ncp;
804 
805 	if (!devfs_node_is_accessible(dnode))
806 		return ENOENT;
807 
808 	lockmgr(&devfs_lock, LK_EXCLUSIVE);
809 
810 	if ((dnode->node_type != Nroot) && (dnode->node_type != Ndir))
811 		goto out;
812 
813 	TAILQ_FOREACH(node, DEVFS_DENODE_HEAD(dnode), link) {
814 		if (ncp->nc_nlen != node->d_dir.d_namlen)
815 			continue;
816 		if (memcmp(ncp->nc_name, node->d_dir.d_name, ncp->nc_nlen))
817 			continue;
818 
819 		/*
820 		 * only allow removal of user created stuff (e.g. symlinks)
821 		 */
822 		if ((node->flags & DEVFS_USER_CREATED) == 0) {
823 			error = EPERM;
824 			goto out;
825 		} else if (node->node_type == Ndir) {
826 			error = EISDIR;
827 			goto out;
828 		} else {
829 			if (node->v_node)
830 				cache_inval_vp(node->v_node, CINV_DESTROY);
831 			devfs_unlinkp(node);
832 			error = 0;
833 			break;
834 		}
835 	}
836 
837 	cache_unlink(ap->a_nch);
838 out:
839 	lockmgr(&devfs_lock, LK_RELEASE);
840 	return error;
841 }
842 
843 
844 static int
845 devfs_spec_open(struct vop_open_args *ap)
846 {
847 	struct vnode *vp = ap->a_vp;
848 	struct vnode *orig_vp = NULL;
849 	struct devfs_node *node = DEVFS_NODE(vp);
850 	struct devfs_node *newnode;
851 	cdev_t dev, ndev = NULL;
852 	int error = 0;
853 
854 	if (node) {
855 		if (node->d_dev == NULL)
856 			return ENXIO;
857 		if (!devfs_node_is_accessible(node))
858 			return ENOENT;
859 	}
860 
861 	if ((dev = vp->v_rdev) == NULL)
862 		return ENXIO;
863 
864 	if (node && ap->a_fp) {
865 		devfs_debug(DEVFS_DEBUG_DEBUG, "devfs_spec_open: -1.1-\n");
866 		lockmgr(&devfs_lock, LK_EXCLUSIVE);
867 
868 		ndev = devfs_clone(dev, node->d_dir.d_name, node->d_dir.d_namlen,
869 						ap->a_mode, ap->a_cred);
870 		if (ndev != NULL) {
871 			newnode = devfs_create_device_node(
872 					DEVFS_MNTDATA(vp->v_mount)->root_node,
873 					ndev, NULL, NULL);
874 			/* XXX: possibly destroy device if this happens */
875 
876 			if (newnode != NULL) {
877 				dev = ndev;
878 				devfs_link_dev(dev);
879 
880 				devfs_debug(DEVFS_DEBUG_DEBUG,
881 						"parent here is: %s, node is: |%s|\n",
882 						((node->parent->node_type == Nroot) ?
883 						"ROOT!" : node->parent->d_dir.d_name),
884 						newnode->d_dir.d_name);
885 				devfs_debug(DEVFS_DEBUG_DEBUG,
886 						"test: %s\n",
887 						((struct devfs_node *)(TAILQ_LAST(DEVFS_DENODE_HEAD(node->parent), devfs_node_head)))->d_dir.d_name);
888 
889 				/*
890 				 * orig_vp is set to the original vp if we cloned.
891 				 */
892 				/* node->flags |= DEVFS_CLONED; */
893 				devfs_allocv(&vp, newnode);
894 				orig_vp = ap->a_vp;
895 				ap->a_vp = vp;
896 			}
897 		}
898 		lockmgr(&devfs_lock, LK_RELEASE);
899 	}
900 
901 	devfs_debug(DEVFS_DEBUG_DEBUG,
902 		    "devfs_spec_open() called on %s! \n",
903 		    dev->si_name);
904 
905 	/*
906 	 * Make this field valid before any I/O in ->d_open
907 	 */
908 	if (!dev->si_iosize_max)
909 		/* XXX: old DFLTPHYS == 64KB dependency */
910 		dev->si_iosize_max = min(MAXPHYS,64*1024);
911 
912 	if (dev_dflags(dev) & D_TTY)
913 		vsetflags(vp, VISTTY);
914 
915 	/*
916 	 * Open underlying device
917 	 */
918 	vn_unlock(vp);
919 	error = dev_dopen(dev, ap->a_mode, S_IFCHR, ap->a_cred);
920 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
921 
922 	/*
923 	 * Clean up any cloned vp if we error out.
924 	 */
925 	if (error) {
926 		if (orig_vp) {
927 			vput(vp);
928 			ap->a_vp = orig_vp;
929 			/* orig_vp = NULL; */
930 		}
931 		return error;
932 	}
933 
934 	/*
935 	 * This checks if the disk device is going to be opened for writing.
936 	 * It will be only allowed in the cases where securelevel permits it
937 	 * and it's not mounted R/W.
938 	 */
939 	if ((dev_dflags(dev) & D_DISK) && (ap->a_mode & FWRITE) &&
940 	    (ap->a_cred != FSCRED)) {
941 
942 		/* Very secure mode. No open for writing allowed */
943 		if (securelevel >= 2)
944 			return EPERM;
945 
946 		/*
947 		 * If it is mounted R/W, do not allow to open for writing.
948 		 * In the case it's mounted read-only but securelevel
949 		 * is >= 1, then do not allow opening for writing either.
950 		 */
951 		if (vfs_mountedon(vp)) {
952 			if (!(dev->si_mountpoint->mnt_flag & MNT_RDONLY))
953 				return EBUSY;
954 			else if (securelevel >= 1)
955 				return EPERM;
956 		}
957 	}
958 
959 	if (dev_dflags(dev) & D_TTY) {
960 		if (dev->si_tty) {
961 			struct tty *tp;
962 			tp = dev->si_tty;
963 			if (!tp->t_stop) {
964 				devfs_debug(DEVFS_DEBUG_DEBUG,
965 					    "devfs: no t_stop\n");
966 				tp->t_stop = nottystop;
967 			}
968 		}
969 	}
970 
971 
972 	if (vn_isdisk(vp, NULL)) {
973 		if (!dev->si_bsize_phys)
974 			dev->si_bsize_phys = DEV_BSIZE;
975 		vinitvmio(vp, IDX_TO_OFF(INT_MAX), PAGE_SIZE, -1);
976 	}
977 
978 	vop_stdopen(ap);
979 #if 0
980 	if (node)
981 		nanotime(&node->atime);
982 #endif
983 
984 	/*
985 	 * If we replaced the vp the vop_stdopen() call will have loaded
986 	 * it into fp->f_data and vref()d the vp, giving us two refs.  So
987 	 * instead of just unlocking it here we have to vput() it.
