xref: /dragonfly/sys/vfs/hammer/hammer_btree.c (revision 65cc0652)
1 /*
2  * Copyright (c) 2007-2008 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 /*
36  * HAMMER B-Tree index
37  *
38  * HAMMER implements a modified B+Tree.  In documentation this will
39  * simply be refered to as the HAMMER B-Tree.  Basically a HAMMER B-Tree
40  * looks like a B+Tree (A B-Tree which stores its records only at the leafs
41  * of the tree), but adds two additional boundary elements which describe
42  * the left-most and right-most element a node is able to represent.  In
43  * otherwords, we have boundary elements at the two ends of a B-Tree node
44  * with no valid sub-tree pointer for the right-most element.
45  *
46  * A B-Tree internal node looks like this:
47  *
48  *	B N N N N N N B   <-- boundary and internal elements
49  *       S S S S S S S    <-- subtree pointers
50  *
51  * A B-Tree leaf node basically looks like this:
52  *
53  *	L L L L L L L L   <-- leaf elemenets
54  *
55  * The radix for an internal node is 1 less then a leaf but we get a
56  * number of significant benefits for our troubles.
57  * The left-hand boundary (B in the left) is integrated into the first
58  * element so it doesn't require 2 elements to accomodate boundaries.
59  *
60  * The big benefit to using a B-Tree containing boundary information
61  * is that it is possible to cache pointers into the middle of the tree
62  * and not have to start searches, insertions, OR deletions at the root
63  * node.   In particular, searches are able to progress in a definitive
64  * direction from any point in the tree without revisting nodes.  This
65  * greatly improves the efficiency of many operations, most especially
66  * record appends.
67  *
68  * B-Trees also make the stacking of trees fairly straightforward.
69  *
70  * INSERTIONS:  A search performed with the intention of doing
71  * an insert will guarantee that the terminal leaf node is not full by
72  * splitting full nodes.  Splits occur top-down during the dive down the
73  * B-Tree.
74  *
75  * DELETIONS: A deletion makes no attempt to proactively balance the
76  * tree and will recursively remove nodes that become empty.  If a
77  * deadlock occurs a deletion may not be able to remove an empty leaf.
78  * Deletions never allow internal nodes to become empty (that would blow
79  * up the boundaries).
80  */
81 #include "hammer.h"
82 
83 static int btree_search(hammer_cursor_t cursor, int flags);
84 static int btree_split_internal(hammer_cursor_t cursor);
85 static int btree_split_leaf(hammer_cursor_t cursor);
86 static int btree_remove(hammer_cursor_t cursor, int *ndelete);
87 static __inline int btree_node_is_full(hammer_node_ondisk_t node);
88 static int hammer_btree_mirror_propagate(hammer_cursor_t cursor,
89 			hammer_tid_t mirror_tid);
90 static void hammer_make_separator(hammer_base_elm_t key1,
91 			hammer_base_elm_t key2, hammer_base_elm_t dest);
92 static void hammer_cursor_mirror_filter(hammer_cursor_t cursor);
93 static __inline void hammer_debug_btree_elm(hammer_cursor_t cursor,
94 		hammer_btree_elm_t elm, const char *s, int res);
95 static __inline void hammer_debug_btree_parent(hammer_cursor_t cursor,
96 		const char *s);
97 
98 /*
99  * Iterate records after a search.  The cursor is iterated forwards past
100  * the current record until a record matching the key-range requirements
101  * is found.  ENOENT is returned if the iteration goes past the ending
102  * key.
103  *
104  * The iteration is inclusive of key_beg and can be inclusive or exclusive
105  * of key_end depending on whether HAMMER_CURSOR_END_INCLUSIVE is set.
106  *
107  * When doing an as-of search (cursor->asof != 0), key_beg.create_tid
108  * may be modified by B-Tree functions.
109  *
110  * cursor->key_beg may or may not be modified by this function during
111  * the iteration.  XXX future - in case of an inverted lock we may have
112  * to reinitiate the lookup and set key_beg to properly pick up where we
113  * left off.
114  *
115  * If HAMMER_CURSOR_ITERATE_CHECK is set it is possible that the cursor
116  * was reverse indexed due to being moved to a parent while unlocked,
117  * and something else might have inserted an element outside the iteration
118  * range.  When this case occurs the iterator just keeps iterating until
119  * it gets back into the iteration range (instead of asserting).
120  *
121  * NOTE!  EDEADLK *CANNOT* be returned by this procedure.
122  */
123 int
124 hammer_btree_iterate(hammer_cursor_t cursor)
125 {
126 	hammer_node_ondisk_t node;
127 	hammer_btree_elm_t elm;
128 	hammer_mount_t hmp;
129 	int error = 0;
130 	int r;
131 	int s;
132 
133 	/*
134 	 * Skip past the current record
135 	 */
136 	hmp = cursor->trans->hmp;
137 	node = cursor->node->ondisk;
138 	if (node == NULL)
139 		return(ENOENT);
140 	if (cursor->index < node->count &&
141 	    (cursor->flags & HAMMER_CURSOR_ATEDISK)) {
142 		++cursor->index;
143 	}
144 
145 	/*
146 	 * HAMMER can wind up being cpu-bound.
147 	 */
148 	if (++hmp->check_yield > hammer_yield_check) {
149 		hmp->check_yield = 0;
150 		lwkt_user_yield();
151 	}
152 
153 
154 	/*
155 	 * Loop until an element is found or we are done.
156 	 */
157 	for (;;) {
158 		/*
159 		 * We iterate up the tree and then index over one element
160 		 * while we are at the last element in the current node.
161 		 *
162 		 * If we are at the root of the filesystem, cursor_up
163 		 * returns ENOENT.
164 		 *
165 		 * XXX this could be optimized by storing the information in
166 		 * the parent reference.
167 		 *
168 		 * XXX we can lose the node lock temporarily, this could mess
169 		 * up our scan.
170 		 */
171 		++hammer_stats_btree_iterations;
172 		hammer_flusher_clean_loose_ios(hmp);
173 
174 		if (cursor->index == node->count) {
175 			if (hammer_debug_btree) {
176 				hkprintf("BRACKETU %016jx[%d] -> %016jx[%d] td=%p\n",
177 					(intmax_t)cursor->node->node_offset,
178 					cursor->index,
179 					(intmax_t)(cursor->parent ? cursor->parent->node_offset : -1),
180 					cursor->parent_index,
181 					curthread);
182 			}
183 			KKASSERT(cursor->parent == NULL ||
184 				 cursor->parent->ondisk->elms[cursor->parent_index].internal.subtree_offset == cursor->node->node_offset);
185 			error = hammer_cursor_up(cursor);
186 			if (error)
187 				break;
188 			/* reload stale pointer */
189 			node = cursor->node->ondisk;
190 			KKASSERT(cursor->index != node->count);
191 
192 			/*
193 			 * If we are reblocking we want to return internal
194 			 * nodes.  Note that the internal node will be
195 			 * returned multiple times, on each upward recursion
196 			 * from its children.  The caller selects which
197 			 * revisit it cares about (usually first or last only).
198 			 */
199 			if (cursor->flags & HAMMER_CURSOR_REBLOCKING) {
200 				cursor->flags |= HAMMER_CURSOR_ATEDISK;
201 				return(0);
202 			}
203 			++cursor->index;
204 			continue;
205 		}
206 
207 		/*
208 		 * Check internal or leaf element.  Determine if the record
209 		 * at the cursor has gone beyond the end of our range.
210 		 *
211 		 * We recurse down through internal nodes.
212 		 */
213 		if (node->type == HAMMER_BTREE_TYPE_INTERNAL) {
214 			elm = &node->elms[cursor->index];
215 
216 			r = hammer_btree_cmp(&cursor->key_end, &elm[0].base);
217 			s = hammer_btree_cmp(&cursor->key_beg, &elm[1].base);
218 			if (hammer_debug_btree) {
219 				hammer_debug_btree_elm(cursor, elm, "BRACKETL", r);
220 				hammer_debug_btree_elm(cursor, elm + 1, "BRACKETR", s);
221 			}
222 
223 			if (r < 0) {
224 				error = ENOENT;
225 				break;
226 			}
227 			if (r == 0 && (cursor->flags &
228 				       HAMMER_CURSOR_END_INCLUSIVE) == 0) {
229 				error = ENOENT;
230 				break;
231 			}
232 
233 			/*
234 			 * Better not be zero
235 			 */
236 			KKASSERT(elm->internal.subtree_offset != 0);
237 
238 			if (s <= 0) {
239 				/*
240 				 * If running the mirror filter see if we
241 				 * can skip one or more entire sub-trees.
242 				 * If we can we return the internal node
243 				 * and the caller processes the skipped
244 				 * range (see mirror_read).
245 				 */
246 				if (cursor->flags &
247 				    HAMMER_CURSOR_MIRROR_FILTERED) {
248 					if (elm->internal.mirror_tid <
249 					    cursor->cmirror->mirror_tid) {
250 						hammer_cursor_mirror_filter(cursor);
251 						return(0);
252 					}
253 				}
254 			} else {
255 				/*
256 				 * Normally it would be impossible for the
257 				 * cursor to have gotten back-indexed,
258 				 * but it can happen if a node is deleted
259 				 * and the cursor is moved to its parent
260 				 * internal node.  ITERATE_CHECK will be set.
261 				 */
262 				KKASSERT(cursor->flags &
263 					 HAMMER_CURSOR_ITERATE_CHECK);
264 				hdkprintf("DEBUG: Caught parent seek "
265 					"in internal iteration\n");
266 			}
267 
268 			error = hammer_cursor_down(cursor);
269 			if (error)
270 				break;
271 			KKASSERT(cursor->index == 0);
272 			/* reload stale pointer */
273 			node = cursor->node->ondisk;
274 			continue;
275 		} else {
276 			elm = &node->elms[cursor->index];
277 			r = hammer_btree_cmp(&cursor->key_end, &elm->base);
278 			if (hammer_debug_btree) {
279 				hammer_debug_btree_elm(cursor, elm, "ELEMENT", r);
280 			}
281 			if (r < 0) {
282 				error = ENOENT;
283 				break;
284 			}
285 
286 			/*
287 			 * We support both end-inclusive and
288 			 * end-exclusive searches.
289 			 */
290 			if (r == 0 &&
291 			   (cursor->flags & HAMMER_CURSOR_END_INCLUSIVE) == 0) {
292 				error = ENOENT;
293 				break;
294 			}
295 
296 			/*
297 			 * If ITERATE_CHECK is set an unlocked cursor may
298 			 * have been moved to a parent and the iterate can
299 			 * happen upon elements that are not in the requested
300 			 * range.
301 			 */
302 			if (cursor->flags & HAMMER_CURSOR_ITERATE_CHECK) {
303 				s = hammer_btree_cmp(&cursor->key_beg,
304 						     &elm->base);
305 				if (s > 0) {
306 					hdkprintf("DEBUG: Caught parent seek "
307 						"in leaf iteration\n");
308 					++cursor->index;
309 					continue;
310 				}
311 			}
312 			cursor->flags &= ~HAMMER_CURSOR_ITERATE_CHECK;
313 
314 			/*
315 			 * Return the element
316 			 */
317 			switch(elm->leaf.base.btype) {
318 			case HAMMER_BTREE_TYPE_RECORD:
319 				if ((cursor->flags & HAMMER_CURSOR_ASOF) &&
320 				    hammer_btree_chkts(cursor->asof, &elm->base)) {
321 					++cursor->index;
322 					continue;
323 				}
324 				error = 0;
325 				break;
326 			default:
327 				error = EINVAL;
328 				break;
329 			}
330 			if (error)
331 				break;
332 		}
333 
334 		/*
335 		 * Return entry
336 		 */
337 		if (hammer_debug_btree) {
338 			elm = &cursor->node->ondisk->elms[cursor->index];
339 			hammer_debug_btree_elm(cursor, elm, "ITERATE", 0xffff);
340 		}
341 		return(0);
342 	}
343 	return(error);
344 }
345 
346 /*
347  * We hit an internal element that we could skip as part of a mirroring
348  * scan.  Calculate the entire range being skipped.
349  *
350  * It is important to include any gaps between the parent's left_bound
351  * and the node's left_bound, and same goes for the right side.
352  */
353 static void
354 hammer_cursor_mirror_filter(hammer_cursor_t cursor)
355 {
356 	struct hammer_cmirror *cmirror;
357 	hammer_node_ondisk_t ondisk;
358 	hammer_btree_elm_t elm;
359 
360 	ondisk = cursor->node->ondisk;
361 	cmirror = cursor->cmirror;
362 
363 	/*
364 	 * Calculate the skipped range
365 	 */
366 	elm = &ondisk->elms[cursor->index];
367 	if (cursor->index == 0)
368 		cmirror->skip_beg = *cursor->left_bound;
369 	else
370 		cmirror->skip_beg = elm->internal.base;
371 	while (cursor->index < ondisk->count) {
372 		if (elm->internal.mirror_tid >= cmirror->mirror_tid)
373 			break;
374 		++cursor->index;
375 		++elm;
376 	}
377 	if (cursor->index == ondisk->count)
378 		cmirror->skip_end = *cursor->right_bound;
379 	else
380 		cmirror->skip_end = elm->internal.base;
381 
382 	/*
383 	 * clip the returned result.
384 	 */
385 	if (hammer_btree_cmp(&cmirror->skip_beg, &cursor->key_beg) < 0)
386 		cmirror->skip_beg = cursor->key_beg;
387 	if (hammer_btree_cmp(&cmirror->skip_end, &cursor->key_end) > 0)
388 		cmirror->skip_end = cursor->key_end;
389 }
390 
391 /*
392  * Iterate in the reverse direction.  This is used by the pruning code to
393  * avoid overlapping records.
394  */
395 int
396 hammer_btree_iterate_reverse(hammer_cursor_t cursor)
397 {
398 	hammer_node_ondisk_t node;
399 	hammer_btree_elm_t elm;
400 	hammer_mount_t hmp;
401 	int error = 0;
402 	int r;
403 	int s;
404 
405 	/* mirror filtering not supported for reverse iteration */
406 	KKASSERT ((cursor->flags & HAMMER_CURSOR_MIRROR_FILTERED) == 0);
407 
408 	/*
409 	 * Skip past the current record.  For various reasons the cursor
410 	 * may end up set to -1 or set to point at the end of the current
411 	 * node.  These cases must be addressed.
412 	 */
413 	node = cursor->node->ondisk;
414 	if (node == NULL)
415 		return(ENOENT);
416 	if (cursor->index != -1 &&
417 	    (cursor->flags & HAMMER_CURSOR_ATEDISK)) {
418 		--cursor->index;
419 	}
420 	if (cursor->index == cursor->node->ondisk->count)
421 		--cursor->index;
422 
423 	/*
424 	 * HAMMER can wind up being cpu-bound.
425 	 */
426 	hmp = cursor->trans->hmp;
427 	if (++hmp->check_yield > hammer_yield_check) {
428 		hmp->check_yield = 0;
429 		lwkt_user_yield();
430 	}
431 
432 	/*
433 	 * Loop until an element is found or we are done.
