xref: /dragonfly/sys/vfs/hammer/hammer_btree.c (revision 3cc0afc6)
1 /*
2  * Copyright (c) 2007-2008 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 /*
36  * HAMMER B-Tree index
37  *
38  * HAMMER implements a modified B+Tree.  In documentation this will
39  * simply be refered to as the HAMMER B-Tree.  Basically a HAMMER B-Tree
40  * looks like a B+Tree (A B-Tree which stores its records only at the leafs
41  * of the tree), but adds two additional boundary elements which describe
42  * the left-most and right-most element a node is able to represent.  In
43  * otherwords, we have boundary elements at the two ends of a B-Tree node
44  * with no valid sub-tree pointer for the right-most element.
45  *
46  * A B-Tree internal node looks like this:
47  *
48  *	B N N N N N N B   <-- boundary and internal elements
49  *       S S S S S S S    <-- subtree pointers
50  *
51  * A B-Tree leaf node basically looks like this:
52  *
53  *	L L L L L L L L   <-- leaf elemenets
54  *
55  * The radix for an internal node is 1 less then a leaf but we get a
56  * number of significant benefits for our troubles.
57  * The left-hand boundary (B in the left) is integrated into the first
58  * element so it doesn't require 2 elements to accomodate boundaries.
59  *
60  * The big benefit to using a B-Tree containing boundary information
61  * is that it is possible to cache pointers into the middle of the tree
62  * and not have to start searches, insertions, OR deletions at the root
63  * node.   In particular, searches are able to progress in a definitive
64  * direction from any point in the tree without revisting nodes.  This
65  * greatly improves the efficiency of many operations, most especially
66  * record appends.
67  *
68  * B-Trees also make the stacking of trees fairly straightforward.
69  *
70  * INSERTIONS:  A search performed with the intention of doing
71  * an insert will guarantee that the terminal leaf node is not full by
72  * splitting full nodes.  Splits occur top-down during the dive down the
73  * B-Tree.
74  *
75  * DELETIONS: A deletion makes no attempt to proactively balance the
76  * tree and will recursively remove nodes that become empty.  If a
77  * deadlock occurs a deletion may not be able to remove an empty leaf.
78  * Deletions never allow internal nodes to become empty (that would blow
79  * up the boundaries).
80  */
81 #include "hammer.h"
82 
83 static int btree_search(hammer_cursor_t cursor, int flags);
84 static int btree_split_internal(hammer_cursor_t cursor);
85 static int btree_split_leaf(hammer_cursor_t cursor);
86 static int btree_remove(hammer_cursor_t cursor, int *ndelete);
87 static __inline int btree_node_is_full(hammer_node_ondisk_t node);
88 static __inline int btree_max_elements(u_int8_t type);
89 static int hammer_btree_mirror_propagate(hammer_cursor_t cursor,
90 			hammer_tid_t mirror_tid);
91 static void hammer_make_separator(hammer_base_elm_t key1,
92 			hammer_base_elm_t key2, hammer_base_elm_t dest);
93 static void hammer_cursor_mirror_filter(hammer_cursor_t cursor);
94 
95 /*
96  * Iterate records after a search.  The cursor is iterated forwards past
97  * the current record until a record matching the key-range requirements
98  * is found.  ENOENT is returned if the iteration goes past the ending
99  * key.
100  *
101  * The iteration is inclusive of key_beg and can be inclusive or exclusive
102  * of key_end depending on whether HAMMER_CURSOR_END_INCLUSIVE is set.
103  *
104  * When doing an as-of search (cursor->asof != 0), key_beg.create_tid
105  * may be modified by B-Tree functions.
106  *
107  * cursor->key_beg may or may not be modified by this function during
108  * the iteration.  XXX future - in case of an inverted lock we may have
109  * to reinitiate the lookup and set key_beg to properly pick up where we
110  * left off.
111  *
112  * If HAMMER_CURSOR_ITERATE_CHECK is set it is possible that the cursor
113  * was reverse indexed due to being moved to a parent while unlocked,
114  * and something else might have inserted an element outside the iteration
115  * range.  When this case occurs the iterator just keeps iterating until
116  * it gets back into the iteration range (instead of asserting).
117  *
118  * NOTE!  EDEADLK *CANNOT* be returned by this procedure.
119  */
120 int
121 hammer_btree_iterate(hammer_cursor_t cursor)
122 {
123 	hammer_node_ondisk_t node;
124 	hammer_btree_elm_t elm;
125 	hammer_mount_t hmp;
126 	int error = 0;
127 	int r;
128 	int s;
129 
130 	/*
131 	 * Skip past the current record
132 	 */
133 	hmp = cursor->trans->hmp;
134 	node = cursor->node->ondisk;
135 	if (node == NULL)
136 		return(ENOENT);
137 	if (cursor->index < node->count &&
138 	    (cursor->flags & HAMMER_CURSOR_ATEDISK)) {
139 		++cursor->index;
140 	}
141 
142 	/*
143 	 * HAMMER can wind up being cpu-bound.
144 	 */
145 	if (++hmp->check_yield > hammer_yield_check) {
146 		hmp->check_yield = 0;
147 		lwkt_user_yield();
148 	}
149 
150 
151 	/*
152 	 * Loop until an element is found or we are done.
153 	 */
154 	for (;;) {
155 		/*
156 		 * We iterate up the tree and then index over one element
157 		 * while we are at the last element in the current node.
158 		 *
159 		 * If we are at the root of the filesystem, cursor_up
160 		 * returns ENOENT.
161 		 *
162 		 * XXX this could be optimized by storing the information in
163 		 * the parent reference.
164 		 *
165 		 * XXX we can lose the node lock temporarily, this could mess
166 		 * up our scan.
167 		 */
168 		++hammer_stats_btree_iterations;
169 		hammer_flusher_clean_loose_ios(hmp);
170 
171 		if (cursor->index == node->count) {
172 			if (hammer_debug_btree) {
173 				kprintf("BRACKETU %016llx[%d] -> %016llx[%d] (td=%p)\n",
174 					(long long)cursor->node->node_offset,
175 					cursor->index,
176 					(long long)(cursor->parent ? cursor->parent->node_offset : -1),
177 					cursor->parent_index,
178 					curthread);
179 			}
180 			KKASSERT(cursor->parent == NULL ||
181 				 cursor->parent->ondisk->elms[cursor->parent_index].internal.subtree_offset == cursor->node->node_offset);
182 			error = hammer_cursor_up(cursor);
183 			if (error)
184 				break;
185 			/* reload stale pointer */
186 			node = cursor->node->ondisk;
187 			KKASSERT(cursor->index != node->count);
188 
189 			/*
190 			 * If we are reblocking we want to return internal
191 			 * nodes.  Note that the internal node will be
192 			 * returned multiple times, on each upward recursion
193 			 * from its children.  The caller selects which
194 			 * revisit it cares about (usually first or last only).
195 			 */
196 			if (cursor->flags & HAMMER_CURSOR_REBLOCKING) {
197 				cursor->flags |= HAMMER_CURSOR_ATEDISK;
198 				return(0);
199 			}
200 			++cursor->index;
201 			continue;
202 		}
203 
204 		/*
205 		 * Check internal or leaf element.  Determine if the record
206 		 * at the cursor has gone beyond the end of our range.
207 		 *
208 		 * We recurse down through internal nodes.
209 		 */
210 		if (node->type == HAMMER_BTREE_TYPE_INTERNAL) {
211 			elm = &node->elms[cursor->index];
212 
213 			r = hammer_btree_cmp(&cursor->key_end, &elm[0].base);
214 			s = hammer_btree_cmp(&cursor->key_beg, &elm[1].base);
215 			if (hammer_debug_btree) {
216 				kprintf("BRACKETL %016llx[%d] %016llx %02x "
217 					"key=%016llx lo=%02x %d (td=%p)\n",
218 					(long long)cursor->node->node_offset,
219 					cursor->index,
220 					(long long)elm[0].internal.base.obj_id,
221 					elm[0].internal.base.rec_type,
222 					(long long)elm[0].internal.base.key,
223 					elm[0].internal.base.localization,
224 					r,
225 					curthread
226 				);
227 				kprintf("BRACKETR %016llx[%d] %016llx %02x "
228 					"key=%016llx lo=%02x %d\n",
229 					(long long)cursor->node->node_offset,
230 					cursor->index + 1,
231 					(long long)elm[1].internal.base.obj_id,
232 					elm[1].internal.base.rec_type,
233 					(long long)elm[1].internal.base.key,
234 					elm[1].internal.base.localization,
235 					s
236 				);
237 			}
238 
239 			if (r < 0) {
240 				error = ENOENT;
241 				break;
242 			}
243 			if (r == 0 && (cursor->flags &
244 				       HAMMER_CURSOR_END_INCLUSIVE) == 0) {
245 				error = ENOENT;
246 				break;
247 			}
248 
249 			/*
250 			 * Better not be zero
251 			 */
252 			KKASSERT(elm->internal.subtree_offset != 0);
253 
254 			if (s <= 0) {
255 				/*
256 				 * If running the mirror filter see if we
257 				 * can skip one or more entire sub-trees.
258 				 * If we can we return the internal node
259 				 * and the caller processes the skipped
260 				 * range (see mirror_read).
261 				 */
262 				if (cursor->flags &
263 				    HAMMER_CURSOR_MIRROR_FILTERED) {
264 					if (elm->internal.mirror_tid <
265 					    cursor->cmirror->mirror_tid) {
266 						hammer_cursor_mirror_filter(cursor);
267 						return(0);
268 					}
269 				}
270 			} else {
271 				/*
272 				 * Normally it would be impossible for the
273 				 * cursor to have gotten back-indexed,
274 				 * but it can happen if a node is deleted
275 				 * and the cursor is moved to its parent
276 				 * internal node.  ITERATE_CHECK will be set.
277 				 */
278 				KKASSERT(cursor->flags &
279 					 HAMMER_CURSOR_ITERATE_CHECK);
280 				kprintf("hammer_btree_iterate: "
281 					"DEBUG: Caught parent seek "
282 					"in internal iteration\n");
283 			}
284 
285 			error = hammer_cursor_down(cursor);
286 			if (error)
287 				break;
288 			KKASSERT(cursor->index == 0);
289 			/* reload stale pointer */
290 			node = cursor->node->ondisk;
291 			continue;
292 		} else {
293 			elm = &node->elms[cursor->index];
294 			r = hammer_btree_cmp(&cursor->key_end, &elm->base);
295 			if (hammer_debug_btree) {
296 				kprintf("ELEMENT  %016llx:%d %c %016llx %02x "
297 					"key=%016llx lo=%02x %d\n",
298 					(long long)cursor->node->node_offset,
299 					cursor->index,
300 					(elm[0].leaf.base.btype ?
301 					 elm[0].leaf.base.btype : '?'),
302 					(long long)elm[0].leaf.base.obj_id,
303 					elm[0].leaf.base.rec_type,
304 					(long long)elm[0].leaf.base.key,
305 					elm[0].leaf.base.localization,
306 					r
307 				);
308 			}
309 			if (r < 0) {
310 				error = ENOENT;
311 				break;
312 			}
313 
314 			/*
315 			 * We support both end-inclusive and
316 			 * end-exclusive searches.
317 			 */
318 			if (r == 0 &&
319 			   (cursor->flags & HAMMER_CURSOR_END_INCLUSIVE) == 0) {
320 				error = ENOENT;
321 				break;
322 			}
323 
324 			/*
325 			 * If ITERATE_CHECK is set an unlocked cursor may
326 			 * have been moved to a parent and the iterate can
327 			 * happen upon elements that are not in the requested
328 			 * range.
329 			 */
330 			if (cursor->flags & HAMMER_CURSOR_ITERATE_CHECK) {
331 				s = hammer_btree_cmp(&cursor->key_beg,
332 						     &elm->base);
333 				if (s > 0) {
334 					kprintf("hammer_btree_iterate: "
335 						"DEBUG: Caught parent seek "
336 						"in leaf iteration\n");
337 					++cursor->index;
338 					continue;
339 				}
340 			}
341 			cursor->flags &= ~HAMMER_CURSOR_ITERATE_CHECK;
342 
343 			/*
344 			 * Return the element
345 			 */
346 			switch(elm->leaf.base.btype) {
347 			case HAMMER_BTREE_TYPE_RECORD:
348 				if ((cursor->flags & HAMMER_CURSOR_ASOF) &&
349 				    hammer_btree_chkts(cursor->asof, &elm->base)) {
350 					++cursor->index;
351 					continue;
352 				}
353 				error = 0;
354 				break;
355 			default:
356 				error = EINVAL;
357 				break;
358 			}
359 			if (error)
360 				break;
361 		}
362 
363 		/*
364 		 * Return entry
365 		 */
366 		if (hammer_debug_btree) {
367 			int i = cursor->index;
368 			hammer_btree_elm_t elm = &cursor->node->ondisk->elms[i];
369 			kprintf("ITERATE  %p:%d %016llx %02x "
370 				"key=%016llx lo=%02x\n",
371 				cursor->node, i,
372 				(long long)elm->internal.base.obj_id,
373 				elm->internal.base.rec_type,
374 				(long long)elm->internal.base.key,
375 				elm->internal.base.localization
376 			);
377 		}
378 		return(0);
379 	}
380 	return(error);
381 }
382 
383 /*
384  * We hit an internal element that we could skip as part of a mirroring
385  * scan.  Calculate the entire range being skipped.
386  *
387  * It is important to include any gaps between the parent's left_bound
388  * and the node's left_bound, and same goes for the right side.
389  */
390 static void
391 hammer_cursor_mirror_filter(hammer_cursor_t cursor)
392 {
393 	struct hammer_cmirror *cmirror;
394 	hammer_node_ondisk_t ondisk;
395 	hammer_btree_elm_t elm;
396 
397 	ondisk = cursor->node->ondisk;
398 	cmirror = cursor->cmirror;
399 
400 	/*
401 	 * Calculate the skipped range
402 	 */
403 	elm = &ondisk->elms[cursor->index];
404 	if (cursor->index == 0)
405 		cmirror->skip_beg = *cursor->left_bound;
406 	else
407 		cmirror->skip_beg = elm->internal.base;
408 	while (cursor->index < ondisk->count) {
409 		if (elm->internal.mirror_tid >= cmirror->mirror_tid)
410 			break;
411 		++cursor->index;
412 		++elm;
413 	}
414 	if (cursor->index == ondisk->count)
415 		cmirror->skip_end = *cursor->right_bound;
416 	else
417 		cmirror->skip_end = elm->internal.base;
418 
419 	/*
420 	 * clip the returned result.
421 	 */
422 	if (hammer_btree_cmp(&cmirror->skip_beg, &cursor->key_beg) < 0)
423 		cmirror->skip_beg = cursor->key_beg;
424 	if (hammer_btree_cmp(&cmirror->skip_end, &cursor->key_end) > 0)
425 		cmirror->skip_end = cursor->key_end;
426 }
427 
428 /*
429  * Iterate in the reverse direction.  This is used by the pruning code to
430  * avoid overlapping records.
