xref: /dragonfly/sys/vfs/devfs/devfs_vnops.c (revision f6061ce2)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 2009 The DragonFly Project.  All rights reserved.
5  *
6  * This code is derived from software contributed to The DragonFly Project
7  * by Alex Hornung <ahornung@gmail.com>
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  * 3. Neither the name of The DragonFly Project nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific, prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
27  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  */
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/time.h>
39 #include <sys/kernel.h>
40 #include <sys/lock.h>
41 #include <sys/fcntl.h>
42 #include <sys/proc.h>
43 #include <sys/priv.h>
44 #include <sys/signalvar.h>
45 #include <sys/vnode.h>
46 #include <sys/uio.h>
47 #include <sys/mount.h>
48 #include <sys/file.h>
49 #include <sys/fcntl.h>
50 #include <sys/namei.h>
51 #include <sys/dirent.h>
52 #include <sys/malloc.h>
53 #include <sys/stat.h>
54 #include <sys/reg.h>
55 #include <vm/vm_pager.h>
56 #include <vm/vm_zone.h>
57 #include <vm/vm_object.h>
58 #include <sys/filio.h>
59 #include <sys/ttycom.h>
60 #include <sys/tty.h>
61 #include <sys/diskslice.h>
62 #include <sys/sysctl.h>
63 #include <sys/devfs.h>
64 #include <sys/pioctl.h>
65 #include <vfs/fifofs/fifo.h>
66 
67 #include <machine/limits.h>
68 
69 #include <sys/buf2.h>
70 #include <sys/sysref2.h>
71 #include <sys/mplock2.h>
72 #include <vm/vm_page2.h>
73 
74 MALLOC_DECLARE(M_DEVFS);
75 #define DEVFS_BADOP	(void *)devfs_vop_badop
76 
77 static int devfs_vop_badop(struct vop_generic_args *);
78 static int devfs_vop_access(struct vop_access_args *);
79 static int devfs_vop_inactive(struct vop_inactive_args *);
80 static int devfs_vop_reclaim(struct vop_reclaim_args *);
81 static int devfs_vop_readdir(struct vop_readdir_args *);
82 static int devfs_vop_getattr(struct vop_getattr_args *);
83 static int devfs_vop_setattr(struct vop_setattr_args *);
84 static int devfs_vop_readlink(struct vop_readlink_args *);
85 static int devfs_vop_print(struct vop_print_args *);
86 
87 static int devfs_vop_nresolve(struct vop_nresolve_args *);
88 static int devfs_vop_nlookupdotdot(struct vop_nlookupdotdot_args *);
89 static int devfs_vop_nmkdir(struct vop_nmkdir_args *);
90 static int devfs_vop_nsymlink(struct vop_nsymlink_args *);
91 static int devfs_vop_nrmdir(struct vop_nrmdir_args *);
92 static int devfs_vop_nremove(struct vop_nremove_args *);
93 
94 static int devfs_spec_open(struct vop_open_args *);
95 static int devfs_spec_close(struct vop_close_args *);
96 static int devfs_spec_fsync(struct vop_fsync_args *);
97 
98 static int devfs_spec_read(struct vop_read_args *);
99 static int devfs_spec_write(struct vop_write_args *);
100 static int devfs_spec_ioctl(struct vop_ioctl_args *);
101 static int devfs_spec_kqfilter(struct vop_kqfilter_args *);
102 static int devfs_spec_strategy(struct vop_strategy_args *);
103 static void devfs_spec_strategy_done(struct bio *);
104 static int devfs_spec_freeblks(struct vop_freeblks_args *);
105 static int devfs_spec_bmap(struct vop_bmap_args *);
106 static int devfs_spec_advlock(struct vop_advlock_args *);
107 static void devfs_spec_getpages_iodone(struct bio *);
108 static int devfs_spec_getpages(struct vop_getpages_args *);
109 
110 static int devfs_fo_close(struct file *);
111 static int devfs_fo_read(struct file *, struct uio *, struct ucred *, int);
112 static int devfs_fo_write(struct file *, struct uio *, struct ucred *, int);
113 static int devfs_fo_stat(struct file *, struct stat *, struct ucred *);
114 static int devfs_fo_kqfilter(struct file *, struct knote *);
115 static int devfs_fo_ioctl(struct file *, u_long, caddr_t,
116 				struct ucred *, struct sysmsg *);
117 static __inline int sequential_heuristic(struct uio *, struct file *);
118 
119 extern struct lock devfs_lock;
120 
121 /*
122  * devfs vnode operations for regular files.  All vnode ops are MPSAFE.
123  */
124 struct vop_ops devfs_vnode_norm_vops = {
125 	.vop_default =		vop_defaultop,
126 	.vop_access =		devfs_vop_access,
127 	.vop_advlock =		DEVFS_BADOP,
128 	.vop_bmap =		DEVFS_BADOP,
129 	.vop_close =		vop_stdclose,
130 	.vop_getattr =		devfs_vop_getattr,
131 	.vop_inactive =		devfs_vop_inactive,
132 	.vop_ncreate =		DEVFS_BADOP,
133 	.vop_nresolve =		devfs_vop_nresolve,
134 	.vop_nlookupdotdot =	devfs_vop_nlookupdotdot,
135 	.vop_nlink =		DEVFS_BADOP,
136 	.vop_nmkdir =		devfs_vop_nmkdir,
137 	.vop_nmknod =		DEVFS_BADOP,
138 	.vop_nremove =		devfs_vop_nremove,
139 	.vop_nrename =		DEVFS_BADOP,
140 	.vop_nrmdir =		devfs_vop_nrmdir,
141 	.vop_nsymlink =		devfs_vop_nsymlink,
142 	.vop_open =		vop_stdopen,
143 	.vop_pathconf =		vop_stdpathconf,
144 	.vop_print =		devfs_vop_print,
145 	.vop_read =		DEVFS_BADOP,
146 	.vop_readdir =		devfs_vop_readdir,
147 	.vop_readlink =		devfs_vop_readlink,
148 	.vop_reclaim =		devfs_vop_reclaim,
149 	.vop_setattr =		devfs_vop_setattr,
150 	.vop_write =		DEVFS_BADOP,
151 	.vop_ioctl =		DEVFS_BADOP
152 };
153 
154 /*
155  * devfs vnode operations for character devices.  All vnode ops are MPSAFE.
156  */
157 struct vop_ops devfs_vnode_dev_vops = {
158 	.vop_default =		vop_defaultop,
159 	.vop_access =		devfs_vop_access,
160 	.vop_advlock =		devfs_spec_advlock,
161 	.vop_bmap =		devfs_spec_bmap,
162 	.vop_close =		devfs_spec_close,
163 	.vop_freeblks =		devfs_spec_freeblks,
164 	.vop_fsync =		devfs_spec_fsync,
165 	.vop_getattr =		devfs_vop_getattr,
166 	.vop_getpages =		devfs_spec_getpages,
167 	.vop_inactive =		devfs_vop_inactive,
168 	.vop_open =		devfs_spec_open,
169 	.vop_pathconf =		vop_stdpathconf,
170 	.vop_print =		devfs_vop_print,
171 	.vop_kqfilter =		devfs_spec_kqfilter,
172 	.vop_read =		devfs_spec_read,
173 	.vop_readdir =		DEVFS_BADOP,
174 	.vop_readlink =		DEVFS_BADOP,
175 	.vop_reclaim =		devfs_vop_reclaim,
176 	.vop_setattr =		devfs_vop_setattr,
177 	.vop_strategy =		devfs_spec_strategy,
178 	.vop_write =		devfs_spec_write,
179 	.vop_ioctl =		devfs_spec_ioctl
180 };
181 
182 /*
183  * devfs file pointer operations.  All fileops are MPSAFE.
184  */
185 struct vop_ops *devfs_vnode_dev_vops_p = &devfs_vnode_dev_vops;
186 
187 struct fileops devfs_dev_fileops = {
188 	.fo_read	= devfs_fo_read,
189 	.fo_write	= devfs_fo_write,
190 	.fo_ioctl	= devfs_fo_ioctl,
191 	.fo_kqfilter	= devfs_fo_kqfilter,
192 	.fo_stat	= devfs_fo_stat,
193 	.fo_close	= devfs_fo_close,
194 	.fo_shutdown	= nofo_shutdown
195 };
196 
197 /*
198  * These two functions are possibly temporary hacks for devices (aka
199  * the pty code) which want to control the node attributes themselves.
200  *
201  * XXX we may ultimately desire to simply remove the uid/gid/mode
202  * from the node entirely.
203  *
204  * MPSAFE - sorta.  Theoretically the overwrite can compete since they
205  *	    are loading from the same fields.
206  */
207 static __inline void
208 node_sync_dev_get(struct devfs_node *node)
209 {
210 	cdev_t dev;
211 
212 	if ((dev = node->d_dev) && (dev->si_flags & SI_OVERRIDE)) {
213 		node->uid = dev->si_uid;
214 		node->gid = dev->si_gid;
215 		node->mode = dev->si_perms;
216 	}
217 }
218 
219 static __inline void
220 node_sync_dev_set(struct devfs_node *node)
221 {
222 	cdev_t dev;
223 
224 	if ((dev = node->d_dev) && (dev->si_flags & SI_OVERRIDE)) {
225 		dev->si_uid = node->uid;
226 		dev->si_gid = node->gid;
227 		dev->si_perms = node->mode;
228 	}
229 }
230 
231 /*
232  * generic entry point for unsupported operations
233  */
234 static int
235 devfs_vop_badop(struct vop_generic_args *ap)
236 {
237 	return (EIO);
238 }
239 
240 
241 static int
242 devfs_vop_access(struct vop_access_args *ap)
243 {
244 	struct devfs_node *node = DEVFS_NODE(ap->a_vp);
245 	int error;
246 
247 	if (!devfs_node_is_accessible(node))
248 		return ENOENT;
249 	node_sync_dev_get(node);
250 	error = vop_helper_access(ap, node->uid, node->gid,
251 				  node->mode, node->flags);
252 
253 	return error;
254 }
255 
256 
257 static int
258 devfs_vop_inactive(struct vop_inactive_args *ap)
259 {
260 	struct devfs_node *node = DEVFS_NODE(ap->a_vp);
261 
262 	if (node == NULL || (node->flags & DEVFS_NODE_LINKED) == 0)
263 		vrecycle(ap->a_vp);
264 	return 0;
265 }
266 
267 
268 static int
269 devfs_vop_reclaim(struct vop_reclaim_args *ap)
270 {
271 	struct devfs_node *node;
272 	struct vnode *vp;
273 	int locked;
274 
275 	/*
276 	 * Check if it is locked already. if not, we acquire the devfs lock
277 	 */
278 	if (!(lockstatus(&devfs_lock, curthread)) == LK_EXCLUSIVE) {
279 		lockmgr(&devfs_lock, LK_EXCLUSIVE);
280 		locked = 1;
281 	} else {
282 		locked = 0;
283 	}
284 
285 	/*
286 	 * Get rid of the devfs_node if it is no longer linked into the
287 	 * topology.