434 	 */
435 	for (;;) {
436 		++hammer_stats_btree_iterations;
437 		hammer_flusher_clean_loose_ios(hmp);
438 
439 		/*
440 		 * We iterate up the tree and then index over one element
441 		 * while we are at the last element in the current node.
442 		 */
443 		if (cursor->index == -1) {
444 			error = hammer_cursor_up(cursor);
445 			if (error) {
446 				cursor->index = 0; /* sanity */
447 				break;
448 			}
449 			/* reload stale pointer */
450 			node = cursor->node->ondisk;
451 			KKASSERT(cursor->index != node->count);
452 			--cursor->index;
453 			continue;
454 		}
455 
456 		/*
457 		 * Check internal or leaf element.  Determine if the record
458 		 * at the cursor has gone beyond the end of our range.
459 		 *
460 		 * We recurse down through internal nodes.
461 		 */
462 		KKASSERT(cursor->index != node->count);
463 		if (node->type == HAMMER_BTREE_TYPE_INTERNAL) {
464 			elm = &node->elms[cursor->index];
465 
466 			r = hammer_btree_cmp(&cursor->key_end, &elm[0].base);
467 			s = hammer_btree_cmp(&cursor->key_beg, &elm[1].base);
468 			if (hammer_debug_btree) {
469 				hammer_debug_btree_elm(cursor, elm, "BRACKETL", r);
470 				hammer_debug_btree_elm(cursor, elm + 1, "BRACKETR", s);
471 			}
472 
473 			if (s >= 0) {
474 				error = ENOENT;
475 				break;
476 			}
477 
478 			/*
479 			 * It shouldn't be possible to be seeked past key_end,
480 			 * even if the cursor got moved to a parent.
481 			 */
482 			KKASSERT(r >= 0);
483 
484 			/*
485 			 * Better not be zero
486 			 */
487 			KKASSERT(elm->internal.subtree_offset != 0);
488 
489 			error = hammer_cursor_down(cursor);
490 			if (error)
491 				break;
492 			KKASSERT(cursor->index == 0);
493 			/* reload stale pointer */
494 			node = cursor->node->ondisk;
495 
496 			/* this can assign -1 if the leaf was empty */
497 			cursor->index = node->count - 1;
498 			continue;
499 		} else {
500 			elm = &node->elms[cursor->index];
501 			s = hammer_btree_cmp(&cursor->key_beg, &elm->base);
502 			if (hammer_debug_btree) {
503 				hammer_debug_btree_elm(cursor, elm, "ELEMENTR", s);
504 			}
505 			if (s > 0) {
506 				error = ENOENT;
507 				break;
508 			}
509 
510 			/*
511 			 * It shouldn't be possible to be seeked past key_end,
512 			 * even if the cursor got moved to a parent.
513 			 */
514 			cursor->flags &= ~HAMMER_CURSOR_ITERATE_CHECK;
515 
516 			/*
517 			 * Return the element
518 			 */
519 			switch(elm->leaf.base.btype) {
520 			case HAMMER_BTREE_TYPE_RECORD:
521 				if ((cursor->flags & HAMMER_CURSOR_ASOF) &&
522 				    hammer_btree_chkts(cursor->asof, &elm->base)) {
523 					--cursor->index;
524 					continue;
525 				}
526 				error = 0;
527 				break;
528 			default:
529 				error = EINVAL;
530 				break;
531 			}
532 			if (error)
533 				break;
534 		}
535 
536 		/*
537 		 * Return entry
538 		 */
539 		if (hammer_debug_btree) {
540 			elm = &cursor->node->ondisk->elms[cursor->index];
541 			hammer_debug_btree_elm(cursor, elm, "ITERATER", 0xffff);
542 		}
543 		return(0);
544 	}
545 	return(error);
546 }
547 
548 /*
549  * Lookup cursor->key_beg.  0 is returned on success, ENOENT if the entry
550  * could not be found, EDEADLK if inserting and a retry is needed, and a
551  * fatal error otherwise.  When retrying, the caller must terminate the
552  * cursor and reinitialize it.  EDEADLK cannot be returned if not inserting.
553  *
554  * The cursor is suitably positioned for a deletion on success, and suitably
555  * positioned for an insertion on ENOENT if HAMMER_CURSOR_INSERT was
556  * specified.
557  *
558  * The cursor may begin anywhere, the search will traverse the tree in
559  * either direction to locate the requested element.
560  *
561  * Most of the logic implementing historical searches is handled here.  We
562  * do an initial lookup with create_tid set to the asof TID.  Due to the
563  * way records are laid out, a backwards iteration may be required if
564  * ENOENT is returned to locate the historical record.  Here's the
565  * problem:
566  *
567  * create_tid:    10      15       20
568  *		     LEAF1   LEAF2
569  * records:         (11)        (18)
570  *
571  * Lets say we want to do a lookup AS-OF timestamp 17.  We will traverse
572  * LEAF2 but the only record in LEAF2 has a create_tid of 18, which is
573  * not visible and thus causes ENOENT to be returned.  We really need
574  * to check record 11 in LEAF1.  If it also fails then the search fails
575  * (e.g. it might represent the range 11-16 and thus still not match our
576  * AS-OF timestamp of 17).  Note that LEAF1 could be empty, requiring
577  * further iterations.
578  *
579  * If this case occurs btree_search() will set HAMMER_CURSOR_CREATE_CHECK
580  * and the cursor->create_check TID if an iteration might be needed.
581  * In the above example create_check would be set to 14.
582  */
583 int
584 hammer_btree_lookup(hammer_cursor_t cursor)
585 {
586 	int error;
587 
588 	cursor->flags &= ~HAMMER_CURSOR_ITERATE_CHECK;
589 	KKASSERT ((cursor->flags & HAMMER_CURSOR_INSERT) == 0 ||
590 		  cursor->trans->sync_lock_refs > 0);
591 	++hammer_stats_btree_lookups;
592 	if (cursor->flags & HAMMER_CURSOR_ASOF) {
593 		KKASSERT((cursor->flags & HAMMER_CURSOR_INSERT) == 0);
594 		cursor->key_beg.create_tid = cursor->asof;
595 		for (;;) {
596 			cursor->flags &= ~HAMMER_CURSOR_CREATE_CHECK;
597 			error = btree_search(cursor, 0);
598 			if (error != ENOENT ||
599 			    (cursor->flags & HAMMER_CURSOR_CREATE_CHECK) == 0) {
600 				/*
601 				 * Stop if no error.
602 				 * Stop if error other then ENOENT.
603 				 * Stop if ENOENT and not special case.
604 				 */
605 				break;
606 			}
607 			if (hammer_debug_btree) {
608 				hkprintf("CREATE_CHECK %016jx\n",
609 					(intmax_t)cursor->create_check);
610 			}
611 			cursor->key_beg.create_tid = cursor->create_check;
612 			/* loop */
613 		}
614 	} else {
615 		error = btree_search(cursor, 0);
616 	}
617 	if (error == 0)
618 		error = hammer_btree_extract(cursor, cursor->flags);
619 	return(error);
620 }
621 
622 /*
623  * Execute the logic required to start an iteration.  The first record
624  * located within the specified range is returned and iteration control
625  * flags are adjusted for successive hammer_btree_iterate() calls.
626  *
627  * Set ATEDISK so a low-level caller can call btree_first/btree_iterate
628  * in a loop without worrying about it.  Higher-level merged searches will
629  * adjust the flag appropriately.
630  */
631 int
632 hammer_btree_first(hammer_cursor_t cursor)
633 {
634 	int error;
635 
636 	error = hammer_btree_lookup(cursor);
637 	if (error == ENOENT) {
638 		cursor->flags &= ~HAMMER_CURSOR_ATEDISK;
639 		error = hammer_btree_iterate(cursor);
640 	}
641 	cursor->flags |= HAMMER_CURSOR_ATEDISK;
642 	return(error);
643 }
644 
645 /*
646  * Similarly but for an iteration in the reverse direction.
647  *
648  * Set ATEDISK when iterating backwards to skip the current entry,
649  * which after an ENOENT lookup will be pointing beyond our end point.
650  *
651  * Set ATEDISK so a low-level caller can call btree_last/btree_iterate_reverse
652  * in a loop without worrying about it.  Higher-level merged searches will
653  * adjust the flag appropriately.
654  */
655 int
656 hammer_btree_last(hammer_cursor_t cursor)
657 {
658 	struct hammer_base_elm save;
659 	int error;
660 
661 	save = cursor->key_beg;
662 	cursor->key_beg = cursor->key_end;
663 	error = hammer_btree_lookup(cursor);
664 	cursor->key_beg = save;
665 	if (error == ENOENT ||
666 	    (cursor->flags & HAMMER_CURSOR_END_INCLUSIVE) == 0) {
667 		cursor->flags |= HAMMER_CURSOR_ATEDISK;
668 		error = hammer_btree_iterate_reverse(cursor);
669 	}
670 	cursor->flags |= HAMMER_CURSOR_ATEDISK;
671 	return(error);
672 }
673 
674 /*
675  * Extract the record and/or data associated with the cursor's current
676  * position.  Any prior record or data stored in the cursor is replaced.
677  *
678  * NOTE: All extractions occur at the leaf of the B-Tree.
679  */
680 int
681 hammer_btree_extract(hammer_cursor_t cursor, int flags)
682 {
683 	hammer_node_ondisk_t node;
684 	hammer_btree_elm_t elm;
685 	hammer_off_t data_off;
686 	hammer_mount_t hmp;
687 	int32_t data_len;
688 	int error;
689 
690 	/*
691 	 * Certain types of corruption can result in a NULL node pointer.
692 	 */
693 	if (cursor->node == NULL) {
694 		hkprintf("NULL cursor->node, filesystem might "
695 			"have gotten corrupted\n");
696 		return (EINVAL);
697 	}
698 
699 	/*
700 	 * The case where the data reference resolves to the same buffer
701 	 * as the record reference must be handled.
702 	 */
703 	node = cursor->node->ondisk;
704 	elm = &node->elms[cursor->index];
705 	cursor->data = NULL;
706 	hmp = cursor->node->hmp;
707 
708 	/*
709 	 * There is nothing to extract for an internal element.
710 	 */
711 	if (node->type == HAMMER_BTREE_TYPE_INTERNAL)
712 		return(EINVAL);
713 
714 	/*
715 	 * Only record types have data.
716 	 */
717 	KKASSERT(node->type == HAMMER_BTREE_TYPE_LEAF);
718 	cursor->leaf = &elm->leaf;
719 
720 	/*
721 	 * Returns here unless HAMMER_CURSOR_GET_DATA is set.
722 	 */
723 	if ((flags & HAMMER_CURSOR_GET_DATA) == 0)
724 		return(0);
725 
726 	if (elm->leaf.base.btype != HAMMER_BTREE_TYPE_RECORD)
727 		return(EINVAL);
728 	data_off = elm->leaf.data_offset;
729 	data_len = elm->leaf.data_len;
730 	if (data_off == 0)
731 		return(0);
732 
733 	/*
734 	 * Load the data
735 	 */
736 	KKASSERT(data_len >= 0 && data_len <= HAMMER_XBUFSIZE);
737 	cursor->data = hammer_bread_ext(hmp, data_off, data_len,
738 					&error, &cursor->data_buffer);
739 
740 	/*
741 	 * Mark the data buffer as not being meta-data if it isn't
742 	 * meta-data (sometimes bulk data is accessed via a volume
743 	 * block device).
744 	 */
745 	if (error == 0) {
746 		switch(elm->leaf.base.rec_type) {
747 		case HAMMER_RECTYPE_DATA:
748 		case HAMMER_RECTYPE_DB:
749 			if ((data_off & HAMMER_ZONE_LARGE_DATA) == 0)
750 				break;
751 			if (hammer_double_buffer == 0 ||
752 			    (cursor->flags & HAMMER_CURSOR_NOSWAPCACHE)) {
753 				hammer_io_notmeta(cursor->data_buffer);
754 			}
755 			break;
756 		default:
757 			break;
758 		}
759 	}
760 
761 	/*
762 	 * Deal with CRC errors on the extracted data.
763 	 */
764 	if (error == 0 &&
765 	    hammer_crc_test_leaf(hmp->version, cursor->data, &elm->leaf) == 0) {
766 		hdkprintf("CRC DATA @ %016jx/%d FAILED\n",
767 			(intmax_t)elm->leaf.data_offset, elm->leaf.data_len);
768 		if (hammer_debug_critical)
769 			Debugger("CRC FAILED: DATA");
770 		if (cursor->trans->flags & HAMMER_TRANSF_CRCDOM)
771 			error = EDOM;	/* less critical (mirroring) */
772 		else
773 			error = EIO;	/* critical */
774 	}
775 	return(error);
776 }
777 
778 
779 /*
780  * Insert a leaf element into the B-Tree at the current cursor position.
781  * The cursor is positioned such that the element at and beyond the cursor
782  * are shifted to make room for the new record.
783  *
784  * The caller must call hammer_btree_lookup() with the HAMMER_CURSOR_INSERT
785  * flag set and that call must return ENOENT before this function can be
786  * called. ENOSPC is returned if there is no room to insert a new record.
787  *
788  * The caller may depend on the cursor's exclusive lock after return to
789  * interlock frontend visibility (see HAMMER_RECF_CONVERT_DELETE).
790  */
791 int
792 hammer_btree_insert(hammer_cursor_t cursor, hammer_btree_leaf_elm_t elm,
793 		    int *doprop)
794 {
795 	hammer_node_ondisk_t node;
796 	int i;
797 	int error;
798 
799 	*doprop = 0;
800 	if ((error = hammer_cursor_upgrade_node(cursor)) != 0)
801 		return(error);
802 	++hammer_stats_btree_inserts;
803 
804 	/*
805 	 * Insert the element at the leaf node and update the count in the
806 	 * parent.  It is possible for parent to be NULL, indicating that
807 	 * the filesystem's ROOT B-Tree node is a leaf itself, which is
808 	 * possible.  The root inode can never be deleted so the leaf should
809 	 * never be empty.
810 	 *
811 	 * Remember that leaf nodes do not have boundaries.
812 	 */
813 	hammer_modify_node_all(cursor->trans, cursor->node);
814 	node = cursor->node->ondisk;
815 	i = cursor->index;
816 	KKASSERT(elm->base.btype != 0);
817 	KKASSERT(node->type == HAMMER_BTREE_TYPE_LEAF);
818 	KKASSERT(node->count < HAMMER_BTREE_LEAF_ELMS);
819 	if (i != node->count) {
820 		bcopy(&node->elms[i], &node->elms[i+1],
821 		      (node->count - i) * sizeof(*elm));
822 	}
823 	node->elms[i].leaf = *elm;
824 	++node->count;
825 	hammer_cursor_inserted_element(cursor->node, i);
826 
827 	/*
828 	 * Update the leaf node's aggregate mirror_tid for mirroring
829 	 * support.