431  */
432 int
433 hammer_btree_iterate_reverse(hammer_cursor_t cursor)
434 {
435 	hammer_node_ondisk_t node;
436 	hammer_btree_elm_t elm;
437 	hammer_mount_t hmp;
438 	int error = 0;
439 	int r;
440 	int s;
441 
442 	/* mirror filtering not supported for reverse iteration */
443 	KKASSERT ((cursor->flags & HAMMER_CURSOR_MIRROR_FILTERED) == 0);
444 
445 	/*
446 	 * Skip past the current record.  For various reasons the cursor
447 	 * may end up set to -1 or set to point at the end of the current
448 	 * node.  These cases must be addressed.
449 	 */
450 	node = cursor->node->ondisk;
451 	if (node == NULL)
452 		return(ENOENT);
453 	if (cursor->index != -1 &&
454 	    (cursor->flags & HAMMER_CURSOR_ATEDISK)) {
455 		--cursor->index;
456 	}
457 	if (cursor->index == cursor->node->ondisk->count)
458 		--cursor->index;
459 
460 	/*
461 	 * HAMMER can wind up being cpu-bound.
462 	 */
463 	hmp = cursor->trans->hmp;
464 	if (++hmp->check_yield > hammer_yield_check) {
465 		hmp->check_yield = 0;
466 		lwkt_user_yield();
467 	}
468 
469 	/*
470 	 * Loop until an element is found or we are done.
471 	 */
472 	for (;;) {
473 		++hammer_stats_btree_iterations;
474 		hammer_flusher_clean_loose_ios(hmp);
475 
476 		/*
477 		 * We iterate up the tree and then index over one element
478 		 * while we are at the last element in the current node.
479 		 */
480 		if (cursor->index == -1) {
481 			error = hammer_cursor_up(cursor);
482 			if (error) {
483 				cursor->index = 0; /* sanity */
484 				break;
485 			}
486 			/* reload stale pointer */
487 			node = cursor->node->ondisk;
488 			KKASSERT(cursor->index != node->count);
489 			--cursor->index;
490 			continue;
491 		}
492 
493 		/*
494 		 * Check internal or leaf element.  Determine if the record
495 		 * at the cursor has gone beyond the end of our range.
496 		 *
497 		 * We recurse down through internal nodes.
498 		 */
499 		KKASSERT(cursor->index != node->count);
500 		if (node->type == HAMMER_BTREE_TYPE_INTERNAL) {
501 			elm = &node->elms[cursor->index];
502 
503 			r = hammer_btree_cmp(&cursor->key_end, &elm[0].base);
504 			s = hammer_btree_cmp(&cursor->key_beg, &elm[1].base);
505 			if (hammer_debug_btree) {
506 				kprintf("BRACKETL %016llx[%d] %016llx %02x "
507 					"key=%016llx lo=%02x %d (td=%p)\n",
508 					(long long)cursor->node->node_offset,
509 					cursor->index,
510 					(long long)elm[0].internal.base.obj_id,
511 					elm[0].internal.base.rec_type,
512 					(long long)elm[0].internal.base.key,
513 					elm[0].internal.base.localization,
514 					r,
515 					curthread
516 				);
517 				kprintf("BRACKETR %016llx[%d] %016llx %02x "
518 					"key=%016llx lo=%02x %d\n",
519 					(long long)cursor->node->node_offset,
520 					cursor->index + 1,
521 					(long long)elm[1].internal.base.obj_id,
522 					elm[1].internal.base.rec_type,
523 					(long long)elm[1].internal.base.key,
524 					elm[1].internal.base.localization,
525 					s
526 				);
527 			}
528 
529 			if (s >= 0) {
530 				error = ENOENT;
531 				break;
532 			}
533 
534 			/*
535 			 * It shouldn't be possible to be seeked past key_end,
536 			 * even if the cursor got moved to a parent.
537 			 */
538 			KKASSERT(r >= 0);
539 
540 			/*
541 			 * Better not be zero
542 			 */
543 			KKASSERT(elm->internal.subtree_offset != 0);
544 
545 			error = hammer_cursor_down(cursor);
546 			if (error)
547 				break;
548 			KKASSERT(cursor->index == 0);
549 			/* reload stale pointer */
550 			node = cursor->node->ondisk;
551 
552 			/* this can assign -1 if the leaf was empty */
553 			cursor->index = node->count - 1;
554 			continue;
555 		} else {
556 			elm = &node->elms[cursor->index];
557 			s = hammer_btree_cmp(&cursor->key_beg, &elm->base);
558 			if (hammer_debug_btree) {
559 				kprintf("ELEMENTR %016llx:%d %c %016llx %02x "
560 					"key=%016llx lo=%02x %d\n",
561 					(long long)cursor->node->node_offset,
562 					cursor->index,
563 					(elm[0].leaf.base.btype ?
564 					 elm[0].leaf.base.btype : '?'),
565 					(long long)elm[0].leaf.base.obj_id,
566 					elm[0].leaf.base.rec_type,
567 					(long long)elm[0].leaf.base.key,
568 					elm[0].leaf.base.localization,
569 					s
570 				);
571 			}
572 			if (s > 0) {
573 				error = ENOENT;
574 				break;
575 			}
576 
577 			/*
578 			 * It shouldn't be possible to be seeked past key_end,
579 			 * even if the cursor got moved to a parent.
580 			 */
581 			cursor->flags &= ~HAMMER_CURSOR_ITERATE_CHECK;
582 
583 			/*
584 			 * Return the element
585 			 */
586 			switch(elm->leaf.base.btype) {
587 			case HAMMER_BTREE_TYPE_RECORD:
588 				if ((cursor->flags & HAMMER_CURSOR_ASOF) &&
589 				    hammer_btree_chkts(cursor->asof, &elm->base)) {
590 					--cursor->index;
591 					continue;
592 				}
593 				error = 0;
594 				break;
595 			default:
596 				error = EINVAL;
597 				break;
598 			}
599 			if (error)
600 				break;
601 		}
602 
603 		/*
604 		 * Return entry
605 		 */
606 		if (hammer_debug_btree) {
607 			int i = cursor->index;
608 			hammer_btree_elm_t elm = &cursor->node->ondisk->elms[i];
609 			kprintf("ITERATER %p:%d %016llx %02x "
610 				"key=%016llx lo=%02x\n",
611 				cursor->node, i,
612 				(long long)elm->internal.base.obj_id,
613 				elm->internal.base.rec_type,
614 				(long long)elm->internal.base.key,
615 				elm->internal.base.localization
616 			);
617 		}
618 		return(0);
619 	}
620 	return(error);
621 }
622 
623 /*
624  * Lookup cursor->key_beg.  0 is returned on success, ENOENT if the entry
625  * could not be found, EDEADLK if inserting and a retry is needed, and a
626  * fatal error otherwise.  When retrying, the caller must terminate the
627  * cursor and reinitialize it.  EDEADLK cannot be returned if not inserting.
628  *
629  * The cursor is suitably positioned for a deletion on success, and suitably
630  * positioned for an insertion on ENOENT if HAMMER_CURSOR_INSERT was
631  * specified.
632  *
633  * The cursor may begin anywhere, the search will traverse the tree in
634  * either direction to locate the requested element.
635  *
636  * Most of the logic implementing historical searches is handled here.  We
637  * do an initial lookup with create_tid set to the asof TID.  Due to the
638  * way records are laid out, a backwards iteration may be required if
639  * ENOENT is returned to locate the historical record.  Here's the
640  * problem:
641  *
642  * create_tid:    10      15       20
643  *		     LEAF1   LEAF2
644  * records:         (11)        (18)
645  *
646  * Lets say we want to do a lookup AS-OF timestamp 17.  We will traverse
647  * LEAF2 but the only record in LEAF2 has a create_tid of 18, which is
648  * not visible and thus causes ENOENT to be returned.  We really need
649  * to check record 11 in LEAF1.  If it also fails then the search fails
650  * (e.g. it might represent the range 11-16 and thus still not match our
651  * AS-OF timestamp of 17).  Note that LEAF1 could be empty, requiring
652  * further iterations.
653  *
654  * If this case occurs btree_search() will set HAMMER_CURSOR_CREATE_CHECK
655  * and the cursor->create_check TID if an iteration might be needed.
656  * In the above example create_check would be set to 14.
657  */
658 int
659 hammer_btree_lookup(hammer_cursor_t cursor)
660 {
661 	int error;
662 
663 	cursor->flags &= ~HAMMER_CURSOR_ITERATE_CHECK;
664 	KKASSERT ((cursor->flags & HAMMER_CURSOR_INSERT) == 0 ||
665 		  cursor->trans->sync_lock_refs > 0);
666 	++hammer_stats_btree_lookups;
667 	if (cursor->flags & HAMMER_CURSOR_ASOF) {
668 		KKASSERT((cursor->flags & HAMMER_CURSOR_INSERT) == 0);
669 		cursor->key_beg.create_tid = cursor->asof;
670 		for (;;) {
671 			cursor->flags &= ~HAMMER_CURSOR_CREATE_CHECK;
672 			error = btree_search(cursor, 0);
673 			if (error != ENOENT ||
674 			    (cursor->flags & HAMMER_CURSOR_CREATE_CHECK) == 0) {
675 				/*
676 				 * Stop if no error.
677 				 * Stop if error other then ENOENT.
678 				 * Stop if ENOENT and not special case.
679 				 */
680 				break;
681 			}
682 			if (hammer_debug_btree) {
683 				kprintf("CREATE_CHECK %016llx\n",
684 					(long long)cursor->create_check);
685 			}
686 			cursor->key_beg.create_tid = cursor->create_check;
687 			/* loop */
688 		}
689 	} else {
690 		error = btree_search(cursor, 0);
691 	}
692 	if (error == 0)
693 		error = hammer_btree_extract(cursor, cursor->flags);
694 	return(error);
695 }
696 
697 /*
698  * Execute the logic required to start an iteration.  The first record
699  * located within the specified range is returned and iteration control
700  * flags are adjusted for successive hammer_btree_iterate() calls.
701  *
702  * Set ATEDISK so a low-level caller can call btree_first/btree_iterate
703  * in a loop without worrying about it.  Higher-level merged searches will
704  * adjust the flag appropriately.
705  */
706 int
707 hammer_btree_first(hammer_cursor_t cursor)
708 {
709 	int error;
710 
711 	error = hammer_btree_lookup(cursor);
712 	if (error == ENOENT) {
713 		cursor->flags &= ~HAMMER_CURSOR_ATEDISK;
714 		error = hammer_btree_iterate(cursor);
715 	}
716 	cursor->flags |= HAMMER_CURSOR_ATEDISK;
717 	return(error);
718 }
719 
720 /*
721  * Similarly but for an iteration in the reverse direction.
722  *
723  * Set ATEDISK when iterating backwards to skip the current entry,
724  * which after an ENOENT lookup will be pointing beyond our end point.
725  *
726  * Set ATEDISK so a low-level caller can call btree_last/btree_iterate_reverse
727  * in a loop without worrying about it.  Higher-level merged searches will
728  * adjust the flag appropriately.
729  */
730 int
731 hammer_btree_last(hammer_cursor_t cursor)
732 {
733 	struct hammer_base_elm save;
734 	int error;
735 
736 	save = cursor->key_beg;
737 	cursor->key_beg = cursor->key_end;
738 	error = hammer_btree_lookup(cursor);
739 	cursor->key_beg = save;
740 	if (error == ENOENT ||
741 	    (cursor->flags & HAMMER_CURSOR_END_INCLUSIVE) == 0) {
742 		cursor->flags |= HAMMER_CURSOR_ATEDISK;
743 		error = hammer_btree_iterate_reverse(cursor);
744 	}
745 	cursor->flags |= HAMMER_CURSOR_ATEDISK;
746 	return(error);
747 }
748 
749 /*
750  * Extract the record and/or data associated with the cursor's current
751  * position.  Any prior record or data stored in the cursor is replaced.
752  *
753  * NOTE: All extractions occur at the leaf of the B-Tree.
754  */
755 int
756 hammer_btree_extract(hammer_cursor_t cursor, int flags)
757 {
758 	hammer_node_ondisk_t node;
759 	hammer_btree_elm_t elm;
760 	hammer_off_t data_off;
761 	hammer_mount_t hmp;
762 	int32_t data_len;
763 	int error;
764 
765 	/*
766 	 * Certain types of corruption can result in a NULL node pointer.
767 	 */
768 	if (cursor->node == NULL) {
769 		kprintf("hammer: NULL cursor->node, filesystem might "
770 			"have gotten corrupted\n");
771 		return (EINVAL);
772 	}
773 
774 	/*
775 	 * The case where the data reference resolves to the same buffer
776 	 * as the record reference must be handled.
777 	 */
778 	node = cursor->node->ondisk;
779 	elm = &node->elms[cursor->index];
780 	cursor->data = NULL;
781 	hmp = cursor->node->hmp;
782 
783 	/*
784 	 * There is nothing to extract for an internal element.
785 	 */
786 	if (node->type == HAMMER_BTREE_TYPE_INTERNAL)
787 		return(EINVAL);
788 
789 	/*
790 	 * Only record types have data.
791 	 */
792 	KKASSERT(node->type == HAMMER_BTREE_TYPE_LEAF);
793 	cursor->leaf = &elm->leaf;
794 
795 	if ((flags & HAMMER_CURSOR_GET_DATA) == 0)
796 		return(0);
797 	if (elm->leaf.base.btype != HAMMER_BTREE_TYPE_RECORD)
798 		return(0);
799 	data_off = elm->leaf.data_offset;
800 	data_len = elm->leaf.data_len;
801 	if (data_off == 0)
802 		return(0);
803 
804 	/*
805 	 * Load the data
806 	 */
807 	KKASSERT(data_len >= 0 && data_len <= HAMMER_XBUFSIZE);
808 	cursor->data = hammer_bread_ext(hmp, data_off, data_len,
809 					&error, &cursor->data_buffer);
810 
811 	/*
812 	 * Mark the data buffer as not being meta-data if it isn't
813 	 * meta-data (sometimes bulk data is accessed via a volume
814 	 * block device).
815 	 */
816 	if (error == 0) {
817 		switch(elm->leaf.base.rec_type) {
818 		case HAMMER_RECTYPE_DATA:
819 		case HAMMER_RECTYPE_DB:
820 			if ((data_off & HAMMER_ZONE_LARGE_DATA) == 0)
821 				break;
822 			if (hammer_double_buffer == 0 ||
823 			    (cursor->flags & HAMMER_CURSOR_NOSWAPCACHE)) {
824 				hammer_io_notmeta(cursor->data_buffer);
825 			}
826 			break;
827 		default:
828 			break;
829 		}
830 	}
831 
832 	/*
833 	 * Deal with CRC errors on the extracted data.
834 	 */
835 	if (error == 0 &&
836 	    hammer_crc_test_leaf(cursor->data, &elm->leaf) == 0) {
837 		kprintf("CRC DATA @ %016llx/%d FAILED\n",
838 			(long long)elm->leaf.data_offset, elm->leaf.data_len);
839 		if (hammer_debug_critical)
840 			Debugger("CRC FAILED: DATA");
841 		if (cursor->trans->flags & HAMMER_TRANSF_CRCDOM)
842 			error = EDOM;	/* less critical (mirroring) */
843 		else
844 			error = EIO;	/* critical */
845 	}
846 	return(error);
847 }
848 
849 
850 /*
851  * Insert a leaf element into the B-Tree at the current cursor position.
852  * The cursor is positioned such that the element at and beyond the cursor
853  * are shifted to make room for the new record.