288 	 */
289 	vp = ap->a_vp;
290 	if ((node = DEVFS_NODE(vp)) != NULL) {
291 		node->v_node = NULL;
292 		if ((node->flags & DEVFS_NODE_LINKED) == 0)
293 			devfs_freep(node);
294 	}
295 
296 	if (locked)
297 		lockmgr(&devfs_lock, LK_RELEASE);
298 
299 	/*
300 	 * v_rdev needs to be properly released using v_release_rdev
301 	 * Make sure v_data is NULL as well.
302 	 */
303 	vp->v_data = NULL;
304 	v_release_rdev(vp);
305 	return 0;
306 }
307 
308 
309 static int
310 devfs_vop_readdir(struct vop_readdir_args *ap)
311 {
312 	struct devfs_node *dnode = DEVFS_NODE(ap->a_vp);
313 	struct devfs_node *node;
314 	int cookie_index;
315 	int ncookies;
316 	int error2;
317 	int error;
318 	int r;
319 	off_t *cookies;
320 	off_t saveoff;
321 
322 	devfs_debug(DEVFS_DEBUG_DEBUG, "devfs_readdir() called!\n");
323 
324 	if (ap->a_uio->uio_offset < 0 || ap->a_uio->uio_offset > INT_MAX)
325 		return (EINVAL);
326 	if ((error = vn_lock(ap->a_vp, LK_EXCLUSIVE | LK_RETRY)) != 0)
327 		return (error);
328 
329 	if (!devfs_node_is_accessible(dnode)) {
330 		vn_unlock(ap->a_vp);
331 		return ENOENT;
332 	}
333 
334 	lockmgr(&devfs_lock, LK_EXCLUSIVE);
335 
336 	saveoff = ap->a_uio->uio_offset;
337 
338 	if (ap->a_ncookies) {
339 		ncookies = ap->a_uio->uio_resid / 16 + 1; /* Why / 16 ?? */
340 		if (ncookies > 256)
341 			ncookies = 256;
342 		cookies = kmalloc(256 * sizeof(off_t), M_TEMP, M_WAITOK);
343 		cookie_index = 0;
344 	} else {
345 		ncookies = -1;
346 		cookies = NULL;
347 		cookie_index = 0;
348 	}
349 
350 	nanotime(&dnode->atime);
351 
352 	if (saveoff == 0) {
353 		r = vop_write_dirent(&error, ap->a_uio, dnode->d_dir.d_ino,
354 				     DT_DIR, 1, ".");
355 		if (r)
356 			goto done;
357 		if (cookies)
358 			cookies[cookie_index] = saveoff;
359 		saveoff++;
360 		cookie_index++;
361 		if (cookie_index == ncookies)
362 			goto done;
363 	}
364 
365 	if (saveoff == 1) {
366 		if (dnode->parent) {
367 			r = vop_write_dirent(&error, ap->a_uio,
368 					     dnode->parent->d_dir.d_ino,
369 					     DT_DIR, 2, "..");
370 		} else {
371 			r = vop_write_dirent(&error, ap->a_uio,
372 					     dnode->d_dir.d_ino,
373 					     DT_DIR, 2, "..");
374 		}
375 		if (r)
376 			goto done;
377 		if (cookies)
378 			cookies[cookie_index] = saveoff;
379 		saveoff++;
380 		cookie_index++;
381 		if (cookie_index == ncookies)
382 			goto done;
383 	}
384 
385 	TAILQ_FOREACH(node, DEVFS_DENODE_HEAD(dnode), link) {
386 		if ((node->flags & DEVFS_HIDDEN) ||
387 		    (node->flags & DEVFS_INVISIBLE)) {
388 			continue;
389 		}
390 
391 		/*
392 		 * If the node type is a valid devfs alias, then we make
393 		 * sure that the target isn't hidden. If it is, we don't
394 		 * show the link in the directory listing.
395 		 */
396 		if ((node->node_type == Plink) && (node->link_target != NULL) &&
397 			(node->link_target->flags & DEVFS_HIDDEN))
398 			continue;
399 
400 		if (node->cookie < saveoff)
401 			continue;
402 
403 		saveoff = node->cookie;
404 
405 		error2 = vop_write_dirent(&error, ap->a_uio, node->d_dir.d_ino,
406 					  node->d_dir.d_type,
407 					  node->d_dir.d_namlen,
408 					  node->d_dir.d_name);
409 
410 		if (error2)
411 			break;
412 
413 		saveoff++;
414 
415 		if (cookies)
416 			cookies[cookie_index] = node->cookie;
417 		++cookie_index;
418 		if (cookie_index == ncookies)
419 			break;
420 	}
421 
422 done:
423 	lockmgr(&devfs_lock, LK_RELEASE);
424 	vn_unlock(ap->a_vp);
425 
426 	ap->a_uio->uio_offset = saveoff;
427 	if (error && cookie_index == 0) {
428 		if (cookies) {
429 			kfree(cookies, M_TEMP);
430 			*ap->a_ncookies = 0;
431 			*ap->a_cookies = NULL;
432 		}
433 	} else {
434 		if (cookies) {
435 			*ap->a_ncookies = cookie_index;
436 			*ap->a_cookies = cookies;
437 		}
438 	}
439 	return (error);
440 }
441 
442 
443 static int
444 devfs_vop_nresolve(struct vop_nresolve_args *ap)
445 {
446 	struct devfs_node *dnode = DEVFS_NODE(ap->a_dvp);
447 	struct devfs_node *node, *found = NULL;
448 	struct namecache *ncp;
449 	struct vnode *vp = NULL;
450 	int error = 0;
451 	int len;
452 	int depth;
453 
454 	ncp = ap->a_nch->ncp;
455 	len = ncp->nc_nlen;
456 
457 	if (!devfs_node_is_accessible(dnode))
458 		return ENOENT;
459 
460 	lockmgr(&devfs_lock, LK_EXCLUSIVE);
461 
462 	if ((dnode->node_type != Proot) && (dnode->node_type != Pdir)) {
463 		error = ENOENT;
464 		cache_setvp(ap->a_nch, NULL);
465 		goto out;
466 	}
467 
468 	TAILQ_FOREACH(node, DEVFS_DENODE_HEAD(dnode), link) {
469 		if (len == node->d_dir.d_namlen) {
470 			if (!memcmp(ncp->nc_name, node->d_dir.d_name, len)) {
471 				found = node;
472 				break;
473 			}
474 		}
475 	}
476 
477 	if (found) {
478 		depth = 0;
479 		while ((found->node_type == Plink) && (found->link_target)) {
480 			if (depth >= 8) {
481 				devfs_debug(DEVFS_DEBUG_SHOW, "Recursive link or depth >= 8");
482 				break;
483 			}
484 
485 			found = found->link_target;
486 			++depth;
487 		}
488 
489 		if (!(found->flags & DEVFS_HIDDEN))
490 			devfs_allocv(/*ap->a_dvp->v_mount, */ &vp, found);
491 	}
492 
493 	if (vp == NULL) {
494 		error = ENOENT;
495 		cache_setvp(ap->a_nch, NULL);
496 		goto out;
497 
498 	}
499 	KKASSERT(vp);
500 	vn_unlock(vp);
501 	cache_setvp(ap->a_nch, vp);
502 	vrele(vp);
503 out:
504 	lockmgr(&devfs_lock, LK_RELEASE);
505 
506 	return error;
507 }
508 
509 
510 static int
511 devfs_vop_nlookupdotdot(struct vop_nlookupdotdot_args *ap)
512 {
513 	struct devfs_node *dnode = DEVFS_NODE(ap->a_dvp);
514 
515 	*ap->a_vpp = NULL;
516 	if (!devfs_node_is_accessible(dnode))
517 		return ENOENT;
518 
519 	lockmgr(&devfs_lock, LK_EXCLUSIVE);
520 	if (dnode->parent != NULL) {
521 		devfs_allocv(ap->a_vpp, dnode->parent);
522 		vn_unlock(*ap->a_vpp);
523 	}
524 	lockmgr(&devfs_lock, LK_RELEASE);
525 
526 	return ((*ap->a_vpp == NULL) ? ENOENT : 0);
527 }
528 
529 
530 static int
531 devfs_vop_getattr(struct vop_getattr_args *ap)
532 {
533 	struct devfs_node *node = DEVFS_NODE(ap->a_vp);
534 	struct vattr *vap = ap->a_vap;
535 	struct partinfo pinfo;
536 	int error = 0;
537 
538 #if 0
539 	if (!devfs_node_is_accessible(node))
540 		return ENOENT;
541 #endif
542 	node_sync_dev_get(node);
543 
544 	lockmgr(&devfs_lock, LK_EXCLUSIVE);
545 
546 	/* start by zeroing out the attributes */
547 	VATTR_NULL(vap);
548 
549 	/* next do all the common fields */
550 	vap->va_type = ap->a_vp->v_type;
551 	vap->va_mode = node->mode;
552 	vap->va_fileid = DEVFS_NODE(ap->a_vp)->d_dir.d_ino ;
553 	vap->va_flags = 0;
554 	vap->va_blocksize = DEV_BSIZE;
555 	vap->va_bytes = vap->va_size = 0;
556 
557 	vap->va_fsid = ap->a_vp->v_mount->mnt_stat.f_fsid.val[0];
558 
559 	vap->va_atime = node->atime;
560 	vap->va_mtime = node->mtime;
561 	vap->va_ctime = node->ctime;
562 
563 	vap->va_nlink = 1; /* number of references to file */
564 
565 	vap->va_uid = node->uid;
566 	vap->va_gid = node->gid;
567 
568 	vap->va_rmajor = 0;
569 	vap->va_rminor = 0;
570 
571 	if ((node->node_type == Pdev) && node->d_dev)  {
572 		reference_dev(node->d_dev);
573 		vap->va_rminor = node->d_dev->si_uminor;
574 		release_dev(node->d_dev);
575 	}
576 
577 	/* For a softlink the va_size is the length of the softlink */
578 	if (node->symlink_name != 0) {
579 		vap->va_bytes = vap->va_size = node->symlink_namelen;
580 	}
581 
582 	/*
583 	 * For a disk-type device, va_size is the size of the underlying
584 	 * device, so that lseek() works properly.