830 	 */
831 	if (node->mirror_tid < elm->base.delete_tid) {
832 		node->mirror_tid = elm->base.delete_tid;
833 		*doprop = 1;
834 	}
835 	if (node->mirror_tid < elm->base.create_tid) {
836 		node->mirror_tid = elm->base.create_tid;
837 		*doprop = 1;
838 	}
839 	hammer_modify_node_done(cursor->node);
840 
841 	/*
842 	 * Debugging sanity checks.
843 	 */
844 	KKASSERT(hammer_btree_cmp(cursor->left_bound, &elm->base) <= 0);
845 	KKASSERT(hammer_btree_cmp(cursor->right_bound, &elm->base) > 0);
846 	if (i) {
847 		KKASSERT(hammer_btree_cmp(&node->elms[i-1].leaf.base, &elm->base) < 0);
848 	}
849 	if (i != node->count - 1)
850 		KKASSERT(hammer_btree_cmp(&node->elms[i+1].leaf.base, &elm->base) > 0);
851 
852 	return(0);
853 }
854 
855 /*
856  * Delete a record from the B-Tree at the current cursor position.
857  * The cursor is positioned such that the current element is the one
858  * to be deleted.
859  *
860  * On return the cursor will be positioned after the deleted element and
861  * MAY point to an internal node.  It will be suitable for the continuation
862  * of an iteration but not for an insertion or deletion.
863  *
864  * Deletions will attempt to partially rebalance the B-Tree in an upward
865  * direction, but will terminate rather then deadlock.  Empty internal nodes
866  * are never allowed by a deletion which deadlocks may end up giving us an
867  * empty leaf.  The pruner will clean up and rebalance the tree.
868  *
869  * This function can return EDEADLK, requiring the caller to retry the
870  * operation after clearing the deadlock.
871  *
872  * This function will store the number of deleted btree nodes in *ndelete
873  * if ndelete is not NULL.
874  */
875 int
876 hammer_btree_delete(hammer_cursor_t cursor, int *ndelete)
877 {
878 	hammer_node_ondisk_t ondisk;
879 	hammer_node_t node;
880 	hammer_node_t parent __debugvar;
881 	int error;
882 	int i;
883 
884 	KKASSERT (cursor->trans->sync_lock_refs > 0);
885 	if (ndelete)
886 		*ndelete = 0;
887 	if ((error = hammer_cursor_upgrade(cursor)) != 0)
888 		return(error);
889 	++hammer_stats_btree_deletes;
890 
891 	/*
892 	 * Delete the element from the leaf node.
893 	 *
894 	 * Remember that leaf nodes do not have boundaries.
895 	 */
896 	node = cursor->node;
897 	ondisk = node->ondisk;
898 	i = cursor->index;
899 
900 	KKASSERT(ondisk->type == HAMMER_BTREE_TYPE_LEAF);
901 	KKASSERT(i >= 0 && i < ondisk->count);
902 	hammer_modify_node_all(cursor->trans, node);
903 	if (i + 1 != ondisk->count) {
904 		bcopy(&ondisk->elms[i+1], &ondisk->elms[i],
905 		      (ondisk->count - i - 1) * sizeof(ondisk->elms[0]));
906 	}
907 	--ondisk->count;
908 	hammer_modify_node_done(node);
909 	hammer_cursor_deleted_element(node, i);
910 
911 	/*
912 	 * Validate local parent
913 	 */
914 	if (ondisk->parent) {
915 		parent = cursor->parent;
916 
917 		KKASSERT(parent != NULL);
918 		KKASSERT(parent->node_offset == ondisk->parent);
919 	}
920 
921 	/*
922 	 * If the leaf becomes empty it must be detached from the parent,
923 	 * potentially recursing through to the filesystem root.
924 	 *
925 	 * This may reposition the cursor at one of the parent's of the
926 	 * current node.
927 	 *
928 	 * Ignore deadlock errors, that simply means that btree_remove
929 	 * was unable to recurse and had to leave us with an empty leaf.
930 	 */
931 	KKASSERT(cursor->index <= ondisk->count);
932 	if (ondisk->count == 0) {
933 		error = btree_remove(cursor, ndelete);
934 		if (error == EDEADLK)
935 			error = 0;
936 	} else {
937 		error = 0;
938 	}
939 	KKASSERT(cursor->parent == NULL ||
940 		 cursor->parent_index < cursor->parent->ondisk->count);
941 	return(error);
942 }
943 
944 /*
945  * PRIMARY B-TREE SEARCH SUPPORT PROCEDURE
946  *
947  * Search the filesystem B-Tree for cursor->key_beg, return the matching node.
948  *
949  * The search can begin ANYWHERE in the B-Tree.  As a first step the search
950  * iterates up the tree as necessary to properly position itself prior to
951  * actually doing the sarch.
952  *
953  * INSERTIONS: The search will split full nodes and leaves on its way down
954  * and guarentee that the leaf it ends up on is not full.  If we run out
955  * of space the search continues to the leaf, but ENOSPC is returned.
956  *
957  * The search is only guarenteed to end up on a leaf if an error code of 0
958  * is returned, or if inserting and an error code of ENOENT is returned.
959  * Otherwise it can stop at an internal node.  On success a search returns
960  * a leaf node.
961  *
962  * COMPLEXITY WARNING!  This is the core B-Tree search code for the entire
963  * filesystem, and it is not simple code.  Please note the following facts:
964  *
965  * - Internal node recursions have a boundary on the left AND right.  The
966  *   right boundary is non-inclusive.  The create_tid is a generic part
967  *   of the key for internal nodes.
968  *
969  * - Filesystem lookups typically set HAMMER_CURSOR_ASOF, indicating a
970  *   historical search.  ASOF and INSERT are mutually exclusive.  When
971  *   doing an as-of lookup btree_search() checks for a right-edge boundary
972  *   case.  If while recursing down the left-edge differs from the key
973  *   by ONLY its create_tid, HAMMER_CURSOR_CREATE_CHECK is set along
974  *   with cursor->create_check.  This is used by btree_lookup() to iterate.
975  *   The iteration backwards because as-of searches can wind up going
976  *   down the wrong branch of the B-Tree.
977  */
978 static
979 int
980 btree_search(hammer_cursor_t cursor, int flags)
981 {
982 	hammer_node_ondisk_t node;
983 	hammer_btree_elm_t elm;
984 	int error;
985 	int enospc = 0;
986 	int i;
987 	int r;
988 	int s;
989 
990 	flags |= cursor->flags;
991 	++hammer_stats_btree_searches;
992 
993 	if (hammer_debug_btree) {
994 		hammer_debug_btree_elm(cursor,
995 				(hammer_btree_elm_t)&cursor->key_beg,
996 				"SEARCH", 0xffff);
997 		if (cursor->parent)
998 			hammer_debug_btree_parent(cursor, "SEARCHP");
999 	}
1000 
1001 	/*
1002 	 * Move our cursor up the tree until we find a node whos range covers
1003 	 * the key we are trying to locate.
1004 	 *
1005 	 * The left bound is inclusive, the right bound is non-inclusive.
1006 	 * It is ok to cursor up too far.
1007 	 */
1008 	for (;;) {
1009 		r = hammer_btree_cmp(&cursor->key_beg, cursor->left_bound);
1010 		s = hammer_btree_cmp(&cursor->key_beg, cursor->right_bound);
1011 		if (r >= 0 && s < 0)
1012 			break;
1013 		KKASSERT(cursor->parent);
1014 		++hammer_stats_btree_iterations;
1015 		error = hammer_cursor_up(cursor);
1016 		if (error)
1017 			goto done;
1018 	}
1019 
1020 	/*
1021 	 * The delete-checks below are based on node, not parent.  Set the
1022 	 * initial delete-check based on the parent.
1023 	 */
1024 	if (r == 1) {
1025 		KKASSERT(cursor->left_bound->create_tid != 1);
1026 		cursor->create_check = cursor->left_bound->create_tid - 1;
1027 		cursor->flags |= HAMMER_CURSOR_CREATE_CHECK;
1028 	}
1029 
1030 	/*
1031 	 * We better have ended up with a node somewhere.
1032 	 */
1033 	KKASSERT(cursor->node != NULL);
1034 
1035 	/*
1036 	 * If we are inserting we can't start at a full node if the parent
1037 	 * is also full (because there is no way to split the node),
1038 	 * continue running up the tree until the requirement is satisfied
1039 	 * or we hit the root of the filesystem.
1040 	 *
1041 	 * (If inserting we aren't doing an as-of search so we don't have
1042 	 *  to worry about create_check).
1043 	 */
1044 	while (flags & HAMMER_CURSOR_INSERT) {
1045 		if (btree_node_is_full(cursor->node->ondisk) == 0)
1046 			break;
1047 		if (cursor->node->ondisk->parent == 0 ||
1048 		    cursor->parent->ondisk->count != HAMMER_BTREE_INT_ELMS) {
1049 			break;
1050 		}
1051 		++hammer_stats_btree_iterations;
1052 		error = hammer_cursor_up(cursor);
1053 		/* node may have become stale */
1054 		if (error)
1055 			goto done;
1056 	}
1057 
1058 	/*
1059 	 * Push down through internal nodes to locate the requested key.
1060 	 */
1061 	node = cursor->node->ondisk;
1062 	while (node->type == HAMMER_BTREE_TYPE_INTERNAL) {
1063 		/*
1064 		 * Scan the node to find the subtree index to push down into.
1065 		 * We go one-past, then back-up.
1066 		 *
1067 		 * We must proactively remove deleted elements which may
1068 		 * have been left over from a deadlocked btree_remove().
1069 		 *
1070 		 * The left and right boundaries are included in the loop
1071 		 * in order to detect edge cases.
1072 		 *
1073 		 * If the separator only differs by create_tid (r == 1)
1074 		 * and we are doing an as-of search, we may end up going
1075 		 * down a branch to the left of the one containing the
1076 		 * desired key.  This requires numerous special cases.
1077 		 */
1078 		++hammer_stats_btree_iterations;
1079 		if (hammer_debug_btree) {
1080 			hkprintf("SEARCH-I %016jx count=%d\n",
1081 				(intmax_t)cursor->node->node_offset,
1082 				node->count);
1083 		}
1084 
1085 		/*
1086 		 * Try to shortcut the search before dropping into the
1087 		 * linear loop.  Locate the first node where r <= 1.
1088 		 */
1089 		i = hammer_btree_search_node(&cursor->key_beg, node);
1090 		while (i <= node->count) {
1091 			++hammer_stats_btree_elements;
1092 			elm = &node->elms[i];
1093 			r = hammer_btree_cmp(&cursor->key_beg, &elm->base);
1094 			if (hammer_debug_btree > 2) {
1095 				hkprintf(" IELM %p [%d] r=%d\n",
1096 					&node->elms[i], i, r);
1097 			}
1098 			if (r < 0)
1099 				break;
1100 			if (r == 1) {
1101 				KKASSERT(elm->base.create_tid != 1);
1102 				cursor->create_check = elm->base.create_tid - 1;
1103 				cursor->flags |= HAMMER_CURSOR_CREATE_CHECK;
1104 			}
1105 			++i;
1106 		}
1107 		if (hammer_debug_btree) {
1108 			hkprintf("SEARCH-I preI=%d/%d r=%d\n",
1109 				i, node->count, r);
1110 		}
1111 
1112 		/*
1113 		 * The first two cases (i == 0 or i == node->count + 1)
1114 		 * occur when the parent's idea of the boundary
1115 		 * is wider then the child's idea of the boundary, and
1116 		 * require special handling.  If not inserting we can
1117 		 * terminate the search early for these cases but the
1118 		 * child's boundaries cannot be unconditionally modified.
1119 		 *
1120 		 * The last case (neither of the above) fits in child's
1121 		 * idea of the boundary, so we can simply push down the
1122 		 * cursor.
1123 		 */
1124 		if (i == 0) {
1125 			/*
1126 			 * If i == 0 the search terminated to the LEFT of the
1127 			 * left_boundary but to the RIGHT of the parent's left
1128 			 * boundary.
1129 			 */
1130 			uint8_t save;
1131 
1132 			elm = &node->elms[0];
1133 
1134 			/*
1135 			 * If we aren't inserting we can stop here.
1136 			 */
1137 			if ((flags & (HAMMER_CURSOR_INSERT |
1138 				      HAMMER_CURSOR_PRUNING)) == 0) {
1139 				cursor->index = 0;
1140 				return(ENOENT);
1141 			}
1142 
1143 			/*
1144 			 * Correct a left-hand boundary mismatch.
1145 			 *
1146 			 * We can only do this if we can upgrade the lock,
1147 			 * and synchronized as a background cursor (i.e.
1148 			 * inserting or pruning).
1149 			 *
1150 			 * WARNING: We can only do this if inserting, i.e.
1151 			 * we are running on the backend.
1152 			 */
1153 			if ((error = hammer_cursor_upgrade(cursor)) != 0)
1154 				return(error);
1155 			KKASSERT(cursor->flags & HAMMER_CURSOR_BACKEND);
1156 			hammer_modify_node_field(cursor->trans, cursor->node,
1157 						 elms[0]);
1158 			save = node->elms[0].base.btype;
1159 			node->elms[0].base = *cursor->left_bound;
1160 			node->elms[0].base.btype = save;
1161 			hammer_modify_node_done(cursor->node);
1162 		} else if (i == node->count + 1) {
1163 			/*
1164 			 * If i == node->count + 1 the search terminated to
1165 			 * the RIGHT of the right boundary but to the LEFT
1166 			 * of the parent's right boundary.  If we aren't
1167 			 * inserting we can stop here.
1168 			 *
1169 			 * Note that the last element in this case is
1170 			 * elms[i-2] prior to adjustments to 'i'.
1171 			 */
1172 			--i;
1173 			if ((flags & (HAMMER_CURSOR_INSERT |
1174 				      HAMMER_CURSOR_PRUNING)) == 0) {
1175 				cursor->index = i;
1176 				return (ENOENT);
1177 			}
1178 
1179 			/*
1180 			 * Correct a right-hand boundary mismatch.
1181 			 * (actual push-down record is i-2 prior to
1182 			 * adjustments to i).
1183 			 *
1184 			 * We can only do this if we can upgrade the lock,
1185 			 * and synchronized as a background cursor (i.e.
1186 			 * inserting or pruning).
1187 			 *
1188 			 * WARNING: We can only do this if inserting, i.e.
1189 			 * we are running on the backend.
1190 			 */
1191 			if ((error = hammer_cursor_upgrade(cursor)) != 0)
1192 				return(error);
1193 			elm = &node->elms[i];
1194 			KKASSERT(cursor->flags & HAMMER_CURSOR_BACKEND);
1195 			hammer_modify_node(cursor->trans, cursor->node,
1196 					   &elm->base, sizeof(elm->base));
1197 			elm->base = *cursor->right_bound;
1198 			hammer_modify_node_done(cursor->node);
1199 			--i;
1200 		} else {
1201 			/*
1202 			 * The push-down index is now i - 1.  If we had
1203 			 * terminated on the right boundary this will point
1204 			 * us at the last element.
