xref: /dragonfly/sys/vfs/hammer/hammer_btree.c (revision 0dace59e)
1 /*
2  * Copyright (c) 2007-2008 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 /*
36  * HAMMER B-Tree index
37  *
38  * HAMMER implements a modified B+Tree.  In documentation this will
39  * simply be refered to as the HAMMER B-Tree.  Basically a HAMMER B-Tree
40  * looks like a B+Tree (A B-Tree which stores its records only at the leafs
41  * of the tree), but adds two additional boundary elements which describe
42  * the left-most and right-most element a node is able to represent.  In
43  * otherwords, we have boundary elements at the two ends of a B-Tree node
44  * instead of sub-tree pointers.
45  *
46  * A B-Tree internal node looks like this:
47  *
48  *	B N N N N N N B   <-- boundary and internal elements
49  *       S S S S S S S    <-- subtree pointers
50  *
51  * A B-Tree leaf node basically looks like this:
52  *
53  *	L L L L L L L L   <-- leaf elemenets
54  *
55  * The radix for an internal node is 1 less then a leaf but we get a
56  * number of significant benefits for our troubles.
57  *
58  * The big benefit to using a B-Tree containing boundary information
59  * is that it is possible to cache pointers into the middle of the tree
60  * and not have to start searches, insertions, OR deletions at the root
61  * node.   In particular, searches are able to progress in a definitive
62  * direction from any point in the tree without revisting nodes.  This
63  * greatly improves the efficiency of many operations, most especially
64  * record appends.
65  *
66  * B-Trees also make the stacking of trees fairly straightforward.
67  *
68  * INSERTIONS:  A search performed with the intention of doing
69  * an insert will guarantee that the terminal leaf node is not full by
70  * splitting full nodes.  Splits occur top-down during the dive down the
71  * B-Tree.
72  *
73  * DELETIONS: A deletion makes no attempt to proactively balance the
74  * tree and will recursively remove nodes that become empty.  If a
75  * deadlock occurs a deletion may not be able to remove an empty leaf.
76  * Deletions never allow internal nodes to become empty (that would blow
77  * up the boundaries).
78  */
79 #include "hammer.h"
80 #include <sys/buf.h>
81 #include <sys/buf2.h>
82 
83 static int btree_search(hammer_cursor_t cursor, int flags);
84 static int btree_split_internal(hammer_cursor_t cursor);
85 static int btree_split_leaf(hammer_cursor_t cursor);
86 static int btree_remove(hammer_cursor_t cursor);
87 static int btree_node_is_full(hammer_node_ondisk_t node);
88 static int hammer_btree_mirror_propagate(hammer_cursor_t cursor,
89 			hammer_tid_t mirror_tid);
90 static void hammer_make_separator(hammer_base_elm_t key1,
91 			hammer_base_elm_t key2, hammer_base_elm_t dest);
92 static void hammer_cursor_mirror_filter(hammer_cursor_t cursor);
93 
94 /*
95  * Iterate records after a search.  The cursor is iterated forwards past
96  * the current record until a record matching the key-range requirements
97  * is found.  ENOENT is returned if the iteration goes past the ending
98  * key.
99  *
100  * The iteration is inclusive of key_beg and can be inclusive or exclusive
101  * of key_end depending on whether HAMMER_CURSOR_END_INCLUSIVE is set.
102  *
103  * When doing an as-of search (cursor->asof != 0), key_beg.create_tid
104  * may be modified by B-Tree functions.
105  *
106  * cursor->key_beg may or may not be modified by this function during
107  * the iteration.  XXX future - in case of an inverted lock we may have
108  * to reinitiate the lookup and set key_beg to properly pick up where we
109  * left off.
110  *
111  * If HAMMER_CURSOR_ITERATE_CHECK is set it is possible that the cursor
112  * was reverse indexed due to being moved to a parent while unlocked,
113  * and something else might have inserted an element outside the iteration
114  * range.  When this case occurs the iterator just keeps iterating until
115  * it gets back into the iteration range (instead of asserting).
116  *
117  * NOTE!  EDEADLK *CANNOT* be returned by this procedure.
118  */
119 int
120 hammer_btree_iterate(hammer_cursor_t cursor)
121 {
122 	hammer_node_ondisk_t node;
123 	hammer_btree_elm_t elm;
124 	hammer_mount_t hmp;
125 	int error = 0;
126 	int r;
127 	int s;
128 
129 	/*
130 	 * Skip past the current record
131 	 */
132 	hmp = cursor->trans->hmp;
133 	node = cursor->node->ondisk;
134 	if (node == NULL)
135 		return(ENOENT);
136 	if (cursor->index < node->count &&
137 	    (cursor->flags & HAMMER_CURSOR_ATEDISK)) {
138 		++cursor->index;
139 	}
140 
141 	/*
142 	 * HAMMER can wind up being cpu-bound.
143 	 */
144 	if (++hmp->check_yield > hammer_yield_check) {
145 		hmp->check_yield = 0;
146 		lwkt_user_yield();
147 	}
148 
149 
150 	/*
151 	 * Loop until an element is found or we are done.
152 	 */
153 	for (;;) {
154 		/*
155 		 * We iterate up the tree and then index over one element
156 		 * while we are at the last element in the current node.
157 		 *
158 		 * If we are at the root of the filesystem, cursor_up
159 		 * returns ENOENT.
160 		 *
161 		 * XXX this could be optimized by storing the information in
162 		 * the parent reference.
163 		 *
164 		 * XXX we can lose the node lock temporarily, this could mess
165 		 * up our scan.
166 		 */
167 		++hammer_stats_btree_iterations;
168 		hammer_flusher_clean_loose_ios(hmp);
169 
170 		if (cursor->index == node->count) {
171 			if (hammer_debug_btree) {
172 				kprintf("BRACKETU %016llx[%d] -> %016llx[%d] (td=%p)\n",
173 					(long long)cursor->node->node_offset,
174 					cursor->index,
175 					(long long)(cursor->parent ? cursor->parent->node_offset : -1),
176 					cursor->parent_index,
177 					curthread);
178 			}
179 			KKASSERT(cursor->parent == NULL || cursor->parent->ondisk->elms[cursor->parent_index].internal.subtree_offset == cursor->node->node_offset);
180 			error = hammer_cursor_up(cursor);
181 			if (error)
182 				break;
183 			/* reload stale pointer */
184 			node = cursor->node->ondisk;
185 			KKASSERT(cursor->index != node->count);
186 
187 			/*
188 			 * If we are reblocking we want to return internal
189 			 * nodes.  Note that the internal node will be
190 			 * returned multiple times, on each upward recursion
191 			 * from its children.  The caller selects which
192 			 * revisit it cares about (usually first or last only).
193 			 */
194 			if (cursor->flags & HAMMER_CURSOR_REBLOCKING) {
195 				cursor->flags |= HAMMER_CURSOR_ATEDISK;
196 				return(0);
197 			}
198 			++cursor->index;
199 			continue;
200 		}
201 
202 		/*
203 		 * Check internal or leaf element.  Determine if the record
204 		 * at the cursor has gone beyond the end of our range.
205 		 *
206 		 * We recurse down through internal nodes.
207 		 */
208 		if (node->type == HAMMER_BTREE_TYPE_INTERNAL) {
209 			elm = &node->elms[cursor->index];
210 
211 			r = hammer_btree_cmp(&cursor->key_end, &elm[0].base);
212 			s = hammer_btree_cmp(&cursor->key_beg, &elm[1].base);
213 			if (hammer_debug_btree) {
214 				kprintf("BRACKETL %016llx[%d] %016llx %02x %016llx lo=%02x %d (td=%p)\n",
215 					(long long)cursor->node->node_offset,
216 					cursor->index,
217 					(long long)elm[0].internal.base.obj_id,
218 					elm[0].internal.base.rec_type,
219 					(long long)elm[0].internal.base.key,
220 					elm[0].internal.base.localization,
221 					r,
222 					curthread
223 				);
224 				kprintf("BRACKETR %016llx[%d] %016llx %02x %016llx lo=%02x %d\n",
225 					(long long)cursor->node->node_offset,
226 					cursor->index + 1,
227 					(long long)elm[1].internal.base.obj_id,
228 					elm[1].internal.base.rec_type,
229 					(long long)elm[1].internal.base.key,
230 					elm[1].internal.base.localization,
231 					s
232 				);
233 			}
234 
235 			if (r < 0) {
236 				error = ENOENT;
237 				break;
238 			}
239 			if (r == 0 && (cursor->flags &
240 				       HAMMER_CURSOR_END_INCLUSIVE) == 0) {
241 				error = ENOENT;
242 				break;
243 			}
244 
245 			/*
246 			 * Better not be zero
247 			 */
248 			KKASSERT(elm->internal.subtree_offset != 0);
249 
250 			if (s <= 0) {
251 				/*
252 				 * If running the mirror filter see if we
253 				 * can skip one or more entire sub-trees.
254 				 * If we can we return the internal node
255 				 * and the caller processes the skipped
256 				 * range (see mirror_read).
257 				 */
258 				if (cursor->flags &
259 				    HAMMER_CURSOR_MIRROR_FILTERED) {
260 					if (elm->internal.mirror_tid <
261 					    cursor->cmirror->mirror_tid) {
262 						hammer_cursor_mirror_filter(cursor);
263 						return(0);
264 					}
265 				}
266 			} else {
267 				/*
268 				 * Normally it would be impossible for the
269 				 * cursor to have gotten back-indexed,
270 				 * but it can happen if a node is deleted
271 				 * and the cursor is moved to its parent
272 				 * internal node.  ITERATE_CHECK will be set.
273 				 */
274 				KKASSERT(cursor->flags &
275 					 HAMMER_CURSOR_ITERATE_CHECK);
276 				kprintf("hammer_btree_iterate: "
277 					"DEBUG: Caught parent seek "
278 					"in internal iteration\n");
279 			}
280 
281 			error = hammer_cursor_down(cursor);
282 			if (error)
283 				break;
284 			KKASSERT(cursor->index == 0);
285 			/* reload stale pointer */
286 			node = cursor->node->ondisk;
287 			continue;
288 		} else {
289 			elm = &node->elms[cursor->index];
290 			r = hammer_btree_cmp(&cursor->key_end, &elm->base);
291 			if (hammer_debug_btree) {
292 				kprintf("ELEMENT  %016llx:%d %c %016llx %02x %016llx lo=%02x %d\n",
293 					(long long)cursor->node->node_offset,
294 					cursor->index,
295 					(elm[0].leaf.base.btype ?
296 					 elm[0].leaf.base.btype : '?'),
297 					(long long)elm[0].leaf.base.obj_id,
298 					elm[0].leaf.base.rec_type,
299 					(long long)elm[0].leaf.base.key,
300 					elm[0].leaf.base.localization,
301 					r
302 				);
303 			}
304 			if (r < 0) {
305 				error = ENOENT;
306 				break;
307 			}
308 
309 			/*
310 			 * We support both end-inclusive and
311 			 * end-exclusive searches.
312 			 */
313 			if (r == 0 &&
314 			   (cursor->flags & HAMMER_CURSOR_END_INCLUSIVE) == 0) {
315 				error = ENOENT;
316 				break;
317 			}
318 
319 			/*
320 			 * If ITERATE_CHECK is set an unlocked cursor may
321 			 * have been moved to a parent and the iterate can
322 			 * happen upon elements that are not in the requested
323 			 * range.
324 			 */
325 			if (cursor->flags & HAMMER_CURSOR_ITERATE_CHECK) {
326 				s = hammer_btree_cmp(&cursor->key_beg,
327 						     &elm->base);
328 				if (s > 0) {
329 					kprintf("hammer_btree_iterate: "
330 						"DEBUG: Caught parent seek "
331 						"in leaf iteration\n");
332 					++cursor->index;
333 					continue;
334 				}
335 			}
336 			cursor->flags &= ~HAMMER_CURSOR_ITERATE_CHECK;
337 
338 			/*
339 			 * Return the element
340 			 */
341 			switch(elm->leaf.base.btype) {
342 			case HAMMER_BTREE_TYPE_RECORD:
343 				if ((cursor->flags & HAMMER_CURSOR_ASOF) &&
344 				    hammer_btree_chkts(cursor->asof, &elm->base)) {
345 					++cursor->index;
346 					continue;
347 				}
348 				error = 0;
349 				break;
350 			default:
351 				error = EINVAL;
352 				break;
353 			}
354 			if (error)
355 				break;
356 		}
357 		/*
358 		 * node pointer invalid after loop
359 		 */
360 
361 		/*
362 		 * Return entry
363 		 */
364 		if (hammer_debug_btree) {
365 			int i = cursor->index;
366 			hammer_btree_elm_t elm = &cursor->node->ondisk->elms[i];
367 			kprintf("ITERATE  %p:%d %016llx %02x %016llx lo=%02x\n",
368 				cursor->node, i,
369 				(long long)elm->internal.base.obj_id,
370 				elm->internal.base.rec_type,
371 				(long long)elm->internal.base.key,
372 				elm->internal.base.localization
373 			);
374 		}
375 		return(0);
376 	}
377 	return(error);
378 }
379 
380 /*
381  * We hit an internal element that we could skip as part of a mirroring
382  * scan.  Calculate the entire range being skipped.
383  *
384  * It is important to include any gaps between the parent's left_bound
385  * and the node's left_bound, and same goes for the right side.
386  */
387 static void
388 hammer_cursor_mirror_filter(hammer_cursor_t cursor)
389 {
390 	struct hammer_cmirror *cmirror;
391 	hammer_node_ondisk_t ondisk;
392 	hammer_btree_elm_t elm;
393 
394 	ondisk = cursor->node->ondisk;
395 	cmirror = cursor->cmirror;
396 
397 	/*
398 	 * Calculate the skipped range
399 	 */
400 	elm = &ondisk->elms[cursor->index];
401 	if (cursor->index == 0)
402 		cmirror->skip_beg = *cursor->left_bound;
403 	else
404 		cmirror->skip_beg = elm->internal.base;
405 	while (cursor->index < ondisk->count) {
406 		if (elm->internal.mirror_tid >= cmirror->mirror_tid)
407 			break;
408 		++cursor->index;
409 		++elm;
410 	}
411 	if (cursor->index == ondisk->count)
412 		cmirror->skip_end = *cursor->right_bound;
413 	else
414 		cmirror->skip_end = elm->internal.base;
415 
416 	/*
417 	 * clip the returned result.
418 	 */
419 	if (hammer_btree_cmp(&cmirror->skip_beg, &cursor->key_beg) < 0)
420 		cmirror->skip_beg = cursor->key_beg;
421 	if (hammer_btree_cmp(&cmirror->skip_end, &cursor->key_end) > 0)
422 		cmirror->skip_end = cursor->key_end;
423 }
424 
425 /*
426  * Iterate in the reverse direction.  This is used by the pruning code to
427  * avoid overlapping records.
428  */
429 int
430 hammer_btree_iterate_reverse(hammer_cursor_t cursor)
431 {
432 	hammer_node_ondisk_t node;
433 	hammer_btree_elm_t elm;
434 	hammer_mount_t hmp;
435 	int error = 0;
436 	int r;
437 	int s;
438 
439 	/* mirror filtering not supported for reverse iteration */
440 	KKASSERT ((cursor->flags & HAMMER_CURSOR_MIRROR_FILTERED) == 0);
441 
442 	/*
443 	 * Skip past the current record.  For various reasons the cursor
444 	 * may end up set to -1 or set to point at the end of the current
445 	 * node.  These cases must be addressed.