585 	 */
586 	if ((node->d_dev) && (dev_dflags(node->d_dev) & D_DISK)) {
587 		bzero(&pinfo, sizeof(pinfo));
588 		error = dev_dioctl(node->d_dev, DIOCGPART, (void *)&pinfo,
589 				   0, proc0.p_ucred, NULL);
590 		if ((error == 0) && (pinfo.media_blksize != 0)) {
591 			vap->va_size = pinfo.media_size;
592 		} else {
593 			vap->va_size = 0;
594 			error = 0;
595 		}
596 	}
597 
598 	lockmgr(&devfs_lock, LK_RELEASE);
599 
600 	return (error);
601 }
602 
603 
604 static int
605 devfs_vop_setattr(struct vop_setattr_args *ap)
606 {
607 	struct devfs_node *node = DEVFS_NODE(ap->a_vp);
608 	struct vattr *vap;
609 	int error = 0;
610 
611 	if (!devfs_node_is_accessible(node))
612 		return ENOENT;
613 	node_sync_dev_get(node);
614 
615 	lockmgr(&devfs_lock, LK_EXCLUSIVE);
616 
617 	vap = ap->a_vap;
618 
619 	if (vap->va_uid != (uid_t)VNOVAL) {
620 		if ((ap->a_cred->cr_uid != node->uid) &&
621 		    (!groupmember(node->gid, ap->a_cred))) {
622 			error = priv_check(curthread, PRIV_VFS_CHOWN);
623 			if (error)
624 				goto out;
625 		}
626 		node->uid = vap->va_uid;
627 	}
628 
629 	if (vap->va_gid != (uid_t)VNOVAL) {
630 		if ((ap->a_cred->cr_uid != node->uid) &&
631 		    (!groupmember(node->gid, ap->a_cred))) {
632 			error = priv_check(curthread, PRIV_VFS_CHOWN);
633 			if (error)
634 				goto out;
635 		}
636 		node->gid = vap->va_gid;
637 	}
638 
639 	if (vap->va_mode != (mode_t)VNOVAL) {
640 		if (ap->a_cred->cr_uid != node->uid) {
641 			error = priv_check(curthread, PRIV_VFS_ADMIN);
642 			if (error)
643 				goto out;
644 		}
645 		node->mode = vap->va_mode;
646 	}
647 
648 out:
649 	node_sync_dev_set(node);
650 	nanotime(&node->ctime);
651 	lockmgr(&devfs_lock, LK_RELEASE);
652 
653 	return error;
654 }
655 
656 
657 static int
658 devfs_vop_readlink(struct vop_readlink_args *ap)
659 {
660 	struct devfs_node *node = DEVFS_NODE(ap->a_vp);
661 	int ret;
662 
663 	if (!devfs_node_is_accessible(node))
664 		return ENOENT;
665 
666 	lockmgr(&devfs_lock, LK_EXCLUSIVE);
667 	ret = uiomove(node->symlink_name, node->symlink_namelen, ap->a_uio);
668 	lockmgr(&devfs_lock, LK_RELEASE);
669 
670 	return ret;
671 }
672 
673 
674 static int
675 devfs_vop_print(struct vop_print_args *ap)
676 {
677 	return (0);
678 }
679 
680 static int
681 devfs_vop_nmkdir(struct vop_nmkdir_args *ap)
682 {
683 	struct devfs_node *dnode = DEVFS_NODE(ap->a_dvp);
684 	struct devfs_node *node;
685 
686 	if (!devfs_node_is_accessible(dnode))
687 		return ENOENT;
688 
689 	if ((dnode->node_type != Proot) && (dnode->node_type != Pdir))
690 		goto out;
691 
692 	lockmgr(&devfs_lock, LK_EXCLUSIVE);
693 	devfs_allocvp(ap->a_dvp->v_mount, ap->a_vpp, Pdir,
694 		      ap->a_nch->ncp->nc_name, dnode, NULL);
695 
696 	if (*ap->a_vpp) {
697 		node = DEVFS_NODE(*ap->a_vpp);
698 		node->flags |= DEVFS_USER_CREATED;
699 		cache_setunresolved(ap->a_nch);
700 		cache_setvp(ap->a_nch, *ap->a_vpp);
701 	}
702 	lockmgr(&devfs_lock, LK_RELEASE);
703 out:
704 	return ((*ap->a_vpp == NULL) ? ENOTDIR : 0);
705 }
706 
707 static int
708 devfs_vop_nsymlink(struct vop_nsymlink_args *ap)
709 {
710 	struct devfs_node *dnode = DEVFS_NODE(ap->a_dvp);
711 	struct devfs_node *node;
712 	size_t targetlen;
713 
714 	if (!devfs_node_is_accessible(dnode))
715 		return ENOENT;
716 
717 	ap->a_vap->va_type = VLNK;
718 
719 	if ((dnode->node_type != Proot) && (dnode->node_type != Pdir))
720 		goto out;
721 
722 	lockmgr(&devfs_lock, LK_EXCLUSIVE);
723 	devfs_allocvp(ap->a_dvp->v_mount, ap->a_vpp, Plink,
724 		      ap->a_nch->ncp->nc_name, dnode, NULL);
725 
726 	targetlen = strlen(ap->a_target);
727 	if (*ap->a_vpp) {
728 		node = DEVFS_NODE(*ap->a_vpp);
729 		node->flags |= DEVFS_USER_CREATED;
730 		node->symlink_namelen = targetlen;
731 		node->symlink_name = kmalloc(targetlen + 1, M_DEVFS, M_WAITOK);
732 		memcpy(node->symlink_name, ap->a_target, targetlen);
733 		node->symlink_name[targetlen] = '\0';
734 		cache_setunresolved(ap->a_nch);
735 		cache_setvp(ap->a_nch, *ap->a_vpp);
736 	}
737 	lockmgr(&devfs_lock, LK_RELEASE);
738 out:
739 	return ((*ap->a_vpp == NULL) ? ENOTDIR : 0);
740 }
741 
742 static int
743 devfs_vop_nrmdir(struct vop_nrmdir_args *ap)
744 {
745 	struct devfs_node *dnode = DEVFS_NODE(ap->a_dvp);
746 	struct devfs_node *node;
747 	struct namecache *ncp;
748 	int error = ENOENT;
749 
750 	ncp = ap->a_nch->ncp;
751 
752 	if (!devfs_node_is_accessible(dnode))
753 		return ENOENT;
754 
755 	lockmgr(&devfs_lock, LK_EXCLUSIVE);
756 
757 	if ((dnode->node_type != Proot) && (dnode->node_type != Pdir))
758 		goto out;
759 
760 	TAILQ_FOREACH(node, DEVFS_DENODE_HEAD(dnode), link) {
761 		if (ncp->nc_nlen != node->d_dir.d_namlen)
762 			continue;
763 		if (memcmp(ncp->nc_name, node->d_dir.d_name, ncp->nc_nlen))
764 			continue;
765 
766 		/*
767 		 * only allow removal of user created dirs
768 		 */
769 		if ((node->flags & DEVFS_USER_CREATED) == 0) {
770 			error = EPERM;
771 			goto out;
772 		} else if (node->node_type != Pdir) {
773 			error = ENOTDIR;
774 			goto out;
775 		} else if (node->nchildren > 2) {
776 			error = ENOTEMPTY;
777 			goto out;
778 		} else {
779 			if (node->v_node)
780 				cache_inval_vp(node->v_node, CINV_DESTROY);
781 			devfs_unlinkp(node);
782 			error = 0;
783 			break;
784 		}
785 	}
786 
787 	cache_setunresolved(ap->a_nch);
788 	cache_setvp(ap->a_nch, NULL);
789 
790 out:
791 	lockmgr(&devfs_lock, LK_RELEASE);
792 	return error;
793 }
794 
795 static int
796 devfs_vop_nremove(struct vop_nremove_args *ap)
797 {
798 	struct devfs_node *dnode = DEVFS_NODE(ap->a_dvp);
799 	struct devfs_node *node;
800 	struct namecache *ncp;
801 	int error = ENOENT;
802 
803 	ncp = ap->a_nch->ncp;
804 
805 	if (!devfs_node_is_accessible(dnode))
806 		return ENOENT;
807 
808 	lockmgr(&devfs_lock, LK_EXCLUSIVE);
809 
810 	if ((dnode->node_type != Proot) && (dnode->node_type != Pdir))
811 		goto out;
812 
813 	TAILQ_FOREACH(node, DEVFS_DENODE_HEAD(dnode), link) {
814 		if (ncp->nc_nlen != node->d_dir.d_namlen)
815 			continue;
816 		if (memcmp(ncp->nc_name, node->d_dir.d_name, ncp->nc_nlen))
817 			continue;
818 
819 		/*
820 		 * only allow removal of user created stuff (e.g. symlinks)
821 		 */
822 		if ((node->flags & DEVFS_USER_CREATED) == 0) {
823 			error = EPERM;
824 			goto out;
825 		} else if (node->node_type == Pdir) {
826 			error = EISDIR;
827 			goto out;
828 		} else {
829 			if (node->v_node)
830 				cache_inval_vp(node->v_node, CINV_DESTROY);
831 			devfs_unlinkp(node);
832 			error = 0;
833 			break;
834 		}
835 	}
836 
837 	cache_setunresolved(ap->a_nch);
838 	cache_setvp(ap->a_nch, NULL);
839 
840 out:
841 	lockmgr(&devfs_lock, LK_RELEASE);
842 	return error;
843 }
844 
845 
846 static int
847 devfs_spec_open(struct vop_open_args *ap)
848 {
849 	struct vnode *vp = ap->a_vp;
850 	struct vnode *orig_vp = NULL;
851 	struct devfs_node *node = DEVFS_NODE(vp);
852 	struct devfs_node *newnode;
853 	cdev_t dev, ndev = NULL;
854 	int error = 0;
855 
856 	if (node) {
857 		if (node->d_dev == NULL)
858 			return ENXIO;
859 		if (!devfs_node_is_accessible(node))
860 			return ENOENT;
861 	}
862 
863 	if ((dev = vp->v_rdev) == NULL)
864 		return ENXIO;
865 
866 	if (node && ap->a_fp) {
867 		devfs_debug(DEVFS_DEBUG_DEBUG, "devfs_spec_open: -1.1-\n");
868 		lockmgr(&devfs_lock, LK_EXCLUSIVE);
869 
870 		ndev = devfs_clone(dev, node->d_dir.d_name, node->d_dir.d_namlen,
871 						ap->a_mode, ap->a_cred);
872 		if (ndev != NULL) {
873 			newnode = devfs_create_device_node(
874 					DEVFS_MNTDATA(vp->v_mount)->root_node,
875 					ndev, NULL, NULL);
876 			/* XXX: possibly destroy device if this happens */
877 
878 			if (newnode != NULL) {
879 				dev = ndev;
880 				devfs_link_dev(dev);
881 
882 				devfs_debug(DEVFS_DEBUG_DEBUG,
883 						"parent here is: %s, node is: |%s|\n",
884 						((node->parent->node_type == Proot) ?