1205 			 */
1206 			--i;
1207 		}
1208 		cursor->index = i;
1209 		elm = &node->elms[i];
1210 
1211 		if (hammer_debug_btree) {
1212 			hammer_debug_btree_elm(cursor, elm, "RESULT-I", 0xffff);
1213 		}
1214 
1215 		/*
1216 		 * We better have a valid subtree offset.
1217 		 */
1218 		KKASSERT(elm->internal.subtree_offset != 0);
1219 
1220 		/*
1221 		 * Handle insertion and deletion requirements.
1222 		 *
1223 		 * If inserting split full nodes.  The split code will
1224 		 * adjust cursor->node and cursor->index if the current
1225 		 * index winds up in the new node.
1226 		 *
1227 		 * If inserting and a left or right edge case was detected,
1228 		 * we cannot correct the left or right boundary and must
1229 		 * prepend and append an empty leaf node in order to make
1230 		 * the boundary correction.
1231 		 *
1232 		 * If we run out of space we set enospc but continue on
1233 		 * to a leaf.
1234 		 */
1235 		if ((flags & HAMMER_CURSOR_INSERT) && enospc == 0) {
1236 			if (btree_node_is_full(node)) {
1237 				error = btree_split_internal(cursor);
1238 				if (error) {
1239 					if (error != ENOSPC)
1240 						goto done;
1241 					enospc = 1;
1242 				}
1243 				/*
1244 				 * reload stale pointers
1245 				 */
1246 				i = cursor->index;
1247 				node = cursor->node->ondisk;
1248 			}
1249 		}
1250 
1251 		/*
1252 		 * Push down (push into new node, existing node becomes
1253 		 * the parent) and continue the search.
1254 		 */
1255 		error = hammer_cursor_down(cursor);
1256 		/* node may have become stale */
1257 		if (error)
1258 			goto done;
1259 		node = cursor->node->ondisk;
1260 	}
1261 
1262 	/*
1263 	 * We are at a leaf, do a linear search of the key array.
1264 	 *
1265 	 * On success the index is set to the matching element and 0
1266 	 * is returned.
1267 	 *
1268 	 * On failure the index is set to the insertion point and ENOENT
1269 	 * is returned.
1270 	 *
1271 	 * Boundaries are not stored in leaf nodes, so the index can wind
1272 	 * up to the left of element 0 (index == 0) or past the end of
1273 	 * the array (index == node->count).  It is also possible that the
1274 	 * leaf might be empty.
1275 	 */
1276 	++hammer_stats_btree_iterations;
1277 	KKASSERT (node->type == HAMMER_BTREE_TYPE_LEAF);
1278 	KKASSERT(node->count <= HAMMER_BTREE_LEAF_ELMS);
1279 	if (hammer_debug_btree) {
1280 		hkprintf("SEARCH-L %016jx count=%d\n",
1281 			(intmax_t)cursor->node->node_offset,
1282 			node->count);
1283 	}
1284 
1285 	/*
1286 	 * Try to shortcut the search before dropping into the
1287 	 * linear loop.  Locate the first node where r <= 1.
1288 	 */
1289 	i = hammer_btree_search_node(&cursor->key_beg, node);
1290 	while (i < node->count) {
1291 		++hammer_stats_btree_elements;
1292 		elm = &node->elms[i];
1293 
1294 		r = hammer_btree_cmp(&cursor->key_beg, &elm->leaf.base);
1295 
1296 		if (hammer_debug_btree > 1)
1297 			hkprintf(" LELM %p [%d] r=%d\n", &node->elms[i], i, r);
1298 
1299 		/*
1300 		 * We are at a record element.  Stop if we've flipped past
1301 		 * key_beg, not counting the create_tid test.  Allow the
1302 		 * r == 1 case (key_beg > element but differs only by its
1303 		 * create_tid) to fall through to the AS-OF check.
1304 		 */
1305 		KKASSERT (elm->leaf.base.btype == HAMMER_BTREE_TYPE_RECORD);
1306 
1307 		if (r < 0)
1308 			goto failed;
1309 		if (r > 1) {
1310 			++i;
1311 			continue;
1312 		}
1313 
1314 		/*
1315 		 * Check our as-of timestamp against the element.
1316 		 */
1317 		if (flags & HAMMER_CURSOR_ASOF) {
1318 			if (hammer_btree_chkts(cursor->asof,
1319 					       &node->elms[i].base) != 0) {
1320 				++i;
1321 				continue;
1322 			}
1323 			/* success */
1324 		} else {
1325 			if (r > 0) {	/* can only be +1 */
1326 				++i;
1327 				continue;
1328 			}
1329 			/* success */
1330 		}
1331 		cursor->index = i;
1332 		error = 0;
1333 		if (hammer_debug_btree) {
1334 			hkprintf("RESULT-L %016jx[%d] (SUCCESS)\n",
1335 				(intmax_t)cursor->node->node_offset, i);
1336 		}
1337 		goto done;
1338 	}
1339 
1340 	/*
1341 	 * The search of the leaf node failed.  i is the insertion point.
1342 	 */
1343 failed:
1344 	if (hammer_debug_btree) {
1345 		hkprintf("RESULT-L %016jx[%d] (FAILED)\n",
1346 			(intmax_t)cursor->node->node_offset, i);
1347 	}
1348 
1349 	/*
1350 	 * No exact match was found, i is now at the insertion point.
1351 	 *
1352 	 * If inserting split a full leaf before returning.  This
1353 	 * may have the side effect of adjusting cursor->node and
1354 	 * cursor->index.
1355 	 */
1356 	cursor->index = i;
1357 	if ((flags & HAMMER_CURSOR_INSERT) && enospc == 0 &&
1358 	     btree_node_is_full(node)) {
1359 		error = btree_split_leaf(cursor);
1360 		if (error) {
1361 			if (error != ENOSPC)
1362 				goto done;
1363 			enospc = 1;
1364 		}
1365 		/*
1366 		 * reload stale pointers
1367 		 */
1368 		/* NOT USED
1369 		i = cursor->index;
1370 		node = &cursor->node->internal;
1371 		*/
1372 	}
1373 
1374 	/*
1375 	 * We reached a leaf but did not find the key we were looking for.
1376 	 * If this is an insert we will be properly positioned for an insert
1377 	 * (ENOENT) or unable to insert (ENOSPC).
1378 	 */
1379 	error = enospc ? ENOSPC : ENOENT;
1380 done:
1381 	return(error);
1382 }
1383 
1384 /*
1385  * Heuristical search for the first element whos comparison is <= 1.  May
1386  * return an index whos compare result is > 1 but may only return an index
1387  * whos compare result is <= 1 if it is the first element with that result.
1388  */
1389 int
1390 hammer_btree_search_node(hammer_base_elm_t elm, hammer_node_ondisk_t node)
1391 {
1392 	int b;
1393 	int s;
1394 	int i;
1395 	int r;
1396 
1397 	/*
1398 	 * Don't bother if the node does not have very many elements
1399 	 */
1400 	b = 0;
1401 	s = node->count;
1402 	while (s - b > 4) {
1403 		i = b + (s - b) / 2;
1404 		++hammer_stats_btree_elements;
1405 		r = hammer_btree_cmp(elm, &node->elms[i].leaf.base);
1406 		if (r <= 1) {
1407 			s = i;
1408 		} else {
1409 			b = i;
1410 		}
1411 	}
1412 	return(b);
1413 }
1414 
1415 
1416 /************************************************************************
1417  *			   SPLITTING AND MERGING 			*
1418  ************************************************************************
1419  *
1420  * These routines do all the dirty work required to split and merge nodes.
1421  */
1422 
1423 /*
1424  * Split an internal node into two nodes and move the separator at the split
1425  * point to the parent.
1426  *
1427  * (cursor->node, cursor->index) indicates the element the caller intends
1428  * to push into.  We will adjust node and index if that element winds
1429  * up in the split node.
1430  *
1431  * If we are at the root of the filesystem a new root must be created with
1432  * two elements, one pointing to the original root and one pointing to the
1433  * newly allocated split node.
1434  */
1435 static
1436 int
1437 btree_split_internal(hammer_cursor_t cursor)
1438 {
1439 	hammer_node_ondisk_t ondisk;
1440 	hammer_node_t node;
1441 	hammer_node_t parent;
1442 	hammer_node_t new_node;
1443 	hammer_btree_elm_t elm;
1444 	hammer_btree_elm_t parent_elm;
1445 	struct hammer_node_lock lockroot;
1446 	hammer_mount_t hmp = cursor->trans->hmp;
1447 	int parent_index;
1448 	int made_root;
1449 	int split;
1450 	int error;
1451 	int i;
1452 	const int esize = sizeof(*elm);
1453 
1454 	hammer_node_lock_init(&lockroot, cursor->node);
1455 	error = hammer_btree_lock_children(cursor, 1, &lockroot, NULL);
1456 	if (error)
1457 		goto done;
1458 	if ((error = hammer_cursor_upgrade(cursor)) != 0)
1459 		goto done;
1460 	++hammer_stats_btree_splits;
1461 
1462 	/*
1463 	 * Calculate the split point.  If the insertion point is at the
1464 	 * end of the leaf we adjust the split point significantly to the
1465 	 * right to try to optimize node fill and flag it.  If we hit
1466 	 * that same leaf again our heuristic failed and we don't try
1467 	 * to optimize node fill (it could lead to a degenerate case).
1468 	 */
1469 	node = cursor->node;
1470 	ondisk = node->ondisk;
1471 	KKASSERT(ondisk->count > 4);
1472 	if (cursor->index == ondisk->count &&
1473 	    (node->flags & HAMMER_NODE_NONLINEAR) == 0) {
1474 		split = (ondisk->count + 1) * 3 / 4;
1475 		node->flags |= HAMMER_NODE_NONLINEAR;
1476 	} else {
1477 		/*
1478 		 * We are splitting but elms[split] will be promoted to
1479 		 * the parent, leaving the right hand node with one less
1480 		 * element.  If the insertion point will be on the
1481 		 * left-hand side adjust the split point to give the
1482 		 * right hand side one additional node.
1483 		 */
1484 		split = (ondisk->count + 1) / 2;
1485 		if (cursor->index <= split)
1486 			--split;
1487 	}
1488 
1489 	/*
1490 	 * If we are at the root of the filesystem, create a new root node
1491 	 * with 1 element and split normally.  Avoid making major
1492 	 * modifications until we know the whole operation will work.
1493 	 */
1494 	if (ondisk->parent == 0) {
1495 		parent = hammer_alloc_btree(cursor->trans, 0, &error);
1496 		if (parent == NULL)
1497 			goto done;
1498 		hammer_lock_ex(&parent->lock);
1499 		hammer_modify_node_noundo(cursor->trans, parent);
1500 		ondisk = parent->ondisk;
1501 		ondisk->count = 1;
1502 		ondisk->parent = 0;
1503 		ondisk->mirror_tid = node->ondisk->mirror_tid;
1504 		ondisk->type = HAMMER_BTREE_TYPE_INTERNAL;
1505 		ondisk->elms[0].base = hmp->root_btree_beg;
1506 		ondisk->elms[0].base.btype = node->ondisk->type;
1507 		ondisk->elms[0].internal.subtree_offset = node->node_offset;
1508 		ondisk->elms[0].internal.mirror_tid = ondisk->mirror_tid;
1509 		ondisk->elms[1].base = hmp->root_btree_end;
1510 		hammer_modify_node_done(parent);
1511 		made_root = 1;
1512 		parent_index = 0;	/* index of current node in parent */
1513 	} else {
1514 		made_root = 0;
1515 		parent = cursor->parent;
1516 		parent_index = cursor->parent_index;
1517 	}
1518 
1519 	/*
1520 	 * Split node into new_node at the split point.
1521 	 *
1522 	 *  B O O O P N N B	<-- P = node->elms[split] (index 4)
1523 	 *   0 1 2 3 4 5 6	<-- subtree indices
1524 	 *
1525 	 *       x x P x x
1526 	 *        s S S s
1527 	 *         /   \
1528 	 *  B O O O B    B N N B	<--- inner boundary points are 'P'
1529 	 *   0 1 2 3      4 5 6
1530 	 */
1531 	new_node = hammer_alloc_btree(cursor->trans, 0, &error);
1532 	if (new_node == NULL) {
1533 		if (made_root) {
1534 			hammer_unlock(&parent->lock);
1535 			hammer_delete_node(cursor->trans, parent);
1536 			hammer_rel_node(parent);
1537 		}
1538 		goto done;
1539 	}
1540 	hammer_lock_ex(&new_node->lock);
1541 
1542 	/*
1543 	 * Create the new node.  P becomes the left-hand boundary in the
1544 	 * new node.  Copy the right-hand boundary as well.
1545 	 *
1546 	 * elm is the new separator.
1547 	 */
1548 	hammer_modify_node_noundo(cursor->trans, new_node);
1549 	hammer_modify_node_all(cursor->trans, node);
1550 	ondisk = node->ondisk;
1551 	elm = &ondisk->elms[split];
1552 	bcopy(elm, &new_node->ondisk->elms[0],
1553 	      (ondisk->count - split + 1) * esize);  /* +1 for boundary */
1554 	new_node->ondisk->count = ondisk->count - split;
1555 	new_node->ondisk->parent = parent->node_offset;
1556 	new_node->ondisk->type = HAMMER_BTREE_TYPE_INTERNAL;
1557 	new_node->ondisk->mirror_tid = ondisk->mirror_tid;
1558 	KKASSERT(ondisk->type == new_node->ondisk->type);
1559 	hammer_cursor_split_node(node, new_node, split);
1560 
1561 	/*
1562 	 * Cleanup the original node.  Elm (P) becomes the new boundary,
1563 	 * its subtree_offset was moved to the new node.  If we had created
1564 	 * a new root its parent pointer may have changed.
1565 	 */
1566 	elm->base.btype = HAMMER_BTREE_TYPE_NONE;
1567 	elm->internal.subtree_offset = 0;
1568 	ondisk->count = split;
1569 
1570 	/*
1571 	 * Insert the separator into the parent, fixup the parent's
1572 	 * reference to the original node, and reference the new node.
1573 	 * The separator is P.
1574 	 *
1575 	 * Remember that ondisk->count does not include the right-hand boundary.
1576 	 */
1577 	hammer_modify_node_all(cursor->trans, parent);
1578 	ondisk = parent->ondisk;
1579 	KKASSERT(ondisk->count != HAMMER_BTREE_INT_ELMS);
1580 	parent_elm = &ondisk->elms[parent_index+1];
1581 	bcopy(parent_elm, parent_elm + 1,
1582 	      (ondisk->count - parent_index) * esize);
1583 
1584 	/*
1585 	 * Why not use hammer_make_separator() here ?