446 	 */
447 	node = cursor->node->ondisk;
448 	if (node == NULL)
449 		return(ENOENT);
450 	if (cursor->index != -1 &&
451 	    (cursor->flags & HAMMER_CURSOR_ATEDISK)) {
452 		--cursor->index;
453 	}
454 	if (cursor->index == cursor->node->ondisk->count)
455 		--cursor->index;
456 
457 	/*
458 	 * HAMMER can wind up being cpu-bound.
459 	 */
460 	hmp = cursor->trans->hmp;
461 	if (++hmp->check_yield > hammer_yield_check) {
462 		hmp->check_yield = 0;
463 		lwkt_user_yield();
464 	}
465 
466 	/*
467 	 * Loop until an element is found or we are done.
468 	 */
469 	for (;;) {
470 		++hammer_stats_btree_iterations;
471 		hammer_flusher_clean_loose_ios(hmp);
472 
473 		/*
474 		 * We iterate up the tree and then index over one element
475 		 * while we are at the last element in the current node.
476 		 */
477 		if (cursor->index == -1) {
478 			error = hammer_cursor_up(cursor);
479 			if (error) {
480 				cursor->index = 0; /* sanity */
481 				break;
482 			}
483 			/* reload stale pointer */
484 			node = cursor->node->ondisk;
485 			KKASSERT(cursor->index != node->count);
486 			--cursor->index;
487 			continue;
488 		}
489 
490 		/*
491 		 * Check internal or leaf element.  Determine if the record
492 		 * at the cursor has gone beyond the end of our range.
493 		 *
494 		 * We recurse down through internal nodes.
495 		 */
496 		KKASSERT(cursor->index != node->count);
497 		if (node->type == HAMMER_BTREE_TYPE_INTERNAL) {
498 			elm = &node->elms[cursor->index];
499 			r = hammer_btree_cmp(&cursor->key_end, &elm[0].base);
500 			s = hammer_btree_cmp(&cursor->key_beg, &elm[1].base);
501 			if (hammer_debug_btree) {
502 				kprintf("BRACKETL %016llx[%d] %016llx %02x %016llx lo=%02x %d\n",
503 					(long long)cursor->node->node_offset,
504 					cursor->index,
505 					(long long)elm[0].internal.base.obj_id,
506 					elm[0].internal.base.rec_type,
507 					(long long)elm[0].internal.base.key,
508 					elm[0].internal.base.localization,
509 					r
510 				);
511 				kprintf("BRACKETR %016llx[%d] %016llx %02x %016llx lo=%02x %d\n",
512 					(long long)cursor->node->node_offset,
513 					cursor->index + 1,
514 					(long long)elm[1].internal.base.obj_id,
515 					elm[1].internal.base.rec_type,
516 					(long long)elm[1].internal.base.key,
517 					elm[1].internal.base.localization,
518 					s
519 				);
520 			}
521 
522 			if (s >= 0) {
523 				error = ENOENT;
524 				break;
525 			}
526 
527 			/*
528 			 * It shouldn't be possible to be seeked past key_end,
529 			 * even if the cursor got moved to a parent.
530 			 */
531 			KKASSERT(r >= 0);
532 
533 			/*
534 			 * Better not be zero
535 			 */
536 			KKASSERT(elm->internal.subtree_offset != 0);
537 
538 			error = hammer_cursor_down(cursor);
539 			if (error)
540 				break;
541 			KKASSERT(cursor->index == 0);
542 			/* reload stale pointer */
543 			node = cursor->node->ondisk;
544 
545 			/* this can assign -1 if the leaf was empty */
546 			cursor->index = node->count - 1;
547 			continue;
548 		} else {
549 			elm = &node->elms[cursor->index];
550 			s = hammer_btree_cmp(&cursor->key_beg, &elm->base);
551 			if (hammer_debug_btree) {
552 				kprintf("ELEMENT  %016llx:%d %c %016llx %02x %016llx lo=%02x %d\n",
553 					(long long)cursor->node->node_offset,
554 					cursor->index,
555 					(elm[0].leaf.base.btype ?
556 					 elm[0].leaf.base.btype : '?'),
557 					(long long)elm[0].leaf.base.obj_id,
558 					elm[0].leaf.base.rec_type,
559 					(long long)elm[0].leaf.base.key,
560 					elm[0].leaf.base.localization,
561 					s
562 				);
563 			}
564 			if (s > 0) {
565 				error = ENOENT;
566 				break;
567 			}
568 
569 			/*
570 			 * It shouldn't be possible to be seeked past key_end,
571 			 * even if the cursor got moved to a parent.
572 			 */
573 			cursor->flags &= ~HAMMER_CURSOR_ITERATE_CHECK;
574 
575 			/*
576 			 * Return the element
577 			 */
578 			switch(elm->leaf.base.btype) {
579 			case HAMMER_BTREE_TYPE_RECORD:
580 				if ((cursor->flags & HAMMER_CURSOR_ASOF) &&
581 				    hammer_btree_chkts(cursor->asof, &elm->base)) {
582 					--cursor->index;
583 					continue;
584 				}
585 				error = 0;
586 				break;
587 			default:
588 				error = EINVAL;
589 				break;
590 			}
591 			if (error)
592 				break;
593 		}
594 		/*
595 		 * node pointer invalid after loop
596 		 */
597 
598 		/*
599 		 * Return entry
600 		 */
601 		if (hammer_debug_btree) {
602 			int i = cursor->index;
603 			hammer_btree_elm_t elm = &cursor->node->ondisk->elms[i];
604 			kprintf("ITERATE  %p:%d %016llx %02x %016llx lo=%02x\n",
605 				cursor->node, i,
606 				(long long)elm->internal.base.obj_id,
607 				elm->internal.base.rec_type,
608 				(long long)elm->internal.base.key,
609 				elm->internal.base.localization
610 			);
611 		}
612 		return(0);
613 	}
614 	return(error);
615 }
616 
617 /*
618  * Lookup cursor->key_beg.  0 is returned on success, ENOENT if the entry
619  * could not be found, EDEADLK if inserting and a retry is needed, and a
620  * fatal error otherwise.  When retrying, the caller must terminate the
621  * cursor and reinitialize it.  EDEADLK cannot be returned if not inserting.
622  *
623  * The cursor is suitably positioned for a deletion on success, and suitably
624  * positioned for an insertion on ENOENT if HAMMER_CURSOR_INSERT was
625  * specified.
626  *
627  * The cursor may begin anywhere, the search will traverse the tree in
628  * either direction to locate the requested element.
629  *
630  * Most of the logic implementing historical searches is handled here.  We
631  * do an initial lookup with create_tid set to the asof TID.  Due to the
632  * way records are laid out, a backwards iteration may be required if
633  * ENOENT is returned to locate the historical record.  Here's the
634  * problem:
635  *
636  * create_tid:    10      15       20
637  *		     LEAF1   LEAF2
638  * records:         (11)        (18)
639  *
640  * Lets say we want to do a lookup AS-OF timestamp 17.  We will traverse
641  * LEAF2 but the only record in LEAF2 has a create_tid of 18, which is
642  * not visible and thus causes ENOENT to be returned.  We really need
643  * to check record 11 in LEAF1.  If it also fails then the search fails
644  * (e.g. it might represent the range 11-16 and thus still not match our
645  * AS-OF timestamp of 17).  Note that LEAF1 could be empty, requiring
646  * further iterations.
647  *
648  * If this case occurs btree_search() will set HAMMER_CURSOR_CREATE_CHECK
649  * and the cursor->create_check TID if an iteration might be needed.
650  * In the above example create_check would be set to 14.
651  */
652 int
653 hammer_btree_lookup(hammer_cursor_t cursor)
654 {
655 	int error;
656 
657 	cursor->flags &= ~HAMMER_CURSOR_ITERATE_CHECK;
658 	KKASSERT ((cursor->flags & HAMMER_CURSOR_INSERT) == 0 ||
659 		  cursor->trans->sync_lock_refs > 0);
660 	++hammer_stats_btree_lookups;
661 	if (cursor->flags & HAMMER_CURSOR_ASOF) {
662 		KKASSERT((cursor->flags & HAMMER_CURSOR_INSERT) == 0);
663 		cursor->key_beg.create_tid = cursor->asof;
664 		for (;;) {
665 			cursor->flags &= ~HAMMER_CURSOR_CREATE_CHECK;
666 			error = btree_search(cursor, 0);
667 			if (error != ENOENT ||
668 			    (cursor->flags & HAMMER_CURSOR_CREATE_CHECK) == 0) {
669 				/*
670 				 * Stop if no error.
671 				 * Stop if error other then ENOENT.
672 				 * Stop if ENOENT and not special case.
673 				 */
674 				break;
675 			}
676 			if (hammer_debug_btree) {
677 				kprintf("CREATE_CHECK %016llx\n",
678 					(long long)cursor->create_check);
679 			}
680 			cursor->key_beg.create_tid = cursor->create_check;
681 			/* loop */
682 		}
683 	} else {
684 		error = btree_search(cursor, 0);
685 	}
686 	if (error == 0)
687 		error = hammer_btree_extract(cursor, cursor->flags);
688 	return(error);
689 }
690 
691 /*
692  * Execute the logic required to start an iteration.  The first record
693  * located within the specified range is returned and iteration control
694  * flags are adjusted for successive hammer_btree_iterate() calls.
695  *
696  * Set ATEDISK so a low-level caller can call btree_first/btree_iterate
697  * in a loop without worrying about it.  Higher-level merged searches will
698  * adjust the flag appropriately.
699  */
700 int
701 hammer_btree_first(hammer_cursor_t cursor)
702 {
703 	int error;
704 
705 	error = hammer_btree_lookup(cursor);
706 	if (error == ENOENT) {
707 		cursor->flags &= ~HAMMER_CURSOR_ATEDISK;
708 		error = hammer_btree_iterate(cursor);
709 	}
710 	cursor->flags |= HAMMER_CURSOR_ATEDISK;
711 	return(error);
712 }
713 
714 /*
715  * Similarly but for an iteration in the reverse direction.
716  *
717  * Set ATEDISK when iterating backwards to skip the current entry,
718  * which after an ENOENT lookup will be pointing beyond our end point.
719  *
720  * Set ATEDISK so a low-level caller can call btree_last/btree_iterate_reverse
721  * in a loop without worrying about it.  Higher-level merged searches will
722  * adjust the flag appropriately.
723  */
724 int
725 hammer_btree_last(hammer_cursor_t cursor)
726 {
727 	struct hammer_base_elm save;
728 	int error;
729 
730 	save = cursor->key_beg;
731 	cursor->key_beg = cursor->key_end;
732 	error = hammer_btree_lookup(cursor);
733 	cursor->key_beg = save;
734 	if (error == ENOENT ||
735 	    (cursor->flags & HAMMER_CURSOR_END_INCLUSIVE) == 0) {
736 		cursor->flags |= HAMMER_CURSOR_ATEDISK;
737 		error = hammer_btree_iterate_reverse(cursor);
738 	}
739 	cursor->flags |= HAMMER_CURSOR_ATEDISK;
740 	return(error);
741 }
742 
743 /*
744  * Extract the record and/or data associated with the cursor's current
745  * position.  Any prior record or data stored in the cursor is replaced.
746  * The cursor must be positioned at a leaf node.
747  *
748  * NOTE: All extractions occur at the leaf of the B-Tree.
749  */
750 int
751 hammer_btree_extract(hammer_cursor_t cursor, int flags)
752 {
753 	hammer_node_ondisk_t node;
754 	hammer_btree_elm_t elm;
755 	hammer_off_t data_off;
756 	hammer_mount_t hmp;
757 	int32_t data_len;
758 	int error;
759 
760 	/*
761 	 * The case where the data reference resolves to the same buffer
762 	 * as the record reference must be handled.
763 	 */
764 	node = cursor->node->ondisk;
765 	elm = &node->elms[cursor->index];
766 	cursor->data = NULL;
767 	hmp = cursor->node->hmp;
768 
769 	/*
770 	 * There is nothing to extract for an internal element.
771 	 */
772 	if (node->type == HAMMER_BTREE_TYPE_INTERNAL)
773 		return(EINVAL);
774 
775 	/*
776 	 * Only record types have data.
777 	 */
778 	KKASSERT(node->type == HAMMER_BTREE_TYPE_LEAF);
779 	cursor->leaf = &elm->leaf;
780 
781 	if ((flags & HAMMER_CURSOR_GET_DATA) == 0)
782 		return(0);
783 	if (elm->leaf.base.btype != HAMMER_BTREE_TYPE_RECORD)
784 		return(0);
785 	data_off = elm->leaf.data_offset;
786 	data_len = elm->leaf.data_len;
787 	if (data_off == 0)
788 		return(0);
789 
790 	/*
791 	 * Load the data
792 	 */
793 	KKASSERT(data_len >= 0 && data_len <= HAMMER_XBUFSIZE);
794 	cursor->data = hammer_bread_ext(hmp, data_off, data_len,
795 					&error, &cursor->data_buffer);
796 
797 	/*
798 	 * Mark the data buffer as not being meta-data if it isn't
799 	 * meta-data (sometimes bulk data is accessed via a volume
800 	 * block device).
801 	 */
802 	if (error == 0) {
803 		switch(elm->leaf.base.rec_type) {
804 		case HAMMER_RECTYPE_DATA:
805 		case HAMMER_RECTYPE_DB:
806 			if ((data_off & HAMMER_ZONE_LARGE_DATA) == 0)
807 				break;
808 			if (hammer_double_buffer == 0 ||
809 			    (cursor->flags & HAMMER_CURSOR_NOSWAPCACHE)) {
810 				hammer_io_notmeta(cursor->data_buffer);
811 			}
812 			break;
813 		default:
814 			break;
815 		}
816 	}
817 
818 	/*
819 	 * Deal with CRC errors on the extracted data.
820 	 */
821 	if (error == 0 &&
822 	    hammer_crc_test_leaf(cursor->data, &elm->leaf) == 0) {
823 		kprintf("CRC DATA @ %016llx/%d FAILED\n",
824 			(long long)elm->leaf.data_offset, elm->leaf.data_len);
825 		if (hammer_debug_critical)
826 			Debugger("CRC FAILED: DATA");
827 		if (cursor->trans->flags & HAMMER_TRANSF_CRCDOM)
828 			error = EDOM;	/* less critical (mirroring) */
829 		else
830 			error = EIO;	/* critical */
831 	}
832 	return(error);
833 }
834 
835 
836 /*
837  * Insert a leaf element into the B-Tree at the current cursor position.
838  * The cursor is positioned such that the element at and beyond the cursor
839  * are shifted to make room for the new record.
840  *
841  * The caller must call hammer_btree_lookup() with the HAMMER_CURSOR_INSERT
842  * flag set and that call must return ENOENT before this function can be
843  * called.
844  *
845  * The caller may depend on the cursor's exclusive lock after return to
846  * interlock frontend visibility (see HAMMER_RECF_CONVERT_DELETE).
847  *
848  * ENOSPC is returned if there is no room to insert a new record.