885 						"ROOT!" : node->parent->d_dir.d_name),
886 						newnode->d_dir.d_name);
887 				devfs_debug(DEVFS_DEBUG_DEBUG,
888 						"test: %s\n",
889 						((struct devfs_node *)(TAILQ_LAST(DEVFS_DENODE_HEAD(node->parent), devfs_node_head)))->d_dir.d_name);
890 
891 				/*
892 				 * orig_vp is set to the original vp if we cloned.
893 				 */
894 				/* node->flags |= DEVFS_CLONED; */
895 				devfs_allocv(&vp, newnode);
896 				orig_vp = ap->a_vp;
897 				ap->a_vp = vp;
898 			}
899 		}
900 		lockmgr(&devfs_lock, LK_RELEASE);
901 	}
902 
903 	devfs_debug(DEVFS_DEBUG_DEBUG,
904 		    "devfs_spec_open() called on %s! \n",
905 		    dev->si_name);
906 
907 	/*
908 	 * Make this field valid before any I/O in ->d_open
909 	 */
910 	if (!dev->si_iosize_max)
911 		dev->si_iosize_max = DFLTPHYS;
912 
913 	if (dev_dflags(dev) & D_TTY)
914 		vsetflags(vp, VISTTY);
915 
916 	/*
917 	 * Open underlying device
918 	 */
919 	vn_unlock(vp);
920 	error = dev_dopen(dev, ap->a_mode, S_IFCHR, ap->a_cred);
921 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
922 
923 	/*
924 	 * Clean up any cloned vp if we error out.
925 	 */
926 	if (error) {
927 		if (orig_vp) {
928 			vput(vp);
929 			ap->a_vp = orig_vp;
930 			/* orig_vp = NULL; */
931 		}
932 		return error;
933 	}
934 
935 	/*
936 	 * This checks if the disk device is going to be opened for writing.
937 	 * It will be only allowed in the cases where securelevel permits it
938 	 * and it's not mounted R/W.
939 	 */
940 	if ((dev_dflags(dev) & D_DISK) && (ap->a_mode & FWRITE) &&
941 	    (ap->a_cred != FSCRED)) {
942 
943 		/* Very secure mode. No open for writing allowed */
944 		if (securelevel >= 2)
945 			return EPERM;
946 
947 		/*
948 		 * If it is mounted R/W, do not allow to open for writing.
949 		 * In the case it's mounted read-only but securelevel
950 		 * is >= 1, then do not allow opening for writing either.
951 		 */
952 		if (vfs_mountedon(vp)) {
953 			if (!(dev->si_mountpoint->mnt_flag & MNT_RDONLY))
954 				return EBUSY;
955 			else if (securelevel >= 1)
956 				return EPERM;
957 		}
958 	}
959 
960 	if (dev_dflags(dev) & D_TTY) {
961 		if (dev->si_tty) {
962 			struct tty *tp;
963 			tp = dev->si_tty;
964 			if (!tp->t_stop) {
965 				devfs_debug(DEVFS_DEBUG_DEBUG,
966 					    "devfs: no t_stop\n");
967 				tp->t_stop = nottystop;
968 			}
969 		}
970 	}
971 
972 
973 	if (vn_isdisk(vp, NULL)) {
974 		if (!dev->si_bsize_phys)
975 			dev->si_bsize_phys = DEV_BSIZE;
976 		vinitvmio(vp, IDX_TO_OFF(INT_MAX), PAGE_SIZE, -1);
977 	}
978 
979 	vop_stdopen(ap);
980 #if 0
981 	if (node)
982 		nanotime(&node->atime);
983 #endif
984 
985 	/*
986 	 * If we replaced the vp the vop_stdopen() call will have loaded
987 	 * it into fp->f_data and vref()d the vp, giving us two refs.  So
988 	 * instead of just unlocking it here we have to vput() it.
989 	 */
990 	if (orig_vp)
991 		vput(vp);
992 
993 	/* Ugly pty magic, to make pty devices appear once they are opened */
994 	if (node && (node->flags & DEVFS_PTY) == DEVFS_PTY)
995 		node->flags &= ~DEVFS_INVISIBLE;
996 
997 	if (ap->a_fp) {
998 		KKASSERT(ap->a_fp->f_type == DTYPE_VNODE);
999 		KKASSERT(ap->a_fp->f_flag == (ap->a_mode & FMASK));
1000 		ap->a_fp->f_ops = &devfs_dev_fileops;
1001 		KKASSERT(ap->a_fp->f_data == (void *)vp);
1002 	}
1003 
1004 	return 0;
1005 }
1006 
1007 
1008 static int
1009 devfs_spec_close(struct vop_close_args *ap)
1010 {
1011 	struct devfs_node *node;
1012 	struct proc *p = curproc;
1013 	struct vnode *vp = ap->a_vp;
1014 	cdev_t dev = vp->v_rdev;
1015 	int error = 0;
1016 	int needrelock;
1017 
1018 	if (dev)
1019 		devfs_debug(DEVFS_DEBUG_DEBUG,
1020 			    "devfs_spec_close() called on %s! \n",
1021 			    dev->si_name);
1022 	else
1023 		devfs_debug(DEVFS_DEBUG_DEBUG,
1024 			    "devfs_spec_close() called, null vode!\n");
1025 
1026 	/*
1027 	 * A couple of hacks for devices and tty devices.  The
1028 	 * vnode ref count cannot be used to figure out the
1029 	 * last close, but we can use v_opencount now that
1030 	 * revoke works properly.
1031 	 *
1032 	 * Detect the last close on a controlling terminal and clear
1033 	 * the session (half-close).
1034 	 */
1035 	if (dev)
1036 		reference_dev(dev);
1037 
1038 	if (p && vp->v_opencount <= 1 && vp == p->p_session->s_ttyvp) {
1039 		p->p_session->s_ttyvp = NULL;
1040 		vrele(vp);
1041 	}
1042 
1043 	/*
1044 	 * Vnodes can be opened and closed multiple times.  Do not really
1045 	 * close the device unless (1) it is being closed forcibly,
1046 	 * (2) the device wants to track closes, or (3) this is the last
1047 	 * vnode doing its last close on the device.
1048 	 *
1049 	 * XXX the VXLOCK (force close) case can leave vnodes referencing
1050 	 * a closed device.  This might not occur now that our revoke is
1051 	 * fixed.
1052 	 */
1053 	devfs_debug(DEVFS_DEBUG_DEBUG, "devfs_spec_close() -1- \n");
1054 	if (dev && ((vp->v_flag & VRECLAIMED) ||
1055 	    (dev_dflags(dev) & D_TRACKCLOSE) ||
1056 	    (vp->v_opencount == 1))) {
1057 		/*
1058 		 * Ugly pty magic, to make pty devices disappear again once
1059 		 * they are closed.
1060 		 */
1061 		node = DEVFS_NODE(ap->a_vp);
1062 		if (node && (node->flags & DEVFS_PTY))
1063 			node->flags |= DEVFS_INVISIBLE;
1064 
1065 		/*
1066 		 * Unlock around dev_dclose()
1067 		 */
1068 		needrelock = 0;
1069 		if (vn_islocked(vp)) {
1070 			needrelock = 1;
1071 			vn_unlock(vp);
1072 		}
1073 
1074 		/*
1075 		 * WARNING!  If the device destroys itself the devfs node
1076 		 *	     can disappear here.