1586 	 */
1587 	parent_elm->internal.base = elm->base;	/* separator P */
1588 	parent_elm->internal.base.btype = new_node->ondisk->type;
1589 	parent_elm->internal.subtree_offset = new_node->node_offset;
1590 	parent_elm->internal.mirror_tid = new_node->ondisk->mirror_tid;
1591 	++ondisk->count;
1592 	hammer_modify_node_done(parent);
1593 	hammer_cursor_inserted_element(parent, parent_index + 1);
1594 
1595 	/*
1596 	 * The children of new_node need their parent pointer set to new_node.
1597 	 * The children have already been locked by
1598 	 * hammer_btree_lock_children().
1599 	 */
1600 	for (i = 0; i < new_node->ondisk->count; ++i) {
1601 		elm = &new_node->ondisk->elms[i];
1602 		error = btree_set_parent_of_child(cursor->trans, new_node, elm);
1603 		if (error) {
1604 			hpanic("btree-fixup problem");
1605 		}
1606 	}
1607 	hammer_modify_node_done(new_node);
1608 
1609 	/*
1610 	 * The filesystem's root B-Tree pointer may have to be updated.
1611 	 */
1612 	if (made_root) {
1613 		hammer_volume_t volume;
1614 
1615 		volume = hammer_get_root_volume(hmp, &error);
1616 		KKASSERT(error == 0);
1617 
1618 		hammer_modify_volume_field(cursor->trans, volume,
1619 					   vol0_btree_root);
1620 		volume->ondisk->vol0_btree_root = parent->node_offset;
1621 		hammer_modify_volume_done(volume);
1622 		node->ondisk->parent = parent->node_offset;
1623 		if (cursor->parent) {
1624 			hammer_unlock(&cursor->parent->lock);
1625 			hammer_rel_node(cursor->parent);
1626 		}
1627 		cursor->parent = parent;	/* lock'd and ref'd */
1628 		hammer_rel_volume(volume, 0);
1629 	}
1630 	hammer_modify_node_done(node);
1631 
1632 	/*
1633 	 * Ok, now adjust the cursor depending on which element the original
1634 	 * index was pointing at.  If we are >= the split point the push node
1635 	 * is now in the new node.
1636 	 *
1637 	 * NOTE: If we are at the split point itself we cannot stay with the
1638 	 * original node because the push index will point at the right-hand
1639 	 * boundary, which is illegal.
1640 	 *
1641 	 * NOTE: The cursor's parent or parent_index must be adjusted for
1642 	 * the case where a new parent (new root) was created, and the case
1643 	 * where the cursor is now pointing at the split node.
1644 	 */
1645 	if (cursor->index >= split) {
1646 		cursor->parent_index = parent_index + 1;
1647 		cursor->index -= split;
1648 		hammer_unlock(&cursor->node->lock);
1649 		hammer_rel_node(cursor->node);
1650 		cursor->node = new_node;	/* locked and ref'd */
1651 	} else {
1652 		cursor->parent_index = parent_index;
1653 		hammer_unlock(&new_node->lock);
1654 		hammer_rel_node(new_node);
1655 	}
1656 
1657 	/*
1658 	 * Fixup left and right bounds
1659 	 */
1660 	parent_elm = &parent->ondisk->elms[cursor->parent_index];
1661 	cursor->left_bound = &parent_elm[0].internal.base;
1662 	cursor->right_bound = &parent_elm[1].internal.base;
1663 	KKASSERT(hammer_btree_cmp(cursor->left_bound,
1664 		 &cursor->node->ondisk->elms[0].internal.base) <= 0);
1665 	KKASSERT(hammer_btree_cmp(cursor->right_bound,
1666 		 &cursor->node->ondisk->elms[cursor->node->ondisk->count].internal.base) >= 0);
1667 
1668 done:
1669 	hammer_btree_unlock_children(cursor->trans->hmp, &lockroot, NULL);
1670 	hammer_cursor_downgrade(cursor);
1671 	return (error);
1672 }
1673 
1674 /*
1675  * Same as the above, but splits a full leaf node.
1676  */
1677 static
1678 int
1679 btree_split_leaf(hammer_cursor_t cursor)
1680 {
1681 	hammer_node_ondisk_t ondisk;
1682 	hammer_node_t parent;
1683 	hammer_node_t leaf;
1684 	hammer_mount_t hmp;
1685 	hammer_node_t new_leaf;
1686 	hammer_btree_elm_t elm;
1687 	hammer_btree_elm_t parent_elm;
1688 	hammer_base_elm_t mid_boundary;
1689 	int parent_index;
1690 	int made_root;
1691 	int split;
1692 	int error;
1693 	const size_t esize = sizeof(*elm);
1694 
1695 	if ((error = hammer_cursor_upgrade(cursor)) != 0)
1696 		return(error);
1697 	++hammer_stats_btree_splits;
1698 
1699 	KKASSERT(hammer_btree_cmp(cursor->left_bound,
1700 		 &cursor->node->ondisk->elms[0].leaf.base) <= 0);
1701 	KKASSERT(hammer_btree_cmp(cursor->right_bound,
1702 		 &cursor->node->ondisk->elms[cursor->node->ondisk->count-1].leaf.base) > 0);
1703 
1704 	/*
1705 	 * Calculate the split point.  If the insertion point is at the
1706 	 * end of the leaf we adjust the split point significantly to the
1707 	 * right to try to optimize node fill and flag it.  If we hit
1708 	 * that same leaf again our heuristic failed and we don't try
1709 	 * to optimize node fill (it could lead to a degenerate case).
1710 	 */
1711 	leaf = cursor->node;
1712 	ondisk = leaf->ondisk;
1713 	KKASSERT(ondisk->count > 4);
1714 	if (cursor->index == ondisk->count &&
1715 	    (leaf->flags & HAMMER_NODE_NONLINEAR) == 0) {
1716 		split = (ondisk->count + 1) * 3 / 4;
1717 		leaf->flags |= HAMMER_NODE_NONLINEAR;
1718 	} else {
1719 		split = (ondisk->count + 1) / 2;
1720 	}
1721 
1722 #if 0
1723 	/*
1724 	 * If the insertion point is at the split point shift the
1725 	 * split point left so we don't have to worry about
1726 	 */
1727 	if (cursor->index == split)
1728 		--split;
1729 #endif
1730 	KKASSERT(split > 0 && split < ondisk->count);
1731 
1732 	error = 0;
1733 	hmp = leaf->hmp;
1734 
1735 	elm = &ondisk->elms[split];
1736 
1737 	KKASSERT(hammer_btree_cmp(cursor->left_bound, &elm[-1].leaf.base) <= 0);
1738 	KKASSERT(hammer_btree_cmp(cursor->left_bound, &elm->leaf.base) <= 0);
1739 	KKASSERT(hammer_btree_cmp(cursor->right_bound, &elm->leaf.base) > 0);
1740 	KKASSERT(hammer_btree_cmp(cursor->right_bound, &elm[1].leaf.base) > 0);
1741 
1742 	/*
1743 	 * If we are at the root of the tree, create a new root node with
1744 	 * 1 element and split normally.  Avoid making major modifications
1745 	 * until we know the whole operation will work.
1746 	 */
1747 	if (ondisk->parent == 0) {
1748 		parent = hammer_alloc_btree(cursor->trans, 0, &error);
1749 		if (parent == NULL)
1750 			goto done;
1751 		hammer_lock_ex(&parent->lock);
1752 		hammer_modify_node_noundo(cursor->trans, parent);
1753 		ondisk = parent->ondisk;
1754 		ondisk->count = 1;
1755 		ondisk->parent = 0;
1756 		ondisk->mirror_tid = leaf->ondisk->mirror_tid;
1757 		ondisk->type = HAMMER_BTREE_TYPE_INTERNAL;
1758 		ondisk->elms[0].base = hmp->root_btree_beg;
1759 		ondisk->elms[0].base.btype = leaf->ondisk->type;
1760 		ondisk->elms[0].internal.subtree_offset = leaf->node_offset;
1761 		ondisk->elms[0].internal.mirror_tid = ondisk->mirror_tid;
1762 		ondisk->elms[1].base = hmp->root_btree_end;
1763 		hammer_modify_node_done(parent);
1764 		made_root = 1;
1765 		parent_index = 0;	/* insertion point in parent */
1766 	} else {
1767 		made_root = 0;
1768 		parent = cursor->parent;
1769 		parent_index = cursor->parent_index;
1770 	}
1771 
1772 	/*
1773 	 * Split leaf into new_leaf at the split point.  Select a separator
1774 	 * value in-between the two leafs but with a bent towards the right
1775 	 * leaf since comparisons use an 'elm >= separator' inequality.
1776 	 *
1777 	 *  L L L L L L L L
1778 	 *
1779 	 *       x x P x x
1780 	 *        s S S s
1781 	 *         /   \
1782 	 *  L L L L     L L L L
1783 	 */
1784 	new_leaf = hammer_alloc_btree(cursor->trans, 0, &error);
1785 	if (new_leaf == NULL) {
1786 		if (made_root) {
1787 			hammer_unlock(&parent->lock);
1788 			hammer_delete_node(cursor->trans, parent);
1789 			hammer_rel_node(parent);
1790 		}
1791 		goto done;
1792 	}
1793 	hammer_lock_ex(&new_leaf->lock);
1794 
1795 	/*
1796 	 * Create the new node and copy the leaf elements from the split
1797 	 * point on to the new node.
1798 	 */
1799 	hammer_modify_node_all(cursor->trans, leaf);
1800 	hammer_modify_node_noundo(cursor->trans, new_leaf);
1801 	ondisk = leaf->ondisk;
1802 	elm = &ondisk->elms[split];
1803 	bcopy(elm, &new_leaf->ondisk->elms[0], (ondisk->count - split) * esize);
1804 	new_leaf->ondisk->count = ondisk->count - split;
1805 	new_leaf->ondisk->parent = parent->node_offset;
1806 	new_leaf->ondisk->type = HAMMER_BTREE_TYPE_LEAF;
1807 	new_leaf->ondisk->mirror_tid = ondisk->mirror_tid;
1808 	KKASSERT(ondisk->type == new_leaf->ondisk->type);
1809 	hammer_modify_node_done(new_leaf);
1810 	hammer_cursor_split_node(leaf, new_leaf, split);
1811 
1812 	/*
1813 	 * Cleanup the original node.  Because this is a leaf node and
1814 	 * leaf nodes do not have a right-hand boundary, there
1815 	 * aren't any special edge cases to clean up.  We just fixup the
1816 	 * count.
1817 	 */
1818 	ondisk->count = split;
1819 
1820 	/*
1821 	 * Insert the separator into the parent, fixup the parent's
1822 	 * reference to the original node, and reference the new node.
1823 	 * The separator is P.
1824 	 *
1825 	 * Remember that ondisk->count does not include the right-hand boundary.
1826 	 * We are copying parent_index+1 to parent_index+2, not +0 to +1.
1827 	 */
1828 	hammer_modify_node_all(cursor->trans, parent);
1829 	ondisk = parent->ondisk;
1830 	KKASSERT(split != 0);
1831 	KKASSERT(ondisk->count != HAMMER_BTREE_INT_ELMS);
1832 	parent_elm = &ondisk->elms[parent_index+1];
1833 	bcopy(parent_elm, parent_elm + 1,
1834 	      (ondisk->count - parent_index) * esize);
1835 
1836 	/*
1837 	 * elm[-1] is the right-most elm in the original node.
1838 	 * elm[0] equals the left-most elm at index=0 in the new node.
1839 	 * parent_elm[-1] and parent_elm point to original and new node.
1840 	 * Update the parent_elm base to meet >elm[-1] and <=elm[0].
1841 	 */
1842 	hammer_make_separator(&elm[-1].base, &elm[0].base, &parent_elm->base);
1843 	parent_elm->internal.base.btype = new_leaf->ondisk->type;
1844 	parent_elm->internal.subtree_offset = new_leaf->node_offset;
1845 	parent_elm->internal.mirror_tid = new_leaf->ondisk->mirror_tid;
1846 	mid_boundary = &parent_elm->base;
1847 	++ondisk->count;
1848 	hammer_modify_node_done(parent);
1849 	hammer_cursor_inserted_element(parent, parent_index + 1);
1850 
1851 	/*
1852 	 * The filesystem's root B-Tree pointer may have to be updated.
1853 	 */
1854 	if (made_root) {
1855 		hammer_volume_t volume;
1856 
1857 		volume = hammer_get_root_volume(hmp, &error);
1858 		KKASSERT(error == 0);
1859 
1860 		hammer_modify_volume_field(cursor->trans, volume,
1861 					   vol0_btree_root);
1862 		volume->ondisk->vol0_btree_root = parent->node_offset;
1863 		hammer_modify_volume_done(volume);
1864 		leaf->ondisk->parent = parent->node_offset;
1865 		if (cursor->parent) {
1866 			hammer_unlock(&cursor->parent->lock);
1867 			hammer_rel_node(cursor->parent);
1868 		}
1869 		cursor->parent = parent;	/* lock'd and ref'd */
1870 		hammer_rel_volume(volume, 0);
1871 	}
1872 	hammer_modify_node_done(leaf);
1873 
1874 	/*
1875 	 * Ok, now adjust the cursor depending on which element the original
1876 	 * index was pointing at.  If we are >= the split point the push node
1877 	 * is now in the new node.
1878 	 *
1879 	 * NOTE: If we are at the split point itself we need to select the
1880 	 * old or new node based on where key_beg's insertion point will be.
1881 	 * If we pick the wrong side the inserted element will wind up in
1882 	 * the wrong leaf node and outside that node's bounds.
1883 	 */
1884 	if (cursor->index > split ||
1885 	    (cursor->index == split &&
1886 	     hammer_btree_cmp(&cursor->key_beg, mid_boundary) >= 0)) {
1887 		cursor->parent_index = parent_index + 1;
1888 		cursor->index -= split;
1889 		hammer_unlock(&cursor->node->lock);
1890 		hammer_rel_node(cursor->node);
1891 		cursor->node = new_leaf;
1892 	} else {
1893 		cursor->parent_index = parent_index;
1894 		hammer_unlock(&new_leaf->lock);
1895 		hammer_rel_node(new_leaf);
1896 	}
1897 
1898 	/*
1899 	 * Fixup left and right bounds
1900 	 */
1901 	parent_elm = &parent->ondisk->elms[cursor->parent_index];
1902 	cursor->left_bound = &parent_elm[0].internal.base;
1903 	cursor->right_bound = &parent_elm[1].internal.base;
1904 
1905 	/*
1906 	 * Assert that the bounds are correct.
1907 	 */
1908 	KKASSERT(hammer_btree_cmp(cursor->left_bound,
1909 		 &cursor->node->ondisk->elms[0].leaf.base) <= 0);
1910 	KKASSERT(hammer_btree_cmp(cursor->right_bound,
1911 		 &cursor->node->ondisk->elms[cursor->node->ondisk->count-1].leaf.base) > 0);
1912 	KKASSERT(hammer_btree_cmp(cursor->left_bound, &cursor->key_beg) <= 0);
1913 	KKASSERT(hammer_btree_cmp(cursor->right_bound, &cursor->key_beg) > 0);
1914 
1915 done:
1916 	hammer_cursor_downgrade(cursor);
1917 	return (error);
1918 }
1919 
1920 #if 0
1921 
1922 /*
1923  * Recursively correct the right-hand boundary's create_tid to (tid) as
1924  * long as the rest of the key matches.  We have to recurse upward in
1925  * the tree as well as down the left side of each parent's right node.