988 	 */
989 	if (orig_vp)
990 		vput(vp);
991 
992 	/* Ugly pty magic, to make pty devices appear once they are opened */
993 	if (node && (node->flags & DEVFS_PTY) == DEVFS_PTY)
994 		node->flags &= ~DEVFS_INVISIBLE;
995 
996 	if (ap->a_fp) {
997 		KKASSERT(ap->a_fp->f_type == DTYPE_VNODE);
998 		KKASSERT((ap->a_fp->f_flag & FMASK) == (ap->a_mode & FMASK));
999 		ap->a_fp->f_ops = &devfs_dev_fileops;
1000 		KKASSERT(ap->a_fp->f_data == (void *)vp);
1001 	}
1002 
1003 	return 0;
1004 }
1005 
1006 
1007 static int
1008 devfs_spec_close(struct vop_close_args *ap)
1009 {
1010 	struct devfs_node *node;
1011 	struct proc *p = curproc;
1012 	struct vnode *vp = ap->a_vp;
1013 	cdev_t dev = vp->v_rdev;
1014 	int error = 0;
1015 	int needrelock;
1016 
1017 	if (dev)
1018 		devfs_debug(DEVFS_DEBUG_DEBUG,
1019 			    "devfs_spec_close() called on %s! \n",
1020 			    dev->si_name);
1021 	else
1022 		devfs_debug(DEVFS_DEBUG_DEBUG,
1023 			    "devfs_spec_close() called, null vode!\n");
1024 
1025 	/*
1026 	 * A couple of hacks for devices and tty devices.  The
1027 	 * vnode ref count cannot be used to figure out the
1028 	 * last close, but we can use v_opencount now that
1029 	 * revoke works properly.
1030 	 *
1031 	 * Detect the last close on a controlling terminal and clear
1032 	 * the session (half-close).
1033 	 */
1034 	if (dev)
1035 		reference_dev(dev);
1036 
1037 	if (p && vp->v_opencount <= 1 && vp == p->p_session->s_ttyvp) {
1038 		p->p_session->s_ttyvp = NULL;
1039 		vrele(vp);
1040 	}
1041 
1042 	/*
1043 	 * Vnodes can be opened and closed multiple times.  Do not really
1044 	 * close the device unless (1) it is being closed forcibly,
1045 	 * (2) the device wants to track closes, or (3) this is the last
1046 	 * vnode doing its last close on the device.
1047 	 *
1048 	 * XXX the VXLOCK (force close) case can leave vnodes referencing
1049 	 * a closed device.  This might not occur now that our revoke is
1050 	 * fixed.
1051 	 */
1052 	devfs_debug(DEVFS_DEBUG_DEBUG, "devfs_spec_close() -1- \n");
1053 	if (dev && ((vp->v_flag & VRECLAIMED) ||
1054 	    (dev_dflags(dev) & D_TRACKCLOSE) ||
1055 	    (vp->v_opencount == 1))) {
1056 		/*
1057 		 * Ugly pty magic, to make pty devices disappear again once
1058 		 * they are closed.
1059 		 */
1060 		node = DEVFS_NODE(ap->a_vp);
1061 		if (node && (node->flags & DEVFS_PTY))
1062 			node->flags |= DEVFS_INVISIBLE;
1063 
1064 		/*
1065 		 * Unlock around dev_dclose(), unless the vnode is
1066 		 * undergoing a vgone/reclaim (during umount).
1067 		 */
1068 		needrelock = 0;
1069 		if ((vp->v_flag & VRECLAIMED) == 0 && vn_islocked(vp)) {
1070 			needrelock = 1;
1071 			vn_unlock(vp);
1072 		}
1073 
1074 		/*
1075 		 * WARNING!  If the device destroys itself the devfs node
1076 		 *	     can disappear here.
1077 		 *
1078 		 * WARNING!  vn_lock() will fail if the vp is in a VRECLAIM,
1079 		 *	     which can occur during umount.
1080 		 */
1081 		error = dev_dclose(dev, ap->a_fflag, S_IFCHR);
1082 		/* node is now stale */
1083 
1084 		if (needrelock) {
1085 			if (vn_lock(vp, LK_EXCLUSIVE | LK_RETRY) != 0) {
1086 				panic("devfs_spec_close: vnode %p "
1087 				      "unexpectedly could not be relocked",
1088 				      vp);
1089 			}
1090 		}
1091 	} else {
1092 		error = 0;
1093 	}
1094 	devfs_debug(DEVFS_DEBUG_DEBUG, "devfs_spec_close() -2- \n");
1095 
1096 	/*
1097 	 * Track the actual opens and closes on the vnode.  The last close
1098 	 * disassociates the rdev.  If the rdev is already disassociated or
1099 	 * the opencount is already 0, the vnode might have been revoked
1100 	 * and no further opencount tracking occurs.
1101 	 */
1102 	if (dev)
1103 		release_dev(dev);
1104 	if (vp->v_opencount > 0)
1105 		vop_stdclose(ap);
1106 	return(error);
1107 
1108 }
1109 
1110 
1111 static int
1112 devfs_fo_close(struct file *fp)
1113 {
1114 	struct vnode *vp = (struct vnode *)fp->f_data;
1115 	int error;
1116 
1117 	fp->f_ops = &badfileops;
1118 	error = vn_close(vp, fp->f_flag);
1119 
1120 	return (error);
1121 }
1122 
1123 
1124 /*
1125  * Device-optimized file table vnode read routine.
1126  *
1127  * This bypasses the VOP table and talks directly to the device.  Most
1128  * filesystems just route to specfs and can make this optimization.