849  */
850 int
851 hammer_btree_insert(hammer_cursor_t cursor, hammer_btree_leaf_elm_t elm,
852 		    int *doprop)
853 {
854 	hammer_node_ondisk_t node;
855 	int i;
856 	int error;
857 
858 	*doprop = 0;
859 	if ((error = hammer_cursor_upgrade_node(cursor)) != 0)
860 		return(error);
861 	++hammer_stats_btree_inserts;
862 
863 	/*
864 	 * Insert the element at the leaf node and update the count in the
865 	 * parent.  It is possible for parent to be NULL, indicating that
866 	 * the filesystem's ROOT B-Tree node is a leaf itself, which is
867 	 * possible.  The root inode can never be deleted so the leaf should
868 	 * never be empty.
869 	 *
870 	 * Remember that the right-hand boundary is not included in the
871 	 * count.
872 	 */
873 	hammer_modify_node_all(cursor->trans, cursor->node);
874 	node = cursor->node->ondisk;
875 	i = cursor->index;
876 	KKASSERT(elm->base.btype != 0);
877 	KKASSERT(node->type == HAMMER_BTREE_TYPE_LEAF);
878 	KKASSERT(node->count < HAMMER_BTREE_LEAF_ELMS);
879 	if (i != node->count) {
880 		bcopy(&node->elms[i], &node->elms[i+1],
881 		      (node->count - i) * sizeof(*elm));
882 	}
883 	node->elms[i].leaf = *elm;
884 	++node->count;
885 	hammer_cursor_inserted_element(cursor->node, i);
886 
887 	/*
888 	 * Update the leaf node's aggregate mirror_tid for mirroring
889 	 * support.
890 	 */
891 	if (node->mirror_tid < elm->base.delete_tid) {
892 		node->mirror_tid = elm->base.delete_tid;
893 		*doprop = 1;
894 	}
895 	if (node->mirror_tid < elm->base.create_tid) {
896 		node->mirror_tid = elm->base.create_tid;
897 		*doprop = 1;
898 	}
899 	hammer_modify_node_done(cursor->node);
900 
901 	/*
902 	 * Debugging sanity checks.
903 	 */
904 	KKASSERT(hammer_btree_cmp(cursor->left_bound, &elm->base) <= 0);
905 	KKASSERT(hammer_btree_cmp(cursor->right_bound, &elm->base) > 0);
906 	if (i) {
907 		KKASSERT(hammer_btree_cmp(&node->elms[i-1].leaf.base, &elm->base) < 0);
908 	}
909 	if (i != node->count - 1)
910 		KKASSERT(hammer_btree_cmp(&node->elms[i+1].leaf.base, &elm->base) > 0);
911 
912 	return(0);
913 }
914 
915 /*
916  * Delete a record from the B-Tree at the current cursor position.
917  * The cursor is positioned such that the current element is the one
918  * to be deleted.
919  *
920  * On return the cursor will be positioned after the deleted element and
921  * MAY point to an internal node.  It will be suitable for the continuation
922  * of an iteration but not for an insertion or deletion.
923  *
924  * Deletions will attempt to partially rebalance the B-Tree in an upward
925  * direction, but will terminate rather then deadlock.  Empty internal nodes
926  * are never allowed by a deletion which deadlocks may end up giving us an
927  * empty leaf.  The pruner will clean up and rebalance the tree.
928  *
929  * This function can return EDEADLK, requiring the caller to retry the
930  * operation after clearing the deadlock.
931  */
932 int
933 hammer_btree_delete(hammer_cursor_t cursor)
934 {
935 	hammer_node_ondisk_t ondisk;
936 	hammer_node_t node;
937 	hammer_node_t parent __debugvar;
938 	int error;
939 	int i;
940 
941 	KKASSERT (cursor->trans->sync_lock_refs > 0);
942 	if ((error = hammer_cursor_upgrade(cursor)) != 0)
943 		return(error);
944 	++hammer_stats_btree_deletes;
945 
946 	/*
947 	 * Delete the element from the leaf node.
948 	 *
949 	 * Remember that leaf nodes do not have boundaries.
950 	 */
951 	node = cursor->node;
952 	ondisk = node->ondisk;
953 	i = cursor->index;
954 
955 	KKASSERT(ondisk->type == HAMMER_BTREE_TYPE_LEAF);
956 	KKASSERT(i >= 0 && i < ondisk->count);
957 	hammer_modify_node_all(cursor->trans, node);
958 	if (i + 1 != ondisk->count) {
959 		bcopy(&ondisk->elms[i+1], &ondisk->elms[i],
960 		      (ondisk->count - i - 1) * sizeof(ondisk->elms[0]));
961 	}
962 	--ondisk->count;
963 	hammer_modify_node_done(node);
964 	hammer_cursor_deleted_element(node, i);
965 
966 	/*
967 	 * Validate local parent
968 	 */
969 	if (ondisk->parent) {
970 		parent = cursor->parent;
971 
972 		KKASSERT(parent != NULL);
973 		KKASSERT(parent->node_offset == ondisk->parent);
974 	}
975 
976 	/*
977 	 * If the leaf becomes empty it must be detached from the parent,
978 	 * potentially recursing through to the filesystem root.
979 	 *
980 	 * This may reposition the cursor at one of the parent's of the
981 	 * current node.
982 	 *
983 	 * Ignore deadlock errors, that simply means that btree_remove
984 	 * was unable to recurse and had to leave us with an empty leaf.
985 	 */
986 	KKASSERT(cursor->index <= ondisk->count);
987 	if (ondisk->count == 0) {
988 		error = btree_remove(cursor);
989 		if (error == EDEADLK)
990 			error = 0;
991 	} else {
992 		error = 0;
993 	}
994 	KKASSERT(cursor->parent == NULL ||
995 		 cursor->parent_index < cursor->parent->ondisk->count);
996 	return(error);
997 }
998 
999 /*
1000  * PRIMAY B-TREE SEARCH SUPPORT PROCEDURE
1001  *
1002  * Search the filesystem B-Tree for cursor->key_beg, return the matching node.
1003  *
1004  * The search can begin ANYWHERE in the B-Tree.  As a first step the search
1005  * iterates up the tree as necessary to properly position itself prior to
1006  * actually doing the sarch.
1007  *
1008  * INSERTIONS: The search will split full nodes and leaves on its way down
1009  * and guarentee that the leaf it ends up on is not full.  If we run out
1010  * of space the search continues to the leaf (to position the cursor for
1011  * the spike), but ENOSPC is returned.
1012  *
1013  * The search is only guarenteed to end up on a leaf if an error code of 0
1014  * is returned, or if inserting and an error code of ENOENT is returned.
1015  * Otherwise it can stop at an internal node.  On success a search returns
1016  * a leaf node.
1017  *
1018  * COMPLEXITY WARNING!  This is the core B-Tree search code for the entire
1019  * filesystem, and it is not simple code.  Please note the following facts:
1020  *
1021  * - Internal node recursions have a boundary on the left AND right.  The
1022  *   right boundary is non-inclusive.  The create_tid is a generic part
1023  *   of the key for internal nodes.
1024  *
1025  * - Leaf nodes contain terminal elements only now.
1026  *
1027  * - Filesystem lookups typically set HAMMER_CURSOR_ASOF, indicating a
1028  *   historical search.  ASOF and INSERT are mutually exclusive.  When
1029  *   doing an as-of lookup btree_search() checks for a right-edge boundary
1030  *   case.  If while recursing down the left-edge differs from the key
1031  *   by ONLY its create_tid, HAMMER_CURSOR_CREATE_CHECK is set along
1032  *   with cursor->create_check.  This is used by btree_lookup() to iterate.
1033  *   The iteration backwards because as-of searches can wind up going
1034  *   down the wrong branch of the B-Tree.
1035  */
1036 static
1037 int
1038 btree_search(hammer_cursor_t cursor, int flags)
1039 {
1040 	hammer_node_ondisk_t node;
1041 	hammer_btree_elm_t elm;
1042 	int error;
1043 	int enospc = 0;
1044 	int i;
1045 	int r;
1046 	int s;
1047 
1048 	flags |= cursor->flags;
1049 	++hammer_stats_btree_searches;
1050 
1051 	if (hammer_debug_btree) {
1052 		kprintf("SEARCH   %016llx[%d] %016llx %02x key=%016llx cre=%016llx lo=%02x (td = %p)\n",
1053 			(long long)cursor->node->node_offset,
1054 			cursor->index,
1055 			(long long)cursor->key_beg.obj_id,
1056 			cursor->key_beg.rec_type,
1057 			(long long)cursor->key_beg.key,
1058 			(long long)cursor->key_beg.create_tid,
1059 			cursor->key_beg.localization,
1060 			curthread
1061 		);
1062 		if (cursor->parent)
1063 		    kprintf("SEARCHP %016llx[%d] (%016llx/%016llx %016llx/%016llx) (%p/%p %p/%p)\n",
1064 			(long long)cursor->parent->node_offset,
1065 			cursor->parent_index,
1066 			(long long)cursor->left_bound->obj_id,
1067 			(long long)cursor->parent->ondisk->elms[cursor->parent_index].internal.base.obj_id,
1068 			(long long)cursor->right_bound->obj_id,
1069 			(long long)cursor->parent->ondisk->elms[cursor->parent_index+1].internal.base.obj_id,
1070 			cursor->left_bound,
1071 			&cursor->parent->ondisk->elms[cursor->parent_index],
1072 			cursor->right_bound,
1073 			&cursor->parent->ondisk->elms[cursor->parent_index+1]
1074 		    );
1075 	}
1076 
1077 	/*
1078 	 * Move our cursor up the tree until we find a node whos range covers
1079 	 * the key we are trying to locate.
1080 	 *
1081 	 * The left bound is inclusive, the right bound is non-inclusive.
1082 	 * It is ok to cursor up too far.
1083 	 */
1084 	for (;;) {
1085 		r = hammer_btree_cmp(&cursor->key_beg, cursor->left_bound);
1086 		s = hammer_btree_cmp(&cursor->key_beg, cursor->right_bound);
1087 		if (r >= 0 && s < 0)
1088 			break;
1089 		KKASSERT(cursor->parent);
1090 		++hammer_stats_btree_iterations;
1091 		error = hammer_cursor_up(cursor);
1092 		if (error)
1093 			goto done;
1094 	}
1095 
1096 	/*
1097 	 * The delete-checks below are based on node, not parent.  Set the
1098 	 * initial delete-check based on the parent.
1099 	 */
1100 	if (r == 1) {
1101 		KKASSERT(cursor->left_bound->create_tid != 1);
1102 		cursor->create_check = cursor->left_bound->create_tid - 1;
1103 		cursor->flags |= HAMMER_CURSOR_CREATE_CHECK;
1104 	}
1105 
1106 	/*
1107 	 * We better have ended up with a node somewhere.
1108 	 */
1109 	KKASSERT(cursor->node != NULL);
1110 
1111 	/*
1112 	 * If we are inserting we can't start at a full node if the parent
1113 	 * is also full (because there is no way to split the node),
1114 	 * continue running up the tree until the requirement is satisfied
1115 	 * or we hit the root of the filesystem.
1116 	 *
1117 	 * (If inserting we aren't doing an as-of search so we don't have
1118 	 *  to worry about create_check).
1119 	 */
1120 	while ((flags & HAMMER_CURSOR_INSERT) && enospc == 0) {
1121 		if (cursor->node->ondisk->type == HAMMER_BTREE_TYPE_INTERNAL) {
1122 			if (btree_node_is_full(cursor->node->ondisk) == 0)
1123 				break;
1124 		} else {
1125 			if (btree_node_is_full(cursor->node->ondisk) ==0)
1126 				break;
1127 		}
1128 		if (cursor->node->ondisk->parent == 0 ||
1129 		    cursor->parent->ondisk->count != HAMMER_BTREE_INT_ELMS) {
1130 			break;
1131 		}
1132 		++hammer_stats_btree_iterations;
1133 		error = hammer_cursor_up(cursor);
1134 		/* node may have become stale */
1135 		if (error)
1136 			goto done;
1137 	}
1138 
1139 	/*
1140 	 * Push down through internal nodes to locate the requested key.
1141 	 */
1142 	node = cursor->node->ondisk;
1143 	while (node->type == HAMMER_BTREE_TYPE_INTERNAL) {
1144 		/*
1145 		 * Scan the node to find the subtree index to push down into.
1146 		 * We go one-past, then back-up.
1147 		 *
1148 		 * We must proactively remove deleted elements which may
1149 		 * have been left over from a deadlocked btree_remove().
1150 		 *
1151 		 * The left and right boundaries are included in the loop
1152 		 * in order to detect edge cases.
1153 		 *
1154 		 * If the separator only differs by create_tid (r == 1)
1155 		 * and we are doing an as-of search, we may end up going
1156 		 * down a branch to the left of the one containing the
1157 		 * desired key.  This requires numerous special cases.
1158 		 */
1159 		++hammer_stats_btree_iterations;
1160 		if (hammer_debug_btree) {
1161 			kprintf("SEARCH-I %016llx count=%d\n",
1162 				(long long)cursor->node->node_offset,
1163 				node->count);
1164 		}
1165 
1166 		/*
1167 		 * Try to shortcut the search before dropping into the
1168 		 * linear loop.  Locate the first node where r <= 1.
1169 		 */
1170 		i = hammer_btree_search_node(&cursor->key_beg, node);
1171 		while (i <= node->count) {
1172 			++hammer_stats_btree_elements;
1173 			elm = &node->elms[i];
1174 			r = hammer_btree_cmp(&cursor->key_beg, &elm->base);
1175 			if (hammer_debug_btree > 2) {
1176 				kprintf(" IELM %p %d r=%d\n",
1177 					&node->elms[i], i, r);
1178 			}
1179 			if (r < 0)
1180 				break;
1181 			if (r == 1) {
1182 				KKASSERT(elm->base.create_tid != 1);
1183 				cursor->create_check = elm->base.create_tid - 1;
1184 				cursor->flags |= HAMMER_CURSOR_CREATE_CHECK;
1185 			}
1186 			++i;
1187 		}
1188 		if (hammer_debug_btree) {
1189 			kprintf("SEARCH-I preI=%d/%d r=%d\n",
1190 				i, node->count, r);
1191 		}
1192 
1193 		/*
1194 		 * These cases occur when the parent's idea of the boundary
1195 		 * is wider then the child's idea of the boundary, and
1196 		 * require special handling.  If not inserting we can
1197 		 * terminate the search early for these cases but the
1198 		 * child's boundaries cannot be unconditionally modified.
1199 		 */
1200 		if (i == 0) {
1201 			/*
1202 			 * If i == 0 the search terminated to the LEFT of the
1203 			 * left_boundary but to the RIGHT of the parent's left
1204 			 * boundary.
1205 			 */
1206 			u_int8_t save;
1207 
1208 			elm = &node->elms[0];
1209 
1210 			/*
1211 			 * If we aren't inserting we can stop here.
1212 			 */
1213 			if ((flags & (HAMMER_CURSOR_INSERT |
1214 				      HAMMER_CURSOR_PRUNING)) == 0) {
1215 				cursor->index = 0;
1216 				return(ENOENT);
1217 			}
1218 
1219 			/*
1220 			 * Correct a left-hand boundary mismatch.
1221 			 *
1222 			 * We can only do this if we can upgrade the lock,
1223 			 * and synchronized as a background cursor (i.e.
1224 			 * inserting or pruning).
1225 			 *
1226 			 * WARNING: We can only do this if inserting, i.e.