1926  *
1927  * Return EDEADLK if we were only partially successful, forcing the caller
1928  * to try again.  The original cursor is not modified.  This routine can
1929  * also fail with EDEADLK if it is forced to throw away a portion of its
1930  * record history.
1931  *
1932  * The caller must pass a downgraded cursor to us (otherwise we can't dup it).
1933  */
1934 struct hammer_rhb {
1935 	TAILQ_ENTRY(hammer_rhb) entry;
1936 	hammer_node_t	node;
1937 	int		index;
1938 };
1939 
1940 TAILQ_HEAD(hammer_rhb_list, hammer_rhb);
1941 
1942 int
1943 hammer_btree_correct_rhb(hammer_cursor_t cursor, hammer_tid_t tid)
1944 {
1945 	hammer_mount_t hmp;
1946 	struct hammer_rhb_list rhb_list;
1947 	hammer_base_elm_t elm;
1948 	hammer_node_t orig_node;
1949 	struct hammer_rhb *rhb;
1950 	int orig_index;
1951 	int error;
1952 
1953 	TAILQ_INIT(&rhb_list);
1954 	hmp = cursor->trans->hmp;
1955 
1956 	/*
1957 	 * Save our position so we can restore it on return.  This also
1958 	 * gives us a stable 'elm'.
1959 	 */
1960 	orig_node = cursor->node;
1961 	hammer_ref_node(orig_node);
1962 	hammer_lock_sh(&orig_node->lock);
1963 	orig_index = cursor->index;
1964 	elm = &orig_node->ondisk->elms[orig_index].base;
1965 
1966 	/*
1967 	 * Now build a list of parents going up, allocating a rhb
1968 	 * structure for each one.
1969 	 */
1970 	while (cursor->parent) {
1971 		/*
1972 		 * Stop if we no longer have any right-bounds to fix up
1973 		 */
1974 		if (elm->obj_id != cursor->right_bound->obj_id ||
1975 		    elm->rec_type != cursor->right_bound->rec_type ||
1976 		    elm->key != cursor->right_bound->key) {
1977 			break;
1978 		}
1979 
1980 		/*
1981 		 * Stop if the right-hand bound's create_tid does not
1982 		 * need to be corrected.
1983 		 */
1984 		if (cursor->right_bound->create_tid >= tid)
1985 			break;
1986 
1987 		rhb = kmalloc(sizeof(*rhb), hmp->m_misc, M_WAITOK|M_ZERO);
1988 		rhb->node = cursor->parent;
1989 		rhb->index = cursor->parent_index;
1990 		hammer_ref_node(rhb->node);
1991 		hammer_lock_sh(&rhb->node->lock);
1992 		TAILQ_INSERT_HEAD(&rhb_list, rhb, entry);
1993 
1994 		hammer_cursor_up(cursor);
1995 	}
1996 
1997 	/*
1998 	 * now safely adjust the right hand bound for each rhb.  This may
1999 	 * also require taking the right side of the tree and iterating down
2000 	 * ITS left side.
2001 	 */
2002 	error = 0;
2003 	while (error == 0 && (rhb = TAILQ_FIRST(&rhb_list)) != NULL) {
2004 		error = hammer_cursor_seek(cursor, rhb->node, rhb->index);
2005 		if (error)
2006 			break;
2007 		TAILQ_REMOVE(&rhb_list, rhb, entry);
2008 		hammer_unlock(&rhb->node->lock);
2009 		hammer_rel_node(rhb->node);
2010 		kfree(rhb, hmp->m_misc);
2011 
2012 		switch (cursor->node->ondisk->type) {
2013 		case HAMMER_BTREE_TYPE_INTERNAL:
2014 			/*
2015 			 * Right-boundary for parent at internal node
2016 			 * is one element to the right of the element whos
2017 			 * right boundary needs adjusting.  We must then
2018 			 * traverse down the left side correcting any left
2019 			 * bounds (which may now be too far to the left).
2020 			 */
2021 			++cursor->index;
2022 			error = hammer_btree_correct_lhb(cursor, tid);
2023 			break;
2024 		default:
2025 			hpanic("Bad node type");
2026 			error = EINVAL;
2027 			break;
2028 		}
2029 	}
2030 
2031 	/*
2032 	 * Cleanup
2033 	 */
2034 	while ((rhb = TAILQ_FIRST(&rhb_list)) != NULL) {
2035 		TAILQ_REMOVE(&rhb_list, rhb, entry);
2036 		hammer_unlock(&rhb->node->lock);
2037 		hammer_rel_node(rhb->node);
2038 		kfree(rhb, hmp->m_misc);
2039 	}
2040 	error = hammer_cursor_seek(cursor, orig_node, orig_index);
2041 	hammer_unlock(&orig_node->lock);
2042 	hammer_rel_node(orig_node);
2043 	return (error);
2044 }
2045 
2046 /*
2047  * Similar to rhb (in fact, rhb calls lhb), but corrects the left hand
2048  * bound going downward starting at the current cursor position.
2049  *
2050  * This function does not restore the cursor after use.
2051  */
2052 int
2053 hammer_btree_correct_lhb(hammer_cursor_t cursor, hammer_tid_t tid)
2054 {
2055 	struct hammer_rhb_list rhb_list;
2056 	hammer_base_elm_t elm;
2057 	hammer_base_elm_t cmp;
2058 	struct hammer_rhb *rhb;
2059 	hammer_mount_t hmp;
2060 	int error;
2061 
2062 	TAILQ_INIT(&rhb_list);
2063 	hmp = cursor->trans->hmp;
2064 
2065 	cmp = &cursor->node->ondisk->elms[cursor->index].base;
2066 
2067 	/*
2068 	 * Record the node and traverse down the left-hand side for all
2069 	 * matching records needing a boundary correction.
2070 	 */
2071 	error = 0;
2072 	for (;;) {
2073 		rhb = kmalloc(sizeof(*rhb), hmp->m_misc, M_WAITOK|M_ZERO);
2074 		rhb->node = cursor->node;
2075 		rhb->index = cursor->index;
2076 		hammer_ref_node(rhb->node);
2077 		hammer_lock_sh(&rhb->node->lock);
2078 		TAILQ_INSERT_HEAD(&rhb_list, rhb, entry);
2079 
2080 		if (cursor->node->ondisk->type == HAMMER_BTREE_TYPE_INTERNAL) {
2081 			/*
2082 			 * Nothing to traverse down if we are at the right
2083 			 * boundary of an internal node.
2084 			 */
2085 			if (cursor->index == cursor->node->ondisk->count)
2086 				break;
2087 		} else {
2088 			elm = &cursor->node->ondisk->elms[cursor->index].base;
2089 			if (elm->btype == HAMMER_BTREE_TYPE_RECORD)
2090 				break;
2091 			hpanic("Illegal leaf record type %02x", elm->btype);
2092 		}
2093 		error = hammer_cursor_down(cursor);
2094 		if (error)
2095 			break;
2096 
2097 		elm = &cursor->node->ondisk->elms[cursor->index].base;
2098 		if (elm->obj_id != cmp->obj_id ||
2099 		    elm->rec_type != cmp->rec_type ||
2100 		    elm->key != cmp->key) {
2101 			break;
2102 		}
2103 		if (elm->create_tid >= tid)
2104 			break;
2105 
2106 	}
2107 
2108 	/*
2109 	 * Now we can safely adjust the left-hand boundary from the bottom-up.
2110 	 * The last element we remove from the list is the caller's right hand
2111 	 * boundary, which must also be adjusted.
2112 	 */
2113 	while (error == 0 && (rhb = TAILQ_FIRST(&rhb_list)) != NULL) {
2114 		error = hammer_cursor_seek(cursor, rhb->node, rhb->index);
2115 		if (error)
2116 			break;
2117 		TAILQ_REMOVE(&rhb_list, rhb, entry);
2118 		hammer_unlock(&rhb->node->lock);
2119 		hammer_rel_node(rhb->node);
2120 		kfree(rhb, hmp->m_misc);
2121 
2122 		elm = &cursor->node->ondisk->elms[cursor->index].base;
2123 		if (cursor->node->ondisk->type == HAMMER_BTREE_TYPE_INTERNAL) {
2124 			hammer_modify_node(cursor->trans, cursor->node,
2125 					   &elm->create_tid,
2126 					   sizeof(elm->create_tid));
2127 			elm->create_tid = tid;
2128 			hammer_modify_node_done(cursor->node);
2129 		} else {
2130 			hpanic("Bad element type");
2131 		}
2132 	}
2133 
2134 	/*
2135 	 * Cleanup
2136 	 */
2137 	while ((rhb = TAILQ_FIRST(&rhb_list)) != NULL) {
2138 		TAILQ_REMOVE(&rhb_list, rhb, entry);
2139 		hammer_unlock(&rhb->node->lock);
2140 		hammer_rel_node(rhb->node);
2141 		kfree(rhb, hmp->m_misc);
2142 	}
2143 	return (error);
2144 }
2145 
2146 #endif
2147 
2148 /*
2149  * Attempt to remove the locked, empty or want-to-be-empty B-Tree node at
2150  * (cursor->node).  Returns 0 on success, EDEADLK if we could not complete
2151  * the operation due to a deadlock, or some other error.
2152  *
2153  * This routine is initially called with an empty leaf and may be
2154  * recursively called with single-element internal nodes.
2155  *
2156  * It should also be noted that when removing empty leaves we must be sure
2157  * to test and update mirror_tid because another thread may have deadlocked
2158  * against us (or someone) trying to propagate it up and cannot retry once
2159  * the node has been deleted.
2160  *
2161  * On return the cursor may end up pointing to an internal node, suitable
2162  * for further iteration but not for an immediate insertion or deletion.
2163  */
2164 static int
2165 btree_remove(hammer_cursor_t cursor, int *ndelete)
2166 {
2167 	hammer_node_ondisk_t ondisk;
2168 	hammer_btree_elm_t elm;
2169 	hammer_node_t node;
2170 	hammer_node_t parent;
2171 	const int esize = sizeof(*elm);
2172 	int error;
2173 
2174 	node = cursor->node;
2175 
2176 	/*
2177 	 * When deleting the root of the filesystem convert it to
2178 	 * an empty leaf node.  Internal nodes cannot be empty.
2179 	 */
2180 	ondisk = node->ondisk;
2181 	if (ondisk->parent == 0) {
2182 		KKASSERT(cursor->parent == NULL);
2183 		hammer_modify_node_all(cursor->trans, node);
2184 		KKASSERT(ondisk == node->ondisk);
2185 		ondisk->type = HAMMER_BTREE_TYPE_LEAF;
2186 		ondisk->count = 0;
2187 		hammer_modify_node_done(node);
2188 		cursor->index = 0;
2189 		return(0);
2190 	}
2191 
2192 	parent = cursor->parent;
2193 
2194 	/*
2195 	 * Attempt to remove the parent's reference to the child.  If the
2196 	 * parent would become empty we have to recurse.  If we fail we
2197 	 * leave the parent pointing to an empty leaf node.
2198 	 *
2199 	 * We have to recurse successfully before we can delete the internal
2200 	 * node as it is illegal to have empty internal nodes.  Even though
2201 	 * the operation may be aborted we must still fixup any unlocked
2202 	 * cursors as if we had deleted the element prior to recursing
2203 	 * (by calling hammer_cursor_deleted_element()) so those cursors
2204 	 * are properly forced up the chain by the recursion.
2205 	 */
2206 	if (parent->ondisk->count == 1) {
2207 		/*
2208 		 * This special cursor_up_locked() call leaves the original
2209 		 * node exclusively locked and referenced, leaves the
2210 		 * original parent locked (as the new node), and locks the
2211 		 * new parent.  It can return EDEADLK.
2212 		 *
2213 		 * We cannot call hammer_cursor_removed_node() until we are
2214 		 * actually able to remove the node.  If we did then tracked
2215 		 * cursors in the middle of iterations could be repointed
2216 		 * to a parent node.  If this occurs they could end up
2217 		 * scanning newly inserted records into the node (that could
2218 		 * not be deleted) when they push down again.
2219 		 *
2220 		 * Due to the way the recursion works the final parent is left
2221 		 * in cursor->parent after the recursion returns.  Each
2222 		 * layer on the way back up is thus able to call
2223 		 * hammer_cursor_removed_node() and 'jump' the node up to
2224 		 * the (same) final parent.
2225 		 *
2226 		 * NOTE!  The local variable 'parent' is invalid after we
2227 		 *	  call hammer_cursor_up_locked().
2228 		 */
2229 		error = hammer_cursor_up_locked(cursor);
2230 		parent = NULL;
2231 
2232 		if (error == 0) {
2233 			hammer_cursor_deleted_element(cursor->node, 0);
2234 			error = btree_remove(cursor, ndelete);
2235 			if (error == 0) {
2236 				KKASSERT(node != cursor->node);
2237 				hammer_cursor_removed_node(
2238 					node, cursor->node, cursor->index);
2239 				hammer_modify_node_all(cursor->trans, node);
2240 				ondisk = node->ondisk;
2241 				ondisk->type = HAMMER_BTREE_TYPE_DELETED;
2242 				ondisk->count = 0;
2243 				hammer_modify_node_done(node);
2244 				hammer_flush_node(node, 0);
2245 				hammer_delete_node(cursor->trans, node);
2246 				if (ndelete)
2247 					(*ndelete)++;
2248 			} else {
2249 				/*
2250 				 * Defer parent removal because we could not
2251 				 * get the lock, just let the leaf remain
2252 				 * empty.
2253 				 */
2254 				/*
2255 				 * hammer show doesn't consider this as an error.
2256 				 */
2257 			}
2258 			hammer_unlock(&node->lock);
2259 			hammer_rel_node(node);
2260 		} else {
2261 			/*
2262 			 * Defer parent removal because we could not
2263 			 * get the lock, just let the leaf remain
2264 			 * empty.
2265 			 */
2266 			/*
2267 			 * hammer show doesn't consider this as an error.
2268 			 */
2269 		}
2270 	} else {
2271 		KKASSERT(parent->ondisk->count > 1);
2272 
2273 		hammer_modify_node_all(cursor->trans, parent);
2274 		ondisk = parent->ondisk;
2275 		KKASSERT(ondisk->type == HAMMER_BTREE_TYPE_INTERNAL);
2276 
2277 		elm = &ondisk->elms[cursor->parent_index];
2278 		KKASSERT(elm->internal.subtree_offset == node->node_offset);
2279 		KKASSERT(ondisk->count > 0);
2280 
2281 		/*
2282 		 * We must retain the highest mirror_tid.  The deleted
2283 		 * range is now encompassed by the element to the left.
2284 		 * If we are already at the left edge the new left edge
2285 		 * inherits mirror_tid.