1129  *
1130  * MPALMOSTSAFE - acquires mplock
1131  */
1132 static int
1133 devfs_fo_read(struct file *fp, struct uio *uio,
1134 		 struct ucred *cred, int flags)
1135 {
1136 	struct devfs_node *node;
1137 	struct vnode *vp;
1138 	int ioflag;
1139 	int error;
1140 	cdev_t dev;
1141 
1142 	KASSERT(uio->uio_td == curthread,
1143 		("uio_td %p is not td %p", uio->uio_td, curthread));
1144 
1145 	if (uio->uio_resid == 0)
1146 		return 0;
1147 
1148 	vp = (struct vnode *)fp->f_data;
1149 	if (vp == NULL || vp->v_type == VBAD)
1150 		return EBADF;
1151 
1152 	node = DEVFS_NODE(vp);
1153 
1154 	if ((dev = vp->v_rdev) == NULL)
1155 		return EBADF;
1156 
1157 	reference_dev(dev);
1158 
1159 	if ((flags & O_FOFFSET) == 0)
1160 		uio->uio_offset = fp->f_offset;
1161 
1162 	ioflag = 0;
1163 	if (flags & O_FBLOCKING) {
1164 		/* ioflag &= ~IO_NDELAY; */
1165 	} else if (flags & O_FNONBLOCKING) {
1166 		ioflag |= IO_NDELAY;
1167 	} else if (fp->f_flag & FNONBLOCK) {
1168 		ioflag |= IO_NDELAY;
1169 	}
1170 	if (flags & O_FBUFFERED) {
1171 		/* ioflag &= ~IO_DIRECT; */
1172 	} else if (flags & O_FUNBUFFERED) {
1173 		ioflag |= IO_DIRECT;
1174 	} else if (fp->f_flag & O_DIRECT) {
1175 		ioflag |= IO_DIRECT;
1176 	}
1177 	ioflag |= sequential_heuristic(uio, fp);
1178 
1179 	error = dev_dread(dev, uio, ioflag);
1180 
1181 	release_dev(dev);
1182 	if (node)
1183 		nanotime(&node->atime);
1184 	if ((flags & O_FOFFSET) == 0)
1185 		fp->f_offset = uio->uio_offset;
1186 	fp->f_nextoff = uio->uio_offset;
1187 
1188 	return (error);
1189 }
1190 
1191 
1192 static int
1193 devfs_fo_write(struct file *fp, struct uio *uio,
1194 		  struct ucred *cred, int flags)
1195 {
1196 	struct devfs_node *node;
1197 	struct vnode *vp;
1198 	int ioflag;
1199 	int error;
1200 	cdev_t dev;
1201 
1202 	KASSERT(uio->uio_td == curthread,
1203 		("uio_td %p is not p %p", uio->uio_td, curthread));
1204 
1205 	vp = (struct vnode *)fp->f_data;
1206 	if (vp == NULL || vp->v_type == VBAD)
1207 		return EBADF;
1208 
1209 	node = DEVFS_NODE(vp);
1210 
1211 	if (vp->v_type == VREG)
1212 		bwillwrite(uio->uio_resid);
1213 
1214 	vp = (struct vnode *)fp->f_data;
1215 
1216 	if ((dev = vp->v_rdev) == NULL)
1217 		return EBADF;
1218 
1219 	reference_dev(dev);
1220 
1221 	if ((flags & O_FOFFSET) == 0)
1222 		uio->uio_offset = fp->f_offset;
1223 
1224 	ioflag = IO_UNIT;
1225 	if (vp->v_type == VREG &&
1226 	   ((fp->f_flag & O_APPEND) || (flags & O_FAPPEND))) {
1227 		ioflag |= IO_APPEND;
1228 	}
1229 
1230 	if (flags & O_FBLOCKING) {
1231 		/* ioflag &= ~IO_NDELAY; */
1232 	} else if (flags & O_FNONBLOCKING) {
1233 		ioflag |= IO_NDELAY;
1234 	} else if (fp->f_flag & FNONBLOCK) {
1235 		ioflag |= IO_NDELAY;
1236 	}
1237 	if (flags & O_FBUFFERED) {
1238 		/* ioflag &= ~IO_DIRECT; */
1239 	} else if (flags & O_FUNBUFFERED) {
1240 		ioflag |= IO_DIRECT;
1241 	} else if (fp->f_flag & O_DIRECT) {
1242 		ioflag |= IO_DIRECT;
1243 	}
1244 	if (flags & O_FASYNCWRITE) {
1245 		/* ioflag &= ~IO_SYNC; */
1246 	} else if (flags & O_FSYNCWRITE) {
1247 		ioflag |= IO_SYNC;
1248 	} else if (fp->f_flag & O_FSYNC) {
1249 		ioflag |= IO_SYNC;
1250 	}
1251 
1252 	if (vp->v_mount && (vp->v_mount->mnt_flag & MNT_SYNCHRONOUS))
1253 		ioflag |= IO_SYNC;
1254 	ioflag |= sequential_heuristic(uio, fp);
1255 
1256 	error = dev_dwrite(dev, uio, ioflag);
1257 
1258 	release_dev(dev);
1259 	if (node) {
1260 		nanotime(&node->atime);
1261 		nanotime(&node->mtime);
1262 	}
1263 
1264 	if ((flags & O_FOFFSET) == 0)
1265 		fp->f_offset = uio->uio_offset;
1266 	fp->f_nextoff = uio->uio_offset;
1267 
1268 	return (error);
1269 }
1270 
1271 
1272 static int
1273 devfs_fo_stat(struct file *fp, struct stat *sb, struct ucred *cred)
1274 {
1275 	struct vnode *vp;
1276 	struct vattr vattr;
1277 	struct vattr *vap;
1278 	u_short mode;
1279 	cdev_t dev;
1280 	int error;
1281 
1282 	vp = (struct vnode *)fp->f_data;
1283 	if (vp == NULL || vp->v_type == VBAD)
1284 		return EBADF;
1285 
1286 	error = vn_stat(vp, sb, cred);
1287 	if (error)
1288 		return (error);
1289 
1290 	vap = &vattr;
1291 	error = VOP_GETATTR(vp, vap);
1292 	if (error)
1293 		return (error);
1294 
1295 	/*
1296 	 * Zero the spare stat fields
1297 	 */
1298 	sb->st_lspare = 0;
1299 	sb->st_qspare1 = 0;
1300 	sb->st_qspare2 = 0;
1301 
1302 	/*
1303 	 * Copy from vattr table ... or not in case it's a cloned device
1304 	 */
1305 	if (vap->va_fsid != VNOVAL)
1306 		sb->st_dev = vap->va_fsid;
1307 	else
1308 		sb->st_dev = vp->v_mount->mnt_stat.f_fsid.val[0];
1309 
1310 	sb->st_ino = vap->va_fileid;
1311 
1312 	mode = vap->va_mode;
1313 	mode |= S_IFCHR;
1314 	sb->st_mode = mode;
1315 
1316 	if (vap->va_nlink > (nlink_t)-1)
1317 		sb->st_nlink = (nlink_t)-1;
1318 	else
1319 		sb->st_nlink = vap->va_nlink;
1320 
1321 	sb->st_uid = vap->va_uid;
1322 	sb->st_gid = vap->va_gid;
1323 	sb->st_rdev = dev2udev(DEVFS_NODE(vp)->d_dev);
1324 	sb->st_size = vap->va_bytes;
1325 	sb->st_atimespec = vap->va_atime;
1326 	sb->st_mtimespec = vap->va_mtime;
1327 	sb->st_ctimespec = vap->va_ctime;
1328 
1329 	/*
1330 	 * A VCHR and VBLK device may track the last access and last modified
1331 	 * time independantly of the filesystem.  This is particularly true
1332 	 * because device read and write calls may bypass the filesystem.