1227 			 * we are running on the backend.
1228 			 */
1229 			if ((error = hammer_cursor_upgrade(cursor)) != 0)
1230 				return(error);
1231 			KKASSERT(cursor->flags & HAMMER_CURSOR_BACKEND);
1232 			hammer_modify_node_field(cursor->trans, cursor->node,
1233 						 elms[0]);
1234 			save = node->elms[0].base.btype;
1235 			node->elms[0].base = *cursor->left_bound;
1236 			node->elms[0].base.btype = save;
1237 			hammer_modify_node_done(cursor->node);
1238 		} else if (i == node->count + 1) {
1239 			/*
1240 			 * If i == node->count + 1 the search terminated to
1241 			 * the RIGHT of the right boundary but to the LEFT
1242 			 * of the parent's right boundary.  If we aren't
1243 			 * inserting we can stop here.
1244 			 *
1245 			 * Note that the last element in this case is
1246 			 * elms[i-2] prior to adjustments to 'i'.
1247 			 */
1248 			--i;
1249 			if ((flags & (HAMMER_CURSOR_INSERT |
1250 				      HAMMER_CURSOR_PRUNING)) == 0) {
1251 				cursor->index = i;
1252 				return (ENOENT);
1253 			}
1254 
1255 			/*
1256 			 * Correct a right-hand boundary mismatch.
1257 			 * (actual push-down record is i-2 prior to
1258 			 * adjustments to i).
1259 			 *
1260 			 * We can only do this if we can upgrade the lock,
1261 			 * and synchronized as a background cursor (i.e.
1262 			 * inserting or pruning).
1263 			 *
1264 			 * WARNING: We can only do this if inserting, i.e.
1265 			 * we are running on the backend.
1266 			 */
1267 			if ((error = hammer_cursor_upgrade(cursor)) != 0)
1268 				return(error);
1269 			elm = &node->elms[i];
1270 			KKASSERT(cursor->flags & HAMMER_CURSOR_BACKEND);
1271 			hammer_modify_node(cursor->trans, cursor->node,
1272 					   &elm->base, sizeof(elm->base));
1273 			elm->base = *cursor->right_bound;
1274 			hammer_modify_node_done(cursor->node);
1275 			--i;
1276 		} else {
1277 			/*
1278 			 * The push-down index is now i - 1.  If we had
1279 			 * terminated on the right boundary this will point
1280 			 * us at the last element.
1281 			 */
1282 			--i;
1283 		}
1284 		cursor->index = i;
1285 		elm = &node->elms[i];
1286 
1287 		if (hammer_debug_btree) {
1288 			kprintf("RESULT-I %016llx[%d] %016llx %02x "
1289 				"key=%016llx cre=%016llx lo=%02x\n",
1290 				(long long)cursor->node->node_offset,
1291 				i,
1292 				(long long)elm->internal.base.obj_id,
1293 				elm->internal.base.rec_type,
1294 				(long long)elm->internal.base.key,
1295 				(long long)elm->internal.base.create_tid,
1296 				elm->internal.base.localization
1297 			);
1298 		}
1299 
1300 		/*
1301 		 * We better have a valid subtree offset.
1302 		 */
1303 		KKASSERT(elm->internal.subtree_offset != 0);
1304 
1305 		/*
1306 		 * Handle insertion and deletion requirements.
1307 		 *
1308 		 * If inserting split full nodes.  The split code will
1309 		 * adjust cursor->node and cursor->index if the current
1310 		 * index winds up in the new node.
1311 		 *
1312 		 * If inserting and a left or right edge case was detected,
1313 		 * we cannot correct the left or right boundary and must
1314 		 * prepend and append an empty leaf node in order to make
1315 		 * the boundary correction.
1316 		 *
1317 		 * If we run out of space we set enospc and continue on
1318 		 * to a leaf to provide the spike code with a good point
1319 		 * of entry.
1320 		 */
1321 		if ((flags & HAMMER_CURSOR_INSERT) && enospc == 0) {
1322 			if (btree_node_is_full(node)) {
1323 				error = btree_split_internal(cursor);
1324 				if (error) {
1325 					if (error != ENOSPC)
1326 						goto done;
1327 					enospc = 1;
1328 				}
1329 				/*
1330 				 * reload stale pointers
1331 				 */
1332 				i = cursor->index;
1333 				node = cursor->node->ondisk;
1334 			}
1335 		}
1336 
1337 		/*
1338 		 * Push down (push into new node, existing node becomes
1339 		 * the parent) and continue the search.
1340 		 */
1341 		error = hammer_cursor_down(cursor);
1342 		/* node may have become stale */
1343 		if (error)
1344 			goto done;
1345 		node = cursor->node->ondisk;
1346 	}
1347 
1348 	/*
1349 	 * We are at a leaf, do a linear search of the key array.
1350 	 *
1351 	 * On success the index is set to the matching element and 0
1352 	 * is returned.
1353 	 *
1354 	 * On failure the index is set to the insertion point and ENOENT
1355 	 * is returned.
1356 	 *
1357 	 * Boundaries are not stored in leaf nodes, so the index can wind
1358 	 * up to the left of element 0 (index == 0) or past the end of
1359 	 * the array (index == node->count).  It is also possible that the
1360 	 * leaf might be empty.
1361 	 */
1362 	++hammer_stats_btree_iterations;
1363 	KKASSERT (node->type == HAMMER_BTREE_TYPE_LEAF);
1364 	KKASSERT(node->count <= HAMMER_BTREE_LEAF_ELMS);
1365 	if (hammer_debug_btree) {
1366 		kprintf("SEARCH-L %016llx count=%d\n",
1367 			(long long)cursor->node->node_offset,
1368 			node->count);
1369 	}
1370 
1371 	/*
1372 	 * Try to shortcut the search before dropping into the
1373 	 * linear loop.  Locate the first node where r <= 1.
1374 	 */
1375 	i = hammer_btree_search_node(&cursor->key_beg, node);
1376 	while (i < node->count) {
1377 		++hammer_stats_btree_elements;
1378 		elm = &node->elms[i];
1379 
1380 		r = hammer_btree_cmp(&cursor->key_beg, &elm->leaf.base);
1381 
1382 		if (hammer_debug_btree > 1)
1383 			kprintf("  ELM %p %d r=%d\n", &node->elms[i], i, r);
1384 
1385 		/*
1386 		 * We are at a record element.  Stop if we've flipped past
1387 		 * key_beg, not counting the create_tid test.  Allow the
1388 		 * r == 1 case (key_beg > element but differs only by its
1389 		 * create_tid) to fall through to the AS-OF check.
1390 		 */
1391 		KKASSERT (elm->leaf.base.btype == HAMMER_BTREE_TYPE_RECORD);
1392 
1393 		if (r < 0)
1394 			goto failed;
1395 		if (r > 1) {
1396 			++i;
1397 			continue;
1398 		}
1399 
1400 		/*
1401 		 * Check our as-of timestamp against the element.
1402 		 */
1403 		if (flags & HAMMER_CURSOR_ASOF) {
1404 			if (hammer_btree_chkts(cursor->asof,
1405 					       &node->elms[i].base) != 0) {
1406 				++i;
1407 				continue;
1408 			}
1409 			/* success */
1410 		} else {
1411 			if (r > 0) {	/* can only be +1 */
1412 				++i;
1413 				continue;
1414 			}
1415 			/* success */
1416 		}
1417 		cursor->index = i;
1418 		error = 0;
1419 		if (hammer_debug_btree) {
1420 			kprintf("RESULT-L %016llx[%d] (SUCCESS)\n",
1421 				(long long)cursor->node->node_offset, i);
1422 		}
1423 		goto done;
1424 	}
1425 
1426 	/*
1427 	 * The search of the leaf node failed.  i is the insertion point.
1428 	 */
1429 failed:
1430 	if (hammer_debug_btree) {
1431 		kprintf("RESULT-L %016llx[%d] (FAILED)\n",
1432 			(long long)cursor->node->node_offset, i);
1433 	}
1434 
1435 	/*
1436 	 * No exact match was found, i is now at the insertion point.
1437 	 *
1438 	 * If inserting split a full leaf before returning.  This
1439 	 * may have the side effect of adjusting cursor->node and
1440 	 * cursor->index.
1441 	 */
1442 	cursor->index = i;
1443 	if ((flags & HAMMER_CURSOR_INSERT) && enospc == 0 &&
1444 	     btree_node_is_full(node)) {
1445 		error = btree_split_leaf(cursor);
1446 		if (error) {
1447 			if (error != ENOSPC)
1448 				goto done;
1449 			enospc = 1;
1450 		}
1451 		/*
1452 		 * reload stale pointers
1453 		 */
1454 		/* NOT USED
1455 		i = cursor->index;
1456 		node = &cursor->node->internal;
1457 		*/
1458 	}
1459 
1460 	/*
1461 	 * We reached a leaf but did not find the key we were looking for.
1462 	 * If this is an insert we will be properly positioned for an insert
1463 	 * (ENOENT) or spike (ENOSPC) operation.
1464 	 */
1465 	error = enospc ? ENOSPC : ENOENT;
1466 done:
1467 	return(error);
1468 }
1469 
1470 /*
1471  * Heuristical search for the first element whos comparison is <= 1.  May
1472  * return an index whos compare result is > 1 but may only return an index
1473  * whos compare result is <= 1 if it is the first element with that result.
1474  */
1475 int
1476 hammer_btree_search_node(hammer_base_elm_t elm, hammer_node_ondisk_t node)
1477 {
1478 	int b;
1479 	int s;
1480 	int i;
1481 	int r;
1482 
1483 	/*
1484 	 * Don't bother if the node does not have very many elements
1485 	 */
1486 	b = 0;
1487 	s = node->count;
1488 	while (s - b > 4) {
1489 		i = b + (s - b) / 2;
1490 		++hammer_stats_btree_elements;
1491 		r = hammer_btree_cmp(elm, &node->elms[i].leaf.base);
1492 		if (r <= 1) {
1493 			s = i;
1494 		} else {
1495 			b = i;
1496 		}
1497 	}
1498 	return(b);
1499 }
1500 
1501 
1502 /************************************************************************
1503  *			   SPLITTING AND MERGING 			*
1504  ************************************************************************
1505  *
1506  * These routines do all the dirty work required to split and merge nodes.
1507  */
1508 
1509 /*
1510  * Split an internal node into two nodes and move the separator at the split
1511  * point to the parent.
1512  *
1513  * (cursor->node, cursor->index) indicates the element the caller intends
1514  * to push into.  We will adjust node and index if that element winds
1515  * up in the split node.
1516  *
1517  * If we are at the root of the filesystem a new root must be created with
1518  * two elements, one pointing to the original root and one pointing to the
1519  * newly allocated split node.
1520  */
1521 static
1522 int
1523 btree_split_internal(hammer_cursor_t cursor)
1524 {
1525 	hammer_node_ondisk_t ondisk;
1526 	hammer_node_t node;
1527 	hammer_node_t parent;
1528 	hammer_node_t new_node;
1529 	hammer_btree_elm_t elm;
1530 	hammer_btree_elm_t parent_elm;
1531 	struct hammer_node_lock lockroot;
1532 	hammer_mount_t hmp = cursor->trans->hmp;
1533 	int parent_index;
1534 	int made_root;
1535 	int split;
1536 	int error;
1537 	int i;
1538 	const int esize = sizeof(*elm);
1539 
1540 	hammer_node_lock_init(&lockroot, cursor->node);
1541 	error = hammer_btree_lock_children(cursor, 1, &lockroot, NULL);
1542 	if (error)
1543 		goto done;
1544 	if ((error = hammer_cursor_upgrade(cursor)) != 0)
1545 		goto done;
1546 	++hammer_stats_btree_splits;
1547 
1548 	/*
1549 	 * Calculate the split point.  If the insertion point is at the
1550 	 * end of the leaf we adjust the split point significantly to the
1551 	 * right to try to optimize node fill and flag it.  If we hit
1552 	 * that same leaf again our heuristic failed and we don't try
1553 	 * to optimize node fill (it could lead to a degenerate case).
1554 	 */
1555 	node = cursor->node;
1556 	ondisk = node->ondisk;
1557 	KKASSERT(ondisk->count > 4);
1558 	if (cursor->index == ondisk->count &&
1559 	    (node->flags & HAMMER_NODE_NONLINEAR) == 0) {
1560 		split = (ondisk->count + 1) * 3 / 4;
1561 		node->flags |= HAMMER_NODE_NONLINEAR;
1562 	} else {
1563 		/*
1564 		 * We are splitting but elms[split] will be promoted to
1565 		 * the parent, leaving the right hand node with one less
1566 		 * element.  If the insertion point will be on the
1567 		 * left-hand side adjust the split point to give the
1568 		 * right hand side one additional node.
1569 		 */
1570 		split = (ondisk->count + 1) / 2;
1571 		if (cursor->index <= split)
1572 			--split;
1573 	}
1574 
1575 	/*
1576 	 * If we are at the root of the filesystem, create a new root node
1577 	 * with 1 element and split normally.  Avoid making major
1578 	 * modifications until we know the whole operation will work.
1579 	 */
1580 	if (ondisk->parent == 0) {
1581 		parent = hammer_alloc_btree(cursor->trans, 0, &error);
1582 		if (parent == NULL)
1583 			goto done;
1584 		hammer_lock_ex(&parent->lock);
1585 		hammer_modify_node_noundo(cursor->trans, parent);
1586 		ondisk = parent->ondisk;
1587 		ondisk->count = 1;
1588 		ondisk->parent = 0;
1589 		ondisk->mirror_tid = node->ondisk->mirror_tid;
1590 		ondisk->type = HAMMER_BTREE_TYPE_INTERNAL;
1591 		ondisk->elms[0].base = hmp->root_btree_beg;
1592 		ondisk->elms[0].base.btype = node->ondisk->type;
1593 		ondisk->elms[0].internal.subtree_offset = node->node_offset;
1594 		ondisk->elms[1].base = hmp->root_btree_end;
1595 		hammer_modify_node_done(parent);
1596 		/* ondisk->elms[1].base.btype - not used */
1597 		made_root = 1;
1598 		parent_index = 0;	/* index of current node in parent */
1599 	} else {
1600 		made_root = 0;
1601 		parent = cursor->parent;
1602 		parent_index = cursor->parent_index;
1603 	}
1604 
1605 	/*
1606 	 * Split node into new_node at the split point.
1607 	 *
1608 	 *  B O O O P N N B	<-- P = node->elms[split] (index 4)
1609 	 *   0 1 2 3 4 5 6	<-- subtree indices
1610 	 *
1611 	 *       x x P x x
1612 	 *        s S S s
1613 	 *         /   \
1614 	 *  B O O O B    B N N B	<--- inner boundary points are 'P'
1615 	 *   0 1 2 3      4 5 6
1616 	 */
1617 	new_node = hammer_alloc_btree(cursor->trans, 0, &error);
1618 	if (new_node == NULL) {
1619 		if (made_root) {
1620 			hammer_unlock(&parent->lock);
1621 			hammer_delete_node(cursor->trans, parent);
1622 			hammer_rel_node(parent);
1623 		}
1624 		goto done;
1625 	}
1626 	hammer_lock_ex(&new_node->lock);
1627 
1628 	/*
1629 	 * Create the new node.  P becomes the left-hand boundary in the
1630 	 * new node.  Copy the right-hand boundary as well.