1077 		 */
1078 		error = dev_dclose(dev, ap->a_fflag, S_IFCHR);
1079 		/* node is now stale */
1080 
1081 		if (needrelock)
1082 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1083 	} else {
1084 		error = 0;
1085 	}
1086 	devfs_debug(DEVFS_DEBUG_DEBUG, "devfs_spec_close() -2- \n");
1087 
1088 	/*
1089 	 * Track the actual opens and closes on the vnode.  The last close
1090 	 * disassociates the rdev.  If the rdev is already disassociated or
1091 	 * the opencount is already 0, the vnode might have been revoked
1092 	 * and no further opencount tracking occurs.
1093 	 */
1094 	if (dev)
1095 		release_dev(dev);
1096 	if (vp->v_opencount > 0)
1097 		vop_stdclose(ap);
1098 	return(error);
1099 
1100 }
1101 
1102 
1103 static int
1104 devfs_fo_close(struct file *fp)
1105 {
1106 	struct vnode *vp = (struct vnode *)fp->f_data;
1107 	int error;
1108 
1109 	fp->f_ops = &badfileops;
1110 	error = vn_close(vp, fp->f_flag);
1111 
1112 	return (error);
1113 }
1114 
1115 
1116 /*
1117  * Device-optimized file table vnode read routine.
1118  *
1119  * This bypasses the VOP table and talks directly to the device.  Most
1120  * filesystems just route to specfs and can make this optimization.
1121  *
1122  * MPALMOSTSAFE - acquires mplock
1123  */
1124 static int
1125 devfs_fo_read(struct file *fp, struct uio *uio,
1126 		 struct ucred *cred, int flags)
1127 {
1128 	struct devfs_node *node;
1129 	struct vnode *vp;
1130 	int ioflag;
1131 	int error;
1132 	cdev_t dev;
1133 
1134 	KASSERT(uio->uio_td == curthread,
1135 		("uio_td %p is not td %p", uio->uio_td, curthread));
1136 
1137 	if (uio->uio_resid == 0)
1138 		return 0;
1139 
1140 	vp = (struct vnode *)fp->f_data;
1141 	if (vp == NULL || vp->v_type == VBAD)
1142 		return EBADF;
1143 
1144 	node = DEVFS_NODE(vp);
1145 
1146 	if ((dev = vp->v_rdev) == NULL)
1147 		return EBADF;
1148 
1149 	reference_dev(dev);
1150 
1151 	if ((flags & O_FOFFSET) == 0)
1152 		uio->uio_offset = fp->f_offset;
1153 
1154 	ioflag = 0;
1155 	if (flags & O_FBLOCKING) {
1156 		/* ioflag &= ~IO_NDELAY; */
1157 	} else if (flags & O_FNONBLOCKING) {
1158 		ioflag |= IO_NDELAY;
1159 	} else if (fp->f_flag & FNONBLOCK) {
1160 		ioflag |= IO_NDELAY;
1161 	}
1162 	if (flags & O_FBUFFERED) {
1163 		/* ioflag &= ~IO_DIRECT; */
1164 	} else if (flags & O_FUNBUFFERED) {
1165 		ioflag |= IO_DIRECT;
1166 	} else if (fp->f_flag & O_DIRECT) {
1167 		ioflag |= IO_DIRECT;
1168 	}
1169 	ioflag |= sequential_heuristic(uio, fp);
1170 
1171 	error = dev_dread(dev, uio, ioflag);
1172 
1173 	release_dev(dev);
1174 	if (node)
1175 		nanotime(&node->atime);
1176 	if ((flags & O_FOFFSET) == 0)
1177 		fp->f_offset = uio->uio_offset;
1178 	fp->f_nextoff = uio->uio_offset;
1179 
1180 	return (error);
1181 }
1182 
1183 
1184 static int
1185 devfs_fo_write(struct file *fp, struct uio *uio,
1186 		  struct ucred *cred, int flags)
1187 {
1188 	struct devfs_node *node;
1189 	struct vnode *vp;
1190 	int ioflag;
1191 	int error;
1192 	cdev_t dev;
1193 
1194 	KASSERT(uio->uio_td == curthread,
1195 		("uio_td %p is not p %p", uio->uio_td, curthread));
1196 
1197 	vp = (struct vnode *)fp->f_data;
1198 	if (vp == NULL || vp->v_type == VBAD)
1199 		return EBADF;
1200 
1201 	node = DEVFS_NODE(vp);
1202 
1203 	if (vp->v_type == VREG)
1204 		bwillwrite(uio->uio_resid);
1205 
1206 	vp = (struct vnode *)fp->f_data;
1207 
1208 	if ((dev = vp->v_rdev) == NULL)
1209 		return EBADF;
1210 
1211 	reference_dev(dev);
1212 
1213 	if ((flags & O_FOFFSET) == 0)
1214 		uio->uio_offset = fp->f_offset;
1215 
1216 	ioflag = IO_UNIT;
1217 	if (vp->v_type == VREG &&
1218 	   ((fp->f_flag & O_APPEND) || (flags & O_FAPPEND))) {
1219 		ioflag |= IO_APPEND;
1220 	}
1221 
1222 	if (flags & O_FBLOCKING) {
1223 		/* ioflag &= ~IO_NDELAY; */
1224 	} else if (flags & O_FNONBLOCKING) {
1225 		ioflag |= IO_NDELAY;
1226 	} else if (fp->f_flag & FNONBLOCK) {
1227 		ioflag |= IO_NDELAY;
1228 	}
1229 	if (flags & O_FBUFFERED) {
1230 		/* ioflag &= ~IO_DIRECT; */
1231 	} else if (flags & O_FUNBUFFERED) {
1232 		ioflag |= IO_DIRECT;
1233 	} else if (fp->f_flag & O_DIRECT) {
1234 		ioflag |= IO_DIRECT;
1235 	}
1236 	if (flags & O_FASYNCWRITE) {
1237 		/* ioflag &= ~IO_SYNC; */
1238 	} else if (flags & O_FSYNCWRITE) {
1239 		ioflag |= IO_SYNC;
1240 	} else if (fp->f_flag & O_FSYNC) {
1241 		ioflag |= IO_SYNC;
1242 	}
1243 
1244 	if (vp->v_mount && (vp->v_mount->mnt_flag & MNT_SYNCHRONOUS))
1245 		ioflag |= IO_SYNC;
1246 	ioflag |= sequential_heuristic(uio, fp);
1247 
1248 	error = dev_dwrite(dev, uio, ioflag);
1249 
1250 	release_dev(dev);
1251 	if (node) {
1252 		nanotime(&node->atime);
1253 		nanotime(&node->mtime);
1254 	}
1255 
1256 	if ((flags & O_FOFFSET) == 0)
1257 		fp->f_offset = uio->uio_offset;
1258 	fp->f_nextoff = uio->uio_offset;
1259 
1260 	return (error);
1261 }
1262 
1263 
1264 static int
1265 devfs_fo_stat(struct file *fp, struct stat *sb, struct ucred *cred)
1266 {
1267 	struct vnode *vp;
1268 	struct vattr vattr;
1269 	struct vattr *vap;
1270 	u_short mode;
1271 	cdev_t dev;
1272 	int error;
1273 
1274 	vp = (struct vnode *)fp->f_data;
1275 	if (vp == NULL || vp->v_type == VBAD)
1276 		return EBADF;
1277 
1278 	error = vn_stat(vp, sb, cred);
1279 	if (error)
1280 		return (error);
1281 
1282 	vap = &vattr;
1283 	error = VOP_GETATTR(vp, vap);
1284 	if (error)
1285 		return (error);
1286 
1287 	/*
1288 	 * Zero the spare stat fields
1289 	 */
1290 	sb->st_lspare = 0;
1291 	sb->st_qspare1 = 0;
1292 	sb->st_qspare2 = 0;
1293 
1294 	/*
1295 	 * Copy from vattr table ... or not in case it's a cloned device
1296 	 */
1297 	if (vap->va_fsid != VNOVAL)
1298 		sb->st_dev = vap->va_fsid;
1299 	else
1300 		sb->st_dev = vp->v_mount->mnt_stat.f_fsid.val[0];
1301 
1302 	sb->st_ino = vap->va_fileid;
1303 
1304 	mode = vap->va_mode;
1305 	mode |= S_IFCHR;
1306 	sb->st_mode = mode;
1307 
1308 	if (vap->va_nlink > (nlink_t)-1)
1309 		sb->st_nlink = (nlink_t)-1;
1310 	else
1311 		sb->st_nlink = vap->va_nlink;
1312 
1313 	sb->st_uid = vap->va_uid;
1314 	sb->st_gid = vap->va_gid;
1315 	sb->st_rdev = dev2udev(DEVFS_NODE(vp)->d_dev);
1316 	sb->st_size = vap->va_bytes;
1317 	sb->st_atimespec = vap->va_atime;
1318 	sb->st_mtimespec = vap->va_mtime;
1319 	sb->st_ctimespec = vap->va_ctime;
1320 
1321 	/*
1322 	 * A VCHR and VBLK device may track the last access and last modified
1323 	 * time independantly of the filesystem.  This is particularly true
1324 	 * because device read and write calls may bypass the filesystem.
1325 	 */
1326 	if (vp->v_type == VCHR || vp->v_type == VBLK) {
1327 		dev = vp->v_rdev;
1328 		if (dev != NULL) {
1329 			if (dev->si_lastread) {
1330 				sb->st_atimespec.tv_sec = dev->si_lastread;
1331 				sb->st_atimespec.tv_nsec = 0;
1332 			}
1333 			if (dev->si_lastwrite) {
1334 				sb->st_atimespec.tv_sec = dev->si_lastwrite;
1335 				sb->st_atimespec.tv_nsec = 0;
1336 			}
1337 		}
1338 	}
1339 
1340         /*
1341 	 * According to www.opengroup.org, the meaning of st_blksize is
1342 	 *   "a filesystem-specific preferred I/O block size for this
1343 	 *    object.  In some filesystem types, this may vary from file
1344 	 *    to file"
1345 	 * Default to PAGE_SIZE after much discussion.