1333 	 */
1334 	if (vp->v_type == VCHR || vp->v_type == VBLK) {
1335 		dev = vp->v_rdev;
1336 		if (dev != NULL) {
1337 			if (dev->si_lastread) {
1338 				sb->st_atimespec.tv_sec = dev->si_lastread;
1339 				sb->st_atimespec.tv_nsec = 0;
1340 			}
1341 			if (dev->si_lastwrite) {
1342 				sb->st_atimespec.tv_sec = dev->si_lastwrite;
1343 				sb->st_atimespec.tv_nsec = 0;
1344 			}
1345 		}
1346 	}
1347 
1348         /*
1349 	 * According to www.opengroup.org, the meaning of st_blksize is
1350 	 *   "a filesystem-specific preferred I/O block size for this
1351 	 *    object.  In some filesystem types, this may vary from file
1352 	 *    to file"
1353 	 * Default to PAGE_SIZE after much discussion.
1354 	 */
1355 
1356 	sb->st_blksize = PAGE_SIZE;
1357 
1358 	sb->st_flags = vap->va_flags;
1359 
1360 	error = priv_check_cred(cred, PRIV_VFS_GENERATION, 0);
1361 	if (error)
1362 		sb->st_gen = 0;
1363 	else
1364 		sb->st_gen = (u_int32_t)vap->va_gen;
1365 
1366 	sb->st_blocks = vap->va_bytes / S_BLKSIZE;
1367 
1368 	return (0);
1369 }
1370 
1371 
1372 static int
1373 devfs_fo_kqfilter(struct file *fp, struct knote *kn)
1374 {
1375 	struct vnode *vp;
1376 	int error;
1377 	cdev_t dev;
1378 
1379 	vp = (struct vnode *)fp->f_data;
1380 	if (vp == NULL || vp->v_type == VBAD) {
1381 		error = EBADF;
1382 		goto done;
1383 	}
1384 	if ((dev = vp->v_rdev) == NULL) {
1385 		error = EBADF;
1386 		goto done;
1387 	}
1388 	reference_dev(dev);
1389 
1390 	error = dev_dkqfilter(dev, kn);
1391 
1392 	release_dev(dev);
1393 
1394 done:
1395 	return (error);
1396 }
1397 
1398 /*
1399  * MPALMOSTSAFE - acquires mplock
1400  */
1401 static int
1402 devfs_fo_ioctl(struct file *fp, u_long com, caddr_t data,
1403 		  struct ucred *ucred, struct sysmsg *msg)
1404 {
1405 #if 0
1406 	struct devfs_node *node;
1407 #endif
1408 	struct vnode *vp;
1409 	struct vnode *ovp;
1410 	cdev_t	dev;
1411 	int error;
1412 	struct fiodname_args *name_args;
1413 	size_t namlen;
1414 	const char *name;
1415 
1416 	vp = ((struct vnode *)fp->f_data);
1417 
1418 	if ((dev = vp->v_rdev) == NULL)
1419 		return EBADF;		/* device was revoked */
1420 
1421 	reference_dev(dev);
1422 
1423 #if 0
1424 	node = DEVFS_NODE(vp);
1425 #endif
1426 
1427 	devfs_debug(DEVFS_DEBUG_DEBUG,
1428 		    "devfs_fo_ioctl() called! for dev %s\n",
1429 		    dev->si_name);
1430 
1431 	if (com == FIODTYPE) {
1432 		*(int *)data = dev_dflags(dev) & D_TYPEMASK;
1433 		error = 0;
1434 		goto out;
1435 	} else if (com == FIODNAME) {
1436 		name_args = (struct fiodname_args *)data;
1437 		name = dev->si_name;
1438 		namlen = strlen(name) + 1;
1439 
1440 		devfs_debug(DEVFS_DEBUG_DEBUG,
1441 			    "ioctl, got: FIODNAME for %s\n", name);
1442 
1443 		if (namlen <= name_args->len)
1444 			error = copyout(dev->si_name, name_args->name, namlen);
1445 		else
1446 			error = EINVAL;
1447 
1448 		devfs_debug(DEVFS_DEBUG_DEBUG,
1449 			    "ioctl stuff: error: %d\n", error);
1450 		goto out;
1451 	}
1452 
1453 	error = dev_dioctl(dev, com, data, fp->f_flag, ucred, msg);
1454 
1455 #if 0
1456 	if (node) {
1457 		nanotime(&node->atime);
1458 		nanotime(&node->mtime);
1459 	}
1460 #endif
1461 	if (com == TIOCSCTTY) {
1462 		devfs_debug(DEVFS_DEBUG_DEBUG,
1463 			    "devfs_fo_ioctl: got TIOCSCTTY on %s\n",
1464 			    dev->si_name);
1465 	}
1466 	if (error == 0 && com == TIOCSCTTY) {
1467 		struct proc *p = curthread->td_proc;
1468 		struct session *sess;
1469 
1470 		devfs_debug(DEVFS_DEBUG_DEBUG,
1471 			    "devfs_fo_ioctl: dealing with TIOCSCTTY on %s\n",
1472 			    dev->si_name);
1473 		if (p == NULL) {
1474 			error = ENOTTY;
1475 			goto out;
1476 		}
1477 		sess = p->p_session;
1478 
1479 		/*
1480 		 * Do nothing if reassigning same control tty
1481 		 */
1482 		if (sess->s_ttyvp == vp) {
1483 			error = 0;
1484 			goto out;
1485 		}
1486 
1487 		/*
1488 		 * Get rid of reference to old control tty
1489 		 */
1490 		ovp = sess->s_ttyvp;
1491 		vref(vp);
1492 		sess->s_ttyvp = vp;
1493 		if (ovp)
1494 			vrele(ovp);
1495 	}
1496 
1497 out:
1498 	release_dev(dev);
1499 	devfs_debug(DEVFS_DEBUG_DEBUG, "devfs_fo_ioctl() finished! \n");
1500 	return (error);
1501 }
1502 
1503 
1504 static int
1505 devfs_spec_fsync(struct vop_fsync_args *ap)
1506 {
1507 	struct vnode *vp = ap->a_vp;
1508 	int error;
1509 
1510 	if (!vn_isdisk(vp, NULL))
1511 		return (0);
1512 
1513 	/*
1514 	 * Flush all dirty buffers associated with a block device.