1631 	 *
1632 	 * elm is the new separator.
1633 	 */
1634 	hammer_modify_node_noundo(cursor->trans, new_node);
1635 	hammer_modify_node_all(cursor->trans, node);
1636 	ondisk = node->ondisk;
1637 	elm = &ondisk->elms[split];
1638 	bcopy(elm, &new_node->ondisk->elms[0],
1639 	      (ondisk->count - split + 1) * esize);
1640 	new_node->ondisk->count = ondisk->count - split;
1641 	new_node->ondisk->parent = parent->node_offset;
1642 	new_node->ondisk->type = HAMMER_BTREE_TYPE_INTERNAL;
1643 	new_node->ondisk->mirror_tid = ondisk->mirror_tid;
1644 	KKASSERT(ondisk->type == new_node->ondisk->type);
1645 	hammer_cursor_split_node(node, new_node, split);
1646 
1647 	/*
1648 	 * Cleanup the original node.  Elm (P) becomes the new boundary,
1649 	 * its subtree_offset was moved to the new node.  If we had created
1650 	 * a new root its parent pointer may have changed.
1651 	 */
1652 	elm->internal.subtree_offset = 0;
1653 	ondisk->count = split;
1654 
1655 	/*
1656 	 * Insert the separator into the parent, fixup the parent's
1657 	 * reference to the original node, and reference the new node.
1658 	 * The separator is P.
1659 	 *
1660 	 * Remember that base.count does not include the right-hand boundary.
1661 	 */
1662 	hammer_modify_node_all(cursor->trans, parent);
1663 	ondisk = parent->ondisk;
1664 	KKASSERT(ondisk->count != HAMMER_BTREE_INT_ELMS);
1665 	parent_elm = &ondisk->elms[parent_index+1];
1666 	bcopy(parent_elm, parent_elm + 1,
1667 	      (ondisk->count - parent_index) * esize);
1668 	parent_elm->internal.base = elm->base;	/* separator P */
1669 	parent_elm->internal.base.btype = new_node->ondisk->type;
1670 	parent_elm->internal.subtree_offset = new_node->node_offset;
1671 	parent_elm->internal.mirror_tid = new_node->ondisk->mirror_tid;
1672 	++ondisk->count;
1673 	hammer_modify_node_done(parent);
1674 	hammer_cursor_inserted_element(parent, parent_index + 1);
1675 
1676 	/*
1677 	 * The children of new_node need their parent pointer set to new_node.
1678 	 * The children have already been locked by
1679 	 * hammer_btree_lock_children().
1680 	 */
1681 	for (i = 0; i < new_node->ondisk->count; ++i) {
1682 		elm = &new_node->ondisk->elms[i];
1683 		error = btree_set_parent(cursor->trans, new_node, elm);
1684 		if (error) {
1685 			panic("btree_split_internal: btree-fixup problem");
1686 		}
1687 	}
1688 	hammer_modify_node_done(new_node);
1689 
1690 	/*
1691 	 * The filesystem's root B-Tree pointer may have to be updated.
1692 	 */
1693 	if (made_root) {
1694 		hammer_volume_t volume;
1695 
1696 		volume = hammer_get_root_volume(hmp, &error);
1697 		KKASSERT(error == 0);
1698 
1699 		hammer_modify_volume_field(cursor->trans, volume,
1700 					   vol0_btree_root);
1701 		volume->ondisk->vol0_btree_root = parent->node_offset;
1702 		hammer_modify_volume_done(volume);
1703 		node->ondisk->parent = parent->node_offset;
1704 		if (cursor->parent) {
1705 			hammer_unlock(&cursor->parent->lock);
1706 			hammer_rel_node(cursor->parent);
1707 		}
1708 		cursor->parent = parent;	/* lock'd and ref'd */
1709 		hammer_rel_volume(volume, 0);
1710 	}
1711 	hammer_modify_node_done(node);
1712 
1713 	/*
1714 	 * Ok, now adjust the cursor depending on which element the original
1715 	 * index was pointing at.  If we are >= the split point the push node
1716 	 * is now in the new node.
1717 	 *
1718 	 * NOTE: If we are at the split point itself we cannot stay with the
1719 	 * original node because the push index will point at the right-hand
1720 	 * boundary, which is illegal.
1721 	 *
1722 	 * NOTE: The cursor's parent or parent_index must be adjusted for
1723 	 * the case where a new parent (new root) was created, and the case
1724 	 * where the cursor is now pointing at the split node.
1725 	 */
1726 	if (cursor->index >= split) {
1727 		cursor->parent_index = parent_index + 1;
1728 		cursor->index -= split;
1729 		hammer_unlock(&cursor->node->lock);
1730 		hammer_rel_node(cursor->node);
1731 		cursor->node = new_node;	/* locked and ref'd */
1732 	} else {
1733 		cursor->parent_index = parent_index;
1734 		hammer_unlock(&new_node->lock);
1735 		hammer_rel_node(new_node);
1736 	}
1737 
1738 	/*
1739 	 * Fixup left and right bounds
1740 	 */
1741 	parent_elm = &parent->ondisk->elms[cursor->parent_index];
1742 	cursor->left_bound = &parent_elm[0].internal.base;
1743 	cursor->right_bound = &parent_elm[1].internal.base;
1744 	KKASSERT(hammer_btree_cmp(cursor->left_bound,
1745 		 &cursor->node->ondisk->elms[0].internal.base) <= 0);
1746 	KKASSERT(hammer_btree_cmp(cursor->right_bound,
1747 		 &cursor->node->ondisk->elms[cursor->node->ondisk->count].internal.base) >= 0);
1748 
1749 done:
1750 	hammer_btree_unlock_children(cursor->trans->hmp, &lockroot, NULL);
1751 	hammer_cursor_downgrade(cursor);
1752 	return (error);
1753 }
1754 
1755 /*
1756  * Same as the above, but splits a full leaf node.
1757  *
1758  * This function
1759  */
1760 static
1761 int
1762 btree_split_leaf(hammer_cursor_t cursor)
1763 {
1764 	hammer_node_ondisk_t ondisk;
1765 	hammer_node_t parent;
1766 	hammer_node_t leaf;
1767 	hammer_mount_t hmp;
1768 	hammer_node_t new_leaf;
1769 	hammer_btree_elm_t elm;
1770 	hammer_btree_elm_t parent_elm;
1771 	hammer_base_elm_t mid_boundary;
1772 	int parent_index;
1773 	int made_root;
1774 	int split;
1775 	int error;
1776 	const size_t esize = sizeof(*elm);
1777 
1778 	if ((error = hammer_cursor_upgrade(cursor)) != 0)
1779 		return(error);
1780 	++hammer_stats_btree_splits;
1781 
1782 	KKASSERT(hammer_btree_cmp(cursor->left_bound,
1783 		 &cursor->node->ondisk->elms[0].leaf.base) <= 0);
1784 	KKASSERT(hammer_btree_cmp(cursor->right_bound,
1785 		 &cursor->node->ondisk->elms[cursor->node->ondisk->count-1].leaf.base) > 0);
1786 
1787 	/*
1788 	 * Calculate the split point.  If the insertion point is at the
1789 	 * end of the leaf we adjust the split point significantly to the
1790 	 * right to try to optimize node fill and flag it.  If we hit
1791 	 * that same leaf again our heuristic failed and we don't try
1792 	 * to optimize node fill (it could lead to a degenerate case).
1793 	 *
1794 	 * Spikes are made up of two leaf elements which cannot be
1795 	 * safely split.
1796 	 */
1797 	leaf = cursor->node;
1798 	ondisk = leaf->ondisk;
1799 	KKASSERT(ondisk->count > 4);
1800 	if (cursor->index == ondisk->count &&
1801 	    (leaf->flags & HAMMER_NODE_NONLINEAR) == 0) {
1802 		split = (ondisk->count + 1) * 3 / 4;
1803 		leaf->flags |= HAMMER_NODE_NONLINEAR;
1804 	} else {
1805 		split = (ondisk->count + 1) / 2;
1806 	}
1807 
1808 #if 0
1809 	/*
1810 	 * If the insertion point is at the split point shift the
1811 	 * split point left so we don't have to worry about
1812 	 */
1813 	if (cursor->index == split)
1814 		--split;
1815 #endif
1816 	KKASSERT(split > 0 && split < ondisk->count);
1817 
1818 	error = 0;
1819 	hmp = leaf->hmp;
1820 
1821 	elm = &ondisk->elms[split];
1822 
1823 	KKASSERT(hammer_btree_cmp(cursor->left_bound, &elm[-1].leaf.base) <= 0);
1824 	KKASSERT(hammer_btree_cmp(cursor->left_bound, &elm->leaf.base) <= 0);
1825 	KKASSERT(hammer_btree_cmp(cursor->right_bound, &elm->leaf.base) > 0);
1826 	KKASSERT(hammer_btree_cmp(cursor->right_bound, &elm[1].leaf.base) > 0);
1827 
1828 	/*
1829 	 * If we are at the root of the tree, create a new root node with
1830 	 * 1 element and split normally.  Avoid making major modifications
1831 	 * until we know the whole operation will work.
1832 	 */
1833 	if (ondisk->parent == 0) {
1834 		parent = hammer_alloc_btree(cursor->trans, 0, &error);
1835 		if (parent == NULL)
1836 			goto done;
1837 		hammer_lock_ex(&parent->lock);
1838 		hammer_modify_node_noundo(cursor->trans, parent);
1839 		ondisk = parent->ondisk;
1840 		ondisk->count = 1;
1841 		ondisk->parent = 0;
1842 		ondisk->mirror_tid = leaf->ondisk->mirror_tid;
1843 		ondisk->type = HAMMER_BTREE_TYPE_INTERNAL;
1844 		ondisk->elms[0].base = hmp->root_btree_beg;
1845 		ondisk->elms[0].base.btype = leaf->ondisk->type;
1846 		ondisk->elms[0].internal.subtree_offset = leaf->node_offset;
1847 		ondisk->elms[1].base = hmp->root_btree_end;
1848 		/* ondisk->elms[1].base.btype = not used */
1849 		hammer_modify_node_done(parent);
1850 		made_root = 1;
1851 		parent_index = 0;	/* insertion point in parent */
1852 	} else {
1853 		made_root = 0;
1854 		parent = cursor->parent;
1855 		parent_index = cursor->parent_index;
1856 	}
1857 
1858 	/*
1859 	 * Split leaf into new_leaf at the split point.  Select a separator
1860 	 * value in-between the two leafs but with a bent towards the right
1861 	 * leaf since comparisons use an 'elm >= separator' inequality.
1862 	 *
1863 	 *  L L L L L L L L
1864 	 *
1865 	 *       x x P x x
1866 	 *        s S S s
1867 	 *         /   \
1868 	 *  L L L L     L L L L
1869 	 */
1870 	new_leaf = hammer_alloc_btree(cursor->trans, 0, &error);
1871 	if (new_leaf == NULL) {
1872 		if (made_root) {
1873 			hammer_unlock(&parent->lock);
1874 			hammer_delete_node(cursor->trans, parent);
1875 			hammer_rel_node(parent);
1876 		}
1877 		goto done;
1878 	}
1879 	hammer_lock_ex(&new_leaf->lock);
1880 
1881 	/*
1882 	 * Create the new node and copy the leaf elements from the split
1883 	 * point on to the new node.
1884 	 */
1885 	hammer_modify_node_all(cursor->trans, leaf);
1886 	hammer_modify_node_noundo(cursor->trans, new_leaf);
1887 	ondisk = leaf->ondisk;
1888 	elm = &ondisk->elms[split];
1889 	bcopy(elm, &new_leaf->ondisk->elms[0], (ondisk->count - split) * esize);
1890 	new_leaf->ondisk->count = ondisk->count - split;
1891 	new_leaf->ondisk->parent = parent->node_offset;
1892 	new_leaf->ondisk->type = HAMMER_BTREE_TYPE_LEAF;
1893 	new_leaf->ondisk->mirror_tid = ondisk->mirror_tid;
1894 	KKASSERT(ondisk->type == new_leaf->ondisk->type);
1895 	hammer_modify_node_done(new_leaf);
1896 	hammer_cursor_split_node(leaf, new_leaf, split);
1897 
1898 	/*
1899 	 * Cleanup the original node.  Because this is a leaf node and
1900 	 * leaf nodes do not have a right-hand boundary, there
1901 	 * aren't any special edge cases to clean up.  We just fixup the
1902 	 * count.
1903 	 */
1904 	ondisk->count = split;
1905 
1906 	/*
1907 	 * Insert the separator into the parent, fixup the parent's
1908 	 * reference to the original node, and reference the new node.
1909 	 * The separator is P.
1910 	 *
1911 	 * Remember that base.count does not include the right-hand boundary.
1912 	 * We are copying parent_index+1 to parent_index+2, not +0 to +1.
1913 	 */
1914 	hammer_modify_node_all(cursor->trans, parent);
1915 	ondisk = parent->ondisk;
1916 	KKASSERT(split != 0);
1917 	KKASSERT(ondisk->count != HAMMER_BTREE_INT_ELMS);
1918 	parent_elm = &ondisk->elms[parent_index+1];
1919 	bcopy(parent_elm, parent_elm + 1,
1920 	      (ondisk->count - parent_index) * esize);
1921 
1922 	hammer_make_separator(&elm[-1].base, &elm[0].base, &parent_elm->base);
1923 	parent_elm->internal.base.btype = new_leaf->ondisk->type;
1924 	parent_elm->internal.subtree_offset = new_leaf->node_offset;
1925 	parent_elm->internal.mirror_tid = new_leaf->ondisk->mirror_tid;
1926 	mid_boundary = &parent_elm->base;
1927 	++ondisk->count;
1928 	hammer_modify_node_done(parent);
1929 	hammer_cursor_inserted_element(parent, parent_index + 1);
1930 
1931 	/*
1932 	 * The filesystem's root B-Tree pointer may have to be updated.
1933 	 */
1934 	if (made_root) {
1935 		hammer_volume_t volume;
1936 
1937 		volume = hammer_get_root_volume(hmp, &error);
1938 		KKASSERT(error == 0);
1939 
1940 		hammer_modify_volume_field(cursor->trans, volume,
1941 					   vol0_btree_root);
1942 		volume->ondisk->vol0_btree_root = parent->node_offset;
1943 		hammer_modify_volume_done(volume);
1944 		leaf->ondisk->parent = parent->node_offset;
1945 		if (cursor->parent) {
1946 			hammer_unlock(&cursor->parent->lock);
1947 			hammer_rel_node(cursor->parent);
1948 		}
1949 		cursor->parent = parent;	/* lock'd and ref'd */
1950 		hammer_rel_volume(volume, 0);
1951 	}
1952 	hammer_modify_node_done(leaf);
1953 
1954 	/*
1955 	 * Ok, now adjust the cursor depending on which element the original
1956 	 * index was pointing at.  If we are >= the split point the push node
1957 	 * is now in the new node.
1958 	 *
1959 	 * NOTE: If we are at the split point itself we need to select the
1960 	 * old or new node based on where key_beg's insertion point will be.
1961 	 * If we pick the wrong side the inserted element will wind up in
1962 	 * the wrong leaf node and outside that node's bounds.