854  *
855  * The caller must call hammer_btree_lookup() with the HAMMER_CURSOR_INSERT
856  * flag set and that call must return ENOENT before this function can be
857  * called. ENOSPC is returned if there is no room to insert a new record.
858  *
859  * The caller may depend on the cursor's exclusive lock after return to
860  * interlock frontend visibility (see HAMMER_RECF_CONVERT_DELETE).
861  */
862 int
863 hammer_btree_insert(hammer_cursor_t cursor, hammer_btree_leaf_elm_t elm,
864 		    int *doprop)
865 {
866 	hammer_node_ondisk_t node;
867 	int i;
868 	int error;
869 
870 	*doprop = 0;
871 	if ((error = hammer_cursor_upgrade_node(cursor)) != 0)
872 		return(error);
873 	++hammer_stats_btree_inserts;
874 
875 	/*
876 	 * Insert the element at the leaf node and update the count in the
877 	 * parent.  It is possible for parent to be NULL, indicating that
878 	 * the filesystem's ROOT B-Tree node is a leaf itself, which is
879 	 * possible.  The root inode can never be deleted so the leaf should
880 	 * never be empty.
881 	 *
882 	 * Remember that leaf nodes do not have boundaries.
883 	 */
884 	hammer_modify_node_all(cursor->trans, cursor->node);
885 	node = cursor->node->ondisk;
886 	i = cursor->index;
887 	KKASSERT(elm->base.btype != 0);
888 	KKASSERT(node->type == HAMMER_BTREE_TYPE_LEAF);
889 	KKASSERT(node->count < HAMMER_BTREE_LEAF_ELMS);
890 	if (i != node->count) {
891 		bcopy(&node->elms[i], &node->elms[i+1],
892 		      (node->count - i) * sizeof(*elm));
893 	}
894 	node->elms[i].leaf = *elm;
895 	++node->count;
896 	hammer_cursor_inserted_element(cursor->node, i);
897 
898 	/*
899 	 * Update the leaf node's aggregate mirror_tid for mirroring
900 	 * support.
901 	 */
902 	if (node->mirror_tid < elm->base.delete_tid) {
903 		node->mirror_tid = elm->base.delete_tid;
904 		*doprop = 1;
905 	}
906 	if (node->mirror_tid < elm->base.create_tid) {
907 		node->mirror_tid = elm->base.create_tid;
908 		*doprop = 1;
909 	}
910 	hammer_modify_node_done(cursor->node);
911 
912 	/*
913 	 * Debugging sanity checks.
914 	 */
915 	KKASSERT(hammer_btree_cmp(cursor->left_bound, &elm->base) <= 0);
916 	KKASSERT(hammer_btree_cmp(cursor->right_bound, &elm->base) > 0);
917 	if (i) {
918 		KKASSERT(hammer_btree_cmp(&node->elms[i-1].leaf.base, &elm->base) < 0);
919 	}
920 	if (i != node->count - 1)
921 		KKASSERT(hammer_btree_cmp(&node->elms[i+1].leaf.base, &elm->base) > 0);
922 
923 	return(0);
924 }
925 
926 /*
927  * Delete a record from the B-Tree at the current cursor position.
928  * The cursor is positioned such that the current element is the one
929  * to be deleted.
930  *
931  * On return the cursor will be positioned after the deleted element and
932  * MAY point to an internal node.  It will be suitable for the continuation
933  * of an iteration but not for an insertion or deletion.
934  *
935  * Deletions will attempt to partially rebalance the B-Tree in an upward
936  * direction, but will terminate rather then deadlock.  Empty internal nodes
937  * are never allowed by a deletion which deadlocks may end up giving us an
938  * empty leaf.  The pruner will clean up and rebalance the tree.
939  *
940  * This function can return EDEADLK, requiring the caller to retry the
941  * operation after clearing the deadlock.
942  *
943  * This function will store the number of deleted btree nodes in *ndelete
944  * if ndelete is not NULL.
945  */
946 int
947 hammer_btree_delete(hammer_cursor_t cursor, int *ndelete)
948 {
949 	hammer_node_ondisk_t ondisk;
950 	hammer_node_t node;
951 	hammer_node_t parent __debugvar;
952 	int error;
953 	int i;
954 
955 	KKASSERT (cursor->trans->sync_lock_refs > 0);
956 	if (ndelete)
957 		*ndelete = 0;
958 	if ((error = hammer_cursor_upgrade(cursor)) != 0)
959 		return(error);
960 	++hammer_stats_btree_deletes;
961 
962 	/*
963 	 * Delete the element from the leaf node.
964 	 *
965 	 * Remember that leaf nodes do not have boundaries.
966 	 */
967 	node = cursor->node;
968 	ondisk = node->ondisk;
969 	i = cursor->index;
970 
971 	KKASSERT(ondisk->type == HAMMER_BTREE_TYPE_LEAF);
972 	KKASSERT(i >= 0 && i < ondisk->count);
973 	hammer_modify_node_all(cursor->trans, node);
974 	if (i + 1 != ondisk->count) {
975 		bcopy(&ondisk->elms[i+1], &ondisk->elms[i],
976 		      (ondisk->count - i - 1) * sizeof(ondisk->elms[0]));
977 	}
978 	--ondisk->count;
979 	hammer_modify_node_done(node);
980 	hammer_cursor_deleted_element(node, i);
981 
982 	/*
983 	 * Validate local parent
984 	 */
985 	if (ondisk->parent) {
986 		parent = cursor->parent;
987 
988 		KKASSERT(parent != NULL);
989 		KKASSERT(parent->node_offset == ondisk->parent);
990 	}
991 
992 	/*
993 	 * If the leaf becomes empty it must be detached from the parent,
994 	 * potentially recursing through to the filesystem root.
995 	 *
996 	 * This may reposition the cursor at one of the parent's of the
997 	 * current node.
998 	 *
999 	 * Ignore deadlock errors, that simply means that btree_remove
1000 	 * was unable to recurse and had to leave us with an empty leaf.
1001 	 */
1002 	KKASSERT(cursor->index <= ondisk->count);
1003 	if (ondisk->count == 0) {
1004 		error = btree_remove(cursor, ndelete);
1005 		if (error == EDEADLK)
1006 			error = 0;
1007 	} else {
1008 		error = 0;
1009 	}
1010 	KKASSERT(cursor->parent == NULL ||
1011 		 cursor->parent_index < cursor->parent->ondisk->count);
1012 	return(error);
1013 }
1014 
1015 /*
1016  * PRIMARY B-TREE SEARCH SUPPORT PROCEDURE
1017  *
1018  * Search the filesystem B-Tree for cursor->key_beg, return the matching node.
1019  *
1020  * The search can begin ANYWHERE in the B-Tree.  As a first step the search
1021  * iterates up the tree as necessary to properly position itself prior to
1022  * actually doing the sarch.
1023  *
1024  * INSERTIONS: The search will split full nodes and leaves on its way down
1025  * and guarentee that the leaf it ends up on is not full.  If we run out
1026  * of space the search continues to the leaf, but ENOSPC is returned.
1027  *
1028  * The search is only guarenteed to end up on a leaf if an error code of 0
1029  * is returned, or if inserting and an error code of ENOENT is returned.
1030  * Otherwise it can stop at an internal node.  On success a search returns
1031  * a leaf node.
1032  *
1033  * COMPLEXITY WARNING!  This is the core B-Tree search code for the entire
1034  * filesystem, and it is not simple code.  Please note the following facts:
1035  *
1036  * - Internal node recursions have a boundary on the left AND right.  The
1037  *   right boundary is non-inclusive.  The create_tid is a generic part
1038  *   of the key for internal nodes.
1039  *
1040  * - Filesystem lookups typically set HAMMER_CURSOR_ASOF, indicating a
1041  *   historical search.  ASOF and INSERT are mutually exclusive.  When
1042  *   doing an as-of lookup btree_search() checks for a right-edge boundary
1043  *   case.  If while recursing down the left-edge differs from the key
1044  *   by ONLY its create_tid, HAMMER_CURSOR_CREATE_CHECK is set along
1045  *   with cursor->create_check.  This is used by btree_lookup() to iterate.
1046  *   The iteration backwards because as-of searches can wind up going
1047  *   down the wrong branch of the B-Tree.
1048  */
1049 static
1050 int
1051 btree_search(hammer_cursor_t cursor, int flags)
1052 {
1053 	hammer_node_ondisk_t node;
1054 	hammer_btree_elm_t elm;
1055 	int error;
1056 	int enospc = 0;
1057 	int i;
1058 	int r;
1059 	int s;
1060 
1061 	flags |= cursor->flags;
1062 	++hammer_stats_btree_searches;
1063 
1064 	if (hammer_debug_btree) {
1065 		kprintf("SEARCH   %016llx[%d] %016llx %02x key=%016llx cre=%016llx lo=%02x (td=%p)\n",
1066 			(long long)cursor->node->node_offset,
1067 			cursor->index,
1068 			(long long)cursor->key_beg.obj_id,
1069 			cursor->key_beg.rec_type,
1070 			(long long)cursor->key_beg.key,
1071 			(long long)cursor->key_beg.create_tid,
1072 			cursor->key_beg.localization,
1073 			curthread
1074 		);
1075 		if (cursor->parent)
1076 		    kprintf("SEARCHP  %016llx[%d] (%016llx/%016llx %016llx/%016llx) (%p/%p %p/%p)\n",
1077 			(long long)cursor->parent->node_offset,
1078 			cursor->parent_index,
1079 			(long long)cursor->left_bound->obj_id,
1080 			(long long)cursor->parent->ondisk->elms[cursor->parent_index].internal.base.obj_id,
1081 			(long long)cursor->right_bound->obj_id,
1082 			(long long)cursor->parent->ondisk->elms[cursor->parent_index+1].internal.base.obj_id,
1083 			cursor->left_bound,
1084 			&cursor->parent->ondisk->elms[cursor->parent_index],
1085 			cursor->right_bound,
1086 			&cursor->parent->ondisk->elms[cursor->parent_index+1]
1087 		    );
1088 	}
1089 
1090 	/*
1091 	 * Move our cursor up the tree until we find a node whos range covers
1092 	 * the key we are trying to locate.
1093 	 *
1094 	 * The left bound is inclusive, the right bound is non-inclusive.
1095 	 * It is ok to cursor up too far.
1096 	 */
1097 	for (;;) {
1098 		r = hammer_btree_cmp(&cursor->key_beg, cursor->left_bound);
1099 		s = hammer_btree_cmp(&cursor->key_beg, cursor->right_bound);
1100 		if (r >= 0 && s < 0)
1101 			break;
1102 		KKASSERT(cursor->parent);
1103 		++hammer_stats_btree_iterations;
1104 		error = hammer_cursor_up(cursor);
1105 		if (error)
1106 			goto done;
1107 	}
1108 
1109 	/*
1110 	 * The delete-checks below are based on node, not parent.  Set the
1111 	 * initial delete-check based on the parent.
1112 	 */
1113 	if (r == 1) {
1114 		KKASSERT(cursor->left_bound->create_tid != 1);
1115 		cursor->create_check = cursor->left_bound->create_tid - 1;
1116 		cursor->flags |= HAMMER_CURSOR_CREATE_CHECK;
1117 	}
1118 
1119 	/*
1120 	 * We better have ended up with a node somewhere.
1121 	 */
1122 	KKASSERT(cursor->node != NULL);
1123 
1124 	/*
1125 	 * If we are inserting we can't start at a full node if the parent
1126 	 * is also full (because there is no way to split the node),
1127 	 * continue running up the tree until the requirement is satisfied
1128 	 * or we hit the root of the filesystem.
1129 	 *
1130 	 * (If inserting we aren't doing an as-of search so we don't have
1131 	 *  to worry about create_check).
1132 	 */
1133 	while (flags & HAMMER_CURSOR_INSERT) {
1134 		if (btree_node_is_full(cursor->node->ondisk) == 0)
1135 			break;
1136 		if (cursor->node->ondisk->parent == 0 ||
1137 		    cursor->parent->ondisk->count != HAMMER_BTREE_INT_ELMS) {
1138 			break;
1139 		}
1140 		++hammer_stats_btree_iterations;
1141 		error = hammer_cursor_up(cursor);
1142 		/* node may have become stale */
1143 		if (error)
1144 			goto done;
1145 	}
1146 
1147 	/*
1148 	 * Push down through internal nodes to locate the requested key.
1149 	 */
1150 	node = cursor->node->ondisk;
1151 	while (node->type == HAMMER_BTREE_TYPE_INTERNAL) {
1152 		/*
1153 		 * Scan the node to find the subtree index to push down into.
1154 		 * We go one-past, then back-up.
1155 		 *
1156 		 * We must proactively remove deleted elements which may
1157 		 * have been left over from a deadlocked btree_remove().
1158 		 *
1159 		 * The left and right boundaries are included in the loop
1160 		 * in order to detect edge cases.
1161 		 *
1162 		 * If the separator only differs by create_tid (r == 1)
1163 		 * and we are doing an as-of search, we may end up going
1164 		 * down a branch to the left of the one containing the
1165 		 * desired key.  This requires numerous special cases.
1166 		 */
1167 		++hammer_stats_btree_iterations;
1168 		if (hammer_debug_btree) {
1169 			kprintf("SEARCH-I %016llx count=%d\n",
1170 				(long long)cursor->node->node_offset,
1171 				node->count);
1172 		}
1173 
1174 		/*
1175 		 * Try to shortcut the search before dropping into the
1176 		 * linear loop.  Locate the first node where r <= 1.
1177 		 */
1178 		i = hammer_btree_search_node(&cursor->key_beg, node);
1179 		while (i <= node->count) {
1180 			++hammer_stats_btree_elements;
1181 			elm = &node->elms[i];
1182 			r = hammer_btree_cmp(&cursor->key_beg, &elm->base);
1183 			if (hammer_debug_btree > 2) {
1184 				kprintf(" IELM %p %d r=%d\n",
1185 					&node->elms[i], i, r);
1186 			}
1187 			if (r < 0)
1188 				break;
1189 			if (r == 1) {
1190 				KKASSERT(elm->base.create_tid != 1);
1191 				cursor->create_check = elm->base.create_tid - 1;
1192 				cursor->flags |= HAMMER_CURSOR_CREATE_CHECK;
1193 			}
1194 			++i;
1195 		}
1196 		if (hammer_debug_btree) {
1197 			kprintf("SEARCH-I preI=%d/%d r=%d\n",
1198 				i, node->count, r);
1199 		}
1200 
1201 		/*
1202 		 * These cases occur when the parent's idea of the boundary
1203 		 * is wider then the child's idea of the boundary, and
1204 		 * require special handling.  If not inserting we can
1205 		 * terminate the search early for these cases but the
1206 		 * child's boundaries cannot be unconditionally modified.
1207 		 */
1208 		if (i == 0) {
1209 			/*
1210 			 * If i == 0 the search terminated to the LEFT of the
1211 			 * left_boundary but to the RIGHT of the parent's left
1212 			 * boundary.
1213 			 */
1214 			u_int8_t save;
1215 
1216 			elm = &node->elms[0];
1217 
1218 			/*
1219 			 * If we aren't inserting we can stop here.
1220 			 */
1221 			if ((flags & (HAMMER_CURSOR_INSERT |
1222 				      HAMMER_CURSOR_PRUNING)) == 0) {
1223 				cursor->index = 0;
1224 				return(ENOENT);
1225 			}
1226 
1227 			/*
1228 			 * Correct a left-hand boundary mismatch.