1515 	 */
1516 	error = vfsync(vp, ap->a_waitfor, 10000, NULL, NULL);
1517 	return (error);
1518 }
1519 
1520 static int
1521 devfs_spec_read(struct vop_read_args *ap)
1522 {
1523 	struct devfs_node *node;
1524 	struct vnode *vp;
1525 	struct uio *uio;
1526 	cdev_t dev;
1527 	int error;
1528 
1529 	vp = ap->a_vp;
1530 	dev = vp->v_rdev;
1531 	uio = ap->a_uio;
1532 	node = DEVFS_NODE(vp);
1533 
1534 	if (dev == NULL)		/* device was revoked */
1535 		return (EBADF);
1536 	if (uio->uio_resid == 0)
1537 		return (0);
1538 
1539 	vn_unlock(vp);
1540 	error = dev_dread(dev, uio, ap->a_ioflag);
1541 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1542 
1543 	if (node)
1544 		nanotime(&node->atime);
1545 
1546 	return (error);
1547 }
1548 
1549 /*
1550  * Vnode op for write
1551  *
1552  * spec_write(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
1553  *	      struct ucred *a_cred)
1554  */
1555 static int
1556 devfs_spec_write(struct vop_write_args *ap)
1557 {
1558 	struct devfs_node *node;
1559 	struct vnode *vp;
1560 	struct uio *uio;
1561 	cdev_t dev;
1562 	int error;
1563 
1564 	vp = ap->a_vp;
1565 	dev = vp->v_rdev;
1566 	uio = ap->a_uio;
1567 	node = DEVFS_NODE(vp);
1568 
1569 	KKASSERT(uio->uio_segflg != UIO_NOCOPY);
1570 
1571 	if (dev == NULL)		/* device was revoked */
1572 		return (EBADF);
1573 
1574 	vn_unlock(vp);
1575 	error = dev_dwrite(dev, uio, ap->a_ioflag);
1576 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1577 
1578 	if (node) {
1579 		nanotime(&node->atime);
1580 		nanotime(&node->mtime);
1581 	}
1582 
1583 	return (error);
1584 }
1585 
1586 /*
1587  * Device ioctl operation.
1588  *
1589  * spec_ioctl(struct vnode *a_vp, int a_command, caddr_t a_data,
1590  *	      int a_fflag, struct ucred *a_cred, struct sysmsg *msg)
1591  */
1592 static int
1593 devfs_spec_ioctl(struct vop_ioctl_args *ap)
1594 {
1595 	struct vnode *vp = ap->a_vp;
1596 #if 0
1597 	struct devfs_node *node;
1598 #endif
1599 	cdev_t dev;
1600 
1601 	if ((dev = vp->v_rdev) == NULL)
1602 		return (EBADF);		/* device was revoked */
1603 #if 0
1604 	node = DEVFS_NODE(vp);
1605 
1606 	if (node) {
1607 		nanotime(&node->atime);
1608 		nanotime(&node->mtime);
1609 	}
1610 #endif
1611 
1612 	return (dev_dioctl(dev, ap->a_command, ap->a_data, ap->a_fflag,
1613 			   ap->a_cred, ap->a_sysmsg));
1614 }
1615 
1616 /*
1617  * spec_kqfilter(struct vnode *a_vp, struct knote *a_kn)
1618  */
1619 /* ARGSUSED */
1620 static int
1621 devfs_spec_kqfilter(struct vop_kqfilter_args *ap)
1622 {
1623 	struct vnode *vp = ap->a_vp;
1624 #if 0
1625 	struct devfs_node *node;
1626 #endif
1627 	cdev_t dev;
1628 
1629 	if ((dev = vp->v_rdev) == NULL)
1630 		return (EBADF);		/* device was revoked (EBADF) */
1631 #if 0
1632 	node = DEVFS_NODE(vp);
1633 
1634 	if (node)
1635 		nanotime(&node->atime);
1636 #endif
1637 
1638 	return (dev_dkqfilter(dev, ap->a_kn));
1639 }
1640 
1641 /*
1642  * Convert a vnode strategy call into a device strategy call.  Vnode strategy
1643  * calls are not limited to device DMA limits so we have to deal with the
1644  * case.
1645  *
1646  * spec_strategy(struct vnode *a_vp, struct bio *a_bio)
1647  */
1648 static int
1649 devfs_spec_strategy(struct vop_strategy_args *ap)
1650 {
1651 	struct bio *bio = ap->a_bio;
1652 	struct buf *bp = bio->bio_buf;
1653 	struct buf *nbp;
1654 	struct vnode *vp;
1655 	struct mount *mp;
1656 	int chunksize;
1657 	int maxiosize;
1658 
1659 	if (bp->b_cmd != BUF_CMD_READ && LIST_FIRST(&bp->b_dep) != NULL)
1660 		buf_start(bp);
1661 
1662 	/*
1663 	 * Collect statistics on synchronous and asynchronous read
1664 	 * and write counts for disks that have associated filesystems.
1665 	 */
1666 	vp = ap->a_vp;
1667 	KKASSERT(vp->v_rdev != NULL);	/* XXX */
1668 	if (vn_isdisk(vp, NULL) && (mp = vp->v_rdev->si_mountpoint) != NULL) {
1669 		if (bp->b_cmd == BUF_CMD_READ) {
1670 			if (bp->b_flags & BIO_SYNC)
1671 				mp->mnt_stat.f_syncreads++;
1672 			else
1673 				mp->mnt_stat.f_asyncreads++;
1674 		} else {
1675 			if (bp->b_flags & BIO_SYNC)
1676 				mp->mnt_stat.f_syncwrites++;
1677 			else
1678 				mp->mnt_stat.f_asyncwrites++;
1679 		}
1680 	}
1681 
1682         /*
1683          * Device iosize limitations only apply to read and write.  Shortcut
1684          * the I/O if it fits.