1963 	 */
1964 	if (cursor->index > split ||
1965 	    (cursor->index == split &&
1966 	     hammer_btree_cmp(&cursor->key_beg, mid_boundary) >= 0)) {
1967 		cursor->parent_index = parent_index + 1;
1968 		cursor->index -= split;
1969 		hammer_unlock(&cursor->node->lock);
1970 		hammer_rel_node(cursor->node);
1971 		cursor->node = new_leaf;
1972 	} else {
1973 		cursor->parent_index = parent_index;
1974 		hammer_unlock(&new_leaf->lock);
1975 		hammer_rel_node(new_leaf);
1976 	}
1977 
1978 	/*
1979 	 * Fixup left and right bounds
1980 	 */
1981 	parent_elm = &parent->ondisk->elms[cursor->parent_index];
1982 	cursor->left_bound = &parent_elm[0].internal.base;
1983 	cursor->right_bound = &parent_elm[1].internal.base;
1984 
1985 	/*
1986 	 * Assert that the bounds are correct.
1987 	 */
1988 	KKASSERT(hammer_btree_cmp(cursor->left_bound,
1989 		 &cursor->node->ondisk->elms[0].leaf.base) <= 0);
1990 	KKASSERT(hammer_btree_cmp(cursor->right_bound,
1991 		 &cursor->node->ondisk->elms[cursor->node->ondisk->count-1].leaf.base) > 0);
1992 	KKASSERT(hammer_btree_cmp(cursor->left_bound, &cursor->key_beg) <= 0);
1993 	KKASSERT(hammer_btree_cmp(cursor->right_bound, &cursor->key_beg) > 0);
1994 
1995 done:
1996 	hammer_cursor_downgrade(cursor);
1997 	return (error);
1998 }
1999 
2000 #if 0
2001 
2002 /*
2003  * Recursively correct the right-hand boundary's create_tid to (tid) as
2004  * long as the rest of the key matches.  We have to recurse upward in
2005  * the tree as well as down the left side of each parent's right node.
2006  *
2007  * Return EDEADLK if we were only partially successful, forcing the caller
2008  * to try again.  The original cursor is not modified.  This routine can
2009  * also fail with EDEADLK if it is forced to throw away a portion of its
2010  * record history.
2011  *
2012  * The caller must pass a downgraded cursor to us (otherwise we can't dup it).
2013  */
2014 struct hammer_rhb {
2015 	TAILQ_ENTRY(hammer_rhb) entry;
2016 	hammer_node_t	node;
2017 	int		index;
2018 };
2019 
2020 TAILQ_HEAD(hammer_rhb_list, hammer_rhb);
2021 
2022 int
2023 hammer_btree_correct_rhb(hammer_cursor_t cursor, hammer_tid_t tid)
2024 {
2025 	struct hammer_mount *hmp;
2026 	struct hammer_rhb_list rhb_list;
2027 	hammer_base_elm_t elm;
2028 	hammer_node_t orig_node;
2029 	struct hammer_rhb *rhb;
2030 	int orig_index;
2031 	int error;
2032 
2033 	TAILQ_INIT(&rhb_list);
2034 	hmp = cursor->trans->hmp;
2035 
2036 	/*
2037 	 * Save our position so we can restore it on return.  This also
2038 	 * gives us a stable 'elm'.
2039 	 */
2040 	orig_node = cursor->node;
2041 	hammer_ref_node(orig_node);
2042 	hammer_lock_sh(&orig_node->lock);
2043 	orig_index = cursor->index;
2044 	elm = &orig_node->ondisk->elms[orig_index].base;
2045 
2046 	/*
2047 	 * Now build a list of parents going up, allocating a rhb
2048 	 * structure for each one.
2049 	 */
2050 	while (cursor->parent) {
2051 		/*
2052 		 * Stop if we no longer have any right-bounds to fix up
2053 		 */
2054 		if (elm->obj_id != cursor->right_bound->obj_id ||
2055 		    elm->rec_type != cursor->right_bound->rec_type ||
2056 		    elm->key != cursor->right_bound->key) {
2057 			break;
2058 		}
2059 
2060 		/*
2061 		 * Stop if the right-hand bound's create_tid does not
2062 		 * need to be corrected.
2063 		 */
2064 		if (cursor->right_bound->create_tid >= tid)
2065 			break;
2066 
2067 		rhb = kmalloc(sizeof(*rhb), hmp->m_misc, M_WAITOK|M_ZERO);
2068 		rhb->node = cursor->parent;
2069 		rhb->index = cursor->parent_index;
2070 		hammer_ref_node(rhb->node);
2071 		hammer_lock_sh(&rhb->node->lock);
2072 		TAILQ_INSERT_HEAD(&rhb_list, rhb, entry);
2073 
2074 		hammer_cursor_up(cursor);
2075 	}
2076 
2077 	/*
2078 	 * now safely adjust the right hand bound for each rhb.  This may
2079 	 * also require taking the right side of the tree and iterating down
2080 	 * ITS left side.
2081 	 */
2082 	error = 0;
2083 	while (error == 0 && (rhb = TAILQ_FIRST(&rhb_list)) != NULL) {
2084 		error = hammer_cursor_seek(cursor, rhb->node, rhb->index);
2085 		if (error)
2086 			break;
2087 		TAILQ_REMOVE(&rhb_list, rhb, entry);
2088 		hammer_unlock(&rhb->node->lock);
2089 		hammer_rel_node(rhb->node);
2090 		kfree(rhb, hmp->m_misc);
2091 
2092 		switch (cursor->node->ondisk->type) {
2093 		case HAMMER_BTREE_TYPE_INTERNAL:
2094 			/*
2095 			 * Right-boundary for parent at internal node
2096 			 * is one element to the right of the element whos
2097 			 * right boundary needs adjusting.  We must then
2098 			 * traverse down the left side correcting any left
2099 			 * bounds (which may now be too far to the left).
2100 			 */
2101 			++cursor->index;
2102 			error = hammer_btree_correct_lhb(cursor, tid);
2103 			break;
2104 		default:
2105 			panic("hammer_btree_correct_rhb(): Bad node type");
2106 			error = EINVAL;
2107 			break;
2108 		}
2109 	}
2110 
2111 	/*
2112 	 * Cleanup
2113 	 */
2114 	while ((rhb = TAILQ_FIRST(&rhb_list)) != NULL) {
2115 		TAILQ_REMOVE(&rhb_list, rhb, entry);
2116 		hammer_unlock(&rhb->node->lock);
2117 		hammer_rel_node(rhb->node);
2118 		kfree(rhb, hmp->m_misc);
2119 	}
2120 	error = hammer_cursor_seek(cursor, orig_node, orig_index);
2121 	hammer_unlock(&orig_node->lock);
2122 	hammer_rel_node(orig_node);
2123 	return (error);
2124 }
2125 
2126 /*
2127  * Similar to rhb (in fact, rhb calls lhb), but corrects the left hand
2128  * bound going downward starting at the current cursor position.
2129  *
2130  * This function does not restore the cursor after use.
2131  */
2132 int
2133 hammer_btree_correct_lhb(hammer_cursor_t cursor, hammer_tid_t tid)
2134 {
2135 	struct hammer_rhb_list rhb_list;
2136 	hammer_base_elm_t elm;
2137 	hammer_base_elm_t cmp;
2138 	struct hammer_rhb *rhb;
2139 	struct hammer_mount *hmp;
2140 	int error;
2141 
2142 	TAILQ_INIT(&rhb_list);
2143 	hmp = cursor->trans->hmp;
2144 
2145 	cmp = &cursor->node->ondisk->elms[cursor->index].base;
2146 
2147 	/*
2148 	 * Record the node and traverse down the left-hand side for all
2149 	 * matching records needing a boundary correction.
2150 	 */
2151 	error = 0;
2152 	for (;;) {
2153 		rhb = kmalloc(sizeof(*rhb), hmp->m_misc, M_WAITOK|M_ZERO);
2154 		rhb->node = cursor->node;
2155 		rhb->index = cursor->index;
2156 		hammer_ref_node(rhb->node);
2157 		hammer_lock_sh(&rhb->node->lock);
2158 		TAILQ_INSERT_HEAD(&rhb_list, rhb, entry);
2159 
2160 		if (cursor->node->ondisk->type == HAMMER_BTREE_TYPE_INTERNAL) {
2161 			/*
2162 			 * Nothing to traverse down if we are at the right
2163 			 * boundary of an internal node.
2164 			 */
2165 			if (cursor->index == cursor->node->ondisk->count)
2166 				break;
2167 		} else {
2168 			elm = &cursor->node->ondisk->elms[cursor->index].base;
2169 			if (elm->btype == HAMMER_BTREE_TYPE_RECORD)
2170 				break;
2171 			panic("Illegal leaf record type %02x", elm->btype);
2172 		}
2173 		error = hammer_cursor_down(cursor);
2174 		if (error)
2175 			break;
2176 
2177 		elm = &cursor->node->ondisk->elms[cursor->index].base;
2178 		if (elm->obj_id != cmp->obj_id ||
2179 		    elm->rec_type != cmp->rec_type ||
2180 		    elm->key != cmp->key) {
2181 			break;
2182 		}
2183 		if (elm->create_tid >= tid)
2184 			break;
2185 
2186 	}
2187 
2188 	/*
2189 	 * Now we can safely adjust the left-hand boundary from the bottom-up.
2190 	 * The last element we remove from the list is the caller's right hand
2191 	 * boundary, which must also be adjusted.
2192 	 */
2193 	while (error == 0 && (rhb = TAILQ_FIRST(&rhb_list)) != NULL) {
2194 		error = hammer_cursor_seek(cursor, rhb->node, rhb->index);
2195 		if (error)
2196 			break;
2197 		TAILQ_REMOVE(&rhb_list, rhb, entry);
2198 		hammer_unlock(&rhb->node->lock);
2199 		hammer_rel_node(rhb->node);
2200 		kfree(rhb, hmp->m_misc);
2201 
2202 		elm = &cursor->node->ondisk->elms[cursor->index].base;
2203 		if (cursor->node->ondisk->type == HAMMER_BTREE_TYPE_INTERNAL) {
2204 			hammer_modify_node(cursor->trans, cursor->node,
2205 					   &elm->create_tid,
2206 					   sizeof(elm->create_tid));
2207 			elm->create_tid = tid;
2208 			hammer_modify_node_done(cursor->node);
2209 		} else {
2210 			panic("hammer_btree_correct_lhb(): Bad element type");
2211 		}
2212 	}
2213 
2214 	/*
2215 	 * Cleanup
2216 	 */
2217 	while ((rhb = TAILQ_FIRST(&rhb_list)) != NULL) {
2218 		TAILQ_REMOVE(&rhb_list, rhb, entry);
2219 		hammer_unlock(&rhb->node->lock);
2220 		hammer_rel_node(rhb->node);
2221 		kfree(rhb, hmp->m_misc);
2222 	}
2223 	return (error);
2224 }
2225 
2226 #endif
2227 
2228 /*
2229  * Attempt to remove the locked, empty or want-to-be-empty B-Tree node at
2230  * (cursor->node).  Returns 0 on success, EDEADLK if we could not complete
2231  * the operation due to a deadlock, or some other error.
2232  *
2233  * This routine is initially called with an empty leaf and may be
2234  * recursively called with single-element internal nodes.
2235  *
2236  * It should also be noted that when removing empty leaves we must be sure
2237  * to test and update mirror_tid because another thread may have deadlocked
2238  * against us (or someone) trying to propagate it up and cannot retry once
2239  * the node has been deleted.
2240  *
2241  * On return the cursor may end up pointing to an internal node, suitable
2242  * for further iteration but not for an immediate insertion or deletion.
2243  */
2244 static int
2245 btree_remove(hammer_cursor_t cursor)
2246 {
2247 	hammer_node_ondisk_t ondisk;
2248 	hammer_btree_elm_t elm;
2249 	hammer_node_t node;
2250 	hammer_node_t parent;
2251 	const int esize = sizeof(*elm);
2252 	int error;
2253 
2254 	node = cursor->node;
2255 
2256 	/*
2257 	 * When deleting the root of the filesystem convert it to
2258 	 * an empty leaf node.  Internal nodes cannot be empty.
2259 	 */
2260 	ondisk = node->ondisk;
2261 	if (ondisk->parent == 0) {
2262 		KKASSERT(cursor->parent == NULL);
2263 		hammer_modify_node_all(cursor->trans, node);
2264 		KKASSERT(ondisk == node->ondisk);
2265 		ondisk->type = HAMMER_BTREE_TYPE_LEAF;
2266 		ondisk->count = 0;
2267 		hammer_modify_node_done(node);
2268 		cursor->index = 0;
2269 		return(0);
2270 	}
2271 
2272 	parent = cursor->parent;
2273 
2274 	/*
2275 	 * Attempt to remove the parent's reference to the child.  If the
2276 	 * parent would become empty we have to recurse.  If we fail we
2277 	 * leave the parent pointing to an empty leaf node.
2278 	 *
2279 	 * We have to recurse successfully before we can delete the internal
2280 	 * node as it is illegal to have empty internal nodes.  Even though
2281 	 * the operation may be aborted we must still fixup any unlocked
2282 	 * cursors as if we had deleted the element prior to recursing
2283 	 * (by calling hammer_cursor_deleted_element()) so those cursors
2284 	 * are properly forced up the chain by the recursion.
2285 	 */
2286 	if (parent->ondisk->count == 1) {
2287 		/*
2288 		 * This special cursor_up_locked() call leaves the original
2289 		 * node exclusively locked and referenced, leaves the
2290 		 * original parent locked (as the new node), and locks the
2291 		 * new parent.  It can return EDEADLK.
2292 		 *
2293 		 * We cannot call hammer_cursor_removed_node() until we are
2294 		 * actually able to remove the node.  If we did then tracked
2295 		 * cursors in the middle of iterations could be repointed
2296 		 * to a parent node.  If this occurs they could end up
2297 		 * scanning newly inserted records into the node (that could
2298 		 * not be deleted) when they push down again.
2299 		 *
2300 		 * Due to the way the recursion works the final parent is left
2301 		 * in cursor->parent after the recursion returns.  Each
2302 		 * layer on the way back up is thus able to call
2303 		 * hammer_cursor_removed_node() and 'jump' the node up to
2304 		 * the (same) final parent.
2305 		 *
2306 		 * NOTE!  The local variable 'parent' is invalid after we
2307 		 *	  call hammer_cursor_up_locked().
2308 		 */
2309 		error = hammer_cursor_up_locked(cursor);
2310 		parent = NULL;
2311 
2312 		if (error == 0) {
2313 			hammer_cursor_deleted_element(cursor->node, 0);
2314 			error = btree_remove(cursor);
2315 			if (error == 0) {
2316 				KKASSERT(node != cursor->node);
2317 				hammer_cursor_removed_node(
2318 					node, cursor->node,
2319 					cursor->index);
2320 				hammer_modify_node_all(cursor->trans, node);
2321 				ondisk = node->ondisk;
2322 				ondisk->type = HAMMER_BTREE_TYPE_DELETED;
2323 				ondisk->count = 0;
2324 				hammer_modify_node_done(node);
2325 				hammer_flush_node(node, 0);
2326 				hammer_delete_node(cursor->trans, node);
2327 			} else {
2328 				/*
2329 				 * Defer parent removal because we could not
2330 				 * get the lock, just let the leaf remain
2331 				 * empty.