1229 			 *
1230 			 * We can only do this if we can upgrade the lock,
1231 			 * and synchronized as a background cursor (i.e.
1232 			 * inserting or pruning).
1233 			 *
1234 			 * WARNING: We can only do this if inserting, i.e.
1235 			 * we are running on the backend.
1236 			 */
1237 			if ((error = hammer_cursor_upgrade(cursor)) != 0)
1238 				return(error);
1239 			KKASSERT(cursor->flags & HAMMER_CURSOR_BACKEND);
1240 			hammer_modify_node_field(cursor->trans, cursor->node,
1241 						 elms[0]);
1242 			save = node->elms[0].base.btype;
1243 			node->elms[0].base = *cursor->left_bound;
1244 			node->elms[0].base.btype = save;
1245 			hammer_modify_node_done(cursor->node);
1246 		} else if (i == node->count + 1) {
1247 			/*
1248 			 * If i == node->count + 1 the search terminated to
1249 			 * the RIGHT of the right boundary but to the LEFT
1250 			 * of the parent's right boundary.  If we aren't
1251 			 * inserting we can stop here.
1252 			 *
1253 			 * Note that the last element in this case is
1254 			 * elms[i-2] prior to adjustments to 'i'.
1255 			 */
1256 			--i;
1257 			if ((flags & (HAMMER_CURSOR_INSERT |
1258 				      HAMMER_CURSOR_PRUNING)) == 0) {
1259 				cursor->index = i;
1260 				return (ENOENT);
1261 			}
1262 
1263 			/*
1264 			 * Correct a right-hand boundary mismatch.
1265 			 * (actual push-down record is i-2 prior to
1266 			 * adjustments to i).
1267 			 *
1268 			 * We can only do this if we can upgrade the lock,
1269 			 * and synchronized as a background cursor (i.e.
1270 			 * inserting or pruning).
1271 			 *
1272 			 * WARNING: We can only do this if inserting, i.e.
1273 			 * we are running on the backend.
1274 			 */
1275 			if ((error = hammer_cursor_upgrade(cursor)) != 0)
1276 				return(error);
1277 			elm = &node->elms[i];
1278 			KKASSERT(cursor->flags & HAMMER_CURSOR_BACKEND);
1279 			hammer_modify_node(cursor->trans, cursor->node,
1280 					   &elm->base, sizeof(elm->base));
1281 			elm->base = *cursor->right_bound;
1282 			hammer_modify_node_done(cursor->node);
1283 			--i;
1284 		} else {
1285 			/*
1286 			 * The push-down index is now i - 1.  If we had
1287 			 * terminated on the right boundary this will point
1288 			 * us at the last element.
1289 			 */
1290 			--i;
1291 		}
1292 		cursor->index = i;
1293 		elm = &node->elms[i];
1294 
1295 		if (hammer_debug_btree) {
1296 			kprintf("RESULT-I %016llx[%d] %016llx %02x "
1297 				"key=%016llx cre=%016llx lo=%02x\n",
1298 				(long long)cursor->node->node_offset,
1299 				i,
1300 				(long long)elm->internal.base.obj_id,
1301 				elm->internal.base.rec_type,
1302 				(long long)elm->internal.base.key,
1303 				(long long)elm->internal.base.create_tid,
1304 				elm->internal.base.localization
1305 			);
1306 		}
1307 
1308 		/*
1309 		 * We better have a valid subtree offset.
1310 		 */
1311 		KKASSERT(elm->internal.subtree_offset != 0);
1312 
1313 		/*
1314 		 * Handle insertion and deletion requirements.
1315 		 *
1316 		 * If inserting split full nodes.  The split code will
1317 		 * adjust cursor->node and cursor->index if the current
1318 		 * index winds up in the new node.
1319 		 *
1320 		 * If inserting and a left or right edge case was detected,
1321 		 * we cannot correct the left or right boundary and must
1322 		 * prepend and append an empty leaf node in order to make
1323 		 * the boundary correction.
1324 		 *
1325 		 * If we run out of space we set enospc but continue on
1326 		 * to a leaf.
1327 		 */
1328 		if ((flags & HAMMER_CURSOR_INSERT) && enospc == 0) {
1329 			if (btree_node_is_full(node)) {
1330 				error = btree_split_internal(cursor);
1331 				if (error) {
1332 					if (error != ENOSPC)
1333 						goto done;
1334 					enospc = 1;
1335 				}
1336 				/*
1337 				 * reload stale pointers
1338 				 */
1339 				i = cursor->index;
1340 				node = cursor->node->ondisk;
1341 			}
1342 		}
1343 
1344 		/*
1345 		 * Push down (push into new node, existing node becomes
1346 		 * the parent) and continue the search.
1347 		 */
1348 		error = hammer_cursor_down(cursor);
1349 		/* node may have become stale */
1350 		if (error)
1351 			goto done;
1352 		node = cursor->node->ondisk;
1353 	}
1354 
1355 	/*
1356 	 * We are at a leaf, do a linear search of the key array.
1357 	 *
1358 	 * On success the index is set to the matching element and 0
1359 	 * is returned.
1360 	 *
1361 	 * On failure the index is set to the insertion point and ENOENT
1362 	 * is returned.
1363 	 *
1364 	 * Boundaries are not stored in leaf nodes, so the index can wind
1365 	 * up to the left of element 0 (index == 0) or past the end of
1366 	 * the array (index == node->count).  It is also possible that the
1367 	 * leaf might be empty.
1368 	 */
1369 	++hammer_stats_btree_iterations;
1370 	KKASSERT (node->type == HAMMER_BTREE_TYPE_LEAF);
1371 	KKASSERT(node->count <= HAMMER_BTREE_LEAF_ELMS);
1372 	if (hammer_debug_btree) {
1373 		kprintf("SEARCH-L %016llx count=%d\n",
1374 			(long long)cursor->node->node_offset,
1375 			node->count);
1376 	}
1377 
1378 	/*
1379 	 * Try to shortcut the search before dropping into the
1380 	 * linear loop.  Locate the first node where r <= 1.
1381 	 */
1382 	i = hammer_btree_search_node(&cursor->key_beg, node);
1383 	while (i < node->count) {
1384 		++hammer_stats_btree_elements;
1385 		elm = &node->elms[i];
1386 
1387 		r = hammer_btree_cmp(&cursor->key_beg, &elm->leaf.base);
1388 
1389 		if (hammer_debug_btree > 1)
1390 			kprintf("  ELM %p %d r=%d\n", &node->elms[i], i, r);
1391 
1392 		/*
1393 		 * We are at a record element.  Stop if we've flipped past
1394 		 * key_beg, not counting the create_tid test.  Allow the
1395 		 * r == 1 case (key_beg > element but differs only by its
1396 		 * create_tid) to fall through to the AS-OF check.
1397 		 */
1398 		KKASSERT (elm->leaf.base.btype == HAMMER_BTREE_TYPE_RECORD);
1399 
1400 		if (r < 0)
1401 			goto failed;
1402 		if (r > 1) {
1403 			++i;
1404 			continue;
1405 		}
1406 
1407 		/*
1408 		 * Check our as-of timestamp against the element.
1409 		 */
1410 		if (flags & HAMMER_CURSOR_ASOF) {
1411 			if (hammer_btree_chkts(cursor->asof,
1412 					       &node->elms[i].base) != 0) {
1413 				++i;
1414 				continue;
1415 			}
1416 			/* success */
1417 		} else {
1418 			if (r > 0) {	/* can only be +1 */
1419 				++i;
1420 				continue;
1421 			}
1422 			/* success */
1423 		}
1424 		cursor->index = i;
1425 		error = 0;
1426 		if (hammer_debug_btree) {
1427 			kprintf("RESULT-L %016llx[%d] (SUCCESS)\n",
1428 				(long long)cursor->node->node_offset, i);
1429 		}
1430 		goto done;
1431 	}
1432 
1433 	/*
1434 	 * The search of the leaf node failed.  i is the insertion point.
1435 	 */
1436 failed:
1437 	if (hammer_debug_btree) {
1438 		kprintf("RESULT-L %016llx[%d] (FAILED)\n",
1439 			(long long)cursor->node->node_offset, i);
1440 	}
1441 
1442 	/*
1443 	 * No exact match was found, i is now at the insertion point.
1444 	 *
1445 	 * If inserting split a full leaf before returning.  This
1446 	 * may have the side effect of adjusting cursor->node and
1447 	 * cursor->index.
1448 	 */
1449 	cursor->index = i;
1450 	if ((flags & HAMMER_CURSOR_INSERT) && enospc == 0 &&
1451 	     btree_node_is_full(node)) {
1452 		error = btree_split_leaf(cursor);
1453 		if (error) {
1454 			if (error != ENOSPC)
1455 				goto done;
1456 			enospc = 1;
1457 		}
1458 		/*
1459 		 * reload stale pointers
1460 		 */
1461 		/* NOT USED
1462 		i = cursor->index;
1463 		node = &cursor->node->internal;
1464 		*/
1465 	}
1466 
1467 	/*
1468 	 * We reached a leaf but did not find the key we were looking for.
1469 	 * If this is an insert we will be properly positioned for an insert
1470 	 * (ENOENT) or unable to insert (ENOSPC).
1471 	 */
1472 	error = enospc ? ENOSPC : ENOENT;
1473 done:
1474 	return(error);
1475 }
1476 
1477 /*
1478  * Heuristical search for the first element whos comparison is <= 1.  May
1479  * return an index whos compare result is > 1 but may only return an index
1480  * whos compare result is <= 1 if it is the first element with that result.
1481  */
1482 int
1483 hammer_btree_search_node(hammer_base_elm_t elm, hammer_node_ondisk_t node)
1484 {
1485 	int b;
1486 	int s;
1487 	int i;
1488 	int r;
1489 
1490 	/*
1491 	 * Don't bother if the node does not have very many elements
1492 	 */
1493 	b = 0;
1494 	s = node->count;
1495 	while (s - b > 4) {
1496 		i = b + (s - b) / 2;
1497 		++hammer_stats_btree_elements;
1498 		r = hammer_btree_cmp(elm, &node->elms[i].leaf.base);
1499 		if (r <= 1) {
1500 			s = i;
1501 		} else {
1502 			b = i;
1503 		}
1504 	}
1505 	return(b);
1506 }
1507 
1508 
1509 /************************************************************************
1510  *			   SPLITTING AND MERGING 			*
1511  ************************************************************************
1512  *
1513  * These routines do all the dirty work required to split and merge nodes.
1514  */
1515 
1516 /*
1517  * Split an internal node into two nodes and move the separator at the split
1518  * point to the parent.
1519  *
1520  * (cursor->node, cursor->index) indicates the element the caller intends
1521  * to push into.  We will adjust node and index if that element winds
1522  * up in the split node.
1523  *
1524  * If we are at the root of the filesystem a new root must be created with
1525  * two elements, one pointing to the original root and one pointing to the
1526  * newly allocated split node.
1527  */
1528 static
1529 int
1530 btree_split_internal(hammer_cursor_t cursor)
1531 {
1532 	hammer_node_ondisk_t ondisk;
1533 	hammer_node_t node;
1534 	hammer_node_t parent;
1535 	hammer_node_t new_node;
1536 	hammer_btree_elm_t elm;
1537 	hammer_btree_elm_t parent_elm;
1538 	struct hammer_node_lock lockroot;
1539 	hammer_mount_t hmp = cursor->trans->hmp;
1540 	int parent_index;
1541 	int made_root;
1542 	int split;
1543 	int error;
1544 	int i;
1545 	const int esize = sizeof(*elm);
1546 
1547 	hammer_node_lock_init(&lockroot, cursor->node);
1548 	error = hammer_btree_lock_children(cursor, 1, &lockroot, NULL);
1549 	if (error)
1550 		goto done;
1551 	if ((error = hammer_cursor_upgrade(cursor)) != 0)
1552 		goto done;
1553 	++hammer_stats_btree_splits;
1554 
1555 	/*
1556 	 * Calculate the split point.  If the insertion point is at the
1557 	 * end of the leaf we adjust the split point significantly to the
1558 	 * right to try to optimize node fill and flag it.  If we hit
1559 	 * that same leaf again our heuristic failed and we don't try
1560 	 * to optimize node fill (it could lead to a degenerate case).
1561 	 */
1562 	node = cursor->node;
1563 	ondisk = node->ondisk;
1564 	KKASSERT(ondisk->count > 4);
1565 	if (cursor->index == ondisk->count &&
1566 	    (node->flags & HAMMER_NODE_NONLINEAR) == 0) {
1567 		split = (ondisk->count + 1) * 3 / 4;
1568 		node->flags |= HAMMER_NODE_NONLINEAR;
1569 	} else {
1570 		/*
1571 		 * We are splitting but elms[split] will be promoted to
1572 		 * the parent, leaving the right hand node with one less
1573 		 * element.  If the insertion point will be on the
1574 		 * left-hand side adjust the split point to give the
1575 		 * right hand side one additional node.
1576 		 */
1577 		split = (ondisk->count + 1) / 2;
1578 		if (cursor->index <= split)
1579 			--split;
1580 	}
1581 
1582 	/*
1583 	 * If we are at the root of the filesystem, create a new root node
1584 	 * with 1 element and split normally.  Avoid making major
1585 	 * modifications until we know the whole operation will work.
1586 	 */
1587 	if (ondisk->parent == 0) {
1588 		parent = hammer_alloc_btree(cursor->trans, 0, &error);
1589 		if (parent == NULL)
1590 			goto done;
1591 		hammer_lock_ex(&parent->lock);
1592 		hammer_modify_node_noundo(cursor->trans, parent);
1593 		ondisk = parent->ondisk;
1594 		ondisk->count = 1;
1595 		ondisk->parent = 0;
1596 		ondisk->mirror_tid = node->ondisk->mirror_tid;
1597 		ondisk->signature = node->ondisk->signature;
1598 		ondisk->type = HAMMER_BTREE_TYPE_INTERNAL;
1599 		ondisk->elms[0].base = hmp->root_btree_beg;
1600 		ondisk->elms[0].base.btype = node->ondisk->type;
1601 		ondisk->elms[0].internal.subtree_offset = node->node_offset;
1602 		ondisk->elms[0].internal.mirror_tid = ondisk->mirror_tid;
1603 		ondisk->elms[1].base = hmp->root_btree_end;
1604 		hammer_modify_node_done(parent);
1605 		made_root = 1;
1606 		parent_index = 0;	/* index of current node in parent */
1607 	} else {
1608 		made_root = 0;
1609 		parent = cursor->parent;
1610 		parent_index = cursor->parent_index;
1611 	}
1612 
1613 	/*
1614 	 * Split node into new_node at the split point.
1615 	 *
1616 	 *  B O O O P N N B	<-- P = node->elms[split] (index 4)
1617 	 *   0 1 2 3 4 5 6	<-- subtree indices
1618 	 *
1619 	 *       x x P x x
1620 	 *        s S S s
1621 	 *         /   \
1622 	 *  B O O O B    B N N B	<--- inner boundary points are 'P'
1623 	 *   0 1 2 3      4 5 6
1624 	 */
1625 	new_node = hammer_alloc_btree(cursor->trans, 0, &error);
1626 	if (new_node == NULL) {
1627 		if (made_root) {
1628 			hammer_unlock(&parent->lock);
1629 			hammer_delete_node(cursor->trans, parent);
1630 			hammer_rel_node(parent);
1631 		}
1632 		goto done;
1633 	}
1634 	hammer_lock_ex(&new_node->lock);
1635 
1636 	/*
1637 	 * Create the new node.  P becomes the left-hand boundary in the
1638 	 * new node.  Copy the right-hand boundary as well.