1685          */
1686 	if ((maxiosize = vp->v_rdev->si_iosize_max) == 0) {
1687 		devfs_debug(DEVFS_DEBUG_DEBUG,
1688 			    "%s: si_iosize_max not set!\n",
1689 			    dev_dname(vp->v_rdev));
1690 		maxiosize = MAXPHYS;
1691 	}
1692 #if SPEC_CHAIN_DEBUG & 2
1693 	maxiosize = 4096;
1694 #endif
1695         if (bp->b_bcount <= maxiosize ||
1696             (bp->b_cmd != BUF_CMD_READ && bp->b_cmd != BUF_CMD_WRITE)) {
1697                 dev_dstrategy_chain(vp->v_rdev, bio);
1698                 return (0);
1699         }
1700 
1701 	/*
1702 	 * Clone the buffer and set up an I/O chain to chunk up the I/O.
1703 	 */
1704 	nbp = kmalloc(sizeof(*bp), M_DEVBUF, M_INTWAIT|M_ZERO);
1705 	initbufbio(nbp);
1706 	buf_dep_init(nbp);
1707 	BUF_LOCK(nbp, LK_EXCLUSIVE);
1708 	BUF_KERNPROC(nbp);
1709 	nbp->b_vp = vp;
1710 	nbp->b_flags = B_PAGING | (bp->b_flags & B_BNOCLIP);
1711 	nbp->b_data = bp->b_data;
1712 	nbp->b_bio1.bio_done = devfs_spec_strategy_done;
1713 	nbp->b_bio1.bio_offset = bio->bio_offset;
1714 	nbp->b_bio1.bio_caller_info1.ptr = bio;
1715 
1716 	/*
1717 	 * Start the first transfer
1718 	 */
1719 	if (vn_isdisk(vp, NULL))
1720 		chunksize = vp->v_rdev->si_bsize_phys;
1721 	else
1722 		chunksize = DEV_BSIZE;
1723 	chunksize = maxiosize / chunksize * chunksize;
1724 #if SPEC_CHAIN_DEBUG & 1
1725 	devfs_debug(DEVFS_DEBUG_DEBUG,
1726 		    "spec_strategy chained I/O chunksize=%d\n",
1727 		    chunksize);
1728 #endif
1729 	nbp->b_cmd = bp->b_cmd;
1730 	nbp->b_bcount = chunksize;
1731 	nbp->b_bufsize = chunksize;	/* used to detect a short I/O */
1732 	nbp->b_bio1.bio_caller_info2.index = chunksize;
1733 
1734 #if SPEC_CHAIN_DEBUG & 1
1735 	devfs_debug(DEVFS_DEBUG_DEBUG,
1736 		    "spec_strategy: chain %p offset %d/%d bcount %d\n",
1737 		    bp, 0, bp->b_bcount, nbp->b_bcount);
1738 #endif
1739 
1740 	dev_dstrategy(vp->v_rdev, &nbp->b_bio1);
1741 
1742 	if (DEVFS_NODE(vp)) {
1743 		nanotime(&DEVFS_NODE(vp)->atime);
1744 		nanotime(&DEVFS_NODE(vp)->mtime);
1745 	}
1746 
1747 	return (0);
1748 }
1749 
1750 /*
1751  * Chunked up transfer completion routine - chain transfers until done
1752  *
1753  * NOTE: MPSAFE callback.
1754  */
1755 static
1756 void
1757 devfs_spec_strategy_done(struct bio *nbio)
1758 {
1759 	struct buf *nbp = nbio->bio_buf;
1760 	struct bio *bio = nbio->bio_caller_info1.ptr;	/* original bio */
1761 	struct buf *bp = bio->bio_buf;			/* original bp */
1762 	int chunksize = nbio->bio_caller_info2.index;	/* chunking */
1763 	int boffset = nbp->b_data - bp->b_data;
1764 
1765 	if (nbp->b_flags & B_ERROR) {
1766 		/*
1767 		 * An error terminates the chain, propogate the error back
1768 		 * to the original bp
1769 		 */
1770 		bp->b_flags |= B_ERROR;
1771 		bp->b_error = nbp->b_error;
1772 		bp->b_resid = bp->b_bcount - boffset +
1773 			      (nbp->b_bcount - nbp->b_resid);
1774 #if SPEC_CHAIN_DEBUG & 1
1775 		devfs_debug(DEVFS_DEBUG_DEBUG,
1776 			    "spec_strategy: chain %p error %d bcount %d/%d\n",
1777 			    bp, bp->b_error, bp->b_bcount,
1778 			    bp->b_bcount - bp->b_resid);
1779 #endif
1780 	} else if (nbp->b_resid) {
1781 		/*
1782 		 * A short read or write terminates the chain
1783 		 */
1784 		bp->b_error = nbp->b_error;
1785 		bp->b_resid = bp->b_bcount - boffset +
1786 			      (nbp->b_bcount - nbp->b_resid);
1787 #if SPEC_CHAIN_DEBUG & 1
1788 		devfs_debug(DEVFS_DEBUG_DEBUG,
1789 			    "spec_strategy: chain %p short read(1) "
1790 			    "bcount %d/%d\n",
1791 			    bp, bp->b_bcount - bp->b_resid, bp->b_bcount);
1792 #endif
1793 	} else if (nbp->b_bcount != nbp->b_bufsize) {
1794 		/*
1795 		 * A short read or write can also occur by truncating b_bcount
1796 		 */
1797 #if SPEC_CHAIN_DEBUG & 1
1798 		devfs_debug(DEVFS_DEBUG_DEBUG,
1799 			    "spec_strategy: chain %p short read(2) "
1800 			    "bcount %d/%d\n",
1801 			    bp, nbp->b_bcount + boffset, bp->b_bcount);
1802 #endif
1803 		bp->b_error = 0;
1804 		bp->b_bcount = nbp->b_bcount + boffset;
1805 		bp->b_resid = nbp->b_resid;
1806 	} else if (nbp->b_bcount + boffset == bp->b_bcount) {
1807 		/*
1808 		 * No more data terminates the chain
1809 		 */
1810 #if SPEC_CHAIN_DEBUG & 1
1811 		devfs_debug(DEVFS_DEBUG_DEBUG,
1812 			    "spec_strategy: chain %p finished bcount %d\n",
1813 			    bp, bp->b_bcount);
1814 #endif
1815 		bp->b_error = 0;
1816 		bp->b_resid = 0;
1817 	} else {
1818 		/*
1819 		 * Continue the chain
1820 		 */
1821 		boffset += nbp->b_bcount;
1822 		nbp->b_data = bp->b_data + boffset;
1823 		nbp->b_bcount = bp->b_bcount - boffset;
1824 		if (nbp->b_bcount > chunksize)
1825 			nbp->b_bcount = chunksize;
1826 		nbp->b_bio1.bio_done = devfs_spec_strategy_done;
1827 		nbp->b_bio1.bio_offset = bio->bio_offset + boffset;
1828 
1829 #if SPEC_CHAIN_DEBUG & 1
1830 		devfs_debug(DEVFS_DEBUG_DEBUG,
1831 			    "spec_strategy: chain %p offset %d/%d bcount %d\n",
1832 			    bp, boffset, bp->b_bcount, nbp->b_bcount);
1833 #endif
1834 
1835 		dev_dstrategy(nbp->b_vp->v_rdev, &nbp->b_bio1);
1836 		return;
1837 	}
1838 
1839 	/*
1840 	 * Fall through to here on termination.  biodone(bp) and
1841 	 * clean up and free nbp.