2286 		 *
2287 		 * Note that bounds of the parent to our parent may create
2288 		 * a gap to the left of our left-most node or to the right
2289 		 * of our right-most node.  The gap is silently included
2290 		 * in the mirror_tid's area of effect from the point of view
2291 		 * of the scan.
2292 		 */
2293 		if (cursor->parent_index) {
2294 			if (elm[-1].internal.mirror_tid <
2295 			    elm[0].internal.mirror_tid) {
2296 				elm[-1].internal.mirror_tid =
2297 				    elm[0].internal.mirror_tid;
2298 			}
2299 		} else {
2300 			if (elm[1].internal.mirror_tid <
2301 			    elm[0].internal.mirror_tid) {
2302 				elm[1].internal.mirror_tid =
2303 				    elm[0].internal.mirror_tid;
2304 			}
2305 		}
2306 
2307 		/*
2308 		 * Delete the subtree reference in the parent.  Include
2309 		 * boundary element at end.
2310 		 */
2311 		bcopy(&elm[1], &elm[0],
2312 		      (ondisk->count - cursor->parent_index) * esize);
2313 		--ondisk->count;
2314 		hammer_modify_node_done(parent);
2315 		hammer_cursor_removed_node(node, parent, cursor->parent_index);
2316 		hammer_cursor_deleted_element(parent, cursor->parent_index);
2317 		hammer_flush_node(node, 0);
2318 		hammer_delete_node(cursor->trans, node);
2319 
2320 		/*
2321 		 * cursor->node is invalid, cursor up to make the cursor
2322 		 * valid again.  We have to flag the condition in case
2323 		 * another thread wiggles an insertion in during an
2324 		 * iteration.
2325 		 */
2326 		cursor->flags |= HAMMER_CURSOR_ITERATE_CHECK;
2327 		error = hammer_cursor_up(cursor);
2328 		if (ndelete)
2329 			(*ndelete)++;
2330 	}
2331 	return (error);
2332 }
2333 
2334 /*
2335  * Propagate mirror_tid up the B-Tree starting at the current cursor.
2336  *
2337  * WARNING!  Because we push and pop the passed cursor, it may be
2338  *	     modified by other B-Tree operations while it is unlocked
2339  *	     and things like the node & leaf pointers, and indexes might
2340  *	     change.
2341  */
2342 void
2343 hammer_btree_do_propagation(hammer_cursor_t cursor,
2344 			    hammer_btree_leaf_elm_t leaf)
2345 {
2346 	hammer_cursor_t ncursor;
2347 	hammer_tid_t mirror_tid;
2348 	int error __debugvar;
2349 
2350 	/*
2351 	 * We do not propagate a mirror_tid if the filesystem was mounted
2352 	 * in no-mirror mode.
2353 	 */
2354 	if (cursor->trans->hmp->master_id < 0)
2355 		return;
2356 
2357 	/*
2358 	 * This is a bit of a hack because we cannot deadlock or return
2359 	 * EDEADLK here.  The related operation has already completed and
2360 	 * we must propagate the mirror_tid now regardless.
2361 	 *
2362 	 * Generate a new cursor which inherits the original's locks and
2363 	 * unlock the original.  Use the new cursor to propagate the
2364 	 * mirror_tid.  Then clean up the new cursor and reacquire locks
2365 	 * on the original.
2366 	 *
2367 	 * hammer_dup_cursor() cannot dup locks.  The dup inherits the
2368 	 * original's locks and the original is tracked and must be
2369 	 * re-locked.
2370 	 */
2371 	mirror_tid = cursor->node->ondisk->mirror_tid;
2372 	KKASSERT(mirror_tid != 0);
2373 	ncursor = hammer_push_cursor(cursor);
2374 	error = hammer_btree_mirror_propagate(ncursor, mirror_tid);
2375 	KKASSERT(error == 0);
2376 	hammer_pop_cursor(cursor, ncursor);
2377 	/* WARNING: cursor's leaf pointer may change after pop */
2378 }
2379 
2380 
2381 /*
2382  * Propagate a mirror TID update upwards through the B-Tree to the root.
2383  *
2384  * A locked internal node must be passed in.  The node will remain locked
2385  * on return.
2386  *
2387  * This function syncs mirror_tid at the specified internal node's element,
2388  * adjusts the node's aggregation mirror_tid, and then recurses upwards.
2389  */
2390 static int
2391 hammer_btree_mirror_propagate(hammer_cursor_t cursor, hammer_tid_t mirror_tid)
2392 {
2393 	hammer_btree_internal_elm_t elm;
2394 	hammer_node_t node;
2395 	int error;
2396 
2397 	for (;;) {
2398 		error = hammer_cursor_up(cursor);
2399 		if (error == 0)
2400 			error = hammer_cursor_upgrade(cursor);
2401 
2402 		/*
2403 		 * We can ignore HAMMER_CURSOR_ITERATE_CHECK, the
2404 		 * cursor will still be properly positioned for
2405 		 * mirror propagation, just not for iterations.
2406 		 */
2407 		while (error == EDEADLK) {
2408 			hammer_recover_cursor(cursor);
2409 			error = hammer_cursor_upgrade(cursor);
2410 		}
2411 		if (error)
2412 			break;
2413 
2414 		/*
2415 		 * If the cursor deadlocked it could end up at a leaf
2416 		 * after we lost the lock.
2417 		 */
2418 		node = cursor->node;
2419 		if (node->ondisk->type != HAMMER_BTREE_TYPE_INTERNAL)
2420 			continue;
2421 
2422 		/*
2423 		 * Adjust the node's element
2424 		 */
2425 		elm = &node->ondisk->elms[cursor->index].internal;
2426 		if (elm->mirror_tid >= mirror_tid)
2427 			break;
2428 		hammer_modify_node(cursor->trans, node, &elm->mirror_tid,
2429 				   sizeof(elm->mirror_tid));
2430 		elm->mirror_tid = mirror_tid;
2431 		hammer_modify_node_done(node);
2432 		if (hammer_debug_general & 0x0002) {
2433 			hdkprintf("propagate %016jx @%016jx:%d\n",
2434 				(intmax_t)mirror_tid,
2435 				(intmax_t)node->node_offset,
2436 				cursor->index);
2437 		}
2438 
2439 
2440 		/*
2441 		 * Adjust the node's mirror_tid aggregator
2442 		 */
2443 		if (node->ondisk->mirror_tid >= mirror_tid)
2444 			return(0);
2445 		hammer_modify_node_field(cursor->trans, node, mirror_tid);
2446 		node->ondisk->mirror_tid = mirror_tid;
2447 		hammer_modify_node_done(node);
2448 		if (hammer_debug_general & 0x0002) {
2449 			hdkprintf("propagate %016jx @%016jx\n",
2450 				(intmax_t)mirror_tid,
2451 				(intmax_t)node->node_offset);
2452 		}
2453 	}
2454 	if (error == ENOENT)
2455 		error = 0;
2456 	return(error);
2457 }
2458 
2459 /*
2460  * Return a pointer to node's parent.  If there is no error,
2461  * *parent_index is set to an index of parent's elm that points
2462  * to this node.
2463  */
2464 hammer_node_t
2465 hammer_btree_get_parent(hammer_transaction_t trans, hammer_node_t node,
2466 			int *parent_indexp, int *errorp, int try_exclusive)
2467 {
2468 	hammer_node_t parent;
2469 	hammer_btree_elm_t elm;
2470 	int i;
2471 
2472 	/*
2473 	 * Get the node
2474 	 */
2475 	parent = hammer_get_node(trans, node->ondisk->parent, 0, errorp);
2476 	if (*errorp) {
2477 		KKASSERT(parent == NULL);
2478 		return(NULL);
2479 	}
2480 	KKASSERT ((parent->flags & HAMMER_NODE_DELETED) == 0);
2481 
2482 	/*
2483 	 * Lock the node
2484 	 */
2485 	if (try_exclusive) {
2486 		if (hammer_lock_ex_try(&parent->lock)) {
2487 			hammer_rel_node(parent);
2488 			*errorp = EDEADLK;
2489 			return(NULL);
2490 		}
2491 	} else {
2492 		hammer_lock_sh(&parent->lock);
2493 	}
2494 
2495 	/*
2496 	 * Figure out which element in the parent is pointing to the
2497 	 * child.
2498 	 */
2499 	if (node->ondisk->count) {
2500 		i = hammer_btree_search_node(&node->ondisk->elms[0].base,
2501 					     parent->ondisk);
2502 	} else {
2503 		i = 0;
2504 	}
2505 	while (i < parent->ondisk->count) {
2506 		elm = &parent->ondisk->elms[i];
2507 		if (elm->internal.subtree_offset == node->node_offset)
2508 			break;
2509 		++i;
2510 	}
2511 	if (i == parent->ondisk->count) {
2512 		hammer_unlock(&parent->lock);
2513 		hpanic("Bad B-Tree link: parent %p node %p", parent, node);
2514 	}
2515 	*parent_indexp = i;
2516 	KKASSERT(*errorp == 0);
2517 	return(parent);
2518 }
2519 
2520 /*
2521  * The element (elm) has been moved to a new internal node (node).
2522  *
2523  * If the element represents a pointer to an internal node that node's
2524  * parent must be adjusted to the element's new location.
2525  *
2526  * XXX deadlock potential here with our exclusive locks
2527  */
2528 int
2529 btree_set_parent_of_child(hammer_transaction_t trans, hammer_node_t node,
2530 		 hammer_btree_elm_t elm)
2531 {
2532 	hammer_node_t child;
2533 	int error;
2534 
2535 	error = 0;
2536 
2537 	if (hammer_is_internal_node_elm(elm)) {
2538 		child = hammer_get_node(trans, elm->internal.subtree_offset,
2539 					0, &error);
2540 		if (error == 0) {
2541 			hammer_modify_node_field(trans, child, parent);
2542 			child->ondisk->parent = node->node_offset;
2543 			hammer_modify_node_done(child);
2544 			hammer_rel_node(child);
2545 		}
2546 	}
2547 	return(error);
2548 }
2549 
2550 /*
2551  * Initialize the root of a recursive B-Tree node lock list structure.
2552  */
2553 void
2554 hammer_node_lock_init(hammer_node_lock_t parent, hammer_node_t node)
2555 {
2556 	TAILQ_INIT(&parent->list);
2557 	parent->parent = NULL;
2558 	parent->node = node;
2559 	parent->index = -1;
2560 	parent->count = node->ondisk->count;
2561 	parent->copy = NULL;
2562 	parent->flags = 0;
2563 }
2564 
2565 /*
2566  * Initialize a cache of hammer_node_lock's including space allocated
2567  * for node copies.
2568  *
2569  * This is used by the rebalancing code to preallocate the copy space
2570  * for ~4096 B-Tree nodes (16MB of data) prior to acquiring any HAMMER
2571  * locks, otherwise we can blow out the pageout daemon's emergency
2572  * reserve and deadlock it.
2573  *
2574  * NOTE: HAMMER_NODE_LOCK_LCACHE is not set on items cached in the lcache.
2575  *	 The flag is set when the item is pulled off the cache for use.
2576  */
2577 void
2578 hammer_btree_lcache_init(hammer_mount_t hmp, hammer_node_lock_t lcache,
2579 			 int depth)
2580 {
2581 	hammer_node_lock_t item;
2582 	int count;
2583 
2584 	for (count = 1; depth; --depth)
2585 		count *= HAMMER_BTREE_LEAF_ELMS;
2586 	bzero(lcache, sizeof(*lcache));
2587 	TAILQ_INIT(&lcache->list);
2588 	while (count) {
2589 		item = kmalloc(sizeof(*item), hmp->m_misc, M_WAITOK|M_ZERO);
2590 		item->copy = kmalloc(sizeof(*item->copy),
2591 				     hmp->m_misc, M_WAITOK);
2592 		TAILQ_INIT(&item->list);
2593 		TAILQ_INSERT_TAIL(&lcache->list, item, entry);
2594 		--count;
2595 	}
2596 }
2597 
2598 void
2599 hammer_btree_lcache_free(hammer_mount_t hmp, hammer_node_lock_t lcache)
2600 {
2601 	hammer_node_lock_t item;
2602 
2603 	while ((item = TAILQ_FIRST(&lcache->list)) != NULL) {
2604 		TAILQ_REMOVE(&lcache->list, item, entry);
2605 		KKASSERT(item->copy);
2606 		KKASSERT(TAILQ_EMPTY(&item->list));
2607 		kfree(item->copy, hmp->m_misc);
2608 		kfree(item, hmp->m_misc);
2609 	}
2610 	KKASSERT(lcache->copy == NULL);
2611 }
2612 
2613 /*
2614  * Exclusively lock all the children of node.  This is used by the split
2615  * code to prevent anyone from accessing the children of a cursor node
2616  * while we fix-up its parent offset.
2617  *
2618  * If we don't lock the children we can really mess up cursors which block
2619  * trying to cursor-up into our node.
2620  *
2621  * On failure EDEADLK (or some other error) is returned.  If a deadlock
2622  * error is returned the cursor is adjusted to block on termination.
2623  *
2624  * The caller is responsible for managing parent->node, the root's node
2625  * is usually aliased from a cursor.
2626  */
2627 int
2628 hammer_btree_lock_children(hammer_cursor_t cursor, int depth,
2629 			   hammer_node_lock_t parent,
2630 			   hammer_node_lock_t lcache)
2631 {
2632 	hammer_node_t node;
2633 	hammer_node_lock_t item;
2634 	hammer_node_ondisk_t ondisk;
2635 	hammer_btree_elm_t elm;
2636 	hammer_node_t child;
2637 	hammer_mount_t hmp;
2638 	int error;
2639 	int i;
2640 
2641 	node = parent->node;
2642 	ondisk = node->ondisk;
2643 	error = 0;
2644 	hmp = cursor->trans->hmp;
2645 
2646 	if (ondisk->type != HAMMER_BTREE_TYPE_INTERNAL)
2647 		return(0);  /* This could return non-zero */
2648 
2649 	/*
2650 	 * We really do not want to block on I/O with exclusive locks held,
2651 	 * pre-get the children before trying to lock the mess.  This is
2652 	 * only done one-level deep for now.