2332 				 */
2333 				/**/
2334 			}
2335 			hammer_unlock(&node->lock);
2336 			hammer_rel_node(node);
2337 		} else {
2338 			/*
2339 			 * Defer parent removal because we could not
2340 			 * get the lock, just let the leaf remain
2341 			 * empty.
2342 			 */
2343 			/**/
2344 		}
2345 	} else {
2346 		KKASSERT(parent->ondisk->count > 1);
2347 
2348 		hammer_modify_node_all(cursor->trans, parent);
2349 		ondisk = parent->ondisk;
2350 		KKASSERT(ondisk->type == HAMMER_BTREE_TYPE_INTERNAL);
2351 
2352 		elm = &ondisk->elms[cursor->parent_index];
2353 		KKASSERT(elm->internal.subtree_offset == node->node_offset);
2354 		KKASSERT(ondisk->count > 0);
2355 
2356 		/*
2357 		 * We must retain the highest mirror_tid.  The deleted
2358 		 * range is now encompassed by the element to the left.
2359 		 * If we are already at the left edge the new left edge
2360 		 * inherits mirror_tid.
2361 		 *
2362 		 * Note that bounds of the parent to our parent may create
2363 		 * a gap to the left of our left-most node or to the right
2364 		 * of our right-most node.  The gap is silently included
2365 		 * in the mirror_tid's area of effect from the point of view
2366 		 * of the scan.
2367 		 */
2368 		if (cursor->parent_index) {
2369 			if (elm[-1].internal.mirror_tid <
2370 			    elm[0].internal.mirror_tid) {
2371 				elm[-1].internal.mirror_tid =
2372 				    elm[0].internal.mirror_tid;
2373 			}
2374 		} else {
2375 			if (elm[1].internal.mirror_tid <
2376 			    elm[0].internal.mirror_tid) {
2377 				elm[1].internal.mirror_tid =
2378 				    elm[0].internal.mirror_tid;
2379 			}
2380 		}
2381 
2382 		/*
2383 		 * Delete the subtree reference in the parent.  Include
2384 		 * boundary element at end.
2385 		 */
2386 		bcopy(&elm[1], &elm[0],
2387 		      (ondisk->count - cursor->parent_index) * esize);
2388 		--ondisk->count;
2389 		hammer_modify_node_done(parent);
2390 		hammer_cursor_removed_node(node, parent, cursor->parent_index);
2391 		hammer_cursor_deleted_element(parent, cursor->parent_index);
2392 		hammer_flush_node(node, 0);
2393 		hammer_delete_node(cursor->trans, node);
2394 
2395 		/*
2396 		 * cursor->node is invalid, cursor up to make the cursor
2397 		 * valid again.  We have to flag the condition in case
2398 		 * another thread wiggles an insertion in during an
2399 		 * iteration.
2400 		 */
2401 		cursor->flags |= HAMMER_CURSOR_ITERATE_CHECK;
2402 		error = hammer_cursor_up(cursor);
2403 	}
2404 	return (error);
2405 }
2406 
2407 /*
2408  * Propagate cursor->trans->tid up the B-Tree starting at the current
2409  * cursor position using pseudofs info gleaned from the passed inode.
2410  *
2411  * The passed inode has no relationship to the cursor position other
2412  * then being in the same pseudofs as the insertion or deletion we
2413  * are propagating the mirror_tid for.
2414  *
2415  * WARNING!  Because we push and pop the passed cursor, it may be
2416  *	     modified by other B-Tree operations while it is unlocked
2417  *	     and things like the node & leaf pointers, and indexes might
2418  *	     change.
2419  */
2420 void
2421 hammer_btree_do_propagation(hammer_cursor_t cursor,
2422 			    hammer_pseudofs_inmem_t pfsm,
2423 			    hammer_btree_leaf_elm_t leaf)
2424 {
2425 	hammer_cursor_t ncursor;
2426 	hammer_tid_t mirror_tid;
2427 	int error __debugvar;
2428 
2429 	/*
2430 	 * We do not propagate a mirror_tid if the filesystem was mounted
2431 	 * in no-mirror mode.
2432 	 */
2433 	if (cursor->trans->hmp->master_id < 0)
2434 		return;
2435 
2436 	/*
2437 	 * This is a bit of a hack because we cannot deadlock or return
2438 	 * EDEADLK here.  The related operation has already completed and
2439 	 * we must propagate the mirror_tid now regardless.
2440 	 *
2441 	 * Generate a new cursor which inherits the original's locks and
2442 	 * unlock the original.  Use the new cursor to propagate the
2443 	 * mirror_tid.  Then clean up the new cursor and reacquire locks
2444 	 * on the original.
2445 	 *
2446 	 * hammer_dup_cursor() cannot dup locks.  The dup inherits the
2447 	 * original's locks and the original is tracked and must be
2448 	 * re-locked.
2449 	 */
2450 	mirror_tid = cursor->node->ondisk->mirror_tid;
2451 	KKASSERT(mirror_tid != 0);
2452 	ncursor = hammer_push_cursor(cursor);
2453 	error = hammer_btree_mirror_propagate(ncursor, mirror_tid);
2454 	KKASSERT(error == 0);
2455 	hammer_pop_cursor(cursor, ncursor);
2456 	/* WARNING: cursor's leaf pointer may change after pop */
2457 }
2458 
2459 
2460 /*
2461  * Propagate a mirror TID update upwards through the B-Tree to the root.
2462  *
2463  * A locked internal node must be passed in.  The node will remain locked
2464  * on return.
2465  *
2466  * This function syncs mirror_tid at the specified internal node's element,
2467  * adjusts the node's aggregation mirror_tid, and then recurses upwards.
2468  */
2469 static int
2470 hammer_btree_mirror_propagate(hammer_cursor_t cursor, hammer_tid_t mirror_tid)
2471 {
2472 	hammer_btree_internal_elm_t elm;
2473 	hammer_node_t node;
2474 	int error;
2475 
2476 	for (;;) {
2477 		error = hammer_cursor_up(cursor);
2478 		if (error == 0)
2479 			error = hammer_cursor_upgrade(cursor);
2480 
2481 		/*
2482 		 * We can ignore HAMMER_CURSOR_ITERATE_CHECK, the
2483 		 * cursor will still be properly positioned for
2484 		 * mirror propagation, just not for iterations.
2485 		 */
2486 		while (error == EDEADLK) {
2487 			hammer_recover_cursor(cursor);
2488 			error = hammer_cursor_upgrade(cursor);
2489 		}
2490 		if (error)
2491 			break;
2492 
2493 		/*
2494 		 * If the cursor deadlocked it could end up at a leaf
2495 		 * after we lost the lock.
2496 		 */
2497 		node = cursor->node;
2498 		if (node->ondisk->type != HAMMER_BTREE_TYPE_INTERNAL)
2499 			continue;
2500 
2501 		/*
2502 		 * Adjust the node's element
2503 		 */
2504 		elm = &node->ondisk->elms[cursor->index].internal;
2505 		if (elm->mirror_tid >= mirror_tid)
2506 			break;
2507 		hammer_modify_node(cursor->trans, node, &elm->mirror_tid,
2508 				   sizeof(elm->mirror_tid));
2509 		elm->mirror_tid = mirror_tid;
2510 		hammer_modify_node_done(node);
2511 		if (hammer_debug_general & 0x0002) {
2512 			kprintf("mirror_propagate: propagate "
2513 				"%016llx @%016llx:%d\n",
2514 				(long long)mirror_tid,
2515 				(long long)node->node_offset,
2516 				cursor->index);
2517 		}
2518 
2519 
2520 		/*
2521 		 * Adjust the node's mirror_tid aggregator
2522 		 */
2523 		if (node->ondisk->mirror_tid >= mirror_tid)
2524 			return(0);
2525 		hammer_modify_node_field(cursor->trans, node, mirror_tid);
2526 		node->ondisk->mirror_tid = mirror_tid;
2527 		hammer_modify_node_done(node);
2528 		if (hammer_debug_general & 0x0002) {
2529 			kprintf("mirror_propagate: propagate "
2530 				"%016llx @%016llx\n",
2531 				(long long)mirror_tid,
2532 				(long long)node->node_offset);
2533 		}
2534 	}
2535 	if (error == ENOENT)
2536 		error = 0;
2537 	return(error);
2538 }
2539 
2540 hammer_node_t
2541 hammer_btree_get_parent(hammer_transaction_t trans, hammer_node_t node,
2542 			int *parent_indexp, int *errorp, int try_exclusive)
2543 {
2544 	hammer_node_t parent;
2545 	hammer_btree_elm_t elm;
2546 	int i;
2547 
2548 	/*
2549 	 * Get the node
2550 	 */
2551 	parent = hammer_get_node(trans, node->ondisk->parent, 0, errorp);
2552 	if (*errorp) {
2553 		KKASSERT(parent == NULL);
2554 		return(NULL);
2555 	}
2556 	KKASSERT ((parent->flags & HAMMER_NODE_DELETED) == 0);
2557 
2558 	/*
2559 	 * Lock the node
2560 	 */
2561 	if (try_exclusive) {
2562 		if (hammer_lock_ex_try(&parent->lock)) {
2563 			hammer_rel_node(parent);
2564 			*errorp = EDEADLK;
2565 			return(NULL);
2566 		}
2567 	} else {
2568 		hammer_lock_sh(&parent->lock);
2569 	}
2570 
2571 	/*
2572 	 * Figure out which element in the parent is pointing to the
2573 	 * child.
2574 	 */
2575 	if (node->ondisk->count) {
2576 		i = hammer_btree_search_node(&node->ondisk->elms[0].base,
2577 					     parent->ondisk);
2578 	} else {
2579 		i = 0;
2580 	}
2581 	while (i < parent->ondisk->count) {
2582 		elm = &parent->ondisk->elms[i];
2583 		if (elm->internal.subtree_offset == node->node_offset)
2584 			break;
2585 		++i;
2586 	}
2587 	if (i == parent->ondisk->count) {
2588 		hammer_unlock(&parent->lock);
2589 		panic("Bad B-Tree link: parent %p node %p", parent, node);
2590 	}
2591 	*parent_indexp = i;
2592 	KKASSERT(*errorp == 0);
2593 	return(parent);
2594 }
2595 
2596 /*
2597  * The element (elm) has been moved to a new internal node (node).
2598  *
2599  * If the element represents a pointer to an internal node that node's
2600  * parent must be adjusted to the element's new location.
2601  *
2602  * XXX deadlock potential here with our exclusive locks
2603  */
2604 int
2605 btree_set_parent(hammer_transaction_t trans, hammer_node_t node,
2606 		 hammer_btree_elm_t elm)
2607 {
2608 	hammer_node_t child;
2609 	int error;
2610 
2611 	error = 0;
2612 
2613 	switch(elm->base.btype) {
2614 	case HAMMER_BTREE_TYPE_INTERNAL:
2615 	case HAMMER_BTREE_TYPE_LEAF:
2616 		child = hammer_get_node(trans, elm->internal.subtree_offset,
2617 					0, &error);
2618 		if (error == 0) {
2619 			hammer_modify_node_field(trans, child, parent);
2620 			child->ondisk->parent = node->node_offset;
2621 			hammer_modify_node_done(child);
2622 			hammer_rel_node(child);
2623 		}
2624 		break;
2625 	default:
2626 		break;
2627 	}
2628 	return(error);
2629 }
2630 
2631 /*
2632  * Initialize the root of a recursive B-Tree node lock list structure.
2633  */
2634 void
2635 hammer_node_lock_init(hammer_node_lock_t parent, hammer_node_t node)
2636 {
2637 	TAILQ_INIT(&parent->list);
2638 	parent->parent = NULL;
2639 	parent->node = node;
2640 	parent->index = -1;
2641 	parent->count = node->ondisk->count;
2642 	parent->copy = NULL;
2643 	parent->flags = 0;
2644 }
2645 
2646 /*
2647  * Initialize a cache of hammer_node_lock's including space allocated
2648  * for node copies.
2649  *
2650  * This is used by the rebalancing code to preallocate the copy space
2651  * for ~4096 B-Tree nodes (16MB of data) prior to acquiring any HAMMER
2652  * locks, otherwise we can blow out the pageout daemon's emergency
2653  * reserve and deadlock it.
2654  *
2655  * NOTE: HAMMER_NODE_LOCK_LCACHE is not set on items cached in the lcache.
2656  *	 The flag is set when the item is pulled off the cache for use.
2657  */
2658 void
2659 hammer_btree_lcache_init(hammer_mount_t hmp, hammer_node_lock_t lcache,
2660 			 int depth)
2661 {
2662 	hammer_node_lock_t item;
2663 	int count;
2664 
2665 	for (count = 1; depth; --depth)
2666 		count *= HAMMER_BTREE_LEAF_ELMS;
2667 	bzero(lcache, sizeof(*lcache));
2668 	TAILQ_INIT(&lcache->list);
2669 	while (count) {
2670 		item = kmalloc(sizeof(*item), hmp->m_misc, M_WAITOK|M_ZERO);
2671 		item->copy = kmalloc(sizeof(*item->copy),
2672 				     hmp->m_misc, M_WAITOK);
2673 		TAILQ_INIT(&item->list);
2674 		TAILQ_INSERT_TAIL(&lcache->list, item, entry);
2675 		--count;
2676 	}
2677 }
2678 
2679 void
2680 hammer_btree_lcache_free(hammer_mount_t hmp, hammer_node_lock_t lcache)
2681 {
2682 	hammer_node_lock_t item;
2683 
2684 	while ((item = TAILQ_FIRST(&lcache->list)) != NULL) {
2685 		TAILQ_REMOVE(&lcache->list, item, entry);
2686 		KKASSERT(item->copy);
2687 		KKASSERT(TAILQ_EMPTY(&item->list));
2688 		kfree(item->copy, hmp->m_misc);
2689 		kfree(item, hmp->m_misc);
2690 	}
2691 	KKASSERT(lcache->copy == NULL);
2692 }
2693 
2694 /*
2695  * Exclusively lock all the children of node.  This is used by the split
2696  * code to prevent anyone from accessing the children of a cursor node
2697  * while we fix-up its parent offset.
2698  *
2699  * If we don't lock the children we can really mess up cursors which block
2700  * trying to cursor-up into our node.
2701  *
2702  * On failure EDEADLK (or some other error) is returned.  If a deadlock
2703  * error is returned the cursor is adjusted to block on termination.
2704  *
2705  * The caller is responsible for managing parent->node, the root's node
2706  * is usually aliased from a cursor.
2707  */
2708 int
2709 hammer_btree_lock_children(hammer_cursor_t cursor, int depth,
2710 			   hammer_node_lock_t parent,
2711 			   hammer_node_lock_t lcache)
2712 {
2713 	hammer_node_t node;
2714 	hammer_node_lock_t item;
2715 	hammer_node_ondisk_t ondisk;
2716 	hammer_btree_elm_t elm;
2717 	hammer_node_t child;
2718 	struct hammer_mount *hmp;
2719 	int error;
2720 	int i;
2721 
2722 	node = parent->node;
2723 	ondisk = node->ondisk;
2724 	error = 0;
2725 	hmp = cursor->trans->hmp;
2726 
2727 	/*
2728 	 * We really do not want to block on I/O with exclusive locks held,
2729 	 * pre-get the children before trying to lock the mess.  This is
2730 	 * only done one-level deep for now.