1842 	 */
1843 	biodone(bio);
1844 	BUF_UNLOCK(nbp);
1845 	uninitbufbio(nbp);
1846 	kfree(nbp, M_DEVBUF);
1847 }
1848 
1849 /*
1850  * spec_freeblks(struct vnode *a_vp, daddr_t a_addr, daddr_t a_length)
1851  */
1852 static int
1853 devfs_spec_freeblks(struct vop_freeblks_args *ap)
1854 {
1855 	struct buf *bp;
1856 
1857 	/*
1858 	 * XXX: This assumes that strategy does the deed right away.
1859 	 * XXX: this may not be TRTTD.
1860 	 */
1861 	KKASSERT(ap->a_vp->v_rdev != NULL);
1862 	if ((ap->a_vp->v_rdev->si_flags & SI_CANFREE) == 0)
1863 		return (0);
1864 	bp = geteblk(ap->a_length);
1865 	bp->b_cmd = BUF_CMD_FREEBLKS;
1866 	bp->b_bio1.bio_offset = ap->a_offset;
1867 	bp->b_bcount = ap->a_length;
1868 	dev_dstrategy(ap->a_vp->v_rdev, &bp->b_bio1);
1869 	return (0);
1870 }
1871 
1872 /*
1873  * Implement degenerate case where the block requested is the block
1874  * returned, and assume that the entire device is contiguous in regards
1875  * to the contiguous block range (runp and runb).
1876  *
1877  * spec_bmap(struct vnode *a_vp, off_t a_loffset,
1878  *	     off_t *a_doffsetp, int *a_runp, int *a_runb)
1879  */
1880 static int
1881 devfs_spec_bmap(struct vop_bmap_args *ap)
1882 {
1883 	if (ap->a_doffsetp != NULL)
1884 		*ap->a_doffsetp = ap->a_loffset;
1885 	if (ap->a_runp != NULL)
1886 		*ap->a_runp = MAXBSIZE;
1887 	if (ap->a_runb != NULL) {
1888 		if (ap->a_loffset < MAXBSIZE)
1889 			*ap->a_runb = (int)ap->a_loffset;
1890 		else
1891 			*ap->a_runb = MAXBSIZE;
1892 	}
1893 	return (0);
1894 }
1895 
1896 
1897 /*
1898  * Special device advisory byte-level locks.
1899  *
1900  * spec_advlock(struct vnode *a_vp, caddr_t a_id, int a_op,
1901  *		struct flock *a_fl, int a_flags)
1902  */
1903 /* ARGSUSED */
1904 static int
1905 devfs_spec_advlock(struct vop_advlock_args *ap)
1906 {
1907 	return ((ap->a_flags & F_POSIX) ? EINVAL : EOPNOTSUPP);
1908 }
1909 
1910 /*
1911  * NOTE: MPSAFE callback.
1912  */
1913 static void
1914 devfs_spec_getpages_iodone(struct bio *bio)
1915 {
1916 	bio->bio_buf->b_cmd = BUF_CMD_DONE;
1917 	wakeup(bio->bio_buf);
1918 }
1919 
1920 /*
1921  * spec_getpages() - get pages associated with device vnode.
1922  *
1923  * Note that spec_read and spec_write do not use the buffer cache, so we
1924  * must fully implement getpages here.
1925  */
1926 static int
1927 devfs_spec_getpages(struct vop_getpages_args *ap)
1928 {
1929 	vm_offset_t kva;
1930 	int error;
1931 	int i, pcount, size;
1932 	struct buf *bp;
1933 	vm_page_t m;
1934 	vm_ooffset_t offset;
1935 	int toff, nextoff, nread;
1936 	struct vnode *vp = ap->a_vp;
1937 	int blksiz;
1938 	int gotreqpage;
1939 
1940 	error = 0;
1941 	pcount = round_page(ap->a_count) / PAGE_SIZE;
1942 
1943 	/*
1944 	 * Calculate the offset of the transfer and do sanity check.
1945 	 */
1946 	offset = IDX_TO_OFF(ap->a_m[0]->pindex) + ap->a_offset;
1947 
1948 	/*
1949 	 * Round up physical size for real devices.  We cannot round using
1950 	 * v_mount's block size data because v_mount has nothing to do with
1951 	 * the device.  i.e. it's usually '/dev'.  We need the physical block
1952 	 * size for the device itself.
1953 	 *
1954 	 * We can't use v_rdev->si_mountpoint because it only exists when the
1955 	 * block device is mounted.  However, we can use v_rdev.
1956 	 */
1957 	if (vn_isdisk(vp, NULL))
1958 		blksiz = vp->v_rdev->si_bsize_phys;
1959 	else
1960 		blksiz = DEV_BSIZE;
1961 
1962 	size = (ap->a_count + blksiz - 1) & ~(blksiz - 1);
1963 
1964 	bp = getpbuf_kva(NULL);
1965 	kva = (vm_offset_t)bp->b_data;
1966 
1967 	/*
1968 	 * Map the pages to be read into the kva.