1639 	 *
1640 	 * elm is the new separator.
1641 	 */
1642 	hammer_modify_node_noundo(cursor->trans, new_node);
1643 	hammer_modify_node_all(cursor->trans, node);
1644 	ondisk = node->ondisk;
1645 	elm = &ondisk->elms[split];
1646 	bcopy(elm, &new_node->ondisk->elms[0],
1647 	      (ondisk->count - split + 1) * esize);
1648 	new_node->ondisk->count = ondisk->count - split;
1649 	new_node->ondisk->parent = parent->node_offset;
1650 	new_node->ondisk->type = HAMMER_BTREE_TYPE_INTERNAL;
1651 	new_node->ondisk->mirror_tid = ondisk->mirror_tid;
1652 	KKASSERT(ondisk->type == new_node->ondisk->type);
1653 	hammer_cursor_split_node(node, new_node, split);
1654 
1655 	/*
1656 	 * Cleanup the original node.  Elm (P) becomes the new boundary,
1657 	 * its subtree_offset was moved to the new node.  If we had created
1658 	 * a new root its parent pointer may have changed.
1659 	 */
1660 	elm->internal.subtree_offset = 0;
1661 	ondisk->count = split;
1662 
1663 	/*
1664 	 * Insert the separator into the parent, fixup the parent's
1665 	 * reference to the original node, and reference the new node.
1666 	 * The separator is P.
1667 	 *
1668 	 * Remember that base.count does not include the right-hand boundary.
1669 	 */
1670 	hammer_modify_node_all(cursor->trans, parent);
1671 	ondisk = parent->ondisk;
1672 	KKASSERT(ondisk->count != HAMMER_BTREE_INT_ELMS);
1673 	parent_elm = &ondisk->elms[parent_index+1];
1674 	bcopy(parent_elm, parent_elm + 1,
1675 	      (ondisk->count - parent_index) * esize);
1676 	parent_elm->internal.base = elm->base;	/* separator P */
1677 	parent_elm->internal.base.btype = new_node->ondisk->type;
1678 	parent_elm->internal.subtree_offset = new_node->node_offset;
1679 	parent_elm->internal.mirror_tid = new_node->ondisk->mirror_tid;
1680 	++ondisk->count;
1681 	hammer_modify_node_done(parent);
1682 	hammer_cursor_inserted_element(parent, parent_index + 1);
1683 
1684 	/*
1685 	 * The children of new_node need their parent pointer set to new_node.
1686 	 * The children have already been locked by
1687 	 * hammer_btree_lock_children().
1688 	 */
1689 	for (i = 0; i < new_node->ondisk->count; ++i) {
1690 		elm = &new_node->ondisk->elms[i];
1691 		error = btree_set_parent(cursor->trans, new_node, elm);
1692 		if (error) {
1693 			panic("btree_split_internal: btree-fixup problem");
1694 		}
1695 	}
1696 	hammer_modify_node_done(new_node);
1697 
1698 	/*
1699 	 * The filesystem's root B-Tree pointer may have to be updated.
1700 	 */
1701 	if (made_root) {
1702 		hammer_volume_t volume;
1703 
1704 		volume = hammer_get_root_volume(hmp, &error);
1705 		KKASSERT(error == 0);
1706 
1707 		hammer_modify_volume_field(cursor->trans, volume,
1708 					   vol0_btree_root);
1709 		volume->ondisk->vol0_btree_root = parent->node_offset;
1710 		hammer_modify_volume_done(volume);
1711 		node->ondisk->parent = parent->node_offset;
1712 		/* node->ondisk->signature = 0; */
1713 		if (cursor->parent) {
1714 			hammer_unlock(&cursor->parent->lock);
1715 			hammer_rel_node(cursor->parent);
1716 		}
1717 		cursor->parent = parent;	/* lock'd and ref'd */
1718 		hammer_rel_volume(volume, 0);
1719 	}
1720 	hammer_modify_node_done(node);
1721 
1722 	/*
1723 	 * Ok, now adjust the cursor depending on which element the original
1724 	 * index was pointing at.  If we are >= the split point the push node
1725 	 * is now in the new node.
1726 	 *
1727 	 * NOTE: If we are at the split point itself we cannot stay with the
1728 	 * original node because the push index will point at the right-hand
1729 	 * boundary, which is illegal.
1730 	 *
1731 	 * NOTE: The cursor's parent or parent_index must be adjusted for
1732 	 * the case where a new parent (new root) was created, and the case
1733 	 * where the cursor is now pointing at the split node.
1734 	 */
1735 	if (cursor->index >= split) {
1736 		cursor->parent_index = parent_index + 1;
1737 		cursor->index -= split;
1738 		hammer_unlock(&cursor->node->lock);
1739 		hammer_rel_node(cursor->node);
1740 		cursor->node = new_node;	/* locked and ref'd */
1741 	} else {
1742 		cursor->parent_index = parent_index;
1743 		hammer_unlock(&new_node->lock);
1744 		hammer_rel_node(new_node);
1745 	}
1746 
1747 	/*
1748 	 * Fixup left and right bounds
1749 	 */
1750 	parent_elm = &parent->ondisk->elms[cursor->parent_index];
1751 	cursor->left_bound = &parent_elm[0].internal.base;
1752 	cursor->right_bound = &parent_elm[1].internal.base;
1753 	KKASSERT(hammer_btree_cmp(cursor->left_bound,
1754 		 &cursor->node->ondisk->elms[0].internal.base) <= 0);
1755 	KKASSERT(hammer_btree_cmp(cursor->right_bound,
1756 		 &cursor->node->ondisk->elms[cursor->node->ondisk->count].internal.base) >= 0);
1757 
1758 done:
1759 	hammer_btree_unlock_children(cursor->trans->hmp, &lockroot, NULL);
1760 	hammer_cursor_downgrade(cursor);
1761 	return (error);
1762 }
1763 
1764 /*
1765  * Same as the above, but splits a full leaf node.
1766  */
1767 static
1768 int
1769 btree_split_leaf(hammer_cursor_t cursor)
1770 {
1771 	hammer_node_ondisk_t ondisk;
1772 	hammer_node_t parent;
1773 	hammer_node_t leaf;
1774 	hammer_mount_t hmp;
1775 	hammer_node_t new_leaf;
1776 	hammer_btree_elm_t elm;
1777 	hammer_btree_elm_t parent_elm;
1778 	hammer_base_elm_t mid_boundary;
1779 	int parent_index;
1780 	int made_root;
1781 	int split;
1782 	int error;
1783 	const size_t esize = sizeof(*elm);
1784 
1785 	if ((error = hammer_cursor_upgrade(cursor)) != 0)
1786 		return(error);
1787 	++hammer_stats_btree_splits;
1788 
1789 	KKASSERT(hammer_btree_cmp(cursor->left_bound,
1790 		 &cursor->node->ondisk->elms[0].leaf.base) <= 0);
1791 	KKASSERT(hammer_btree_cmp(cursor->right_bound,
1792 		 &cursor->node->ondisk->elms[cursor->node->ondisk->count-1].leaf.base) > 0);
1793 
1794 	/*
1795 	 * Calculate the split point.  If the insertion point is at the
1796 	 * end of the leaf we adjust the split point significantly to the
1797 	 * right to try to optimize node fill and flag it.  If we hit
1798 	 * that same leaf again our heuristic failed and we don't try
1799 	 * to optimize node fill (it could lead to a degenerate case).
1800 	 */
1801 	leaf = cursor->node;
1802 	ondisk = leaf->ondisk;
1803 	KKASSERT(ondisk->count > 4);
1804 	if (cursor->index == ondisk->count &&
1805 	    (leaf->flags & HAMMER_NODE_NONLINEAR) == 0) {
1806 		split = (ondisk->count + 1) * 3 / 4;
1807 		leaf->flags |= HAMMER_NODE_NONLINEAR;
1808 	} else {
1809 		split = (ondisk->count + 1) / 2;
1810 	}
1811 
1812 #if 0
1813 	/*
1814 	 * If the insertion point is at the split point shift the
1815 	 * split point left so we don't have to worry about
1816 	 */
1817 	if (cursor->index == split)
1818 		--split;
1819 #endif
1820 	KKASSERT(split > 0 && split < ondisk->count);
1821 
1822 	error = 0;
1823 	hmp = leaf->hmp;
1824 
1825 	elm = &ondisk->elms[split];
1826 
1827 	KKASSERT(hammer_btree_cmp(cursor->left_bound, &elm[-1].leaf.base) <= 0);
1828 	KKASSERT(hammer_btree_cmp(cursor->left_bound, &elm->leaf.base) <= 0);
1829 	KKASSERT(hammer_btree_cmp(cursor->right_bound, &elm->leaf.base) > 0);
1830 	KKASSERT(hammer_btree_cmp(cursor->right_bound, &elm[1].leaf.base) > 0);
1831 
1832 	/*
1833 	 * If we are at the root of the tree, create a new root node with
1834 	 * 1 element and split normally.  Avoid making major modifications
1835 	 * until we know the whole operation will work.
1836 	 */
1837 	if (ondisk->parent == 0) {
1838 		parent = hammer_alloc_btree(cursor->trans, 0, &error);
1839 		if (parent == NULL)
1840 			goto done;
1841 		hammer_lock_ex(&parent->lock);
1842 		hammer_modify_node_noundo(cursor->trans, parent);
1843 		ondisk = parent->ondisk;
1844 		ondisk->count = 1;
1845 		ondisk->parent = 0;
1846 		ondisk->mirror_tid = leaf->ondisk->mirror_tid;
1847 		ondisk->signature = leaf->ondisk->signature;
1848 		ondisk->type = HAMMER_BTREE_TYPE_INTERNAL;
1849 		ondisk->elms[0].base = hmp->root_btree_beg;
1850 		ondisk->elms[0].base.btype = leaf->ondisk->type;
1851 		ondisk->elms[0].internal.subtree_offset = leaf->node_offset;
1852 		ondisk->elms[0].internal.mirror_tid = ondisk->mirror_tid;
1853 		ondisk->elms[1].base = hmp->root_btree_end;
1854 		hammer_modify_node_done(parent);
1855 		made_root = 1;
1856 		parent_index = 0;	/* insertion point in parent */
1857 	} else {
1858 		made_root = 0;
1859 		parent = cursor->parent;
1860 		parent_index = cursor->parent_index;
1861 	}
1862 
1863 	/*
1864 	 * Split leaf into new_leaf at the split point.  Select a separator
1865 	 * value in-between the two leafs but with a bent towards the right
1866 	 * leaf since comparisons use an 'elm >= separator' inequality.
1867 	 *
1868 	 *  L L L L L L L L
1869 	 *
1870 	 *       x x P x x
1871 	 *        s S S s
1872 	 *         /   \
1873 	 *  L L L L     L L L L
1874 	 */
1875 	new_leaf = hammer_alloc_btree(cursor->trans, 0, &error);
1876 	if (new_leaf == NULL) {
1877 		if (made_root) {
1878 			hammer_unlock(&parent->lock);
1879 			hammer_delete_node(cursor->trans, parent);
1880 			hammer_rel_node(parent);
1881 		}
1882 		goto done;
1883 	}
1884 	hammer_lock_ex(&new_leaf->lock);
1885 
1886 	/*
1887 	 * Create the new node and copy the leaf elements from the split
1888 	 * point on to the new node.
1889 	 */
1890 	hammer_modify_node_all(cursor->trans, leaf);
1891 	hammer_modify_node_noundo(cursor->trans, new_leaf);
1892 	ondisk = leaf->ondisk;
1893 	elm = &ondisk->elms[split];
1894 	bcopy(elm, &new_leaf->ondisk->elms[0], (ondisk->count - split) * esize);
1895 	new_leaf->ondisk->count = ondisk->count - split;
1896 	new_leaf->ondisk->parent = parent->node_offset;
1897 	new_leaf->ondisk->type = HAMMER_BTREE_TYPE_LEAF;
1898 	new_leaf->ondisk->mirror_tid = ondisk->mirror_tid;
1899 	KKASSERT(ondisk->type == new_leaf->ondisk->type);
1900 	hammer_modify_node_done(new_leaf);
1901 	hammer_cursor_split_node(leaf, new_leaf, split);
1902 
1903 	/*
1904 	 * Cleanup the original node.  Because this is a leaf node and
1905 	 * leaf nodes do not have a right-hand boundary, there
1906 	 * aren't any special edge cases to clean up.  We just fixup the
1907 	 * count.
1908 	 */
1909 	ondisk->count = split;
1910 
1911 	/*
1912 	 * Insert the separator into the parent, fixup the parent's
1913 	 * reference to the original node, and reference the new node.
1914 	 * The separator is P.
1915 	 *
1916 	 * Remember that base.count does not include the right-hand boundary.
1917 	 * We are copying parent_index+1 to parent_index+2, not +0 to +1.
1918 	 */
1919 	hammer_modify_node_all(cursor->trans, parent);
1920 	ondisk = parent->ondisk;
1921 	KKASSERT(split != 0);
1922 	KKASSERT(ondisk->count != HAMMER_BTREE_INT_ELMS);
1923 	parent_elm = &ondisk->elms[parent_index+1];
1924 	bcopy(parent_elm, parent_elm + 1,
1925 	      (ondisk->count - parent_index) * esize);
1926 
1927 	hammer_make_separator(&elm[-1].base, &elm[0].base, &parent_elm->base);
1928 	parent_elm->internal.base.btype = new_leaf->ondisk->type;
1929 	parent_elm->internal.subtree_offset = new_leaf->node_offset;
1930 	parent_elm->internal.mirror_tid = new_leaf->ondisk->mirror_tid;
1931 	mid_boundary = &parent_elm->base;
1932 	++ondisk->count;
1933 	hammer_modify_node_done(parent);
1934 	hammer_cursor_inserted_element(parent, parent_index + 1);
1935 
1936 	/*
1937 	 * The filesystem's root B-Tree pointer may have to be updated.
1938 	 */
1939 	if (made_root) {
1940 		hammer_volume_t volume;
1941 
1942 		volume = hammer_get_root_volume(hmp, &error);
1943 		KKASSERT(error == 0);
1944 
1945 		hammer_modify_volume_field(cursor->trans, volume,
1946 					   vol0_btree_root);
1947 		volume->ondisk->vol0_btree_root = parent->node_offset;
1948 		hammer_modify_volume_done(volume);
1949 		leaf->ondisk->parent = parent->node_offset;
1950 		/* leaf->ondisk->signature = 0; */
1951 		if (cursor->parent) {
1952 			hammer_unlock(&cursor->parent->lock);
1953 			hammer_rel_node(cursor->parent);
1954 		}
1955 		cursor->parent = parent;	/* lock'd and ref'd */
1956 		hammer_rel_volume(volume, 0);
1957 	}
1958 	hammer_modify_node_done(leaf);
1959 
1960 	/*
1961 	 * Ok, now adjust the cursor depending on which element the original
1962 	 * index was pointing at.  If we are >= the split point the push node
1963 	 * is now in the new node.