2731 	 */
2732 	for (i = 0; i < ondisk->count; ++i) {
2733 		++hammer_stats_btree_elements;
2734 		elm = &ondisk->elms[i];
2735 		if (elm->base.btype != HAMMER_BTREE_TYPE_LEAF &&
2736 		    elm->base.btype != HAMMER_BTREE_TYPE_INTERNAL) {
2737 			continue;
2738 		}
2739 		child = hammer_get_node(cursor->trans,
2740 					elm->internal.subtree_offset,
2741 					0, &error);
2742 		if (child)
2743 			hammer_rel_node(child);
2744 	}
2745 
2746 	/*
2747 	 * Do it for real
2748 	 */
2749 	for (i = 0; error == 0 && i < ondisk->count; ++i) {
2750 		++hammer_stats_btree_elements;
2751 		elm = &ondisk->elms[i];
2752 
2753 		switch(elm->base.btype) {
2754 		case HAMMER_BTREE_TYPE_INTERNAL:
2755 		case HAMMER_BTREE_TYPE_LEAF:
2756 			KKASSERT(elm->internal.subtree_offset != 0);
2757 			child = hammer_get_node(cursor->trans,
2758 						elm->internal.subtree_offset,
2759 						0, &error);
2760 			break;
2761 		default:
2762 			child = NULL;
2763 			break;
2764 		}
2765 		if (child) {
2766 			if (hammer_lock_ex_try(&child->lock) != 0) {
2767 				if (cursor->deadlk_node == NULL) {
2768 					cursor->deadlk_node = child;
2769 					hammer_ref_node(cursor->deadlk_node);
2770 				}
2771 				error = EDEADLK;
2772 				hammer_rel_node(child);
2773 			} else {
2774 				if (lcache) {
2775 					item = TAILQ_FIRST(&lcache->list);
2776 					KKASSERT(item != NULL);
2777 					item->flags |= HAMMER_NODE_LOCK_LCACHE;
2778 					TAILQ_REMOVE(&lcache->list,
2779 						     item, entry);
2780 				} else {
2781 					item = kmalloc(sizeof(*item),
2782 						       hmp->m_misc,
2783 						       M_WAITOK|M_ZERO);
2784 					TAILQ_INIT(&item->list);
2785 				}
2786 
2787 				TAILQ_INSERT_TAIL(&parent->list, item, entry);
2788 				item->parent = parent;
2789 				item->node = child;
2790 				item->index = i;
2791 				item->count = child->ondisk->count;
2792 
2793 				/*
2794 				 * Recurse (used by the rebalancing code)
2795 				 */
2796 				if (depth > 1 && elm->base.btype == HAMMER_BTREE_TYPE_INTERNAL) {
2797 					error = hammer_btree_lock_children(
2798 							cursor,
2799 							depth - 1,
2800 							item,
2801 							lcache);
2802 				}
2803 			}
2804 		}
2805 	}
2806 	if (error)
2807 		hammer_btree_unlock_children(hmp, parent, lcache);
2808 	return(error);
2809 }
2810 
2811 /*
2812  * Create an in-memory copy of all B-Tree nodes listed, recursively,
2813  * including the parent.
2814  */
2815 void
2816 hammer_btree_lock_copy(hammer_cursor_t cursor, hammer_node_lock_t parent)
2817 {
2818 	hammer_mount_t hmp = cursor->trans->hmp;
2819 	hammer_node_lock_t item;
2820 
2821 	if (parent->copy == NULL) {
2822 		KKASSERT((parent->flags & HAMMER_NODE_LOCK_LCACHE) == 0);
2823 		parent->copy = kmalloc(sizeof(*parent->copy),
2824 				       hmp->m_misc, M_WAITOK);
2825 	}
2826 	KKASSERT((parent->flags & HAMMER_NODE_LOCK_UPDATED) == 0);
2827 	*parent->copy = *parent->node->ondisk;
2828 	TAILQ_FOREACH(item, &parent->list, entry) {
2829 		hammer_btree_lock_copy(cursor, item);
2830 	}
2831 }
2832 
2833 /*
2834  * Recursively sync modified copies to the media.
2835  */
2836 int
2837 hammer_btree_sync_copy(hammer_cursor_t cursor, hammer_node_lock_t parent)
2838 {
2839 	hammer_node_lock_t item;
2840 	int count = 0;
2841 
2842 	if (parent->flags & HAMMER_NODE_LOCK_UPDATED) {
2843 		++count;
2844 		hammer_modify_node_all(cursor->trans, parent->node);
2845 		*parent->node->ondisk = *parent->copy;
2846                 hammer_modify_node_done(parent->node);
2847 		if (parent->copy->type == HAMMER_BTREE_TYPE_DELETED) {
2848 			hammer_flush_node(parent->node, 0);
2849 			hammer_delete_node(cursor->trans, parent->node);
2850 		}
2851 	}
2852 	TAILQ_FOREACH(item, &parent->list, entry) {
2853 		count += hammer_btree_sync_copy(cursor, item);
2854 	}
2855 	return(count);
2856 }
2857 
2858 /*
2859  * Release previously obtained node locks.  The caller is responsible for
2860  * cleaning up parent->node itself (its usually just aliased from a cursor),
2861  * but this function will take care of the copies.
2862  *
2863  * NOTE: The root node is not placed in the lcache and node->copy is not
2864  *	 deallocated when lcache != NULL.
2865  */
2866 void
2867 hammer_btree_unlock_children(hammer_mount_t hmp, hammer_node_lock_t parent,
2868 			     hammer_node_lock_t lcache)
2869 {
2870 	hammer_node_lock_t item;
2871 	hammer_node_ondisk_t copy;
2872 
2873 	while ((item = TAILQ_FIRST(&parent->list)) != NULL) {
2874 		TAILQ_REMOVE(&parent->list, item, entry);
2875 		hammer_btree_unlock_children(hmp, item, lcache);
2876 		hammer_unlock(&item->node->lock);
2877 		hammer_rel_node(item->node);
2878 		if (lcache) {
2879 			/*
2880 			 * NOTE: When placing the item back in the lcache
2881 			 *	 the flag is cleared by the bzero().
2882 			 *	 Remaining fields are cleared as a safety
2883 			 *	 measure.
2884 			 */
2885 			KKASSERT(item->flags & HAMMER_NODE_LOCK_LCACHE);
2886 			KKASSERT(TAILQ_EMPTY(&item->list));
2887 			copy = item->copy;
2888 			bzero(item, sizeof(*item));
2889 			TAILQ_INIT(&item->list);
2890 			item->copy = copy;
2891 			if (copy)
2892 				bzero(copy, sizeof(*copy));
2893 			TAILQ_INSERT_TAIL(&lcache->list, item, entry);
2894 		} else {
2895 			kfree(item, hmp->m_misc);
2896 		}
2897 	}
2898 	if (parent->copy && (parent->flags & HAMMER_NODE_LOCK_LCACHE) == 0) {
2899 		kfree(parent->copy, hmp->m_misc);
2900 		parent->copy = NULL;	/* safety */
2901 	}
2902 }
2903 
2904 /************************************************************************
2905  *			   MISCELLANIOUS SUPPORT 			*
2906  ************************************************************************/
2907 
2908 /*
2909  * Compare two B-Tree elements, return -N, 0, or +N (e.g. similar to strcmp).
2910  *
2911  * Note that for this particular function a return value of -1, 0, or +1
2912  * can denote a match if create_tid is otherwise discounted.  A create_tid
2913  * of zero is considered to be 'infinity' in comparisons.
2914  *
2915  * See also hammer_rec_rb_compare() and hammer_rec_cmp() in hammer_object.c.
2916  */
2917 int
2918 hammer_btree_cmp(hammer_base_elm_t key1, hammer_base_elm_t key2)
2919 {
2920 	if (key1->localization < key2->localization)
2921 		return(-5);
2922 	if (key1->localization > key2->localization)
2923 		return(5);
2924 
2925 	if (key1->obj_id < key2->obj_id)
2926 		return(-4);
2927 	if (key1->obj_id > key2->obj_id)
2928 		return(4);
2929 
2930 	if (key1->rec_type < key2->rec_type)
2931 		return(-3);
2932 	if (key1->rec_type > key2->rec_type)
2933 		return(3);
2934 
2935 	if (key1->key < key2->key)
2936 		return(-2);
2937 	if (key1->key > key2->key)
2938 		return(2);
2939 
2940 	/*
2941 	 * A create_tid of zero indicates a record which is undeletable
2942 	 * and must be considered to have a value of positive infinity.
2943 	 */
2944 	if (key1->create_tid == 0) {
2945 		if (key2->create_tid == 0)
2946 			return(0);
2947 		return(1);
2948 	}
2949 	if (key2->create_tid == 0)
2950 		return(-1);
2951 	if (key1->create_tid < key2->create_tid)
2952 		return(-1);
2953 	if (key1->create_tid > key2->create_tid)
2954 		return(1);
2955 	return(0);
2956 }
2957 
2958 /*
2959  * Test a timestamp against an element to determine whether the
2960  * element is visible.  A timestamp of 0 means 'infinity'.
2961  */
2962 int
2963 hammer_btree_chkts(hammer_tid_t asof, hammer_base_elm_t base)
2964 {
2965 	if (asof == 0) {
2966 		if (base->delete_tid)
2967 			return(1);
2968 		return(0);
2969 	}
2970 	if (asof < base->create_tid)
2971 		return(-1);
2972 	if (base->delete_tid && asof >= base->delete_tid)
2973 		return(1);
2974 	return(0);
2975 }
2976 
2977 /*
2978  * Create a separator half way inbetween key1 and key2.  For fields just
2979  * one unit apart, the separator will match key2.  key1 is on the left-hand
2980  * side and key2 is on the right-hand side.
2981  *
2982  * key2 must be >= the separator.  It is ok for the separator to match key2.
2983  *
2984  * NOTE: Even if key1 does not match key2, the separator may wind up matching
2985  * key2.
2986  *
2987  * NOTE: It might be beneficial to just scrap this whole mess and just
2988  * set the separator to key2.
2989  */
2990 #define MAKE_SEPARATOR(key1, key2, dest, field)	\
2991 	dest->field = key1->field + ((key2->field - key1->field + 1) >> 1);
2992 
2993 static void
2994 hammer_make_separator(hammer_base_elm_t key1, hammer_base_elm_t key2,
2995 		      hammer_base_elm_t dest)
2996 {
2997 	bzero(dest, sizeof(*dest));
2998 
2999 	dest->rec_type = key2->rec_type;
3000 	dest->key = key2->key;
3001 	dest->obj_id = key2->obj_id;
3002 	dest->create_tid = key2->create_tid;
3003 
3004 	MAKE_SEPARATOR(key1, key2, dest, localization);
3005 	if (key1->localization == key2->localization) {
3006 		MAKE_SEPARATOR(key1, key2, dest, obj_id);
3007 		if (key1->obj_id == key2->obj_id) {
3008 			MAKE_SEPARATOR(key1, key2, dest, rec_type);
3009 			if (key1->rec_type == key2->rec_type) {
3010 				MAKE_SEPARATOR(key1, key2, dest, key);
3011 				/*
3012 				 * Don't bother creating a separator for
3013 				 * create_tid, which also conveniently avoids
3014 				 * having to handle the create_tid == 0
3015 				 * (infinity) case.  Just leave create_tid
3016 				 * set to key2.
3017 				 *
3018 				 * Worst case, dest matches key2 exactly,
3019 				 * which is acceptable.
3020 				 */
3021 			}
3022 		}
3023 	}
3024 }
3025 
3026 #undef MAKE_SEPARATOR
3027 
3028 /*
3029  * Return whether a generic internal or leaf node is full
3030  */
3031 static int
3032 btree_node_is_full(hammer_node_ondisk_t node)
3033 {
3034 	switch(node->type) {
3035 	case HAMMER_BTREE_TYPE_INTERNAL:
3036 		if (node->count == HAMMER_BTREE_INT_ELMS)
3037 			return(1);
3038 		break;
3039 	case HAMMER_BTREE_TYPE_LEAF:
3040 		if (node->count == HAMMER_BTREE_LEAF_ELMS)
3041 			return(1);
3042 		break;
3043 	default:
3044 		panic("illegal btree subtype");
3045 	}
3046 	return(0);
3047 }
3048 
3049 #if 0
3050 static int
3051 btree_max_elements(u_int8_t type)
3052 {
3053 	if (type == HAMMER_BTREE_TYPE_LEAF)
3054 		return(HAMMER_BTREE_LEAF_ELMS);
3055 	if (type == HAMMER_BTREE_TYPE_INTERNAL)
3056 		return(HAMMER_BTREE_INT_ELMS);
3057 	panic("btree_max_elements: bad type %d", type);
3058 }
3059 #endif
3060 
3061 void
3062 hammer_print_btree_node(hammer_node_ondisk_t ondisk)
3063 {
3064 	hammer_btree_elm_t elm;
3065 	int i;
3066 
3067 	kprintf("node %p count=%d parent=%016llx type=%c\n",
3068 		ondisk, ondisk->count,
3069 		(long long)ondisk->parent, ondisk->type);
3070 
3071 	/*
3072 	 * Dump both boundary elements if an internal node
3073 	 */
3074 	if (ondisk->type == HAMMER_BTREE_TYPE_INTERNAL) {
3075 		for (i = 0; i <= ondisk->count; ++i) {
3076 			elm = &ondisk->elms[i];
3077 			hammer_print_btree_elm(elm, ondisk->type, i);
3078 		}
3079 	} else {
3080 		for (i = 0; i < ondisk->count; ++i) {
3081 			elm = &ondisk->elms[i];
3082 			hammer_print_btree_elm(elm, ondisk->type, i);
3083 		}
3084 	}
3085 }
3086 
3087 void
3088 hammer_print_btree_elm(hammer_btree_elm_t elm, u_int8_t type, int i)
3089 {
3090 	kprintf("  %2d", i);
3091 	kprintf("\tobj_id       = %016llx\n", (long long)elm->base.obj_id);
3092 	kprintf("\tkey          = %016llx\n", (long long)elm->base.key);
3093 	kprintf("\tcreate_tid   = %016llx\n", (long long)elm->base.create_tid);
3094 	kprintf("\tdelete_tid   = %016llx\n", (long long)elm->base.delete_tid);
3095 	kprintf("\trec_type     = %04x\n", elm->base.rec_type);
3096 	kprintf("\tobj_type     = %02x\n", elm->base.obj_type);
3097 	kprintf("\tbtype 	= %02x (%c)\n",
3098 		elm->base.btype,
3099 		(elm->base.btype ? elm->base.btype : '?'));
3100 	kprintf("\tlocalization	= %02x\n", elm->base.localization);
3101 
3102 	switch(type) {
3103 	case HAMMER_BTREE_TYPE_INTERNAL:
3104 		kprintf("\tsubtree_off  = %016llx\n",
3105 			(long long)elm->internal.subtree_offset);
3106 		break;
3107 	case HAMMER_BTREE_TYPE_RECORD:
3108 		kprintf("\tdata_offset  = %016llx\n",
3109 			(long long)elm->leaf.data_offset);
3110 		kprintf("\tdata_len     = %08x\n", elm->leaf.data_len);
3111 		kprintf("\tdata_crc     = %08x\n", elm->leaf.data_crc);
3112 		break;
3113 	}
3114 }
3115