1346 	 */
1347 
1348 	sb->st_blksize = PAGE_SIZE;
1349 
1350 	sb->st_flags = vap->va_flags;
1351 
1352 	error = priv_check_cred(cred, PRIV_VFS_GENERATION, 0);
1353 	if (error)
1354 		sb->st_gen = 0;
1355 	else
1356 		sb->st_gen = (u_int32_t)vap->va_gen;
1357 
1358 	sb->st_blocks = vap->va_bytes / S_BLKSIZE;
1359 
1360 	return (0);
1361 }
1362 
1363 
1364 static int
1365 devfs_fo_kqfilter(struct file *fp, struct knote *kn)
1366 {
1367 	struct vnode *vp;
1368 	int error;
1369 	cdev_t dev;
1370 
1371 	vp = (struct vnode *)fp->f_data;
1372 	if (vp == NULL || vp->v_type == VBAD) {
1373 		error = EBADF;
1374 		goto done;
1375 	}
1376 	if ((dev = vp->v_rdev) == NULL) {
1377 		error = EBADF;
1378 		goto done;
1379 	}
1380 	reference_dev(dev);
1381 
1382 	error = dev_dkqfilter(dev, kn);
1383 
1384 	release_dev(dev);
1385 
1386 done:
1387 	return (error);
1388 }
1389 
1390 /*
1391  * MPALMOSTSAFE - acquires mplock
1392  */
1393 static int
1394 devfs_fo_ioctl(struct file *fp, u_long com, caddr_t data,
1395 		  struct ucred *ucred, struct sysmsg *msg)
1396 {
1397 	struct devfs_node *node;
1398 	struct vnode *vp;
1399 	struct vnode *ovp;
1400 	cdev_t	dev;
1401 	int error;
1402 	struct fiodname_args *name_args;
1403 	size_t namlen;
1404 	const char *name;
1405 
1406 	vp = ((struct vnode *)fp->f_data);
1407 
1408 	if ((dev = vp->v_rdev) == NULL)
1409 		return EBADF;		/* device was revoked */
1410 
1411 	reference_dev(dev);
1412 
1413 	node = DEVFS_NODE(vp);
1414 
1415 	devfs_debug(DEVFS_DEBUG_DEBUG,
1416 		    "devfs_fo_ioctl() called! for dev %s\n",
1417 		    dev->si_name);
1418 
1419 	if (com == FIODTYPE) {
1420 		*(int *)data = dev_dflags(dev) & D_TYPEMASK;
1421 		error = 0;
1422 		goto out;
1423 	} else if (com == FIODNAME) {
1424 		name_args = (struct fiodname_args *)data;
1425 		name = dev->si_name;
1426 		namlen = strlen(name) + 1;
1427 
1428 		devfs_debug(DEVFS_DEBUG_DEBUG,
1429 			    "ioctl, got: FIODNAME for %s\n", name);
1430 
1431 		if (namlen <= name_args->len)
1432 			error = copyout(dev->si_name, name_args->name, namlen);
1433 		else
1434 			error = EINVAL;
1435 
1436 		devfs_debug(DEVFS_DEBUG_DEBUG,
1437 			    "ioctl stuff: error: %d\n", error);
1438 		goto out;
1439 	}
1440 
1441 	error = dev_dioctl(dev, com, data, fp->f_flag, ucred, msg);
1442 
1443 #if 0
1444 	if (node) {
1445 		nanotime(&node->atime);
1446 		nanotime(&node->mtime);
1447 	}
1448 #endif
1449 	if (com == TIOCSCTTY) {
1450 		devfs_debug(DEVFS_DEBUG_DEBUG,
1451 			    "devfs_fo_ioctl: got TIOCSCTTY on %s\n",
1452 			    dev->si_name);
1453 	}
1454 	if (error == 0 && com == TIOCSCTTY) {
1455 		struct proc *p = curthread->td_proc;
1456 		struct session *sess;
1457 
1458 		devfs_debug(DEVFS_DEBUG_DEBUG,
1459 			    "devfs_fo_ioctl: dealing with TIOCSCTTY on %s\n",
1460 			    dev->si_name);
1461 		if (p == NULL) {
1462 			error = ENOTTY;
1463 			goto out;
1464 		}
1465 		sess = p->p_session;
1466 
1467 		/*
1468 		 * Do nothing if reassigning same control tty
1469 		 */
1470 		if (sess->s_ttyvp == vp) {
1471 			error = 0;
1472 			goto out;
1473 		}
1474 
1475 		/*
1476 		 * Get rid of reference to old control tty
1477 		 */
1478 		ovp = sess->s_ttyvp;
1479 		vref(vp);
1480 		sess->s_ttyvp = vp;
1481 		if (ovp)
1482 			vrele(ovp);
1483 	}
1484 
1485 out:
1486 	release_dev(dev);
1487 	devfs_debug(DEVFS_DEBUG_DEBUG, "devfs_fo_ioctl() finished! \n");
1488 	return (error);
1489 }
1490 
1491 
1492 static int
1493 devfs_spec_fsync(struct vop_fsync_args *ap)
1494 {
1495 	struct vnode *vp = ap->a_vp;
1496 	int error;
1497 
1498 	if (!vn_isdisk(vp, NULL))
1499 		return (0);
1500 
1501 	/*
1502 	 * Flush all dirty buffers associated with a block device.
1503 	 */
1504 	error = vfsync(vp, ap->a_waitfor, 10000, NULL, NULL);
1505 	return (error);
1506 }
1507 
1508 static int
1509 devfs_spec_read(struct vop_read_args *ap)
1510 {
1511 	struct devfs_node *node;
1512 	struct vnode *vp;
1513 	struct uio *uio;
1514 	cdev_t dev;
1515 	int error;
1516 
1517 	vp = ap->a_vp;
1518 	dev = vp->v_rdev;
1519 	uio = ap->a_uio;
1520 	node = DEVFS_NODE(vp);
1521 
1522 	if (dev == NULL)		/* device was revoked */
1523 		return (EBADF);
1524 	if (uio->uio_resid == 0)
1525 		return (0);
1526 
1527 	vn_unlock(vp);
1528 	error = dev_dread(dev, uio, ap->a_ioflag);
1529 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1530 
1531 	if (node)
1532 		nanotime(&node->atime);
1533 
1534 	return (error);
1535 }
1536 
1537 /*
1538  * Vnode op for write
1539  *
1540  * spec_write(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
1541  *	      struct ucred *a_cred)
1542  */
1543 static int
1544 devfs_spec_write(struct vop_write_args *ap)
1545 {
1546 	struct devfs_node *node;
1547 	struct vnode *vp;
1548 	struct uio *uio;
1549 	cdev_t dev;
1550 	int error;
1551 
1552 	vp = ap->a_vp;
1553 	dev = vp->v_rdev;
1554 	uio = ap->a_uio;
1555 	node = DEVFS_NODE(vp);
1556 
1557 	KKASSERT(uio->uio_segflg != UIO_NOCOPY);
1558 
1559 	if (dev == NULL)		/* device was revoked */
1560 		return (EBADF);
1561 
1562 	vn_unlock(vp);
1563 	error = dev_dwrite(dev, uio, ap->a_ioflag);
1564 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1565 
1566 	if (node) {
1567 		nanotime(&node->atime);
1568 		nanotime(&node->mtime);
1569 	}
1570 
1571 	return (error);
1572 }
1573 
1574 /*
1575  * Device ioctl operation.
1576  *
1577  * spec_ioctl(struct vnode *a_vp, int a_command, caddr_t a_data,
1578  *	      int a_fflag, struct ucred *a_cred, struct sysmsg *msg)
1579  */
1580 static int
1581 devfs_spec_ioctl(struct vop_ioctl_args *ap)
1582 {
1583 	struct vnode *vp = ap->a_vp;
1584 	struct devfs_node *node;
1585 	cdev_t dev;
1586 
1587 	if ((dev = vp->v_rdev) == NULL)
1588 		return (EBADF);		/* device was revoked */
1589 	node = DEVFS_NODE(vp);
1590 
1591 #if 0
1592 	if (node) {
1593 		nanotime(&node->atime);
1594 		nanotime(&node->mtime);
1595 	}
1596 #endif
1597 
1598 	return (dev_dioctl(dev, ap->a_command, ap->a_data, ap->a_fflag,
1599 			   ap->a_cred, ap->a_sysmsg));
1600 }
1601 
1602 /*
1603  * spec_kqfilter(struct vnode *a_vp, struct knote *a_kn)
1604  */
1605 /* ARGSUSED */
1606 static int
1607 devfs_spec_kqfilter(struct vop_kqfilter_args *ap)
1608 {
1609 	struct vnode *vp = ap->a_vp;
1610 	struct devfs_node *node;
1611 	cdev_t dev;
1612 
1613 	if ((dev = vp->v_rdev) == NULL)
1614 		return (EBADF);		/* device was revoked (EBADF) */
1615 	node = DEVFS_NODE(vp);
1616 
1617 #if 0
1618 	if (node)
1619 		nanotime(&node->atime);
1620 #endif
1621 
1622 	return (dev_dkqfilter(dev, ap->a_kn));
1623 }
1624 
1625 /*
1626  * Convert a vnode strategy call into a device strategy call.  Vnode strategy
1627  * calls are not limited to device DMA limits so we have to deal with the
1628  * case.
1629  *
1630  * spec_strategy(struct vnode *a_vp, struct bio *a_bio)
1631  */
1632 static int
1633 devfs_spec_strategy(struct vop_strategy_args *ap)
1634 {
1635 	struct bio *bio = ap->a_bio;
1636 	struct buf *bp = bio->bio_buf;
1637 	struct buf *nbp;
1638 	struct vnode *vp;
1639 	struct mount *mp;
1640 	int chunksize;
1641 	int maxiosize;
1642 
1643 	if (bp->b_cmd != BUF_CMD_READ && LIST_FIRST(&bp->b_dep) != NULL)
1644 		buf_start(bp);
1645 
1646 	/*
1647 	 * Collect statistics on synchronous and asynchronous read
1648 	 * and write counts for disks that have associated filesystems.