1964 	 *
1965 	 * NOTE: If we are at the split point itself we need to select the
1966 	 * old or new node based on where key_beg's insertion point will be.
1967 	 * If we pick the wrong side the inserted element will wind up in
1968 	 * the wrong leaf node and outside that node's bounds.
1969 	 */
1970 	if (cursor->index > split ||
1971 	    (cursor->index == split &&
1972 	     hammer_btree_cmp(&cursor->key_beg, mid_boundary) >= 0)) {
1973 		cursor->parent_index = parent_index + 1;
1974 		cursor->index -= split;
1975 		hammer_unlock(&cursor->node->lock);
1976 		hammer_rel_node(cursor->node);
1977 		cursor->node = new_leaf;
1978 	} else {
1979 		cursor->parent_index = parent_index;
1980 		hammer_unlock(&new_leaf->lock);
1981 		hammer_rel_node(new_leaf);
1982 	}
1983 
1984 	/*
1985 	 * Fixup left and right bounds
1986 	 */
1987 	parent_elm = &parent->ondisk->elms[cursor->parent_index];
1988 	cursor->left_bound = &parent_elm[0].internal.base;
1989 	cursor->right_bound = &parent_elm[1].internal.base;
1990 
1991 	/*
1992 	 * Assert that the bounds are correct.
1993 	 */
1994 	KKASSERT(hammer_btree_cmp(cursor->left_bound,
1995 		 &cursor->node->ondisk->elms[0].leaf.base) <= 0);
1996 	KKASSERT(hammer_btree_cmp(cursor->right_bound,
1997 		 &cursor->node->ondisk->elms[cursor->node->ondisk->count-1].leaf.base) > 0);
1998 	KKASSERT(hammer_btree_cmp(cursor->left_bound, &cursor->key_beg) <= 0);
1999 	KKASSERT(hammer_btree_cmp(cursor->right_bound, &cursor->key_beg) > 0);
2000 
2001 done:
2002 	hammer_cursor_downgrade(cursor);
2003 	return (error);
2004 }
2005 
2006 #if 0
2007 
2008 /*
2009  * Recursively correct the right-hand boundary's create_tid to (tid) as
2010  * long as the rest of the key matches.  We have to recurse upward in
2011  * the tree as well as down the left side of each parent's right node.
2012  *
2013  * Return EDEADLK if we were only partially successful, forcing the caller
2014  * to try again.  The original cursor is not modified.  This routine can
2015  * also fail with EDEADLK if it is forced to throw away a portion of its
2016  * record history.
2017  *
2018  * The caller must pass a downgraded cursor to us (otherwise we can't dup it).
2019  */
2020 struct hammer_rhb {
2021 	TAILQ_ENTRY(hammer_rhb) entry;
2022 	hammer_node_t	node;
2023 	int		index;
2024 };
2025 
2026 TAILQ_HEAD(hammer_rhb_list, hammer_rhb);
2027 
2028 int
2029 hammer_btree_correct_rhb(hammer_cursor_t cursor, hammer_tid_t tid)
2030 {
2031 	struct hammer_mount *hmp;
2032 	struct hammer_rhb_list rhb_list;
2033 	hammer_base_elm_t elm;
2034 	hammer_node_t orig_node;
2035 	struct hammer_rhb *rhb;
2036 	int orig_index;
2037 	int error;
2038 
2039 	TAILQ_INIT(&rhb_list);
2040 	hmp = cursor->trans->hmp;
2041 
2042 	/*
2043 	 * Save our position so we can restore it on return.  This also
2044 	 * gives us a stable 'elm'.
2045 	 */
2046 	orig_node = cursor->node;
2047 	hammer_ref_node(orig_node);
2048 	hammer_lock_sh(&orig_node->lock);
2049 	orig_index = cursor->index;
2050 	elm = &orig_node->ondisk->elms[orig_index].base;
2051 
2052 	/*
2053 	 * Now build a list of parents going up, allocating a rhb
2054 	 * structure for each one.
2055 	 */
2056 	while (cursor->parent) {
2057 		/*
2058 		 * Stop if we no longer have any right-bounds to fix up
2059 		 */
2060 		if (elm->obj_id != cursor->right_bound->obj_id ||
2061 		    elm->rec_type != cursor->right_bound->rec_type ||
2062 		    elm->key != cursor->right_bound->key) {
2063 			break;
2064 		}
2065 
2066 		/*
2067 		 * Stop if the right-hand bound's create_tid does not
2068 		 * need to be corrected.
2069 		 */
2070 		if (cursor->right_bound->create_tid >= tid)
2071 			break;
2072 
2073 		rhb = kmalloc(sizeof(*rhb), hmp->m_misc, M_WAITOK|M_ZERO);
2074 		rhb->node = cursor->parent;
2075 		rhb->index = cursor->parent_index;
2076 		hammer_ref_node(rhb->node);
2077 		hammer_lock_sh(&rhb->node->lock);
2078 		TAILQ_INSERT_HEAD(&rhb_list, rhb, entry);
2079 
2080 		hammer_cursor_up(cursor);
2081 	}
2082 
2083 	/*
2084 	 * now safely adjust the right hand bound for each rhb.  This may
2085 	 * also require taking the right side of the tree and iterating down
2086 	 * ITS left side.
2087 	 */
2088 	error = 0;
2089 	while (error == 0 && (rhb = TAILQ_FIRST(&rhb_list)) != NULL) {
2090 		error = hammer_cursor_seek(cursor, rhb->node, rhb->index);
2091 		if (error)
2092 			break;
2093 		TAILQ_REMOVE(&rhb_list, rhb, entry);
2094 		hammer_unlock(&rhb->node->lock);
2095 		hammer_rel_node(rhb->node);
2096 		kfree(rhb, hmp->m_misc);
2097 
2098 		switch (cursor->node->ondisk->type) {
2099 		case HAMMER_BTREE_TYPE_INTERNAL:
2100 			/*
2101 			 * Right-boundary for parent at internal node
2102 			 * is one element to the right of the element whos
2103 			 * right boundary needs adjusting.  We must then
2104 			 * traverse down the left side correcting any left
2105 			 * bounds (which may now be too far to the left).
2106 			 */
2107 			++cursor->index;
2108 			error = hammer_btree_correct_lhb(cursor, tid);
2109 			break;
2110 		default:
2111 			panic("hammer_btree_correct_rhb(): Bad node type");
2112 			error = EINVAL;
2113 			break;
2114 		}
2115 	}
2116 
2117 	/*
2118 	 * Cleanup
2119 	 */
2120 	while ((rhb = TAILQ_FIRST(&rhb_list)) != NULL) {
2121 		TAILQ_REMOVE(&rhb_list, rhb, entry);
2122 		hammer_unlock(&rhb->node->lock);
2123 		hammer_rel_node(rhb->node);
2124 		kfree(rhb, hmp->m_misc);
2125 	}
2126 	error = hammer_cursor_seek(cursor, orig_node, orig_index);
2127 	hammer_unlock(&orig_node->lock);
2128 	hammer_rel_node(orig_node);
2129 	return (error);
2130 }
2131 
2132 /*
2133  * Similar to rhb (in fact, rhb calls lhb), but corrects the left hand
2134  * bound going downward starting at the current cursor position.
2135  *
2136  * This function does not restore the cursor after use.
2137  */
2138 int
2139 hammer_btree_correct_lhb(hammer_cursor_t cursor, hammer_tid_t tid)
2140 {
2141 	struct hammer_rhb_list rhb_list;
2142 	hammer_base_elm_t elm;
2143 	hammer_base_elm_t cmp;
2144 	struct hammer_rhb *rhb;
2145 	struct hammer_mount *hmp;
2146 	int error;
2147 
2148 	TAILQ_INIT(&rhb_list);
2149 	hmp = cursor->trans->hmp;
2150 
2151 	cmp = &cursor->node->ondisk->elms[cursor->index].base;
2152 
2153 	/*
2154 	 * Record the node and traverse down the left-hand side for all
2155 	 * matching records needing a boundary correction.
2156 	 */
2157 	error = 0;
2158 	for (;;) {
2159 		rhb = kmalloc(sizeof(*rhb), hmp->m_misc, M_WAITOK|M_ZERO);
2160 		rhb->node = cursor->node;
2161 		rhb->index = cursor->index;
2162 		hammer_ref_node(rhb->node);
2163 		hammer_lock_sh(&rhb->node->lock);
2164 		TAILQ_INSERT_HEAD(&rhb_list, rhb, entry);
2165 
2166 		if (cursor->node->ondisk->type == HAMMER_BTREE_TYPE_INTERNAL) {
2167 			/*
2168 			 * Nothing to traverse down if we are at the right
2169 			 * boundary of an internal node.
2170 			 */
2171 			if (cursor->index == cursor->node->ondisk->count)
2172 				break;
2173 		} else {
2174 			elm = &cursor->node->ondisk->elms[cursor->index].base;
2175 			if (elm->btype == HAMMER_BTREE_TYPE_RECORD)
2176 				break;
2177 			panic("Illegal leaf record type %02x", elm->btype);
2178 		}
2179 		error = hammer_cursor_down(cursor);
2180 		if (error)
2181 			break;
2182 
2183 		elm = &cursor->node->ondisk->elms[cursor->index].base;
2184 		if (elm->obj_id != cmp->obj_id ||
2185 		    elm->rec_type != cmp->rec_type ||
2186 		    elm->key != cmp->key) {
2187 			break;
2188 		}
2189 		if (elm->create_tid >= tid)
2190 			break;
2191 
2192 	}
2193 
2194 	/*
2195 	 * Now we can safely adjust the left-hand boundary from the bottom-up.
2196 	 * The last element we remove from the list is the caller's right hand
2197 	 * boundary, which must also be adjusted.
2198 	 */
2199 	while (error == 0 && (rhb = TAILQ_FIRST(&rhb_list)) != NULL) {
2200 		error = hammer_cursor_seek(cursor, rhb->node, rhb->index);
2201 		if (error)
2202 			break;
2203 		TAILQ_REMOVE(&rhb_list, rhb, entry);
2204 		hammer_unlock(&rhb->node->lock);
2205 		hammer_rel_node(rhb->node);
2206 		kfree(rhb, hmp->m_misc);
2207 
2208 		elm = &cursor->node->ondisk->elms[cursor->index].base;
2209 		if (cursor->node->ondisk->type == HAMMER_BTREE_TYPE_INTERNAL) {
2210 			hammer_modify_node(cursor->trans, cursor->node,
2211 					   &elm->create_tid,
2212 					   sizeof(elm->create_tid));
2213 			elm->create_tid = tid;
2214 			hammer_modify_node_done(cursor->node);
2215 		} else {
2216 			panic("hammer_btree_correct_lhb(): Bad element type");
2217 		}
2218 	}
2219 
2220 	/*
2221 	 * Cleanup
2222 	 */
2223 	while ((rhb = TAILQ_FIRST(&rhb_list)) != NULL) {
2224 		TAILQ_REMOVE(&rhb_list, rhb, entry);
2225 		hammer_unlock(&rhb->node->lock);
2226 		hammer_rel_node(rhb->node);
2227 		kfree(rhb, hmp->m_misc);
2228 	}
2229 	return (error);
2230 }
2231 
2232 #endif
2233 
2234 /*
2235  * Attempt to remove the locked, empty or want-to-be-empty B-Tree node at
2236  * (cursor->node).  Returns 0 on success, EDEADLK if we could not complete
2237  * the operation due to a deadlock, or some other error.
2238  *
2239  * This routine is initially called with an empty leaf and may be
2240  * recursively called with single-element internal nodes.
2241  *
2242  * It should also be noted that when removing empty leaves we must be sure
2243  * to test and update mirror_tid because another thread may have deadlocked
2244  * against us (or someone) trying to propagate it up and cannot retry once
2245  * the node has been deleted.
2246  *
2247  * On return the cursor may end up pointing to an internal node, suitable
2248  * for further iteration but not for an immediate insertion or deletion.
2249  */
2250 static int
2251 btree_remove(hammer_cursor_t cursor, int *ndelete)
2252 {
2253 	hammer_node_ondisk_t ondisk;
2254 	hammer_btree_elm_t elm;
2255 	hammer_node_t node;
2256 	hammer_node_t parent;
2257 	const int esize = sizeof(*elm);
2258 	int error;
2259 
2260 	node = cursor->node;
2261 
2262 	/*
2263 	 * When deleting the root of the filesystem convert it to
2264 	 * an empty leaf node.  Internal nodes cannot be empty.
2265 	 */
2266 	ondisk = node->ondisk;
2267 	if (ondisk->parent == 0) {
2268 		KKASSERT(cursor->parent == NULL);
2269 		hammer_modify_node_all(cursor->trans, node);
2270 		KKASSERT(ondisk == node->ondisk);
2271 		ondisk->type = HAMMER_BTREE_TYPE_LEAF;
2272 		ondisk->count = 0;
2273 		hammer_modify_node_done(node);
2274 		cursor->index = 0;
2275 		return(0);
2276 	}
2277 
2278 	parent = cursor->parent;
2279 
2280 	/*
2281 	 * Attempt to remove the parent's reference to the child.  If the
2282 	 * parent would become empty we have to recurse.  If we fail we
2283 	 * leave the parent pointing to an empty leaf node.
2284 	 *
2285 	 * We have to recurse successfully before we can delete the internal
2286 	 * node as it is illegal to have empty internal nodes.  Even though
2287 	 * the operation may be aborted we must still fixup any unlocked
2288 	 * cursors as if we had deleted the element prior to recursing
2289 	 * (by calling hammer_cursor_deleted_element()) so those cursors
2290 	 * are properly forced up the chain by the recursion.
2291 	 */
2292 	if (parent->ondisk->count == 1) {
2293 		/*
2294 		 * This special cursor_up_locked() call leaves the original
2295 		 * node exclusively locked and referenced, leaves the
2296 		 * original parent locked (as the new node), and locks the
2297 		 * new parent.  It can return EDEADLK.
2298 		 *
2299 		 * We cannot call hammer_cursor_removed_node() until we are
2300 		 * actually able to remove the node.  If we did then tracked
2301 		 * cursors in the middle of iterations could be repointed
2302 		 * to a parent node.  If this occurs they could end up
2303 		 * scanning newly inserted records into the node (that could
2304 		 * not be deleted) when they push down again.
2305 		 *
2306 		 * Due to the way the recursion works the final parent is left
2307 		 * in cursor->parent after the recursion returns.  Each
2308 		 * layer on the way back up is thus able to call
2309 		 * hammer_cursor_removed_node() and 'jump' the node up to
2310 		 * the (same) final parent.
2311 		 *
2312 		 * NOTE!  The local variable 'parent' is invalid after we
2313 		 *	  call hammer_cursor_up_locked().