1969 	 */
1970 	pmap_qenter(kva, ap->a_m, pcount);
1971 
1972 	/* Build a minimal buffer header. */
1973 	bp->b_cmd = BUF_CMD_READ;
1974 	bp->b_bcount = size;
1975 	bp->b_resid = 0;
1976 	bsetrunningbufspace(bp, size);
1977 
1978 	bp->b_bio1.bio_offset = offset;
1979 	bp->b_bio1.bio_done = devfs_spec_getpages_iodone;
1980 
1981 	mycpu->gd_cnt.v_vnodein++;
1982 	mycpu->gd_cnt.v_vnodepgsin += pcount;
1983 
1984 	/* Do the input. */
1985 	vn_strategy(ap->a_vp, &bp->b_bio1);
1986 
1987 	crit_enter();
1988 
1989 	/* We definitely need to be at splbio here. */
1990 	while (bp->b_cmd != BUF_CMD_DONE)
1991 		tsleep(bp, 0, "spread", 0);
1992 
1993 	crit_exit();
1994 
1995 	if (bp->b_flags & B_ERROR) {
1996 		if (bp->b_error)
1997 			error = bp->b_error;
1998 		else
1999 			error = EIO;
2000 	}
2001 
2002 	/*
2003 	 * If EOF is encountered we must zero-extend the result in order
2004 	 * to ensure that the page does not contain garabge.  When no
2005 	 * error occurs, an early EOF is indicated if b_bcount got truncated.
2006 	 * b_resid is relative to b_bcount and should be 0, but some devices
2007 	 * might indicate an EOF with b_resid instead of truncating b_bcount.
2008 	 */
2009 	nread = bp->b_bcount - bp->b_resid;
2010 	if (nread < ap->a_count)
2011 		bzero((caddr_t)kva + nread, ap->a_count - nread);
2012 	pmap_qremove(kva, pcount);
2013 
2014 	gotreqpage = 0;
2015 	for (i = 0, toff = 0; i < pcount; i++, toff = nextoff) {
2016 		nextoff = toff + PAGE_SIZE;
2017 		m = ap->a_m[i];
2018 
2019 		m->flags &= ~PG_ZERO;
2020 
2021 		/*
2022 		 * NOTE: vm_page_undirty/clear_dirty etc do not clear the
2023 		 *	 pmap modified bit.  pmap modified bit should have
2024 		 *	 already been cleared.
2025 		 */
2026 		if (nextoff <= nread) {
2027 			m->valid = VM_PAGE_BITS_ALL;
2028 			vm_page_undirty(m);
2029 		} else if (toff < nread) {
2030 			/*
2031 			 * Since this is a VM request, we have to supply the
2032 			 * unaligned offset to allow vm_page_set_valid()
2033 			 * to zero sub-DEV_BSIZE'd portions of the page.
2034 			 */
2035 			vm_page_set_valid(m, 0, nread - toff);
2036 			vm_page_clear_dirty_end_nonincl(m, 0, nread - toff);
2037 		} else {
2038 			m->valid = 0;
2039 			vm_page_undirty(m);
2040 		}
2041 
2042 		if (i != ap->a_reqpage) {
2043 			/*
2044 			 * Just in case someone was asking for this page we
2045 			 * now tell them that it is ok to use.
2046 			 */
2047 			if (!error || (m->valid == VM_PAGE_BITS_ALL)) {
2048 				if (m->valid) {
2049 					if (m->flags & PG_REFERENCED) {
2050 						vm_page_activate(m);
2051 					} else {
2052 						vm_page_deactivate(m);
2053 					}
2054 					vm_page_wakeup(m);
2055 				} else {
2056 					vm_page_free(m);
2057 				}
2058 			} else {
2059 				vm_page_free(m);
2060 			}
2061 		} else if (m->valid) {
2062 			gotreqpage = 1;
2063 			/*
2064 			 * Since this is a VM request, we need to make the
2065 			 * entire page presentable by zeroing invalid sections.
2066 			 */
2067 			if (m->valid != VM_PAGE_BITS_ALL)
2068 			    vm_page_zero_invalid(m, FALSE);
2069 		}
2070 	}
2071 	if (!gotreqpage) {
2072 		m = ap->a_m[ap->a_reqpage];
2073 		devfs_debug(DEVFS_DEBUG_WARNING,
2074 	    "spec_getpages:(%s) I/O read failure: (error=%d) bp %p vp %p\n",
2075 			devtoname(vp->v_rdev), error, bp, bp->b_vp);
2076 		devfs_debug(DEVFS_DEBUG_WARNING,
2077 	    "               size: %d, resid: %d, a_count: %d, valid: 0x%x\n",
2078 		    size, bp->b_resid, ap->a_count, m->valid);
2079 		devfs_debug(DEVFS_DEBUG_WARNING,
2080 	    "               nread: %d, reqpage: %d, pindex: %lu, pcount: %d\n",
2081 		    nread, ap->a_reqpage, (u_long)m->pindex, pcount);
2082 		/*
2083 		 * Free the buffer header back to the swap buffer pool.
2084 		 */
2085 		relpbuf(bp, NULL);
2086 		return VM_PAGER_ERROR;
2087 	}
2088 	/*
2089 	 * Free the buffer header back to the swap buffer pool.
2090 	 */
2091 	relpbuf(bp, NULL);
2092 	if (DEVFS_NODE(ap->a_vp))
2093 		nanotime(&DEVFS_NODE(ap->a_vp)->mtime);
2094 	return VM_PAGER_OK;
2095 }
2096 
2097 static __inline
2098 int
2099 sequential_heuristic(struct uio *uio, struct file *fp)
2100 {
2101 	/*
2102 	 * Sequential heuristic - detect sequential operation
2103 	 */
2104 	if ((uio->uio_offset == 0 && fp->f_seqcount > 0) ||
2105 	    uio->uio_offset == fp->f_nextoff) {
2106 		/*
2107 		 * XXX we assume that the filesystem block size is
2108 		 * the default.  Not true, but still gives us a pretty
2109 		 * good indicator of how sequential the read operations
2110 		 * are.
2111 		 */
2112 		int tmpseq = fp->f_seqcount;
2113 
2114 		tmpseq += (uio->uio_resid + BKVASIZE - 1) / BKVASIZE;
2115 		if (tmpseq > IO_SEQMAX)
2116 			tmpseq = IO_SEQMAX;
2117 		fp->f_seqcount = tmpseq;
2118 		return(fp->f_seqcount << IO_SEQSHIFT);
2119 	}
2120 
2121 	/*
2122 	 * Not sequential, quick draw-down of seqcount
2123 	 */
2124 	if (fp->f_seqcount > 1)
2125 		fp->f_seqcount = 1;
2126 	else
2127 		fp->f_seqcount = 0;
2128 	return(0);
2129 }
2130