2653 	 */
2654 	for (i = 0; i < ondisk->count; ++i) {
2655 		++hammer_stats_btree_elements;
2656 		elm = &ondisk->elms[i];
2657 		child = hammer_get_node(cursor->trans,
2658 					elm->internal.subtree_offset,
2659 					0, &error);
2660 		if (child)
2661 			hammer_rel_node(child);
2662 	}
2663 
2664 	/*
2665 	 * Do it for real
2666 	 */
2667 	for (i = 0; error == 0 && i < ondisk->count; ++i) {
2668 		++hammer_stats_btree_elements;
2669 		elm = &ondisk->elms[i];
2670 
2671 		KKASSERT(elm->internal.subtree_offset != 0);
2672 		child = hammer_get_node(cursor->trans,
2673 					elm->internal.subtree_offset,
2674 					0, &error);
2675 		if (child) {
2676 			if (hammer_lock_ex_try(&child->lock) != 0) {
2677 				if (cursor->deadlk_node == NULL) {
2678 					cursor->deadlk_node = child;
2679 					hammer_ref_node(cursor->deadlk_node);
2680 				}
2681 				error = EDEADLK;
2682 				hammer_rel_node(child);
2683 			} else {
2684 				if (lcache) {
2685 					item = TAILQ_FIRST(&lcache->list);
2686 					KKASSERT(item != NULL);
2687 					item->flags |= HAMMER_NODE_LOCK_LCACHE;
2688 					TAILQ_REMOVE(&lcache->list, item, entry);
2689 				} else {
2690 					item = kmalloc(sizeof(*item),
2691 						       hmp->m_misc,
2692 						       M_WAITOK|M_ZERO);
2693 					TAILQ_INIT(&item->list);
2694 				}
2695 
2696 				TAILQ_INSERT_TAIL(&parent->list, item, entry);
2697 				item->parent = parent;
2698 				item->node = child;
2699 				item->index = i;
2700 				item->count = child->ondisk->count;
2701 
2702 				/*
2703 				 * Recurse (used by the rebalancing code)
2704 				 */
2705 				if (depth > 1 && elm->base.btype == HAMMER_BTREE_TYPE_INTERNAL) {
2706 					error = hammer_btree_lock_children(
2707 							cursor,
2708 							depth - 1,
2709 							item,
2710 							lcache);
2711 				}
2712 			}
2713 		}
2714 	}
2715 	if (error)
2716 		hammer_btree_unlock_children(hmp, parent, lcache);
2717 	return(error);
2718 }
2719 
2720 /*
2721  * Create an in-memory copy of all B-Tree nodes listed, recursively,
2722  * including the parent.
2723  */
2724 void
2725 hammer_btree_lock_copy(hammer_cursor_t cursor, hammer_node_lock_t parent)
2726 {
2727 	hammer_mount_t hmp = cursor->trans->hmp;
2728 	hammer_node_lock_t item;
2729 
2730 	if (parent->copy == NULL) {
2731 		KKASSERT((parent->flags & HAMMER_NODE_LOCK_LCACHE) == 0);
2732 		parent->copy = kmalloc(sizeof(*parent->copy),
2733 				       hmp->m_misc, M_WAITOK);
2734 	}
2735 	KKASSERT((parent->flags & HAMMER_NODE_LOCK_UPDATED) == 0);
2736 	*parent->copy = *parent->node->ondisk;
2737 	TAILQ_FOREACH(item, &parent->list, entry) {
2738 		hammer_btree_lock_copy(cursor, item);
2739 	}
2740 }
2741 
2742 /*
2743  * Recursively sync modified copies to the media.
2744  */
2745 int
2746 hammer_btree_sync_copy(hammer_cursor_t cursor, hammer_node_lock_t parent)
2747 {
2748 	hammer_node_lock_t item;
2749 	int count = 0;
2750 
2751 	if (parent->flags & HAMMER_NODE_LOCK_UPDATED) {
2752 		++count;
2753 		hammer_modify_node_all(cursor->trans, parent->node);
2754 		*parent->node->ondisk = *parent->copy;
2755                 hammer_modify_node_done(parent->node);
2756 		if (parent->copy->type == HAMMER_BTREE_TYPE_DELETED) {
2757 			hammer_flush_node(parent->node, 0);
2758 			hammer_delete_node(cursor->trans, parent->node);
2759 		}
2760 	}
2761 	TAILQ_FOREACH(item, &parent->list, entry) {
2762 		count += hammer_btree_sync_copy(cursor, item);
2763 	}
2764 	return(count);
2765 }
2766 
2767 /*
2768  * Release previously obtained node locks.  The caller is responsible for
2769  * cleaning up parent->node itself (its usually just aliased from a cursor),
2770  * but this function will take care of the copies.
2771  *
2772  * NOTE: The root node is not placed in the lcache and node->copy is not
2773  *	 deallocated when lcache != NULL.
2774  */
2775 void
2776 hammer_btree_unlock_children(hammer_mount_t hmp, hammer_node_lock_t parent,
2777 			     hammer_node_lock_t lcache)
2778 {
2779 	hammer_node_lock_t item;
2780 	hammer_node_ondisk_t copy;
2781 
2782 	while ((item = TAILQ_FIRST(&parent->list)) != NULL) {
2783 		TAILQ_REMOVE(&parent->list, item, entry);
2784 		hammer_btree_unlock_children(hmp, item, lcache);
2785 		hammer_unlock(&item->node->lock);
2786 		hammer_rel_node(item->node);
2787 		if (lcache) {
2788 			/*
2789 			 * NOTE: When placing the item back in the lcache
2790 			 *	 the flag is cleared by the bzero().
2791 			 *	 Remaining fields are cleared as a safety
2792 			 *	 measure.
2793 			 */
2794 			KKASSERT(item->flags & HAMMER_NODE_LOCK_LCACHE);
2795 			KKASSERT(TAILQ_EMPTY(&item->list));
2796 			copy = item->copy;
2797 			bzero(item, sizeof(*item));
2798 			TAILQ_INIT(&item->list);
2799 			item->copy = copy;
2800 			if (copy)
2801 				bzero(copy, sizeof(*copy));
2802 			TAILQ_INSERT_TAIL(&lcache->list, item, entry);
2803 		} else {
2804 			kfree(item, hmp->m_misc);
2805 		}
2806 	}
2807 	if (parent->copy && (parent->flags & HAMMER_NODE_LOCK_LCACHE) == 0) {
2808 		kfree(parent->copy, hmp->m_misc);
2809 		parent->copy = NULL;	/* safety */
2810 	}
2811 }
2812 
2813 /************************************************************************
2814  *			   MISCELLANIOUS SUPPORT 			*
2815  ************************************************************************/
2816 
2817 /*
2818  * Compare two B-Tree elements, return -N, 0, or +N (e.g. similar to strcmp).
2819  *
2820  * Note that for this particular function a return value of -1, 0, or +1
2821  * can denote a match if create_tid is otherwise discounted.  A create_tid
2822  * of zero is considered to be 'infinity' in comparisons.
2823  *
2824  * See also hammer_rec_rb_compare() and hammer_rec_cmp() in hammer_object.c.
2825  */
2826 int
2827 hammer_btree_cmp(hammer_base_elm_t key1, hammer_base_elm_t key2)
2828 {
2829 	if (key1->localization < key2->localization)
2830 		return(-5);
2831 	if (key1->localization > key2->localization)
2832 		return(5);
2833 
2834 	if (key1->obj_id < key2->obj_id)
2835 		return(-4);
2836 	if (key1->obj_id > key2->obj_id)
2837 		return(4);
2838 
2839 	if (key1->rec_type < key2->rec_type)
2840 		return(-3);
2841 	if (key1->rec_type > key2->rec_type)
2842 		return(3);
2843 
2844 	if (key1->key < key2->key)
2845 		return(-2);
2846 	if (key1->key > key2->key)
2847 		return(2);
2848 
2849 	/*
2850 	 * A create_tid of zero indicates a record which is undeletable
2851 	 * and must be considered to have a value of positive infinity.
2852 	 */
2853 	if (key1->create_tid == 0) {
2854 		if (key2->create_tid == 0)
2855 			return(0);
2856 		return(1);
2857 	}
2858 	if (key2->create_tid == 0)
2859 		return(-1);
2860 	if (key1->create_tid < key2->create_tid)
2861 		return(-1);
2862 	if (key1->create_tid > key2->create_tid)
2863 		return(1);
2864 	return(0);
2865 }
2866 
2867 /*
2868  * Test a timestamp against an element to determine whether the
2869  * element is visible.  A timestamp of 0 means 'infinity'.
2870  */
2871 int
2872 hammer_btree_chkts(hammer_tid_t asof, hammer_base_elm_t base)
2873 {
2874 	if (asof == 0) {
2875 		if (base->delete_tid)
2876 			return(1);
2877 		return(0);
2878 	}
2879 	if (asof < base->create_tid)
2880 		return(-1);
2881 	if (base->delete_tid && asof >= base->delete_tid)
2882 		return(1);
2883 	return(0);
2884 }
2885 
2886 /*
2887  * Create a separator half way inbetween key1 and key2.  For fields just
2888  * one unit apart, the separator will match key2.  key1 is on the left-hand
2889  * side and key2 is on the right-hand side.
2890  *
2891  * key2 must be >= the separator.  It is ok for the separator to match key2.
2892  *
2893  * NOTE: Even if key1 does not match key2, the separator may wind up matching
2894  * key2.
2895  *
2896  * NOTE: It might be beneficial to just scrap this whole mess and just
2897  * set the separator to key2.
2898  */
2899 #define MAKE_SEPARATOR(key1, key2, dest, field)	\
2900 	dest->field = key1->field + ((key2->field - key1->field + 1) >> 1);
2901 
2902 static void
2903 hammer_make_separator(hammer_base_elm_t key1, hammer_base_elm_t key2,
2904 		      hammer_base_elm_t dest)
2905 {
2906 	bzero(dest, sizeof(*dest));
2907 
2908 	dest->rec_type = key2->rec_type;
2909 	dest->key = key2->key;
2910 	dest->obj_id = key2->obj_id;
2911 	dest->create_tid = key2->create_tid;
2912 
2913 	MAKE_SEPARATOR(key1, key2, dest, localization);
2914 	if (key1->localization == key2->localization) {
2915 		MAKE_SEPARATOR(key1, key2, dest, obj_id);
2916 		if (key1->obj_id == key2->obj_id) {
2917 			MAKE_SEPARATOR(key1, key2, dest, rec_type);
2918 			if (key1->rec_type == key2->rec_type) {
2919 				MAKE_SEPARATOR(key1, key2, dest, key);
2920 				/*
2921 				 * Don't bother creating a separator for
2922 				 * create_tid, which also conveniently avoids
2923 				 * having to handle the create_tid == 0
2924 				 * (infinity) case.  Just leave create_tid
2925 				 * set to key2.
2926 				 *
2927 				 * Worst case, dest matches key2 exactly,
2928 				 * which is acceptable.
2929 				 */
2930 			}
2931 		}
2932 	}
2933 }
2934 
2935 #undef MAKE_SEPARATOR
2936 
2937 /*
2938  * Return whether a generic internal or leaf node is full
2939  */
2940 static __inline
2941 int
2942 btree_node_is_full(hammer_node_ondisk_t node)
2943 {
2944 	int n;
2945 
2946 	n = hammer_node_max_elements(node->type);
2947 	if (n == -1)
2948 		hpanic("bad type %d", node->type);
2949 
2950 	return(n == node->count);
2951 }
2952 
2953 void
2954 hammer_print_btree_node(hammer_node_ondisk_t ondisk)
2955 {
2956 	int i, n;
2957 
2958 	kprintf("node %p count=%d parent=%016jx type=%c\n",
2959 		ondisk, ondisk->count,
2960 		(intmax_t)ondisk->parent, ondisk->type);
2961 
2962 	switch (ondisk->type) {
2963 	case HAMMER_BTREE_TYPE_INTERNAL:
2964 		n = ondisk->count + 1;  /* count is NOT boundary inclusive */
2965 		break;
2966 	case HAMMER_BTREE_TYPE_LEAF:
2967 		n = ondisk->count;  /* there is no boundary */
2968 		break;
2969 	default:
2970 		return;  /* nothing to do */
2971 	}
2972 
2973 	/*
2974 	 * Dump elements including boundary.
2975 	 */
2976 	for (i = 0; i < n; ++i) {
2977 		kprintf("  %2d", i);
2978 		hammer_print_btree_elm(&ondisk->elms[i]);
2979 	}
2980 }
2981 
2982 void
2983 hammer_print_btree_elm(hammer_btree_elm_t elm)
2984 {
2985 	kprintf("\tobj_id       = %016jx\n", (intmax_t)elm->base.obj_id);
2986 	kprintf("\tkey          = %016jx\n", (intmax_t)elm->base.key);
2987 	kprintf("\tcreate_tid   = %016jx\n", (intmax_t)elm->base.create_tid);
2988 	kprintf("\tdelete_tid   = %016jx\n", (intmax_t)elm->base.delete_tid);
2989 	kprintf("\trec_type     = %04x\n", elm->base.rec_type);
2990 	kprintf("\tobj_type     = %02x\n", elm->base.obj_type);
2991 	kprintf("\tbtype        = %02x (%c)\n", elm->base.btype,
2992 						hammer_elm_btype(elm));
2993 	kprintf("\tlocalization = %08x\n", elm->base.localization);
2994 
2995 	if (hammer_is_internal_node_elm(elm)) {
2996 		kprintf("\tsubtree_off  = %016jx\n",
2997 			(intmax_t)elm->internal.subtree_offset);
2998 	} else if (hammer_is_leaf_node_elm(elm)) {
2999 		kprintf("\tdata_offset  = %016jx\n",
3000 			(intmax_t)elm->leaf.data_offset);
3001 		kprintf("\tdata_len     = %08x\n", elm->leaf.data_len);
3002 		kprintf("\tdata_crc     = %08x\n", elm->leaf.data_crc);
3003 	}
3004 }
3005 
3006 static __inline
3007 void
3008 hammer_debug_btree_elm(hammer_cursor_t cursor, hammer_btree_elm_t elm,
3009 		const char *s, int res)
3010 {
3011 	hkprintf("%-8s %016jx[%02d] %c "
3012 		"lo=%08x obj=%016jx rec=%02x key=%016jx tid=%016jx td=%p "
3013 		"r=%d\n",
3014 		s,
3015 		(intmax_t)cursor->node->node_offset,
3016 		cursor->index,
3017 		hammer_elm_btype(elm),
3018 		elm->base.localization,
3019 		(intmax_t)elm->base.obj_id,
3020 		elm->base.rec_type,
3021 		(intmax_t)elm->base.key,
3022 		(intmax_t)elm->base.create_tid,
3023 		curthread,
3024 		res);
3025 }
3026 
3027 static __inline
3028 void
3029 hammer_debug_btree_parent(hammer_cursor_t cursor, const char *s)
3030 {
3031 	hammer_btree_elm_t elm =
3032 	    &cursor->parent->ondisk->elms[cursor->parent_index];
3033 
3034 	hkprintf("%-8s %016jx[%d] %c "
3035 		"(%016jx/%016jx %016jx/%016jx) (%p/%p %p/%p)\n",
3036 		s,
3037 		(intmax_t)cursor->parent->node_offset,
3038 		cursor->parent_index,
3039 		hammer_elm_btype(elm),
3040 		(intmax_t)cursor->left_bound->obj_id,
3041 		(intmax_t)elm->internal.base.obj_id,
3042 		(intmax_t)cursor->right_bound->obj_id,
3043 		(intmax_t)(elm + 1)->internal.base.obj_id,
3044 		cursor->left_bound,
3045 		elm,
3046 		cursor->right_bound,
3047 		elm + 1);
3048 }
3049