2314 		 */
2315 		error = hammer_cursor_up_locked(cursor);
2316 		parent = NULL;
2317 
2318 		if (error == 0) {
2319 			hammer_cursor_deleted_element(cursor->node, 0);
2320 			error = btree_remove(cursor, ndelete);
2321 			if (error == 0) {
2322 				KKASSERT(node != cursor->node);
2323 				hammer_cursor_removed_node(
2324 					node, cursor->node, cursor->index);
2325 				hammer_modify_node_all(cursor->trans, node);
2326 				ondisk = node->ondisk;
2327 				ondisk->type = HAMMER_BTREE_TYPE_DELETED;
2328 				ondisk->count = 0;
2329 				hammer_modify_node_done(node);
2330 				hammer_flush_node(node, 0);
2331 				hammer_delete_node(cursor->trans, node);
2332 				if (ndelete)
2333 					(*ndelete)++;
2334 			} else {
2335 				/*
2336 				 * Defer parent removal because we could not
2337 				 * get the lock, just let the leaf remain
2338 				 * empty.
2339 				 */
2340 				/**/
2341 			}
2342 			hammer_unlock(&node->lock);
2343 			hammer_rel_node(node);
2344 		} else {
2345 			/*
2346 			 * Defer parent removal because we could not
2347 			 * get the lock, just let the leaf remain
2348 			 * empty.
2349 			 */
2350 			/**/
2351 		}
2352 	} else {
2353 		KKASSERT(parent->ondisk->count > 1);
2354 
2355 		hammer_modify_node_all(cursor->trans, parent);
2356 		ondisk = parent->ondisk;
2357 		KKASSERT(ondisk->type == HAMMER_BTREE_TYPE_INTERNAL);
2358 
2359 		elm = &ondisk->elms[cursor->parent_index];
2360 		KKASSERT(elm->internal.subtree_offset == node->node_offset);
2361 		KKASSERT(ondisk->count > 0);
2362 
2363 		/*
2364 		 * We must retain the highest mirror_tid.  The deleted
2365 		 * range is now encompassed by the element to the left.
2366 		 * If we are already at the left edge the new left edge
2367 		 * inherits mirror_tid.
2368 		 *
2369 		 * Note that bounds of the parent to our parent may create
2370 		 * a gap to the left of our left-most node or to the right
2371 		 * of our right-most node.  The gap is silently included
2372 		 * in the mirror_tid's area of effect from the point of view
2373 		 * of the scan.
2374 		 */
2375 		if (cursor->parent_index) {
2376 			if (elm[-1].internal.mirror_tid <
2377 			    elm[0].internal.mirror_tid) {
2378 				elm[-1].internal.mirror_tid =
2379 				    elm[0].internal.mirror_tid;
2380 			}
2381 		} else {
2382 			if (elm[1].internal.mirror_tid <
2383 			    elm[0].internal.mirror_tid) {
2384 				elm[1].internal.mirror_tid =
2385 				    elm[0].internal.mirror_tid;
2386 			}
2387 		}
2388 
2389 		/*
2390 		 * Delete the subtree reference in the parent.  Include
2391 		 * boundary element at end.
2392 		 */
2393 		bcopy(&elm[1], &elm[0],
2394 		      (ondisk->count - cursor->parent_index) * esize);
2395 		--ondisk->count;
2396 		hammer_modify_node_done(parent);
2397 		hammer_cursor_removed_node(node, parent, cursor->parent_index);
2398 		hammer_cursor_deleted_element(parent, cursor->parent_index);
2399 		hammer_flush_node(node, 0);
2400 		hammer_delete_node(cursor->trans, node);
2401 
2402 		/*
2403 		 * cursor->node is invalid, cursor up to make the cursor
2404 		 * valid again.  We have to flag the condition in case
2405 		 * another thread wiggles an insertion in during an
2406 		 * iteration.
2407 		 */
2408 		cursor->flags |= HAMMER_CURSOR_ITERATE_CHECK;
2409 		error = hammer_cursor_up(cursor);
2410 		if (ndelete)
2411 			(*ndelete)++;
2412 	}
2413 	return (error);
2414 }
2415 
2416 /*
2417  * Propagate cursor->trans->tid up the B-Tree starting at the current
2418  * cursor position using pseudofs info gleaned from the passed inode.
2419  *
2420  * The passed inode has no relationship to the cursor position other
2421  * then being in the same pseudofs as the insertion or deletion we
2422  * are propagating the mirror_tid for.
2423  *
2424  * WARNING!  Because we push and pop the passed cursor, it may be
2425  *	     modified by other B-Tree operations while it is unlocked
2426  *	     and things like the node & leaf pointers, and indexes might
2427  *	     change.
2428  */
2429 void
2430 hammer_btree_do_propagation(hammer_cursor_t cursor,
2431 			    hammer_pseudofs_inmem_t pfsm,
2432 			    hammer_btree_leaf_elm_t leaf)
2433 {
2434 	hammer_cursor_t ncursor;
2435 	hammer_tid_t mirror_tid;
2436 	int error __debugvar;
2437 
2438 	/*
2439 	 * We do not propagate a mirror_tid if the filesystem was mounted
2440 	 * in no-mirror mode.
2441 	 */
2442 	if (cursor->trans->hmp->master_id < 0)
2443 		return;
2444 
2445 	/*
2446 	 * This is a bit of a hack because we cannot deadlock or return
2447 	 * EDEADLK here.  The related operation has already completed and
2448 	 * we must propagate the mirror_tid now regardless.
2449 	 *
2450 	 * Generate a new cursor which inherits the original's locks and
2451 	 * unlock the original.  Use the new cursor to propagate the
2452 	 * mirror_tid.  Then clean up the new cursor and reacquire locks
2453 	 * on the original.
2454 	 *
2455 	 * hammer_dup_cursor() cannot dup locks.  The dup inherits the
2456 	 * original's locks and the original is tracked and must be
2457 	 * re-locked.
2458 	 */
2459 	mirror_tid = cursor->node->ondisk->mirror_tid;
2460 	KKASSERT(mirror_tid != 0);
2461 	ncursor = hammer_push_cursor(cursor);
2462 	error = hammer_btree_mirror_propagate(ncursor, mirror_tid);
2463 	KKASSERT(error == 0);
2464 	hammer_pop_cursor(cursor, ncursor);
2465 	/* WARNING: cursor's leaf pointer may change after pop */
2466 }
2467 
2468 
2469 /*
2470  * Propagate a mirror TID update upwards through the B-Tree to the root.
2471  *
2472  * A locked internal node must be passed in.  The node will remain locked
2473  * on return.
2474  *
2475  * This function syncs mirror_tid at the specified internal node's element,
2476  * adjusts the node's aggregation mirror_tid, and then recurses upwards.
2477  */
2478 static int
2479 hammer_btree_mirror_propagate(hammer_cursor_t cursor, hammer_tid_t mirror_tid)
2480 {
2481 	hammer_btree_internal_elm_t elm;
2482 	hammer_node_t node;
2483 	int error;
2484 
2485 	for (;;) {
2486 		error = hammer_cursor_up(cursor);
2487 		if (error == 0)
2488 			error = hammer_cursor_upgrade(cursor);
2489 
2490 		/*
2491 		 * We can ignore HAMMER_CURSOR_ITERATE_CHECK, the
2492 		 * cursor will still be properly positioned for
2493 		 * mirror propagation, just not for iterations.
2494 		 */
2495 		while (error == EDEADLK) {
2496 			hammer_recover_cursor(cursor);
2497 			error = hammer_cursor_upgrade(cursor);
2498 		}
2499 		if (error)
2500 			break;
2501 
2502 		/*
2503 		 * If the cursor deadlocked it could end up at a leaf
2504 		 * after we lost the lock.
2505 		 */
2506 		node = cursor->node;
2507 		if (node->ondisk->type != HAMMER_BTREE_TYPE_INTERNAL)
2508 			continue;
2509 
2510 		/*
2511 		 * Adjust the node's element
2512 		 */
2513 		elm = &node->ondisk->elms[cursor->index].internal;
2514 		if (elm->mirror_tid >= mirror_tid)
2515 			break;
2516 		hammer_modify_node(cursor->trans, node, &elm->mirror_tid,
2517 				   sizeof(elm->mirror_tid));
2518 		elm->mirror_tid = mirror_tid;
2519 		hammer_modify_node_done(node);
2520 		if (hammer_debug_general & 0x0002) {
2521 			kprintf("mirror_propagate: propagate "
2522 				"%016llx @%016llx:%d\n",
2523 				(long long)mirror_tid,
2524 				(long long)node->node_offset,
2525 				cursor->index);
2526 		}
2527 
2528 
2529 		/*
2530 		 * Adjust the node's mirror_tid aggregator
2531 		 */
2532 		if (node->ondisk->mirror_tid >= mirror_tid)
2533 			return(0);
2534 		hammer_modify_node_field(cursor->trans, node, mirror_tid);
2535 		node->ondisk->mirror_tid = mirror_tid;
2536 		hammer_modify_node_done(node);
2537 		if (hammer_debug_general & 0x0002) {
2538 			kprintf("mirror_propagate: propagate "
2539 				"%016llx @%016llx\n",
2540 				(long long)mirror_tid,
2541 				(long long)node->node_offset);
2542 		}
2543 	}
2544 	if (error == ENOENT)
2545 		error = 0;
2546 	return(error);
2547 }
2548 
2549 hammer_node_t
2550 hammer_btree_get_parent(hammer_transaction_t trans, hammer_node_t node,
2551 			int *parent_indexp, int *errorp, int try_exclusive)
2552 {
2553 	hammer_node_t parent;
2554 	hammer_btree_elm_t elm;
2555 	int i;
2556 
2557 	/*
2558 	 * Get the node
2559 	 */
2560 	parent = hammer_get_node(trans, node->ondisk->parent, 0, errorp);
2561 	if (*errorp) {
2562 		KKASSERT(parent == NULL);
2563 		return(NULL);
2564 	}
2565 	KKASSERT ((parent->flags & HAMMER_NODE_DELETED) == 0);
2566 
2567 	/*
2568 	 * Lock the node
2569 	 */
2570 	if (try_exclusive) {
2571 		if (hammer_lock_ex_try(&parent->lock)) {
2572 			hammer_rel_node(parent);
2573 			*errorp = EDEADLK;
2574 			return(NULL);
2575 		}
2576 	} else {
2577 		hammer_lock_sh(&parent->lock);
2578 	}
2579 
2580 	/*
2581 	 * Figure out which element in the parent is pointing to the
2582 	 * child.
2583 	 */
2584 	if (node->ondisk->count) {
2585 		i = hammer_btree_search_node(&node->ondisk->elms[0].base,
2586 					     parent->ondisk);
2587 	} else {
2588 		i = 0;
2589 	}
2590 	while (i < parent->ondisk->count) {
2591 		elm = &parent->ondisk->elms[i];
2592 		if (elm->internal.subtree_offset == node->node_offset)
2593 			break;
2594 		++i;
2595 	}
2596 	if (i == parent->ondisk->count) {
2597 		hammer_unlock(&parent->lock);
2598 		panic("Bad B-Tree link: parent %p node %p", parent, node);
2599 	}
2600 	*parent_indexp = i;
2601 	KKASSERT(*errorp == 0);
2602 	return(parent);
2603 }
2604 
2605 /*
2606  * The element (elm) has been moved to a new internal node (node).
2607  *
2608  * If the element represents a pointer to an internal node that node's
2609  * parent must be adjusted to the element's new location.
2610  *
2611  * XXX deadlock potential here with our exclusive locks
2612  */
2613 int
2614 btree_set_parent(hammer_transaction_t trans, hammer_node_t node,
2615 		 hammer_btree_elm_t elm)
2616 {
2617 	hammer_node_t child;
2618 	int error;
2619 
2620 	error = 0;
2621 
2622 	switch(elm->base.btype) {
2623 	case HAMMER_BTREE_TYPE_INTERNAL:
2624 	case HAMMER_BTREE_TYPE_LEAF:
2625 		child = hammer_get_node(trans, elm->internal.subtree_offset,
2626 					0, &error);
2627 		if (error == 0) {
2628 			hammer_modify_node_field(trans, child, parent);
2629 			child->ondisk->parent = node->node_offset;
2630 			hammer_modify_node_done(child);
2631 			hammer_rel_node(child);
2632 		}
2633 		break;
2634 	default:
2635 		break;
2636 	}
2637 	return(error);
2638 }
2639 
2640 /*
2641  * Initialize the root of a recursive B-Tree node lock list structure.
2642  */
2643 void
2644 hammer_node_lock_init(hammer_node_lock_t parent, hammer_node_t node)
2645 {
2646 	TAILQ_INIT(&parent->list);
2647 	parent->parent = NULL;
2648 	parent->node = node;
2649 	parent->index = -1;
2650 	parent->count = node->ondisk->count;
2651 	parent->copy = NULL;
2652 	parent->flags = 0;
2653 }
2654 
2655 /*
2656  * Initialize a cache of hammer_node_lock's including space allocated
2657  * for node copies.
2658  *
2659  * This is used by the rebalancing code to preallocate the copy space
2660  * for ~4096 B-Tree nodes (16MB of data) prior to acquiring any HAMMER
2661  * locks, otherwise we can blow out the pageout daemon's emergency
2662  * reserve and deadlock it.
2663  *
2664  * NOTE: HAMMER_NODE_LOCK_LCACHE is not set on items cached in the lcache.
2665  *	 The flag is set when the item is pulled off the cache for use.
2666  */
2667 void
2668 hammer_btree_lcache_init(hammer_mount_t hmp, hammer_node_lock_t lcache,
2669 			 int depth)
2670 {
2671 	hammer_node_lock_t item;
2672 	int count;
2673 
2674 	for (count = 1; depth; --depth)
2675 		count *= HAMMER_BTREE_LEAF_ELMS;
2676 	bzero(lcache, sizeof(*lcache));
2677 	TAILQ_INIT(&lcache->list);
2678 	while (count) {
2679 		item = kmalloc(sizeof(*item), hmp->m_misc, M_WAITOK|M_ZERO);
2680 		item->copy = kmalloc(sizeof(*item->copy),
2681 				     hmp->m_misc, M_WAITOK);
2682 		TAILQ_INIT(&item->list);
2683 		TAILQ_INSERT_TAIL(&lcache->list, item, entry);
2684 		--count;
2685 	}
2686 }
2687 
2688 void
2689 hammer_btree_lcache_free(hammer_mount_t hmp, hammer_node_lock_t lcache)
2690 {
2691 	hammer_node_lock_t item;
2692 
2693 	while ((item = TAILQ_FIRST(&lcache->list)) != NULL) {
2694 		TAILQ_REMOVE(&lcache->list, item, entry);
2695 		KKASSERT(item->copy);
2696 		KKASSERT(TAILQ_EMPTY(&item->list));
2697 		kfree(item->copy, hmp->m_misc);
2698 		kfree(item, hmp->m_misc);
2699 	}
2700 	KKASSERT(lcache->copy == NULL);
2701 }
2702 
2703 /*
2704  * Exclusively lock all the children of node.  This is used by the split
2705  * code to prevent anyone from accessing the children of a cursor node
2706  * while we fix-up its parent offset.
2707  *
2708  * If we don't lock the children we can really mess up cursors which block
2709  * trying to cursor-up into our node.
2710  *
2711  * On failure EDEADLK (or some other error) is returned.  If a deadlock
2712  * error is returned the cursor is adjusted to block on termination.
2713  *
2714  * The caller is responsible for managing parent->node, the root's node
2715  * is usually aliased from a cursor.