1649 	 */
1650 	vp = ap->a_vp;
1651 	KKASSERT(vp->v_rdev != NULL);	/* XXX */
1652 	if (vn_isdisk(vp, NULL) && (mp = vp->v_rdev->si_mountpoint) != NULL) {
1653 		if (bp->b_cmd == BUF_CMD_READ) {
1654 			if (bp->b_flags & BIO_SYNC)
1655 				mp->mnt_stat.f_syncreads++;
1656 			else
1657 				mp->mnt_stat.f_asyncreads++;
1658 		} else {
1659 			if (bp->b_flags & BIO_SYNC)
1660 				mp->mnt_stat.f_syncwrites++;
1661 			else
1662 				mp->mnt_stat.f_asyncwrites++;
1663 		}
1664 	}
1665 
1666         /*
1667          * Device iosize limitations only apply to read and write.  Shortcut
1668          * the I/O if it fits.
1669          */
1670 	if ((maxiosize = vp->v_rdev->si_iosize_max) == 0) {
1671 		devfs_debug(DEVFS_DEBUG_DEBUG,
1672 			    "%s: si_iosize_max not set!\n",
1673 			    dev_dname(vp->v_rdev));
1674 		maxiosize = MAXPHYS;
1675 	}
1676 #if SPEC_CHAIN_DEBUG & 2
1677 	maxiosize = 4096;
1678 #endif
1679         if (bp->b_bcount <= maxiosize ||
1680             (bp->b_cmd != BUF_CMD_READ && bp->b_cmd != BUF_CMD_WRITE)) {
1681                 dev_dstrategy_chain(vp->v_rdev, bio);
1682                 return (0);
1683         }
1684 
1685 	/*
1686 	 * Clone the buffer and set up an I/O chain to chunk up the I/O.
1687 	 */
1688 	nbp = kmalloc(sizeof(*bp), M_DEVBUF, M_INTWAIT|M_ZERO);
1689 	initbufbio(nbp);
1690 	buf_dep_init(nbp);
1691 	BUF_LOCKINIT(nbp);
1692 	BUF_LOCK(nbp, LK_EXCLUSIVE);
1693 	BUF_KERNPROC(nbp);
1694 	nbp->b_vp = vp;
1695 	nbp->b_flags = B_PAGING | (bp->b_flags & B_BNOCLIP);
1696 	nbp->b_data = bp->b_data;
1697 	nbp->b_bio1.bio_done = devfs_spec_strategy_done;
1698 	nbp->b_bio1.bio_offset = bio->bio_offset;
1699 	nbp->b_bio1.bio_caller_info1.ptr = bio;
1700 
1701 	/*
1702 	 * Start the first transfer
1703 	 */
1704 	if (vn_isdisk(vp, NULL))
1705 		chunksize = vp->v_rdev->si_bsize_phys;
1706 	else
1707 		chunksize = DEV_BSIZE;
1708 	chunksize = maxiosize / chunksize * chunksize;
1709 #if SPEC_CHAIN_DEBUG & 1
1710 	devfs_debug(DEVFS_DEBUG_DEBUG,
1711 		    "spec_strategy chained I/O chunksize=%d\n",
1712 		    chunksize);
1713 #endif
1714 	nbp->b_cmd = bp->b_cmd;
1715 	nbp->b_bcount = chunksize;
1716 	nbp->b_bufsize = chunksize;	/* used to detect a short I/O */
1717 	nbp->b_bio1.bio_caller_info2.index = chunksize;
1718 
1719 #if SPEC_CHAIN_DEBUG & 1
1720 	devfs_debug(DEVFS_DEBUG_DEBUG,
1721 		    "spec_strategy: chain %p offset %d/%d bcount %d\n",
1722 		    bp, 0, bp->b_bcount, nbp->b_bcount);
1723 #endif
1724 
1725 	dev_dstrategy(vp->v_rdev, &nbp->b_bio1);
1726 
1727 	if (DEVFS_NODE(vp)) {
1728 		nanotime(&DEVFS_NODE(vp)->atime);
1729 		nanotime(&DEVFS_NODE(vp)->mtime);
1730 	}
1731 
1732 	return (0);
1733 }
1734 
1735 /*
1736  * Chunked up transfer completion routine - chain transfers until done
1737  *
1738  * NOTE: MPSAFE callback.
1739  */
1740 static
1741 void
1742 devfs_spec_strategy_done(struct bio *nbio)
1743 {
1744 	struct buf *nbp = nbio->bio_buf;
1745 	struct bio *bio = nbio->bio_caller_info1.ptr;	/* original bio */
1746 	struct buf *bp = bio->bio_buf;			/* original bp */
1747 	int chunksize = nbio->bio_caller_info2.index;	/* chunking */
1748 	int boffset = nbp->b_data - bp->b_data;
1749 
1750 	if (nbp->b_flags & B_ERROR) {
1751 		/*
1752 		 * An error terminates the chain, propogate the error back
1753 		 * to the original bp
1754 		 */
1755 		bp->b_flags |= B_ERROR;
1756 		bp->b_error = nbp->b_error;
1757 		bp->b_resid = bp->b_bcount - boffset +
1758 			      (nbp->b_bcount - nbp->b_resid);
1759 #if SPEC_CHAIN_DEBUG & 1
1760 		devfs_debug(DEVFS_DEBUG_DEBUG,
1761 			    "spec_strategy: chain %p error %d bcount %d/%d\n",
1762 			    bp, bp->b_error, bp->b_bcount,
1763 			    bp->b_bcount - bp->b_resid);
1764 #endif
1765 		kfree(nbp, M_DEVBUF);
1766 		biodone(bio);
1767 	} else if (nbp->b_resid) {
1768 		/*
1769 		 * A short read or write terminates the chain
1770 		 */
1771 		bp->b_error = nbp->b_error;
1772 		bp->b_resid = bp->b_bcount - boffset +
1773 			      (nbp->b_bcount - nbp->b_resid);
1774 #if SPEC_CHAIN_DEBUG & 1
1775 		devfs_debug(DEVFS_DEBUG_DEBUG,
1776 			    "spec_strategy: chain %p short read(1) "
1777 			    "bcount %d/%d\n",
1778 			    bp, bp->b_bcount - bp->b_resid, bp->b_bcount);
1779 #endif
1780 		kfree(nbp, M_DEVBUF);
1781 		biodone(bio);
1782 	} else if (nbp->b_bcount != nbp->b_bufsize) {
1783 		/*
1784 		 * A short read or write can also occur by truncating b_bcount
1785 		 */
1786 #if SPEC_CHAIN_DEBUG & 1
1787 		devfs_debug(DEVFS_DEBUG_DEBUG,
1788 			    "spec_strategy: chain %p short read(2) "
1789 			    "bcount %d/%d\n",
1790 			    bp, nbp->b_bcount + boffset, bp->b_bcount);
1791 #endif
1792 		bp->b_error = 0;
1793 		bp->b_bcount = nbp->b_bcount + boffset;
1794 		bp->b_resid = nbp->b_resid;
1795 		kfree(nbp, M_DEVBUF);
1796 		biodone(bio);
1797 	} else if (nbp->b_bcount + boffset == bp->b_bcount) {
1798 		/*
1799 		 * No more data terminates the chain
1800 		 */
1801 #if SPEC_CHAIN_DEBUG & 1
1802 		devfs_debug(DEVFS_DEBUG_DEBUG,
1803 			    "spec_strategy: chain %p finished bcount %d\n",
1804 			    bp, bp->b_bcount);
1805 #endif
1806 		bp->b_error = 0;
1807 		bp->b_resid = 0;
1808 		kfree(nbp, M_DEVBUF);
1809 		biodone(bio);
1810 	} else {
1811 		/*
1812 		 * Continue the chain
1813 		 */
1814 		boffset += nbp->b_bcount;
1815 		nbp->b_data = bp->b_data + boffset;
1816 		nbp->b_bcount = bp->b_bcount - boffset;
1817 		if (nbp->b_bcount > chunksize)
1818 			nbp->b_bcount = chunksize;
1819 		nbp->b_bio1.bio_done = devfs_spec_strategy_done;
1820 		nbp->b_bio1.bio_offset = bio->bio_offset + boffset;
1821 
1822 #if SPEC_CHAIN_DEBUG & 1
1823 		devfs_debug(DEVFS_DEBUG_DEBUG,
1824 			    "spec_strategy: chain %p offset %d/%d bcount %d\n",
1825 			    bp, boffset, bp->b_bcount, nbp->b_bcount);
1826 #endif
1827 
1828 		dev_dstrategy(nbp->b_vp->v_rdev, &nbp->b_bio1);
1829 	}
1830 }
1831 
1832 /*
1833  * spec_freeblks(struct vnode *a_vp, daddr_t a_addr, daddr_t a_length)
1834  */
1835 static int
1836 devfs_spec_freeblks(struct vop_freeblks_args *ap)
1837 {
1838 	struct buf *bp;
1839 
1840 	/*
1841 	 * XXX: This assumes that strategy does the deed right away.
1842 	 * XXX: this may not be TRTTD.
1843 	 */
1844 	KKASSERT(ap->a_vp->v_rdev != NULL);
1845 	if ((dev_dflags(ap->a_vp->v_rdev) & D_CANFREE) == 0)
1846 		return (0);
1847 	bp = geteblk(ap->a_length);
1848 	bp->b_cmd = BUF_CMD_FREEBLKS;
1849 	bp->b_bio1.bio_offset = ap->a_offset;
1850 	bp->b_bcount = ap->a_length;
1851 	dev_dstrategy(ap->a_vp->v_rdev, &bp->b_bio1);
1852 	return (0);
1853 }
1854 
1855 /*
1856  * Implement degenerate case where the block requested is the block
1857  * returned, and assume that the entire device is contiguous in regards
1858  * to the contiguous block range (runp and runb).