2716  */
2717 int
2718 hammer_btree_lock_children(hammer_cursor_t cursor, int depth,
2719 			   hammer_node_lock_t parent,
2720 			   hammer_node_lock_t lcache)
2721 {
2722 	hammer_node_t node;
2723 	hammer_node_lock_t item;
2724 	hammer_node_ondisk_t ondisk;
2725 	hammer_btree_elm_t elm;
2726 	hammer_node_t child;
2727 	struct hammer_mount *hmp;
2728 	int error;
2729 	int i;
2730 
2731 	node = parent->node;
2732 	ondisk = node->ondisk;
2733 	error = 0;
2734 	hmp = cursor->trans->hmp;
2735 
2736 	/*
2737 	 * We really do not want to block on I/O with exclusive locks held,
2738 	 * pre-get the children before trying to lock the mess.  This is
2739 	 * only done one-level deep for now.
2740 	 */
2741 	for (i = 0; i < ondisk->count; ++i) {
2742 		++hammer_stats_btree_elements;
2743 		elm = &ondisk->elms[i];
2744 		if (elm->base.btype != HAMMER_BTREE_TYPE_LEAF &&
2745 		    elm->base.btype != HAMMER_BTREE_TYPE_INTERNAL) {
2746 			continue;
2747 		}
2748 		child = hammer_get_node(cursor->trans,
2749 					elm->internal.subtree_offset,
2750 					0, &error);
2751 		if (child)
2752 			hammer_rel_node(child);
2753 	}
2754 
2755 	/*
2756 	 * Do it for real
2757 	 */
2758 	for (i = 0; error == 0 && i < ondisk->count; ++i) {
2759 		++hammer_stats_btree_elements;
2760 		elm = &ondisk->elms[i];
2761 
2762 		switch(elm->base.btype) {
2763 		case HAMMER_BTREE_TYPE_INTERNAL:
2764 		case HAMMER_BTREE_TYPE_LEAF:
2765 			KKASSERT(elm->internal.subtree_offset != 0);
2766 			child = hammer_get_node(cursor->trans,
2767 						elm->internal.subtree_offset,
2768 						0, &error);
2769 			break;
2770 		default:
2771 			child = NULL;
2772 			break;
2773 		}
2774 		if (child) {
2775 			if (hammer_lock_ex_try(&child->lock) != 0) {
2776 				if (cursor->deadlk_node == NULL) {
2777 					cursor->deadlk_node = child;
2778 					hammer_ref_node(cursor->deadlk_node);
2779 				}
2780 				error = EDEADLK;
2781 				hammer_rel_node(child);
2782 			} else {
2783 				if (lcache) {
2784 					item = TAILQ_FIRST(&lcache->list);
2785 					KKASSERT(item != NULL);
2786 					item->flags |= HAMMER_NODE_LOCK_LCACHE;
2787 					TAILQ_REMOVE(&lcache->list, item, entry);
2788 				} else {
2789 					item = kmalloc(sizeof(*item),
2790 						       hmp->m_misc,
2791 						       M_WAITOK|M_ZERO);
2792 					TAILQ_INIT(&item->list);
2793 				}
2794 
2795 				TAILQ_INSERT_TAIL(&parent->list, item, entry);
2796 				item->parent = parent;
2797 				item->node = child;
2798 				item->index = i;
2799 				item->count = child->ondisk->count;
2800 
2801 				/*
2802 				 * Recurse (used by the rebalancing code)
2803 				 */
2804 				if (depth > 1 && elm->base.btype == HAMMER_BTREE_TYPE_INTERNAL) {
2805 					error = hammer_btree_lock_children(
2806 							cursor,
2807 							depth - 1,
2808 							item,
2809 							lcache);
2810 				}
2811 			}
2812 		}
2813 	}
2814 	if (error)
2815 		hammer_btree_unlock_children(hmp, parent, lcache);
2816 	return(error);
2817 }
2818 
2819 /*
2820  * Create an in-memory copy of all B-Tree nodes listed, recursively,
2821  * including the parent.
2822  */
2823 void
2824 hammer_btree_lock_copy(hammer_cursor_t cursor, hammer_node_lock_t parent)
2825 {
2826 	hammer_mount_t hmp = cursor->trans->hmp;
2827 	hammer_node_lock_t item;
2828 
2829 	if (parent->copy == NULL) {
2830 		KKASSERT((parent->flags & HAMMER_NODE_LOCK_LCACHE) == 0);
2831 		parent->copy = kmalloc(sizeof(*parent->copy),
2832 				       hmp->m_misc, M_WAITOK);
2833 	}
2834 	KKASSERT((parent->flags & HAMMER_NODE_LOCK_UPDATED) == 0);
2835 	*parent->copy = *parent->node->ondisk;
2836 	TAILQ_FOREACH(item, &parent->list, entry) {
2837 		hammer_btree_lock_copy(cursor, item);
2838 	}
2839 }
2840 
2841 /*
2842  * Recursively sync modified copies to the media.
2843  */
2844 int
2845 hammer_btree_sync_copy(hammer_cursor_t cursor, hammer_node_lock_t parent)
2846 {
2847 	hammer_node_lock_t item;
2848 	int count = 0;
2849 
2850 	if (parent->flags & HAMMER_NODE_LOCK_UPDATED) {
2851 		++count;
2852 		hammer_modify_node_all(cursor->trans, parent->node);
2853 		*parent->node->ondisk = *parent->copy;
2854                 hammer_modify_node_done(parent->node);
2855 		if (parent->copy->type == HAMMER_BTREE_TYPE_DELETED) {
2856 			hammer_flush_node(parent->node, 0);
2857 			hammer_delete_node(cursor->trans, parent->node);
2858 		}
2859 	}
2860 	TAILQ_FOREACH(item, &parent->list, entry) {
2861 		count += hammer_btree_sync_copy(cursor, item);
2862 	}
2863 	return(count);
2864 }
2865 
2866 /*
2867  * Release previously obtained node locks.  The caller is responsible for
2868  * cleaning up parent->node itself (its usually just aliased from a cursor),
2869  * but this function will take care of the copies.
2870  *
2871  * NOTE: The root node is not placed in the lcache and node->copy is not
2872  *	 deallocated when lcache != NULL.
2873  */
2874 void
2875 hammer_btree_unlock_children(hammer_mount_t hmp, hammer_node_lock_t parent,
2876 			     hammer_node_lock_t lcache)
2877 {
2878 	hammer_node_lock_t item;
2879 	hammer_node_ondisk_t copy;
2880 
2881 	while ((item = TAILQ_FIRST(&parent->list)) != NULL) {
2882 		TAILQ_REMOVE(&parent->list, item, entry);
2883 		hammer_btree_unlock_children(hmp, item, lcache);
2884 		hammer_unlock(&item->node->lock);
2885 		hammer_rel_node(item->node);
2886 		if (lcache) {
2887 			/*
2888 			 * NOTE: When placing the item back in the lcache
2889 			 *	 the flag is cleared by the bzero().
2890 			 *	 Remaining fields are cleared as a safety
2891 			 *	 measure.
2892 			 */
2893 			KKASSERT(item->flags & HAMMER_NODE_LOCK_LCACHE);
2894 			KKASSERT(TAILQ_EMPTY(&item->list));
2895 			copy = item->copy;
2896 			bzero(item, sizeof(*item));
2897 			TAILQ_INIT(&item->list);
2898 			item->copy = copy;
2899 			if (copy)
2900 				bzero(copy, sizeof(*copy));
2901 			TAILQ_INSERT_TAIL(&lcache->list, item, entry);
2902 		} else {
2903 			kfree(item, hmp->m_misc);
2904 		}
2905 	}
2906 	if (parent->copy && (parent->flags & HAMMER_NODE_LOCK_LCACHE) == 0) {
2907 		kfree(parent->copy, hmp->m_misc);
2908 		parent->copy = NULL;	/* safety */
2909 	}
2910 }
2911 
2912 /************************************************************************
2913  *			   MISCELLANIOUS SUPPORT 			*
2914  ************************************************************************/
2915 
2916 /*
2917  * Compare two B-Tree elements, return -N, 0, or +N (e.g. similar to strcmp).
2918  *
2919  * Note that for this particular function a return value of -1, 0, or +1
2920  * can denote a match if create_tid is otherwise discounted.  A create_tid
2921  * of zero is considered to be 'infinity' in comparisons.
2922  *
2923  * See also hammer_rec_rb_compare() and hammer_rec_cmp() in hammer_object.c.
2924  */
2925 int
2926 hammer_btree_cmp(hammer_base_elm_t key1, hammer_base_elm_t key2)
2927 {
2928 	if (key1->localization < key2->localization)
2929 		return(-5);
2930 	if (key1->localization > key2->localization)
2931 		return(5);
2932 
2933 	if (key1->obj_id < key2->obj_id)
2934 		return(-4);
2935 	if (key1->obj_id > key2->obj_id)
2936 		return(4);
2937 
2938 	if (key1->rec_type < key2->rec_type)
2939 		return(-3);
2940 	if (key1->rec_type > key2->rec_type)
2941 		return(3);
2942 
2943 	if (key1->key < key2->key)
2944 		return(-2);
2945 	if (key1->key > key2->key)
2946 		return(2);
2947 
2948 	/*
2949 	 * A create_tid of zero indicates a record which is undeletable
2950 	 * and must be considered to have a value of positive infinity.
2951 	 */
2952 	if (key1->create_tid == 0) {
2953 		if (key2->create_tid == 0)
2954 			return(0);
2955 		return(1);
2956 	}
2957 	if (key2->create_tid == 0)
2958 		return(-1);
2959 	if (key1->create_tid < key2->create_tid)
2960 		return(-1);
2961 	if (key1->create_tid > key2->create_tid)
2962 		return(1);
2963 	return(0);
2964 }
2965 
2966 /*
2967  * Test a timestamp against an element to determine whether the
2968  * element is visible.  A timestamp of 0 means 'infinity'.
2969  */
2970 int
2971 hammer_btree_chkts(hammer_tid_t asof, hammer_base_elm_t base)
2972 {
2973 	if (asof == 0) {
2974 		if (base->delete_tid)
2975 			return(1);
2976 		return(0);
2977 	}
2978 	if (asof < base->create_tid)
2979 		return(-1);
2980 	if (base->delete_tid && asof >= base->delete_tid)
2981 		return(1);
2982 	return(0);
2983 }
2984 
2985 /*
2986  * Create a separator half way inbetween key1 and key2.  For fields just
2987  * one unit apart, the separator will match key2.  key1 is on the left-hand
2988  * side and key2 is on the right-hand side.
2989  *
2990  * key2 must be >= the separator.  It is ok for the separator to match key2.
2991  *
2992  * NOTE: Even if key1 does not match key2, the separator may wind up matching
2993  * key2.
2994  *
2995  * NOTE: It might be beneficial to just scrap this whole mess and just
2996  * set the separator to key2.
2997  */
2998 #define MAKE_SEPARATOR(key1, key2, dest, field)	\
2999 	dest->field = key1->field + ((key2->field - key1->field + 1) >> 1);
3000 
3001 static void
3002 hammer_make_separator(hammer_base_elm_t key1, hammer_base_elm_t key2,
3003 		      hammer_base_elm_t dest)
3004 {
3005 	bzero(dest, sizeof(*dest));
3006 
3007 	dest->rec_type = key2->rec_type;
3008 	dest->key = key2->key;
3009 	dest->obj_id = key2->obj_id;
3010 	dest->create_tid = key2->create_tid;
3011 
3012 	MAKE_SEPARATOR(key1, key2, dest, localization);
3013 	if (key1->localization == key2->localization) {
3014 		MAKE_SEPARATOR(key1, key2, dest, obj_id);
3015 		if (key1->obj_id == key2->obj_id) {
3016 			MAKE_SEPARATOR(key1, key2, dest, rec_type);
3017 			if (key1->rec_type == key2->rec_type) {
3018 				MAKE_SEPARATOR(key1, key2, dest, key);
3019 				/*
3020 				 * Don't bother creating a separator for
3021 				 * create_tid, which also conveniently avoids
3022 				 * having to handle the create_tid == 0
3023 				 * (infinity) case.  Just leave create_tid
3024 				 * set to key2.
3025 				 *
3026 				 * Worst case, dest matches key2 exactly,
3027 				 * which is acceptable.
3028 				 */
3029 			}
3030 		}
3031 	}
3032 }
3033 
3034 #undef MAKE_SEPARATOR
3035 
3036 /*
3037  * Return whether a generic internal or leaf node is full
3038  */
3039 static __inline
3040 int
3041 btree_node_is_full(hammer_node_ondisk_t node)
3042 {
3043 	return(btree_max_elements(node->type) == node->count);
3044 }
3045 
3046 static __inline
3047 int
3048 btree_max_elements(u_int8_t type)
3049 {
3050 	int n;
3051 
3052 	n = hammer_node_max_elements(type);
3053 	if (n == -1)
3054 		panic("btree_max_elements: bad type %d", type);
3055 	return(n);
3056 }
3057 
3058 void
3059 hammer_print_btree_node(hammer_node_ondisk_t ondisk)
3060 {
3061 	hammer_btree_elm_t elm;
3062 	int i;
3063 
3064 	kprintf("node %p count=%d parent=%016llx type=%c\n",
3065 		ondisk, ondisk->count,
3066 		(long long)ondisk->parent, ondisk->type);
3067 
3068 	/*
3069 	 * Dump both boundary elements if an internal node
3070 	 */
3071 	if (ondisk->type == HAMMER_BTREE_TYPE_INTERNAL) {
3072 		for (i = 0; i <= ondisk->count; ++i) {
3073 			elm = &ondisk->elms[i];
3074 			hammer_print_btree_elm(elm, ondisk->type, i);
3075 		}
3076 	} else {
3077 		for (i = 0; i < ondisk->count; ++i) {
3078 			elm = &ondisk->elms[i];
3079 			hammer_print_btree_elm(elm, ondisk->type, i);
3080 		}
3081 	}
3082 }
3083 
3084 void
3085 hammer_print_btree_elm(hammer_btree_elm_t elm, u_int8_t type, int i)
3086 {
3087 	kprintf("  %2d", i);
3088 	kprintf("\tobj_id       = %016llx\n", (long long)elm->base.obj_id);
3089 	kprintf("\tkey          = %016llx\n", (long long)elm->base.key);
3090 	kprintf("\tcreate_tid   = %016llx\n", (long long)elm->base.create_tid);
3091 	kprintf("\tdelete_tid   = %016llx\n", (long long)elm->base.delete_tid);
3092 	kprintf("\trec_type     = %04x\n", elm->base.rec_type);
3093 	kprintf("\tobj_type     = %02x\n", elm->base.obj_type);
3094 	kprintf("\tbtype        = %02x (%c)\n",
3095 		elm->base.btype,
3096 		(elm->base.btype ? elm->base.btype : '?'));
3097 	kprintf("\tlocalization = %02x\n", elm->base.localization);
3098 
3099 	switch(type) {
3100 	case HAMMER_BTREE_TYPE_INTERNAL:
3101 		kprintf("\tsubtree_off  = %016llx\n",
3102 			(long long)elm->internal.subtree_offset);
3103 		break;
3104 	case HAMMER_BTREE_TYPE_RECORD:
3105 		kprintf("\tdata_offset  = %016llx\n",
3106 			(long long)elm->leaf.data_offset);
3107 		kprintf("\tdata_len     = %08x\n", elm->leaf.data_len);
3108 		kprintf("\tdata_crc     = %08x\n", elm->leaf.data_crc);
3109 		break;
3110 	}
3111 }
3112