1859  *
1860  * spec_bmap(struct vnode *a_vp, off_t a_loffset,
1861  *	     off_t *a_doffsetp, int *a_runp, int *a_runb)
1862  */
1863 static int
1864 devfs_spec_bmap(struct vop_bmap_args *ap)
1865 {
1866 	if (ap->a_doffsetp != NULL)
1867 		*ap->a_doffsetp = ap->a_loffset;
1868 	if (ap->a_runp != NULL)
1869 		*ap->a_runp = MAXBSIZE;
1870 	if (ap->a_runb != NULL) {
1871 		if (ap->a_loffset < MAXBSIZE)
1872 			*ap->a_runb = (int)ap->a_loffset;
1873 		else
1874 			*ap->a_runb = MAXBSIZE;
1875 	}
1876 	return (0);
1877 }
1878 
1879 
1880 /*
1881  * Special device advisory byte-level locks.
1882  *
1883  * spec_advlock(struct vnode *a_vp, caddr_t a_id, int a_op,
1884  *		struct flock *a_fl, int a_flags)
1885  */
1886 /* ARGSUSED */
1887 static int
1888 devfs_spec_advlock(struct vop_advlock_args *ap)
1889 {
1890 	return ((ap->a_flags & F_POSIX) ? EINVAL : EOPNOTSUPP);
1891 }
1892 
1893 /*
1894  * NOTE: MPSAFE callback.
1895  */
1896 static void
1897 devfs_spec_getpages_iodone(struct bio *bio)
1898 {
1899 	bio->bio_buf->b_cmd = BUF_CMD_DONE;
1900 	wakeup(bio->bio_buf);
1901 }
1902 
1903 /*
1904  * spec_getpages() - get pages associated with device vnode.
1905  *
1906  * Note that spec_read and spec_write do not use the buffer cache, so we
1907  * must fully implement getpages here.
1908  */
1909 static int
1910 devfs_spec_getpages(struct vop_getpages_args *ap)
1911 {
1912 	vm_offset_t kva;
1913 	int error;
1914 	int i, pcount, size;
1915 	struct buf *bp;
1916 	vm_page_t m;
1917 	vm_ooffset_t offset;
1918 	int toff, nextoff, nread;
1919 	struct vnode *vp = ap->a_vp;
1920 	int blksiz;
1921 	int gotreqpage;
1922 
1923 	error = 0;
1924 	pcount = round_page(ap->a_count) / PAGE_SIZE;
1925 
1926 	/*
1927 	 * Calculate the offset of the transfer and do sanity check.
1928 	 */
1929 	offset = IDX_TO_OFF(ap->a_m[0]->pindex) + ap->a_offset;
1930 
1931 	/*
1932 	 * Round up physical size for real devices.  We cannot round using
1933 	 * v_mount's block size data because v_mount has nothing to do with
1934 	 * the device.  i.e. it's usually '/dev'.  We need the physical block
1935 	 * size for the device itself.
1936 	 *
1937 	 * We can't use v_rdev->si_mountpoint because it only exists when the
1938 	 * block device is mounted.  However, we can use v_rdev.
1939 	 */
1940 	if (vn_isdisk(vp, NULL))
1941 		blksiz = vp->v_rdev->si_bsize_phys;
1942 	else
1943 		blksiz = DEV_BSIZE;
1944 
1945 	size = (ap->a_count + blksiz - 1) & ~(blksiz - 1);
1946 
1947 	bp = getpbuf_kva(NULL);
1948 	kva = (vm_offset_t)bp->b_data;
1949 
1950 	/*
1951 	 * Map the pages to be read into the kva.
1952 	 */
1953 	pmap_qenter(kva, ap->a_m, pcount);
1954 
1955 	/* Build a minimal buffer header. */
1956 	bp->b_cmd = BUF_CMD_READ;
1957 	bp->b_bcount = size;
1958 	bp->b_resid = 0;
1959 	bsetrunningbufspace(bp, size);
1960 
1961 	bp->b_bio1.bio_offset = offset;
1962 	bp->b_bio1.bio_done = devfs_spec_getpages_iodone;
1963 
1964 	mycpu->gd_cnt.v_vnodein++;
1965 	mycpu->gd_cnt.v_vnodepgsin += pcount;
1966 
1967 	/* Do the input. */
1968 	vn_strategy(ap->a_vp, &bp->b_bio1);
1969 
1970 	crit_enter();
1971 
1972 	/* We definitely need to be at splbio here. */
1973 	while (bp->b_cmd != BUF_CMD_DONE)
1974 		tsleep(bp, 0, "spread", 0);
1975 
1976 	crit_exit();
1977 
1978 	if (bp->b_flags & B_ERROR) {
1979 		if (bp->b_error)
1980 			error = bp->b_error;
1981 		else
1982 			error = EIO;
1983 	}
1984 
1985 	/*
1986 	 * If EOF is encountered we must zero-extend the result in order
1987 	 * to ensure that the page does not contain garabge.  When no
1988 	 * error occurs, an early EOF is indicated if b_bcount got truncated.
1989 	 * b_resid is relative to b_bcount and should be 0, but some devices
1990 	 * might indicate an EOF with b_resid instead of truncating b_bcount.
1991 	 */
1992 	nread = bp->b_bcount - bp->b_resid;
1993 	if (nread < ap->a_count)
1994 		bzero((caddr_t)kva + nread, ap->a_count - nread);
1995 	pmap_qremove(kva, pcount);
1996 
1997 	gotreqpage = 0;
1998 	for (i = 0, toff = 0; i < pcount; i++, toff = nextoff) {
1999 		nextoff = toff + PAGE_SIZE;
2000 		m = ap->a_m[i];
2001 
2002 		m->flags &= ~PG_ZERO;
2003 
2004 		/*
2005 		 * NOTE: vm_page_undirty/clear_dirty etc do not clear the
2006 		 *	 pmap modified bit.  pmap modified bit should have
2007 		 *	 already been cleared.
2008 		 */
2009 		if (nextoff <= nread) {
2010 			m->valid = VM_PAGE_BITS_ALL;
2011 			vm_page_undirty(m);
2012 		} else if (toff < nread) {
2013 			/*
2014 			 * Since this is a VM request, we have to supply the
2015 			 * unaligned offset to allow vm_page_set_valid()
2016 			 * to zero sub-DEV_BSIZE'd portions of the page.
2017 			 */
2018 			vm_page_set_valid(m, 0, nread - toff);
2019 			vm_page_clear_dirty_end_nonincl(m, 0, nread - toff);
2020 		} else {
2021 			m->valid = 0;
2022 			vm_page_undirty(m);
2023 		}
2024 
2025 		if (i != ap->a_reqpage) {
2026 			/*
2027 			 * Just in case someone was asking for this page we
2028 			 * now tell them that it is ok to use.
2029 			 */
2030 			if (!error || (m->valid == VM_PAGE_BITS_ALL)) {
2031 				if (m->valid) {
2032 					if (m->flags & PG_WANTED) {
2033 						vm_page_activate(m);
2034 					} else {
2035 						vm_page_deactivate(m);
2036 					}
2037 					vm_page_wakeup(m);
2038 				} else {
2039 					vm_page_free(m);
2040 				}
2041 			} else {
2042 				vm_page_free(m);
2043 			}
2044 		} else if (m->valid) {
2045 			gotreqpage = 1;
2046 			/*
2047 			 * Since this is a VM request, we need to make the
2048 			 * entire page presentable by zeroing invalid sections.
2049 			 */
2050 			if (m->valid != VM_PAGE_BITS_ALL)
2051 			    vm_page_zero_invalid(m, FALSE);
2052 		}
2053 	}
2054 	if (!gotreqpage) {
2055 		m = ap->a_m[ap->a_reqpage];
2056 		devfs_debug(DEVFS_DEBUG_WARNING,
2057 	    "spec_getpages:(%s) I/O read failure: (error=%d) bp %p vp %p\n",
2058 			devtoname(vp->v_rdev), error, bp, bp->b_vp);
2059 		devfs_debug(DEVFS_DEBUG_WARNING,
2060 	    "               size: %d, resid: %d, a_count: %d, valid: 0x%x\n",
2061 		    size, bp->b_resid, ap->a_count, m->valid);
2062 		devfs_debug(DEVFS_DEBUG_WARNING,
2063 	    "               nread: %d, reqpage: %d, pindex: %lu, pcount: %d\n",
2064 		    nread, ap->a_reqpage, (u_long)m->pindex, pcount);
2065 		/*
2066 		 * Free the buffer header back to the swap buffer pool.
2067 		 */
2068 		relpbuf(bp, NULL);
2069 		return VM_PAGER_ERROR;
2070 	}
2071 	/*
2072 	 * Free the buffer header back to the swap buffer pool.
2073 	 */
2074 	relpbuf(bp, NULL);
2075 	if (DEVFS_NODE(ap->a_vp))
2076 		nanotime(&DEVFS_NODE(ap->a_vp)->mtime);
2077 	return VM_PAGER_OK;
2078 }
2079 
2080 static __inline
2081 int
2082 sequential_heuristic(struct uio *uio, struct file *fp)
2083 {
2084 	/*
2085 	 * Sequential heuristic - detect sequential operation
2086 	 */
2087 	if ((uio->uio_offset == 0 && fp->f_seqcount > 0) ||
2088 	    uio->uio_offset == fp->f_nextoff) {
2089 		/*
2090 		 * XXX we assume that the filesystem block size is
2091 		 * the default.  Not true, but still gives us a pretty
2092 		 * good indicator of how sequential the read operations
2093 		 * are.
2094 		 */
2095 		int tmpseq = fp->f_seqcount;
2096 
2097 		tmpseq += (uio->uio_resid + BKVASIZE - 1) / BKVASIZE;
2098 		if (tmpseq > IO_SEQMAX)
2099 			tmpseq = IO_SEQMAX;
2100 		fp->f_seqcount = tmpseq;
2101 		return(fp->f_seqcount << IO_SEQSHIFT);
2102 	}
2103 
2104 	/*
2105 	 * Not sequential, quick draw-down of seqcount
2106 	 */
2107 	if (fp->f_seqcount > 1)
2108 		fp->f_seqcount = 1;
2109 	else
2110 		fp->f_seqcount = 0;
2111 	return(0);
2112 }
2113